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Here is (one version of) the definition of the Jones polynomial:

eh/2 − e−h/2 = (eh − e−h)

= e3h/2

= e−3h/2

= eh + e−h.

Unfortunately it has no intrinsically 3-dimensional definition. This is an ex-
pository note on two things

• The quantum group definition of the Jones polynomial and the related
3-manifold invariant [RT90], [RT91]

• A finite group analog [DW90], [DPR90], [AC92].

The latter construction, having a topological interpretation, hopefully sheds
some light the 3-dimensional nature of the Jones polynomial.

1. Tensor Diagrammatics

Let V be a finite dimensional complex vector space. By way of example, let
two maps T : V ⊗ 3 → V ⊗ 2 and S : V ⊗ 2 → V ⊗ 2 be represented by the pictures

The following represents an obvious composition of T and S:
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a map V ⊗ 4 → V ⊗ 3. The picture

means: represent S in V ∗⊗V ∗⊗V ⊗V then contract along a map V ∗⊗V →
C.

The idea behind the Reshetikhin-Turaev construction of the Jones polyno-
mial is to convert a link diagram into a diagram of tensors:

.

Here the link has been turned into a contraction of a linear map R̂ ◦ R̂ : V →
V → V ⊗V . Such a contraction is simply a complex number. If the method
of associating a tensor diagram to a link diagram is chosen well, then this
number will be a link invariant.

2. The Quantum Group Uh(sl2)

Start with the Hopf algebra Uh = Uh(sl2): it has generators E,F,H with
relations

[H,E] = 2E, [H,F ] = −2F, [E,F ] =
ehH − e−hH

eh − e−h
.

Strictly speaking one has to allow for power series in this algebra, but this
is no big deal. In the limit h → 0, Uh(sl2) converges to the usual universal
enveloping algebra U(sl2). Use the following notation: Ch := C[[h]].

With respect to a basis {v1, v−1}, Uh acts on the right on V1 ∼= C2
h as

follows:

E 7→
(

0 1
0 0

)
, F 7→

(
0 0
1 0

)
, H 7→

(
1 0
0 −1

)
.

This is the same as the action of U(sl2) on its defining representation. Like
U(sl2), Uh(sl2) has an n+ 1-dimensional irreducible representation Vn for each
n ≥ 0. The higher irreps Vn will have matrix forms that look like those of
U(sl2), but with certain entires replaced by quantum integers [k]eh :

[k]eh =
ehk − e−hk

eh − e−h
.

In U(sl2) there’s a symmetric coproduct

∆(H) = H ⊗ 1 + 1⊗H
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∆(E) = E⊗ 1 + 1⊗E

∆(F ) = F ⊗ 1 + 1⊗F.

Through the coproduct, U(sl2) acts on V ⊗W . For example

(v⊗w)H = vH ⊗w + v⊗wH.

Since the coproduct is symmetric, the switch map

σ : V ⊗W → W ⊗V

v⊗w 7→ w⊗ v

commutes with the action of U(sl2).
The coproduct in Uh(sl2) is not symmetric:

∆(H) = H ⊗ 1 + 1⊗H

∆(E) = E⊗ ehH + 1⊗E

∆(F ) = F ⊗ 1 + e−hH ⊗F

so the switch map is not a Uh morphism. For example, let v1 and v−1 be weight
vectors in V1:

v−1⊗ v1
F7→ v1⊗ v1

σ7→ v1⊗ v1.

v−1⊗ v1
σ7→ v1⊗ v−1

F7→ e−hv1⊗ v1.

One wants, given two Uh modules V and W , to find some isomorphism

V ⊗W → W ⊗V.

The best one could hope for is that there exists an invertible element R ∈
Uh⊗Uh such that the following commutes for a ∈ Uh:

V ⊗W
a
��

R // V ⊗W σ //W ⊗V
a
��

V ⊗W R // V ⊗W σ //W ⊗V

.

For shorthand, let
R̂V,W : V ⊗W → W ⊗V

denote the top and bottom rows of this commutative diagram, so R̂ is R
followed by the switch map. Of course such an R (if it exists) would need to
satisfy some rules, one of which involves the the two ways of switching three
tensor factors:

V ⊗W ⊗U
R̂V,W→ W ⊗V ⊗U

R̂V,U→ W ⊗U ⊗V
R̂W,U→ U ⊗W ⊗V
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needs to be the same as

V ⊗W ⊗U
R̂W,U→ V ⊗U ⊗W

R̂V,U→ U ⊗V ⊗W
R̂V,W→ U ⊗W ⊗V.

In tensor diagram notation, this might be represented as

.

It’s hard to look at this and not immediately think of a type 3 Reidemeister
move. Such an R is called an “R-matrix.”

