Math 110 June 25, 2018 Linear Maps

1. [Removed]

- 2. Let $T: V \to W$. Prove that $\dim \operatorname{im}(T) \leq \dim V$.
- 3. Let (v_1, \ldots, v_n) be a basis for V. Can you find an linear map $T: V \to V$ which sends each v_i to multiple of itself but which is not invertible? What does the matrix (with respect to (v_1, \ldots, v_n)) for such a linear map look like?
- 4. Let dim(V) = 2. Prove that there exist $T : V \to V$ and $S : V \to V$ such that $T \circ S \neq S \circ T$.
- 5. Can you find a linear map $T : \mathbb{R}^3 \to \mathbb{R}^2$ whose image is the two coordinate axes of \mathbb{R}^2 ?
- 6. Let $f : X \to Y$ be a map of sets. Recall that the preimage of $y \in Y$ is the set of all $x \in X$ such that f(x) = y. Can you find a linear map $T : \mathbb{R}^3 \to \mathbb{R}^2$ such that the preimage of 0 is the three coordinate axes of \mathbb{R}^3 ?
- 7. Consider the following matrices as linear maps $\mathbb{R}^2 \to \mathbb{R}^2$:

(2	1		(2)	1		(1)	$0 \rangle$	
$\begin{pmatrix} 2\\ 1 \end{pmatrix}$	1)	,	(2	1)	,	$\left(0\right)$	0)	•

For each, indicate what the preimages of vectors in \mathbb{R}^2 would look like drawn in the plane. Point out the kernel of each map.

- 8. Let $T : \mathbb{R}^3 \to \mathbb{R}^3$. Suppose T is invertible. What does it do, geometrically, to the unit cube in \mathbb{R}^3 ?
- 9. Let $T : \mathbb{R}^3 \to \mathbb{R}^2$ be a linear map. Let C be the unit cube in \mathbb{R}^3 . Draw some pictures of what T(C) might look like in \mathbb{R}^2 .
- 10. Suppose $V = U_1 \oplus U_2$. Let $T_1 : U_1 \to W$ and $T_2 : U_2 \to W$ be linear maps. Show that there exists a unique linear map $T : V \to W$ which restricts to T_1 and T_2 on U_1 and U_2 , respectively.
- 11. Suppose that $\dim(V) \neq 0$. Prove that invertible linear maps $T: V \to V$ do not form a subspace of $\mathcal{L}(V, V)$.