Math 110

June 19, 2018

Vector Spaces, Linear Independence, Subspaces, Span

1. Graph the vectors

$$\begin{pmatrix} -1 \\ -3 \end{pmatrix}$$
 and $\begin{pmatrix} 4 \\ 2 \end{pmatrix}$

in \mathbb{R}^2 . Graph their sum by gluing them end to end.

2. Are the vectors

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \ \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

linearly independent in \mathbb{F}^2 ?

3. Are the vectors

$$\begin{pmatrix} 1 \\ 1 \end{pmatrix}, \ \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

linearly independent in \mathbb{F}^2 ?

- 4. Let V be the vector space of polynomials over \mathbb{F} . Are the monomials x^n and x^m linearly independent in V?
- 5. Prove that the subset of \mathbb{F}^n containing vectors of the form $(a_1, \ldots, a_{n-1}, 0)$ is a subspace. Prove that the subset of \mathbb{F}^n containing vectors of the form $(a_1, \ldots, a_{n-1}, 1)$ is not.
- 6. Prove that the intersection of two subspaces is a subspace.
- 7. Let $W \subset V$ be a subspace. Prove that if $w \in W$ then $-w \in W$. Here -w denotes the additive inverse of w.
- 8. In class, I said a sum $W_1 + W_2$ is direct if $W_1 \cap W_2 = \{0\}$. Axler defines it a little differently. He says that a sum $W_1 + W_2$ is direct if each element $w_1 + w_2 \in W_1 + W_2$ (where $w_i \in W_i$) can be written uniquely. That is, if $w_1 + w_2 = w'_1 + w'_2$ then $w_1 = w'_1$ and $w_2 = w'_2$. Prove that these two definitions are equivalent. (Two definitions are equivalent if each implies the other.)
- 9. Are

$$\operatorname{Span}\left\{ \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} 1\\0\\0 \end{pmatrix} \right\} \text{ and } \operatorname{Span}\left\{ \begin{pmatrix} 0\\2\\3 \end{pmatrix}, \begin{pmatrix} 1\\0\\0 \end{pmatrix} \right\}$$

the same subspace of \mathbb{F}^3 ?

10. Remove the axiom 1v = v from the list of axioms of a vector space. Show that the set \mathbb{F}^n with addition given by

$$(a_1, \ldots, a_n) + (b_1, \ldots, b_n) := (a_1 + b_1, \ldots, a_n + b_n)$$

and scalar multiplication given by

$$c(a_1,\ldots,a_n):=(0,\ldots,0)$$

satisfies the remaining axioms. Prove that the axiom 1v = v is not implied by the other axioms.