Math 110

June 21, 2018
Bases and Linear Transformations

1. Let $\left\{v_{1}, v_{2}, \ldots\right\}$ be a linearly independent collection of vectors. Show that any vector in $\operatorname{Span}\left\{v_{1}, v_{2}, \ldots\right\}$ can be uniquely expressed as a linear combination of the $v_{i} \mathrm{~s}$.
2. Let $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be a finite spanning set for a vector space V. Show that $\left\{v_{1}, \ldots, v_{n}\right\}$ contains a basis for V. (hint: remove "unecessary" vectors one by one until you end up with a linearly independent set)
3. Let V be a finite-dimensional vector space and let $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be a linearly independent set of vectors. Show that you can add vectors to $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ to produce a basis.
4. In high school, you might have defined a "linear function" $\mathbb{R} \rightarrow \mathbb{R}$ as one of the form $f(x)=a x+b$. When is such function linear in the sense of linear algebra?
5. Let $T: V \rightarrow W$ be linear. Show that $T(0)=0$.
6. Let $T: V \rightarrow W$ be an isomorphism. Let T^{-1} be the inverse. Show that T^{-1} is linear.
7. Prove that if $T: V \rightarrow W$ is an isomorphism and $\left(v_{1}, v_{2}, \ldots\right)$ a basis of V then $\left(T\left(v_{1}\right), T\left(v_{2}\right), \ldots\right)$ is a basis of W.
8. Show that differentiation of differentiable functions is a linear map. Is it invertible? Is integration of continuous functions a linear map?
