Math 110

June 25, 2018
Linear Maps

1. [Removed]

2. Let $T: V \rightarrow W$. Prove that $\operatorname{dim} \operatorname{im}(T) \leq \operatorname{dim} V$.
3. Let $\left(v_{1}, \ldots, v_{n}\right)$ be a basis for V. Can you find an linear map $T: V \rightarrow V$ which sends each v_{i} to multiple of itself but which is not invertible? What does the matrix (with respect to $\left(v_{1}, \ldots, v_{n}\right)$) for such a linear map look like?
4. Let $\operatorname{dim}(V)=2$. Prove that there exist $T: V \rightarrow V$ and $S: V \rightarrow V$ such that $T \circ S \neq S \circ T$.
5. Can you find a linear map $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ whose image is the two coordinate axes of \mathbb{R}^{2} ?
6. Let $f: X \rightarrow Y$ be a map of sets. Recall that the preimage of $y \in Y$ is the set of all $x \in X$ such that $f(x)=y$. Can you find a linear map $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ such that the preimage of 0 is the three coordinate axes of \mathbb{R}^{3} ?
7. Consider the following matrices as linear maps $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$:

$$
\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
2 & 1 \\
2 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) .
$$

For each, indicate what the preimages of vectors in \mathbb{R}^{2} would look like drawn in the plane. Point out the kernel of each map.
8. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$. Suppose T is invertible. What does it do, geometrically, to the unit cube in \mathbb{R}^{3} ?
9. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be a linear map. Let C be the unit cube in \mathbb{R}^{3}. Draw some pictures of what $T(C)$ might look like in \mathbb{R}^{2}.
10. Suppose $V=U_{1} \oplus U_{2}$. Let $T_{1}: U_{1} \rightarrow W$ and $T_{2}: U_{2} \rightarrow W$ be linear maps. Show that there exists a unique linear map $T: V \rightarrow W$ which restricts to T_{1} and T_{2} on U_{1} and U_{2}, respectively.
11. Suppose that $\operatorname{dim}(V) \neq 0$. Prove that invertible linear maps $T: V \rightarrow V$ do not form a subspace of $\mathcal{L}(V, V)$.