Theorem 2.1 (Drinfeld). An R-matrix exists and is given by

R =
∞∑
n=0

e
n(n+1)

2
h(1− e−2h)n

[n]eh !
e

1
2
hH ⊗HEn⊗F n ∈ Uh⊗Uh.

For example, on V1⊗V1, all the terms n ≥ 2 vanish so R acts as

e
1
2
hH ⊗H + (eh − e−h)e

1
2
hH ⊗HE⊗F.

With respect to the basis v1⊗ v1, v1⊗ v−1, v−1⊗ v1, v−1⊗ v−1, R acts (on the
right) as 

eh/2

e−h/2 eh/2 − e−3h/2
e−h/2

eh/2


so that R̂V1,V1 is 

eh/2

eh/2 − e−3h/2 e−h/2

e−h/2 0
eh/2

 .

3. The Link Invariant From Quantum Groups

After looking at the braid relation satisfied by Drinfeld’s R-matrix it is clear
that one should define the map from knot diagrams to tensor diagrams as
follows:

7→ ∈ End(V1⊗V1)
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7→ ∈ End(V1⊗V1).

For example:

D = =: I(D, V1).

For this section I pick the strands to represent V1 and the squares to represent
tensorial objects in V1. Accordingly, I call the number associated to the tensor
diagram I(D, V1). The definition of I(D, V ) is obvious for an arbitrary Uh-
module V . The invariant I constructed in this manner is due to Reshetikhin
and Turaev.

Since R satisfies the braid relation, and the assignment of crossings is
designed to play nice with the type 2 move:

it is clear that, for the “all arrows up” orientations, I(D, V1) is an invariant
under type 2 and 3 Reidemeister moves. Invariance for the other orienta-
tions can be shown with some more work (essentially reversing the orientation
corresponds to the change V1 → V ∗1 ). Hence:

Claim 3.1. I(D, V1) is invariant of the framed link represented by D.

One of things that makes the invariant I work, unmentioned to this point,
is the trace on Uh modules is strange. If V is a right module the contraction
map1

V ⊗V ∗ → Ch

v⊗ ξ 7→ vξ

is natural and accordingly is a Uh-morphism. The other contraction map

V ∗⊗V → Ch

ξ⊗ v 7→ vξ

is not a Uh-morphism. To remedy this, it turns out you can modify the con-
traction:

ξ⊗ v 7→ vehHξ

1V ∗ inherits a right Uh module structure from the antipode for Uh and Ch inherits a
(trivial) right module structure from the counit for Uh.
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to get a Uh-morphism. In the tensor diagrammatics it is this map that is used
for the contraction V ∗⊗V → Ch. In V1 e

−hH is represented by(
e−h

eh

)
.

so that

7→ eh + e−h

this of course being obtained by contracting the identity element v∗1 ⊗ v1 +
v∗−1⊗ v−1 in V ∗⊗V .

Claim 3.2. Under a type 1 move I(D, V1) scales by e3h/2:

= e3h/2

= e−3h/2 .

Proof. Write R̂ in V ∗⊗V ∗⊗V ⊗V as

eh/2v∗1v1 ∗ v1v1 + e−h/2v∗−1v
∗
1v1v−1 + e−h/2v∗1v

∗
−1v

∗
−1v1

+(eh/2 − e−3h/2)v∗1v∗−1v1v−1 + eh/2v∗−1v
∗
−1v−1v−1

and contract the second and fourth factors using

v∗1v1 7→ e−h, v∗−1v−1 7→ eh

as usual. This handles the first identity; the second is analogous but with
R̂−1.

Claim 3.3.

eh/2 − e−h/2 = (eh − e−h)

Proof. This is the identity of matrices:

eh/2R̂− e−h/2R̂−1 = (eh − e−h)id

Corollary 3.4. The invariant I(D, V1) is the Jones polynomial, as defined at
the beginning.

The invariants I(D, Vn) (where the Vn are the irreps of Uh) are called the
colored Jones polynomials.
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4. The 3-Manifold Invariant

If you step back from the representation V1 things clear up a little. You start
by splitting a link diagram into crossings and individual strands:

Pictured here is a division into two crossings and two single strands. Actually
there are six strands total (two in each of the crossings). To this picture you
assign an element in U⊗#strands

h

= R⊗R⊗ id⊗ id ∈ U⊗ 6
h .

On the diagrammatic side, fuse two of the separated strands; on the algebra
side this corresponds to multiplication

Uh⊗Uh → Uh

in the corresponding Uh factors:

7→ something in U⊗ 5
h .

This element in U⊗ 5
h can’t be written simply since it involves a multiplication

of certain factors of the elements R. Continue multiplying the algebra elements
in this way:

7→ something in U⊗ 4
h
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etc, until you reach one strand in each link:

7→ something in U⊗ 2
h .

