Math 110

June 21, 2018
Bases and Linear Transformations (SOLUTIONS)

1. Suppose for a contradiction that

$$
v=a_{1} v_{i_{1}}+\cdots+a_{n} v_{i_{n}}=b_{1} v_{j_{1}}+\cdots+b_{m} v_{j_{m}}
$$

are two ways of expressing $v \in \operatorname{Span}\left\{v_{1}, v_{2}, \ldots\right\}$ as a linear combination of the elements $\left\{v_{1}, v_{2}, \ldots\right\}$. By adding some terms with 0 coefficients to each side, one can assume that the two linear combinations use elements from the same finite subset of $\left\{v_{1}, v_{2}, \ldots\right\}$:

$$
v=a_{1} v_{1}+\cdots+a_{n} v_{n}=b_{1} v_{n}+\cdots+b_{n} v_{n} .
$$

Subtract one side from the other

$$
0=\left(a_{1}-b_{1}\right) v_{1}+\cdots+\left(a_{n}-b_{n}\right) v_{n} .
$$

Since the two expressions are different at least one of the coefficients $a_{i}-$ b_{i} is nonzero. This contradicts linear independence of the set $\left\{v_{1}, \ldots, v_{n}\right\}$.
2. The strategy used here is to construct a sequence of linearly independent subsets $B_{1} \subset B_{2} \subset \cdots \subset B_{n}$ where B_{n} will be a basis. Start with $B_{1}=\left\{v_{1}\right\}$. Set $B_{i+1}:=B_{i}$ if $B_{i} \cup v_{i+1}$ is linearly independent. Set $B_{i+1}=B_{i}$ otherwise.
Note that if $B_{i} \cup v_{i+1}$ is linearly dependent, then v_{i+1} can be written as a linear combination of $\left\{v_{1}, \ldots, v_{i}\right\}$. To see this, let

$$
a_{1} v_{1}+\cdots+a_{i} v_{i}+a_{i+1} v_{i+1}=0
$$

be a linear relation in $B_{i} \cup v_{i+1}$. Because B_{i} is linearly independent, $a_{i+1} \neq 0$. Hence

$$
\begin{equation*}
v_{i+1}=-\frac{a_{1}}{a_{i+1}} v_{1}-\cdots-\frac{a_{i}}{a_{i+1}} v_{i} . \tag{1}
\end{equation*}
$$

Let B_{n} be the last set produced in this process. By construction, it is linearly independent. It remains to check that it spans. Because $\left\{v_{1}, \ldots, v_{n}\right\}$ spans, for any $v \in V$ one can write

$$
v=a_{1} v_{1}+\cdots+a_{n} v_{n} .
$$

The equation (1) and the argument before it shows that an element v_{i} that is not in B_{n} can be written as a linear combination of elements in $B_{i-1} \subset B_{n}$. Therefore v can be rewritten as a linear combination of vectors in B_{n}.
Since B_{n} is linearly independent and spans, it is a basis. ${ }^{1}$

[^0]3. Let u_{1}, \ldots, u_{m} be a basis for V. Since the basis spans, so does the set
$$
\left\{v_{1}, \ldots, v_{n}, u_{1}, \ldots, u_{m}\right\}
$$

Apply the process from the previous proof to extract a basis for this spanning set. Note that, since you start at v_{1} and the first n vectors are linearly independent, $\left\{v_{1}, \ldots, v_{n}\right\}$ is included in the basis you end up constructing.
In class I suggested the following argument: "Start with v_{1}, \ldots, v_{n}, add any vector v_{n+1} not in the span of $\left\{v_{1}, \ldots, v_{n}\right\}$, and repeat this procedure until you have $\operatorname{dim}(V)$ vectors. At each stage you have a linearly independent collection of vectors. A collection of $\operatorname{dim}(V)$ linearly independent vectors is a basis for its span. Any subspace of V has dimension at most $\operatorname{dim}(V) . "$ The last sentence is true, though the easiest proofs I know all involve citing the result this problem aims to prove.
4. If $b \neq 0$, then

