Math 110

June 25, 2018

Linear Maps (SOLUTIONS)

1. [Removed]

2. Let $\left(v_{1}, \ldots, v_{n}\right)$ be a basis of V. Then $\left\{T\left(v_{1}\right), \ldots, T\left(v_{n}\right)\right\}$ spans the image of T : any vector $T(v)$ can be written

$$
T(v)=T\left(a_{1} v_{1}+\cdots+a_{n} v_{n}\right)=a_{1} T\left(v_{1}\right)+\cdots+a_{n} T\left(v_{n}\right) .
$$

By exercise 2 of the last handout, a spanning set contains a basis, so the number of elements in a basis of $\operatorname{im}(T)$ is less than or equal to n. Hence $\operatorname{dim}(\operatorname{im}(T)) \leq \operatorname{dim}(V)$.
3. Diagonal matrices such that at least one of the entries is 0 .
4. Given a basis $\left(v_{1}, v_{2}\right)$ of V, a linear map $T: V \rightarrow V$ can be represented as a 2×2 matrix. Composition of linear maps corresponds to matrix multiplication. There are lots of pairs of 2×2 matrices A, B such that $A B \neq B A$, for example

$$
\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) .
$$

5. The image is a subspace. The union of the two real axes is not a subspace (it contains e_{1} and e_{2} but does not contain $e_{1}+e_{2}$). Hence there is no such linear map.
6. The preimage of 0 is the kernel. The kernel is a subspace and, as in the last problem, the union of the three coordinate axes is not a subspace.
7. For the second and third matrices, the preimages of vectors in the image form a collection of parallel lines. Since the first matrix is invertible, the preimage of a point is a point.
8. The unit cube is sent to a parallelepiped: a figure with six faces such that opposite faces are parallel. This is the 3-dimensional analog of a parallelogram.
9. The unit cube is mapped to a hexagon in the plane. Some of the sides of the hexagon might have length zero or the hexagon might be squashed onto a line or a point.
10. Given $v \in V$ write $v=u_{1}+u_{2}$. You can do this since $V=U_{1}+U_{2}$. Since $U_{1}+U_{2}$ is a direct sum, u_{1} and u_{2} are determined by v. Therefore define $T(v)$ to be $T_{1}\left(u_{1}\right)+T_{2}\left(u_{2}\right)$. To check linearity: $c v=c u_{1}+c u_{2}$ is the decomposition of $c v$ into its U_{1} and U_{2} parts so

$$
T(c v)=T_{1}\left(c u_{1}\right)+T_{2}\left(c u_{2}\right)=c T_{1}\left(u_{1}\right)+c T_{2}\left(u_{2}\right)=c\left(T_{1}\left(u_{1}\right)+T_{2}\left(u_{2}\right)\right)=c T(v)
$$

and if $v=u_{1}+u_{2}$ and $w=u_{1}^{\prime}+u_{2}^{\prime}$ are the decompositions of v and w into their U_{1} and U_{2} parts then $v+w=\left(u_{1}+u_{1}^{\prime}\right)+\left(u_{2}+u_{2}^{\prime}\right)$ is the decomposition of $v+w$ into its U_{1} and U_{2} parts so

$$
\begin{aligned}
T(v+w) & =T_{1}\left(u_{1}+u_{1}^{\prime}\right)+T_{2}\left(u_{2}+u_{2}^{\prime}\right)=T_{1}\left(u_{1}\right)+T_{1}\left(u_{1}^{\prime}\right)+T_{2}\left(u_{2}\right)+T_{2}\left(u_{2}^{\prime}\right) \\
& =T_{1}\left(u_{1}\right)+T_{2}\left(u_{2}\right)+T_{1}\left(u_{1}^{\prime}\right)+T_{2}\left(u_{2}^{\prime}\right)=T(v)+T(w) .
\end{aligned}
$$

Such a map T is unique: if there were another map S such that $S\left(u_{1}\right)=$ $T_{1}\left(u_{1}\right)$ and $S\left(u_{2}\right)=T_{2}\left(u_{2}\right)$ then for $v=u_{1}+u_{2}$, then $T(v)=S\left(u_{1}+u_{2}\right)=$ $S\left(u_{1}\right)+S\left(u_{2}\right)=T_{1}\left(u_{1}\right)+T_{2}\left(u_{2}\right)=T(v)$.
11. The zero map, the one that sends all vectors to 0 , is the additive inverse in $\mathcal{L}(V, V)$. Hence every subspace of $\mathcal{L}(V, V)$ contains it.
If $\operatorname{dim}(V) \neq 0$, then the zero map is neither injective nor surjective, so in particular not invertible. Hence the set of invertible elements cannot be a subspace.

