Math 110

June 19, 2018

Vector Spaces, Linear Independence, Subspaces, Span (SOLUTIONS)

1.

2. Yes they are linearly independent. Suppose for a contradiction that they are not linearly independent. Then there exists $(a_1, a_2) \neq (0, 0)$ such that

$$a_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + a_2 \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
$$\Rightarrow \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

which contradicts $(a_1, a_2) \neq (0, 0)$.

3. Yes they are linearly independent. Suppose for a contradiction that they are not linearly independent. Then there exists $(a_1, a_2) \neq (0, 0)$ such that

$$a_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + a_2 \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
$$\Rightarrow \begin{pmatrix} a_1 + a_2 \\ a_1 - a_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
$$\Rightarrow a_1 + a_2 = 0 \text{ and } a_1 = a_2 \Rightarrow a_1 = a_2 = 0$$

contradicting $(a_1, a_2) \neq (0, 0)$.

4. If n = m, then x^n and x^m are linearly dependent. For example, $x^n - x^m = 0$ is linear relation in this case.

If $n \neq m$, then they are linearly independent. Suppose for a contradiction that they were linearly dependent. Then there exists $(a_1, a_2) \neq (0, 0)$ such that

$$a_1x^n + a_2x^m = 0.$$

This must hold for all $x \in \mathbb{F}$ and implies

$$a_1 x^n = -a_2 x^m.$$

The left and right sides are different functions if a_1 and a_2 are nonzero and if $n \neq m$. This might seem obvious, but what follows is a rigorous proof. Evalulating each side at x = 1 shows that

$$a_1 = -a_2$$

and evaluating at x = 2 shows that

$$a_1 2^n = -a_2 2^m.$$

Since $a_1 = -a_2$ and by assumption the a_i s are nonzero, one can divide both sides by $a_1 = -a_2$ to get

$$2^n = 2^m.$$

Since $n \neq m$, this provides a contradiction.

5. Let W be the subset of \mathbb{F}^n consisting of vectors of the form $(a_1, a_2, \ldots, a_{n-1}, 0)$. In order to check that W is a subspace you have to prove three things:

 $0 \in W, w_1, w_2 \in W \Rightarrow w_1 + w_2 \in W, w \in W \Rightarrow cw \in W.$

Setting each $a_1 = a_2 = \cdots = a_{n-1} = 0$ shows that $0 \in W$.

$$(a_1, \ldots, a_{n-1}, 0) + (b_1, \ldots, b_{n-1}, 0) = (a_1 + b_1, \ldots, a_{n-1} + b_{n-1}, 0)$$

is of the right form so sums are in W. And similarly

 $(ca_1,\ldots,ca_{n-1},0)$

is of the right form, so scalar multiples are in W.

Let W' be the subset of \mathbb{F}^n consisting of vectors of the form $(a_1, a_2, \ldots, a_{n-1}, 1)$. This is not a subspace since it does not contain zero.

6. Let W_1 and W_2 be subspaces. Let $v, u \in W_1 \cap W_2$. This means that v and u in W_1 and they are in W_2 . Since $v, u \in W_1$ then $v + u \in W_1$. Since $v, u \in W_2$ then $v + u \in W_2$. Hence $v + u \in W_1 \cap W_2$.

Since W_1 and W_2 are subspaces, then $0 \in W_1$ and $0 \in W_2$. Hence $0 \in W_1 \cap W_2$.

Let $w \in W_1 \cap W_2$. Then $w \in W_1$, which implies $cw \in W_1$. And $w \in W_2$, which implies $cw \in W_2$. Hence $cw \in W_1 \cap W_2$.

This proves that $W_1 \cap W_2$ satisfies the three requirements of a subspace.

- 7. Let $w \in W$. Then $(-1)w \in W$. And (-1)w = -w by a proposition proved in class.
- 8. Suppose that $W_1 \cap W_2 = \{0\}$. Suppose that $w_1 + w_2 = w'_1 + w'_2$ are two different ways of writing an element in $W_1 + W_2$ where $w_i, w'_i \in W_i$. Then $w_1 w'_1 = w_2 w'_2$. Since the two sides are equal, and the right is in W_2 , and the left in W_1 , both sides are in W_1 and W_2 , hence in $W_1 \cap W_2$. Then $w_1 w'_1 = 0$ and $w_2 w'_2 = 0$. Hence $w_1 = w'_1$ and $w_2 = w'_2$.

Suppose that $w_1 + w_2 = w'_1 + w'_2 \Rightarrow w_1 = w'_1$ and $w_2 = w'_2$. Let $w \in W_1 \cap W_2$. Then $w + (-w) = 0 + 0 \Rightarrow w = 0$ and (-w) = 0. Hence $W_1 \cap W_2$ only contains 0.

9. The first span consists of vectors of the form

$$a_1 \begin{pmatrix} 1\\2\\3 \end{pmatrix} + a_2 \begin{pmatrix} 1\\0\\0 \end{pmatrix} = \begin{pmatrix} a_1 + a_2\\2a_1\\3a_1 \end{pmatrix}, \ a_1, a_2 \in \mathbb{F}$$

The second consists of the vectors of the form

$$b_1\begin{pmatrix}0\\2\\3\end{pmatrix}+b_2\begin{pmatrix}1\\0\\0\end{pmatrix}=\begin{pmatrix}b_2\\2b_1\\3b_1\end{pmatrix},\ b_1,b_2\in\mathbb{F}.$$

Set $b_1 = a_1$ and $b_2 = a_1 + a_2$ to see that the second span is contained in the first. Set $a_1 = b_1$ and $a_2 = b_2 - b_1$ to see that the first span is contained in the second.

10. Since addition wasn't changed you only need to check the axioms involving scalar multiplication. Note that

$$av = 0$$

for all $a \in \mathbb{F}$ and $v \in \mathbb{F}^n$. Hence

$$a(bv) = 0$$
 and $(ab)v = 0$

so a(bv) = (ab)v. Similarly

(a+b)(v+w) = 0 and av + bv + aw + bw = 0 + 0 + 0 + 0 = 0

so (a+b)(v+w) = av + bv + aw + bw.

Suppose for a contradiction that 1v = v were implied by the other axioms. Then it would hold under \mathbb{F}^n with this new scalar multiplication, because \mathbb{F}^n with this new scalar multiplication satisfies all the other axioms. But unless v = 0, then $1v \neq v$ in \mathbb{F}^n with this new scalar multiplication, giving a contradiction.