Math 110
June 27, 2018
Eigenvectors (SOLUTIONS)

. Let u € Uy NU,. Since u € U; then T'(u) € U;. Since u € U, then
T(u) € Uy. Hence T(u) € Uy N Us.

. Consider a linear transformation that is, with respect to a fixed basis,
given by a rotation matrix

cosf) —sind
sinf  cosd
for @ € wZ. Such a rotation does not fix a line.

. Let V be the vector space of polynomials in the variable x with a complex
coefficients. Let T'(p) = xp. Then T)p # Ap for any nonzero p because T’
increases the degree of the polynomial.

. This proof uses the solution to 7. Let T(u) = \u, T(v) = Ao and
T(u+v) = A3(u+v). Then T(u+v) = A\u+ Ao and

Au+ Agv = Ag(u + )
S0
()\1 — )\3)U + ()\2 — )\3)1} =0

If A1 = A9, then A3 = Ay = A\y. If Ay # Xy, then problem 7 implies
that v and v are linearly independent. Then A\; — A3 = Ay — A3 = 0,
contradicting Ay # As.

. Define P by P(u;) := v;. Then P7'TPu; = P™'Tv; = \;\P7'v; = \u;.

. T3 = id, so after three iterations it takes the standard basis back to

itself. Let (a

b> be an eigenvector for 7. Then

(2 6)6)
- () - (3)

Solving these equations shows that A\ + X\ + 1 = 0. This equation does

not have solutions over R, so 7" does not have any eigenvectors.

Viewing T instead as a transformation C* — C?, A2+ X + 1 = 0 does
have two solutions, and so you can use these solve for the eigenvectors.
Let ¢; and (, be the two roots. Explicitly ¢; and ¢, are =1£Y3 Then

e
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are two eigenvectors. Since these are linearly independent, they form a
basis.

. Suppose that a;v + asw = 0 is a linear relation. We’d like to show that
a1 = ag = 0. Suppose that a; # 0. Then

az
v=——w
ax
so v is a scalar multiple of w. Then v must have the same eigenvalue as
w since

T(cw) = cT'(w) = chw = Acw.

Something similar works if ay # 0. Since v and w have different eigen-
values, it follows that both a; and as must be 0.

. The identity transformation, which sends every vector to itself, has the
property that every nonzero vector is an eigenvector with eigenvalue 1.

. Eigenvectors with nonzero eigenvalue are in the image of T'. Eigenvectors
with different eigenvalues are linearly independent, and there can be no
more than k elements in a linearly independent subset of a space of
dimension k. Hence if dim(Im(7")) = k there can no more than k£ nonzero
eigenvalues. Adding on the possibility of the zero eigenvalue implies that
T can have at most k + 1 eigenvalues.

I didn’t prove in class that if vy,... v, are eigenvectors with different
eigenvalues then they are linearly independent. Here is a proof, by induc-
tion on the number of eigenvectors. Because an eigenvector is nonzero, a
set with one eigenvector is linearly independent. For the inductive step,
suppose you know that (n — 1) eigenvectors with distinct eigenvalues
are linearly independent. Let vq,...,v, be eigenvectors with different
eigenvalues \q, ..., \,. Suppose

a1v1 + -+ ayv, =0
Applying T both sides shows that
Aai1vr + - -+ Apapv, =0
or instead multiplying by A\; shows that
A1a1v1 + A1agUs + Ajasvs + -+ - + Aa,v, = 0.
Subtracting these two shows that
(A2 — A1)agvs + (A3 — A1)azvz + -+ - + (A — A)ayv, = 0.

By the inductive hypothesis vs, ..., v, are linearly independent. There-
fore

<>\z — )\1)6Li = 0
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for each 2 < i < n. Since \; — Ay # 0, each a; = 0 for 2 < i < n. Since
vy # 0 it follows that a; = 0. Hence

a1v1 + -+ apv, = 0= a; =0 Vi.

Let Tv = Av. Then ST'TS(S 'v) = S7'Tv = AS~'v so that if v is
an eigenvector for T with eigenvalue A then S~!v is an eigenvector for
STITS with eigenvalue \. Similarly, if w is an eigenvector for S~!T'S
with eigenvalue A then Sw is an eigenvector for T" with eigenvalue \.



