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Eigenvectors (SOLUTIONS)

1. Let u ∈ U1 ∩ U2. Since u ∈ U1 then T (u) ∈ U1. Since u ∈ U2 then
T (u) ∈ U2. Hence T (u) ∈ U1 ∩ U2.

2. Consider a linear transformation that is, with respect to a fixed basis,
given by a rotation matrix (

cos θ − sin θ
sin θ cos θ

)
for θ 6∈ πZ. Such a rotation does not fix a line.

3. Let V be the vector space of polynomials in the variable x with a complex
coefficients. Let T (p) = xp. Then Tp 6= λp for any nonzero p because T
increases the degree of the polynomial.

4. This proof uses the solution to 7. Let T (u) = λ1u, T (v) = λ2v and
T (u+ v) = λ3(u+ v). Then T (u+ v) = λ1u+ λ2v and

λ1u+ λ2v = λ3(u+ v)

so
(λ1 − λ3)u+ (λ2 − λ3)v = 0

If λ1 = λ2, then λ3 = λ1 = λ2. If λ1 6= λ2, then problem 7 implies
that u and v are linearly independent. Then λ1 − λ3 = λ2 − λ3 = 0,
contradicting λ1 6= λ2.

5. Define P by P (ui) := vi. Then P−1TPui = P−1Tvi = λiP
−1vi = λiui.

6. T 3 = id, so after three iterations it takes the standard basis back to

itself. Let

(
a
b

)
be an eigenvector for T . Then(

0 −1
1 −1

)(
a
b

)
= λ

(
a
b

)
⇒

(
−b
a− b

)
=

(
λa
λb

)
Solving these equations shows that λ2 + λ + 1 = 0. This equation does
not have solutions over R, so T does not have any eigenvectors.

Viewing T instead as a transformation C2 → C2, λ2 + λ + 1 = 0 does
have two solutions, and so you can use these solve for the eigenvectors.
Let ζ1 and ζ2 be the two roots. Explicitly ζ1 and ζ2 are −1±i

√
3

2
. Then(

1
−ζ1

) (
1
−ζ2

)
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are two eigenvectors. Since these are linearly independent, they form a
basis.

7. Suppose that a1v + a2w = 0 is a linear relation. We’d like to show that
a1 = a2 = 0. Suppose that a1 6= 0. Then

v = −a2
a1
w

so v is a scalar multiple of w. Then v must have the same eigenvalue as
w since

T (cw) = cT (w) = cλw = λcw.

Something similar works if a2 6= 0. Since v and w have different eigen-
values, it follows that both a1 and a2 must be 0.

8. The identity transformation, which sends every vector to itself, has the
property that every nonzero vector is an eigenvector with eigenvalue 1.

9. Eigenvectors with nonzero eigenvalue are in the image of T . Eigenvectors
with different eigenvalues are linearly independent, and there can be no
more than k elements in a linearly independent subset of a space of
dimension k. Hence if dim(Im(T )) = k there can no more than k nonzero
eigenvalues. Adding on the possibility of the zero eigenvalue implies that
T can have at most k + 1 eigenvalues.

I didn’t prove in class that if v1, . . . , vn are eigenvectors with different
eigenvalues then they are linearly independent. Here is a proof, by induc-
tion on the number of eigenvectors. Because an eigenvector is nonzero, a
set with one eigenvector is linearly independent. For the inductive step,
suppose you know that (n − 1) eigenvectors with distinct eigenvalues
are linearly independent. Let v1, . . . , vn be eigenvectors with different
eigenvalues λ1, . . . , λn. Suppose

a1v1 + · · ·+ anvn = 0

Applying T both sides shows that

λ1a1v1 + · · ·+ λnanvn = 0

or instead multiplying by λ1 shows that

λ1a1v1 + λ1a2v2 + λ1a3v3 + · · ·+ λ1anvn = 0.

Subtracting these two shows that

(λ2 − λ1)a2v2 + (λ3 − λ1)a3v3 + · · ·+ (λn − λ1)anvn = 0.

By the inductive hypothesis v2, . . . , vn are linearly independent. There-
fore

(λi − λ1)ai = 0

2



for each 2 ≤ i ≤ n. Since λi − λ1 6= 0, each ai = 0 for 2 ≤ i ≤ n. Since
v1 6= 0 it follows that a1 = 0. Hence

a1v1 + · · ·+ anvn = 0⇒ ai = 0 ∀i.

10. Let Tv = λv. Then S−1TS(S−1v) = S−1Tv = λS−1v so that if v is
an eigenvector for T with eigenvalue λ then S−1v is an eigenvector for
S−1TS with eigenvalue λ. Similarly, if w is an eigenvector for S−1TS
with eigenvalue λ then Sw is an eigenvector for T with eigenvalue λ.
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