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1. Introduction

In [Wit89], Witten discussed the functional integral formulation of 3d Chern-
Simons theory. It was made rigorous by Reshetikhin and Turaev in [RT91] via
surgery presentations of 3-manifolds and certain Hopf algebras.

In [DW90], Dijkgraaf and Witten discussed the functional integral for-
mulation of finite gauge group Chern-Simons theory by defining a particular
topological quantum field theory (TQFT). Their discussion, already rigorous
because the integral is over a finite set, involved triangulations of 3-manifolds
and surfaces. Altschuler and Coste [AC92] developed Dijkgraaf and Witten’s
theory from the “Reshetikhin-Turaev” perspective of link diagrams and certain
quasi-Hopf algebras. They conjectured the equivalence of their construction
with that of Dijkgraaf and Witten. The equivalence was proven for closed
manifolds in [KSW05] Theorem 5.2.

It is the purpose of the present paper to construct Altschuler and Coste’s
link and 3-manifold invariants via the simplicial perspective of [DW90]. To
be more precise, let L be a framed directed link in S3 whose N components
are colored by simple modules i = (i1, . . . , iN) of the twisted Drinfeld double
D of a finite group G (see Section 7 for a definition of D). Let I(L, i) be the
link invariant (recalled in Definition 2.4) derived from the ribbon quasi-Hopf
algebra D. Let χi1 , . . . , χiN be the characters of the simple modules i1, . . . , iN .
For a 3-manifold M, let Z(M) denote the Dijkgraaf-Witten invariant of M.
If M = S3 \ νL, the complement of a neighborhood of L in S3, it turns out
that Z(S3 \ νL) can be thought to lie in D⊗N . Then (see Theorem 9.6 for a
more precise statement)

Theorem. The invariants I(L, i) and Z(S3 \ νL) are related by

I(L, i) =
1

|G|N−1
〈Z(S3 \ νL), χi1 ⊗ · · ·⊗χiN 〉.

The main contribution of this paper is a new proof of the Theorem. In
particular, in Section 4, various triangulations of 3-manifolds are constructed.
Each triangulation corresponds via the Dijkgraaf-Witten TQFT to a particular
algebraic object associated to D. The Theorem follows from gluing together
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these triangulated pieces to form the link complement S3 \ νL. For closedM,
the description of Z(M) in terms of link invariants of a surgery diagram for
M also follows immediately.

Section 5 and 6 may be of independent interest as an exposition of the
finite group TQFT in an arbitrary dimension n. The simplicial perspective
presented here is different from the perspective of [FQ93], [Fre94] and involves
more algebraic structures than the original treatment in [DW90].

Section 2 reviews the link invariants extractable from a ribbon quasi-Hopf
algebra. Section 3 covers some necessary background and sets notations. Sec-
tion 4 gives important examples of triangulations used later. Section 5 recalls
the finite group TQFT of Dijkgraaf and Witten, for all dimensions n. Section
6 extracts an algebra from the TQFT. Section 7 specializes to n = 3 and
extracts a quasi-Hopf algebra structure from the TQFT. Section 8 discusses
the vector space associated to a surface. Sections 9 shows how the link invari-
ants of Section 2 follow from the TQFT of Sections 5 through 8 by using the
triangulations of Section 4.

Fix throughout a finite group G and an algebraically closed field k in which
|G| is invertible. The letter e stands for the identity element in G.

2. Quasi-Hopf Algebras

For more information about quasi-Hopf algebras, see [EGNO15] section 5.13.

Definition 2.1. A quasi-bialgebra (B,m, i,∆, ε) is an associative unital k-
algebra B with multplication m and unit i, plus an algebra morphism ∆ :
B → B⊗B (called the coproduct), an algebra morphism ε : B → k (called
the counit), and a distinguished invertible element Φ ∈ B⊗B⊗B, satisfying

(id⊗∆)(∆(b)) = Φ(∆⊗ id)(∆(b))Φ−1

(∆⊗ id⊗ id)(Φ)(id⊗ id⊗∆)(Φ) = (Φ⊗ 1)(id⊗∆⊗ id)(Φ)(1⊗Φ)

(ε⊗ id)(∆(b)) = b = (id⊗ ε)(∆(b))

(id⊗ ε⊗ id)(Φ) = 1⊗ 1.

Definition 2.2. A quasi-Hopf algebra H is a quasi-bialgebra (H,m, i,∆, ε)
plus an algebra antimorphism S : H → H and distinguished elements α, β ∈ H
satisfying (write ∆(a) =

∑
i a

1
i ⊗ a2

i )∑
i

S(a1
i )αa

2
i = ε(a)α (1)

∑
i

a1
iβS(a2

i ) = ε(a)β. (2)
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Let V,W,U be finite-dimensional right H-modules. As with any bialgebra,
∆ turns V ⊗W into an H-module and ε turns k into an H-module. S turns
V ∗ into a right H-module as follows

〈v, ξa〉 := 〈vS(a), ξ〉, v ∈ V, ξ ∈ V ∗, a ∈ H.

