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Bases and Linear Transformations (SOLUTIONS)

1. Suppose for a contradiction that

v = a1vi1 + · · ·+ anvin = b1vj1 + · · ·+ bmvjm

are two ways of expressing v ∈ Span{v1, v2, . . .} as a linear combination
of the elements {v1, v2, . . .}. By adding some terms with 0 coefficients to
each side, one can assume that the two linear combinations use elements
from the same finite subset of {v1, v2, . . .}:

v = a1v1 + · · ·+ anvn = b1vn + · · ·+ bnvn.

Subtract one side from the other

0 = (a1 − b1)v1 + · · ·+ (an − bn)vn.

Since the two expressions are different at least one of the coefficients ai−
bi is nonzero. This contradicts linear independence of the set {v1, . . . , vn}.

2. The strategy used here is to construct a sequence of linearly independent
subsets B1 ⊂ B2 ⊂ · · · ⊂ Bn where Bn will be a basis. Start with
B1 = {v1}. Set Bi+1 := Bi if Bi ∪ vi+1 is linearly independent. Set
Bi+1 = Bi otherwise.

Note that if Bi ∪ vi+1 is linearly dependent, then vi+1 can be written as
a linear combination of {v1, . . . , vi}. To see this, let

a1v1 + · · ·+ aivi + ai+1vi+1 = 0

be a linear relation in Bi ∪ vi+1. Because Bi is linearly independent,
ai+1 6= 0. Hence

vi+1 = − a1
ai+1

v1 − · · · −
ai
ai+1

vi. (1)

Let Bn be the last set produced in this process. By construction, it
is linearly independent. It remains to check that it spans. Because
{v1, . . . , vn} spans, for any v ∈ V one can write

v = a1v1 + · · ·+ anvn.

The equation (1) and the argument before it shows that an element vi
that is not in Bn can be written as a linear combination of elements in
Bi−1 ⊂ Bn. Therefore v can be rewritten as a linear combination of
vectors in Bn.

Since Bn is linearly independent and spans, it is a basis.1

1The essential idea in this proof is that if {v1, . . . , vm} is linearly independent and
adding a vector v to {v1, . . . , vm} makes it linearly dependent, then v must necessarily
be in Span{v1, . . . , vm}.
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3. Let u1, . . . , um be a basis for V . Since the basis spans, so does the set

{v1, . . . , vn, u1, . . . , um}.

Apply the process from the previous proof to extract a basis for this
spanning set. Note that, since you start at v1 and the first n vectors
are linearly independent, {v1, . . . , vn} is included in the basis you end up
constructing.

In class I suggested the following argument: “Start with v1, . . . , vn, add
any vector vn+1 not in the span of {v1, . . . , vn}, and repeat this proce-
dure until you have dim(V ) vectors. At each stage you have a linearly
independent collection of vectors. A collection of dim(V ) linearly inde-
pendent vectors is a basis for its span. Any subspace of V has dimension
at most dim(V ).” The last sentence is true, though the easiest proofs I
know all involve citing the result this problem aims to prove.

4. If b 6= 0, then

f(x + y) = ax + b + ay + b 6= a(x + y) + b = f(x + y).

Therefore, in order for f to be linear b needs to be 0. If b is zero, then
it is easy to check that f is linear.

5. T (0) = T (0v) = 0T (v) = 0.

6. You want to show that T−1(w1 + w2) = T−1(w1) + T−1(w2). Since T is
invertible and hence surjective, w1 = T (v1) and w2 = T (v2) for some v1
and v2. Then

T−1(w1 + w2) = T−1(T (v1) + T (v2)) = T−1(T (v1 + v2)) = v1 + v2

= T−1(w1) + T−1(w2).

Similarly, you want to show that T−1(cw) = cT−1(w). Write w = T (v)
then

T−1(cw) = T−1(cT (v)) = T−1(T (cv)) = cv = cT−1(w).

7. First check that {T (v1), T (v2), . . .} spans W . Let w ∈ W be an arbitrary
vector. Write

T−1(w) = a1vi1 + · · ·+ anvin .

Applying T to each side then shows that w = a1T (vi1) + · · ·+ anT (vin).
Hence w ∈ Span{T (v1), T (v2), . . .} and so {T (v1), T (v2), . . . , } spans all
of W .

Similarly, let
a1T (vi1) + · · ·+ anT (vin) = 0
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be a linear relation. Then since T−1(0) = 0, applying T gives

a1vi1 + · · ·+ anvin = 0.

Linear independence of the vis shows that (a1, . . . , an) = (0, . . . , 0).
Hence {T (v1), T (v2), . . .} is linearly independent.

Since {T (v1), T (v2), . . .} is linearly independent and spanning, (T (v1), T (v2), . . .)
is a basis.

8. This was a bit of a trick question (on purpose) since I wasn’t entirely
clear about what I meant by integration.

Differentiation is linear:

d

dx
(af + bg) = a

df

dx
+ b

dg

dx

for a, b constants and f, g differentiable functions.

Differentiation is not a linear map because it is not injective: all constant
functions differentiate to the 0 function.

Integration defined by “take an antiderivative”

f 7→
∫

f

is not even a function, and therefore is not a linear map. Integration
over a particular subset A ⊂ R

f 7→
∫
A

f

is a linear map from the (infinite dimensional) vector space of differen-
tiable functions to R.
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