This element in U⊗ 2
h is not canonically associated with the link, but if you

hit it with trV1 ⊗ trV1 you get the invariant I(D, V1) applied to the original
diagram.

In general this process assigns to a link a (noncanonical) element in U⊗#components
h .

Further assign a representation to each component and take traces of the al-
gebra elements in the corresponding representation. This is a link invariant.
Assigning V1 to each component gives the Jones polynomial.

It makes sense to assign a formal linear combination of representations

a1V
(1) + · · ·+ anV

(n), ai ∈ Ch

to a link component: just extend the usual invariant multilinearly.

Theorem 4.1 (Reshetikhin-Turaev). Let h = 2πi
k+2

for k some positive integer.
Let

ω =
k∑
i=0

[i+ 1]ehVi.

Then, up to a factor involving the linking matrix of L, I(L, ω) is an invariant
of S3(L), the manifold obtained by surgery on L.

The proof of the theorem is by checking that I(L, ω) is invariant under
Kirby moves. It is hard to get an intuitive feel for why it should be a 3-
manifold invariant. Also note that ω is suspiciously similar to the regular
representations of a compact Lie group:

L2(G) ∼=
⊕

Vi irreps of G

V dimVi
i .

Hopefully the conclusion of this note will, by way of analogy, shed some light
on this 3-manifold invariant.

5. The Drinfeld Double of the Group Algebra

Fix a finite group G. Write FG for the algebra of complex valued functions
on G. Write CG for the group algebra of G.

Define an algebra A as follows. As a vector space, A is FG⊗CG, but
it has a funny multiplication described as follows. Write an element of A as
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a cylinder with boundary components and a transverse arc labeled by group
elements2:

The right boundary is implied by the other data, so this can be written

.

The multiplication in A is given by

⊗ 7→

 boundary labels agree, i.e., g−1hg = h′

0 otherwise

The identity element for this multiplication is

=
∑
h∈G

where here 1 =
∑

h δh is the constant 1 function in FG. In fact A is a Hopf
algebra. I mention here only that the coproducts of FG and CG combine to
give a coproduct for A:

∆

( )
=
∑
ab=h

⊗ .

If G is nonabelian, this is not a symmetric coproduct. One can ask about the
existence of an R for the algebra A. Indeed there does exist an R-matrix.

Before I write down the R-matrix, it is worth telling a little of the story
behind Drinfeld’s R-matrix for Uh. He constructs a map

Uh(b+)⊗Uh(b−)→ Uh(sl2)

and some kind of pairing

Uh(b+)⊗Uh(b−)→ Ch.

Here b± are the subalgebras spanned by H,E and H,F respectively. Drinfeld
finds two bases, “dual” with respect to the pairing, of Uh(b±). Call them {ei}
and {ei}. He then shows that the element∑

i

(ei⊗ 1)⊗(1⊗ ei)

2The labeled cylinder can be thought as G-bundle on the cylinder trivialized at two
points on the boudaries. Alternatively, a representation into G of the fundamental groupoid
with two basepoints.
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is an R-matrix for Uh(b+)⊗Uh(b−). This descends to the R-matrix for Uh(sl2).
The whole process more or less falls under the name “Drinfeld double.”

Repeat this procedure for FG and CG in place of Uh(b±). Dual bases are
given by {δg} and {g}. Then the R-matrix is

R =
∑
g

(δg⊗ e)⊗(1⊗ g) =
∑
g

⊗

=
∑
g,h

⊗

This R-matrix was constructed by following purely algebraic dictums. A
priori it should have nothing to do with knot theory. It is a little surprising,
then, to note that this looks a lot like the Wirtinger presentation for a knot
group!

(1)

6. The Wirtinger Presentation

The Wirtinger presentation of a knot group can be described as follows. Divide
the knot diagram into strands as in section 4 and make the following labelings:

Associate to this object the (free) group with presentation

〈{xi, yi, zi}〉.

Diagramatically glue two of the strands together:
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and associate to this new object the group with presentation

〈{xi, yi, zi}|x−12 y2x2 = x3〉.

Continue in this manner gluing strands together and adding relations to the
group presentation until you associate a group presentation to a diagram with
a single strand:

7→ 〈{xi, yi, zi}|x−12 y2x2 = x3, x3 = z2, · · · 〉.

Claim 6.1. The group so presented is isomorphic to π1(S
3 \K).

Proof. Think of each crossing as a tangle complement (a ball with two holes
drilled out):

.

Put a basepoint on the top of each tangle. The fundamental group is free
on two generators xi and yi. Glue the tangles together according the knot
diagram, and use Seifert-van Kampen.