$$
f(x+y)=a x+b+a y+b \neq a(x+y)+b=f(x+y) .
$$

Therefore, in order for f to be linear b needs to be 0 . If b is zero, then it is easy to check that f is linear.
5. $T(0)=T(0 v)=0 T(v)=0$.
6. You want to show that $T^{-1}\left(w_{1}+w_{2}\right)=T^{-1}\left(w_{1}\right)+T^{-1}\left(w_{2}\right)$. Since T is invertible and hence surjective, $w_{1}=T\left(v_{1}\right)$ and $w_{2}=T\left(v_{2}\right)$ for some v_{1} and v_{2}. Then

$$
\begin{gathered}
T^{-1}\left(w_{1}+w_{2}\right)=T^{-1}\left(T\left(v_{1}\right)+T\left(v_{2}\right)\right)=T^{-1}\left(T\left(v_{1}+v_{2}\right)\right)=v_{1}+v_{2} \\
=T^{-1}\left(w_{1}\right)+T^{-1}\left(w_{2}\right)
\end{gathered}
$$

Similarly, you want to show that $T^{-1}(c w)=c T^{-1}(w)$. Write $w=T(v)$ then

$$
T^{-1}(c w)=T^{-1}(c T(v))=T^{-1}(T(c v))=c v=c T^{-1}(w)
$$

7. First check that $\left\{T\left(v_{1}\right), T\left(v_{2}\right), \ldots\right\}$ spans W. Let $w \in W$ be an arbitrary vector. Write

$$
T^{-1}(w)=a_{1} v_{i_{1}}+\cdots+a_{n} v_{i_{n}} .
$$

Applying T to each side then shows that $w=a_{1} T\left(v_{i_{1}}\right)+\cdots+a_{n} T\left(v_{i_{n}}\right)$. Hence $w \in \operatorname{Span}\left\{T\left(v_{1}\right), T\left(v_{2}\right), \ldots\right\}$ and so $\left\{T\left(v_{1}\right), T\left(v_{2}\right), \ldots,\right\}$ spans all of W.

Similarly, let

$$
a_{1} T\left(v_{i_{1}}\right)+\cdots+a_{n} T\left(v_{i_{n}}\right)=0
$$

be a linear relation. Then since $T^{-1}(0)=0$, applying T gives

$$
a_{1} v_{i_{1}}+\cdots+a_{n} v_{i_{n}}=0
$$

Linear independence of the v_{i} s shows that $\left(a_{1}, \ldots, a_{n}\right)=(0, \ldots, 0)$. Hence $\left\{T\left(v_{1}\right), T\left(v_{2}\right), \ldots\right\}$ is linearly independent.
Since $\left\{T\left(v_{1}\right), T\left(v_{2}\right), \ldots\right\}$ is linearly independent and spanning, $\left(T\left(v_{1}\right), T\left(v_{2}\right), \ldots\right)$ is a basis.
8. This was a bit of a trick question (on purpose) since I wasn't entirely clear about what I meant by integration.
Differentiation is linear:

$$
\frac{d}{d x}(a f+b g)=a \frac{d f}{d x}+b \frac{d g}{d x}
$$

for a, b constants and f, g differentiable functions.
Differentiation is not a linear map because it is not injective: all constant functions differentiate to the 0 function.

Integration defined by "take an antiderivative"

$$
f \mapsto \int f
$$

is not even a function, and therefore is not a linear map. Integration over a particular subset $A \subset \mathbb{R}$

$$
f \mapsto \int_{A} f
$$

is a linear map from the (infinite dimensional) vector space of differentiable functions to \mathbb{R}.

[^0]: ${ }^{1}$ The essential idea in this proof is that if $\left\{v_{1}, \ldots, v_{m}\right\}$ is linearly independent and adding a vector v to $\left\{v_{1}, \ldots, v_{m}\right\}$ makes it linearly dependent, then v must necessarily be in $\operatorname{Span}\left\{v_{1}, \ldots, v_{m}\right\}$.

