Math 110

June 19, 2018
Vector Spaces, Linear Independence, Subspaces, Span

1. Graph the vectors

$$
\binom{-1}{-3} \text { and }\binom{4}{2}
$$

in \mathbb{R}^{2}. Graph their sum by gluing them end to end.
2. Are the vectors

$$
\binom{1}{0},\binom{0}{1}
$$

linearly independent in \mathbb{F}^{2} ?
3. Are the vectors

$$
\binom{1}{1},\binom{1}{-1}
$$

linearly independent in \mathbb{F}^{2} ?
4. Let V be the vector space of polynomials over \mathbb{F}. Are the monomials x^{n} and x^{m} linearly independent in V ?
5. Prove that the subset of \mathbb{F}^{n} containing vectors of the form $\left(a_{1}, \ldots, a_{n-1}, 0\right)$ is a subspace. Prove that the subset of \mathbb{F}^{n} containing vectors of the form $\left(a_{1}, \ldots, a_{n-1}, 1\right)$ is not.
6. Prove that the intersection of two subspaces is a subspace.
7. Let $W \subset V$ be a subspace. Prove that if $w \in W$ then $-w \in W$. Here $-w$ denotes the additive inverse of w.
8. In class, I said a sum $W_{1}+W_{2}$ is direct if $W_{1} \cap W_{2}=\{0\}$. Axler defines it a little differently. He says that a sum $W_{1}+W_{2}$ is direct if each element $w_{1}+w_{2} \in W_{1}+W_{2}$ (where $w_{i} \in W_{i}$) can be written uniquely. That is, if $w_{1}+w_{2}=w_{1}^{\prime}+w_{2}^{\prime}$ then $w_{1}=w_{1}^{\prime}$ and $w_{2}=w_{2}^{\prime}$. Prove that these two definitions are equivalent. (Two definitions are equivalent if each implies the other.)
9. Are

$$
\operatorname{Span}\left\{\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)\right\} \text { and } \operatorname{Span}\left\{\left(\begin{array}{l}
0 \\
2 \\
3
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)\right\}
$$

the same subspace of \mathbb{F}^{3} ?
10. Remove the axiom $1 v=v$ from the list of axioms of a vector space. Show that the set \mathbb{F}^{n} with addition given by

$$
\left(a_{1}, \ldots, a_{n}\right)+\left(b_{1}, \ldots, b_{n}\right):=\left(a_{1}+b_{1}, \ldots, a_{n}+b_{n}\right)
$$

and scalar multiplication given by

$$
c\left(a_{1}, \ldots, a_{n}\right):=(0, \ldots, 0)
$$

satisfies the remaining axioms. Prove that the axiom $1 v=v$ is not implied by the other axioms.

