Math 110

June 27, 2018
Eigenvectors

1. Let $T: V \rightarrow V$ and let U_{1} and U_{2} be invariant subspaces for V. Show that $U_{1} \cap U_{2}$ is an invariant subspace.
2. Let V be a real vector space with $\operatorname{dim}(V)=2$. Find a linear map $T: V \rightarrow V$ so that the only invariant subspaces of T are $\{0\}$ and V.
3. Find a linear map $T: V \rightarrow V$ of a complex vector space to itself such that T has no eigenvectors.
4. Suppose that u, v, and $u+v$ are eigenvectors. Show they have the same eigenvalues.
5. Let $T: V \rightarrow V$ be diagonalizable so, in particular, it has a basis of eigenvectors. Let $\left(v_{1}, \ldots, v_{n}\right)$ be this basis. Let $\left(u_{1}, \ldots, u_{n}\right)$ be another basis of V. Find an invertible linear transformation P such that $\left(u_{1}, \ldots, u_{n}\right)$ is an eigenbasis for $P^{-1} \circ T \circ P$.
6. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given (with respect to the standard basis vectors) by

$$
\left(\begin{array}{ll}
0 & -1 \\
1 & -1
\end{array}\right) .
$$

If you were to iterate this transformation on the standard basis, what happens? Is T diagonalizable? If so, find a basis of eigenvectors. If you view T instead as a linear map $\mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$, is it diagonalizable? If so, find a basis of eigenvectors.
7. Prove that if v_{1} and v_{2} are eigenvectors of T with different eigenvalues, then $\left\{v_{1}, v_{2}\right\}$ is linearly independent.
8. Can you find a linear transformation $T: V \rightarrow V$ with two linear linearly independent eigenvectors with the same eigenvalues?
9. Suppose $T: V \rightarrow V$ has $\operatorname{dim}(\operatorname{im}(T))=k$. Prove that T has at most $k+1$ distinct eigenvalues.
10. Show that $S^{-1} \circ T \circ S$ and T have the same eigenvalues. What is the relationship between the eigenvectors of T and the eigenvectors of $S^{-1} \circ$ $T \circ S$?
11. (Challenge) Assume the fundamental theorem of algebra: that if p is a polynomial with complex coefficients then $p(z)=\left(z-r_{1}\right) \cdots(z-$ r_{n}) for some $r_{1}, \ldots, r_{n} \in \mathbb{C}$. Show that if p is a polynomial with real coefficients then p factors as a product of linear and quadratic factors with coefficients in \mathbb{R}.