7. Finite Group Reshetikhin-Turaev

Apply section 4 to the algebra A. That is, associate to a diagram an element
of A⊗ 8:

7→ R⊗R⊗R⊗ id⊗ id ∈ A⊗ 8.

The element R⊗R⊗R⊗ id⊗ id is a sum of many primitive elements. Because
of the similarity (1) the terms in the sum are in bijection with homomorphisms:

〈{xi, yi, zi}〉 → G.
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Next remove one of the dots and multiply the corresponding factors of A; so
associate the new diagram and element in A⊗ 7:

7→ something in A⊗ 7.

This element in A⊗ 7 is a sum of many terms. Because of the similarity
(1)—and the fact that elements in A multiply to 0 if their boundaries don’t
match—the terms in the sum are in bijection with homomorphisms

〈{xi, yi, zi}|x−12 y2x2 = x3〉 → G.

Each process of removing one of the dots involves the multiplication map

A⊗A→ A

so this process should terminate with the assignment of

7→ something in A.

However there’s a “self-multiplication” map for A. Let X be the free complex
vector space on the set Hom(π1T

2, G). Then there’s a map

A→ X

given by gluing the ends of a cylinder together:

7→

(and 0 if the ends don’t match up). In this way you make an association

7→ something in X.
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The element in X is a sum of many terms. The terms in the sum are in
bijection with homomorphisms

〈{xi, yi, zi}|x−12 y2x2 = x3, x3 = z2, · · · 〉 ∼= π1(S
3 \K)→ G.

In fact, if you follow through the construction, the element in X assigned to
the knot diagram is

∑
ρ:π1(S3\K)→G

.

Here m is the meridian of the knot and ` is the blackboard longitude. For V
an A-module the trace trV descends to a map

trV : X → C.

In this manner, the finite group Reshetikhin-Turaev invariant I(K,V ) is

∑
ρ:π1(S3\K)→G

trV



 . (2)

This invariant, unlike the one for Uh, has an immediate 3-dimensional inter-
pretation.

In light of the similarity between ω and the regular representation, it is
worth examining the invariant I(K,A). Here A acts on itself on the right—this
is the “regular representation” for A. It’s a permutation representation so
trA(x) is the number of algebra generators fixed by x. A moment’s thought
shows that x only fixes something if it’s of the form

x =

in which case it fixes |G| elements. Hence

I(K,A) = |G|#{ρ : π1(S
3 \K)→ G|ρ(`) = e} = |G|#{ρ : π1(S

3(K))→ G}
(3)

which is manifestly an invariant of the surgered manifold S3(K)!

8. Witten’s Integral

The Reshetikhin-Turaev 3-manifold invariant was first conceived by Witten as
the following integral [Wit89]:∫

A
ei〈CS(A),[M ]〉DA.
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Here A is the space of SU(2) connections on a closed 3-manifold M , CS(A)
is some 3-form on M associated to the connection A, and DA is some (hypo-
thetical) measure on A. Because the measure doesn’t exist this construction is
not a rigorous 3-manifold invariant. Despite this, Witten was able to predict
some of its properties.

Reshetikhin and Turaev were partly inspired by this integral when they
constructed their invariants. Their invariant satisfies all of the properties pre-
dicted for Witten’s invariant and so can be considered the rigorous realization
of Witten’s invariant.

Witten’s integral works for any compact Lie group G. Similarly, the
Reshetikhin-Turaev construction works for any of the quantum groups Uh(g).
In [DW90] Dijkgraaf and Witten set out to construct Witten’s integral for G
a finite group. They fix a cocycle c ∈ H3(BG;R/Z) and consider the quantity∫

φ∈[M,BG]

ei〈φ
∗c,[M ]〉dφ.

For finite G all connections on a G-bundle are flat. Such G bundles with flat
connection are in bijection with [M,BG], which is why this appears in place
of A. [M,BG] ∼= Hom(π1M,G)/G is a finite set and dφ is a natural measure
that descends from the Haar measure on G—so the “integral” written here is
actually a finite sum. Up to a constant factor it’s just∑

φ∈[M,BG]

ei〈φ
∗c,[M ]〉. (4)

The algebra A can be “twisted” by the cocycle c (see [DPR90]) to form an al-
gebra Ac. When Ac is plugged into the Reshetikhin-Turaev machine ([AC92]),
out pops the sum (4). If I had more patience I would have constructed this
note around the algebra Ac and not A; but A is simpler to deal with. Of course
A = A0 and so the invariant (4) is, for A, just #{φ : M → BG} = #{ρ :
π1M → G}. Up to a constant, this was recovered in (3).

The point is, the algebras Uh and A share a common lineage back to Wit-
ten’s integral. The invariant (2) therefore has more than a formal relationship
to the Jones polynomial.
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