The natural pairing
V ⊗V ∗ → k

v⊗ ξ 7→ 〈v, ξ〉
is not a map of H-modules but

PV : V ⊗V ∗ → k

v⊗ ξ 7→ 〈vβ, ξ〉
is. Write {ei} for a basis of V and {ei} for the dual basis. The natural map

k→ V ∗⊗V

1 7→
∑
i

ei⊗ ei

is not a map of H-modules but

CV : k→ V ∗⊗V

1 7→
∑
i

ei⊗ eiα

is. The canonical map

V ⊗(W ⊗U)→ (V ⊗W )⊗U

v⊗w⊗u 7→ v⊗w⊗u
is not necessarily a map of H-modules. The map

v⊗w⊗u 7→ (v⊗w⊗u)Φ

is, however.
It will be helpful to develop a graphical notation for H-module morphisms.

Diagrams are to be read from the bottom to the top. For {Wi} some collection
of right H-modules, write a morphism of H-modules

f : (W1⊗W2)⊗W3 → W4⊗((W5⊗W6)⊗W7)

as

.
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Note that the triangulation of the polygon indicates the placement of the
parentheses. Allow for duals by reversing the blue arrows and inserting bigons
into the triangulation: a map

g : W8⊗W ∗
9 → W ∗

10⊗W11

is drawn

.

A map h : W12 → W12 is therefore drawn

.

Two maps g and h placed next to each other

indicate the map g⊗h:

=

An unmarked vertical corresponds to the identity map:

= idW .

Therefore, for example

= .
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The maps (f ⊗ g)⊗h and f ⊗(g⊗h) are drawn on two different triangulations.
Here’s (f ⊗ g)⊗h:

.

For simplicity, the maps (f ⊗h)⊗ g and f ⊗(g⊗h) will still both be denoted
by placing the three maps next to each other horizontally

and it is left to the user to decide whether the map should be thought of as
(f ⊗ g)⊗h or f ⊗(g⊗h).

Gluing the ends of two same-labeled blue arrows together is defined to be
composition so, for example,

for f : V ⊗W ∗ → W ∗⊗V and g : W ∗⊗V → V ⊗W ∗.
The following denotes a map W1 → W2⊗(W4⊗W5):

(3)
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and the following denotes a map (W2⊗W4)⊗W5 → W1:

. (4)

Since the parentheses of the codomain of (3) are not the same as the paren-
theses of the domain of (4), one has to throw in a factor of Φ when composing

. (5)

The axioms of a quasi-bialgebra ensure that there’s a unique way to combine
multiple copies of Φ to provide a map between different parenthizations of
W1⊗ · · ·⊗Wk. Hence it is possible to be sloppy and write
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instead of (5), leaving Φ implicit but unwritten.

Definition 2.3. (See [Som10]) A ribbon quasi-Hopf algebra is a quasi-Hopf
algebra H plus a distinguished invertible central element v ∈ H and a distin-
guished invertible element R ∈ H ⊗H such that

R∆(a)R−1 = ∆op(a), ∀a ∈ H

Φ−1((id⊗∆)(R))(Φ−1)231 = R12Φ213R13

Φ((∆⊗ id)(R))Φ312 = R23Φ−1
132R13

R21R12 = (v−1⊗ v−1)∆(v)

S(v) = v

where if R =
∑

i xi⊗ yi then, e.g., R31 =
∑

i yi⊗ 1⊗xi and similarly for Φ.

For two right H-modules V and W , write

σV,W : V ⊗W → W ⊗V

v⊗w 7→ w⊗ v.

Define R̂V,W = (ρV ⊗ ρW )(R) ◦ σV,W (that is, switch the tensor factors then

apply R). The condition R∆(a)R−1 = ∆op(a) implies that R̂V,W is a morphism
of H-modules.

It is possible to construct directed framed link invariants from a quasi-Hopf
algebra H. The construction works in three steps which are sketched below.
For details see [RT90] or [Tur16] (for the Hopf algebra setting) and [AC92]
(for the more general quasi-Hopf algebra setting).

1. Consider the directed framed link as a ribbon embedded in R3, one
side painted white and the other black. Put it in a position so that its
projection to R2 is generic and such that, in the projection, the white
sides face up with the possible exception of some twists

and so that the only cups and caps are directed as follows:

.
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Here’s an example of such a projection:

.

2. Add dashed lines connecting each cup or cap to some place below or
above it, respectively:

. (6)

3. Label each component of the link by a finite-dimensional module of H
and label the dashed lines by the trivial module k. Peform the following
replacements on the link diagram:
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(and other similar ones for different directions of the crossings)

(7)

(8)

(plus other directions) where the unlabeled blue trivalent vertex corre-
sponds to the usual canonical maps V ⊗ k→ V or V → k⊗V . The end
result is a blue arrow diagram representing a map k to k. For exam-
ple, the Hopf link diagram (6) gets turned into the following blue arrow
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diagram:

.
(9)

The trace of this map k → k is an invariant of the link. That it is an
invariant involves checking invariance under Reidemeister moves. Such
a check uses the axioms of a ribbon quasi-Hopf algebra.

Definition 2.4. Let L be a directed framed link in S3. Let i = i1, . . . , iN be
simple modules for a ribbon quasi-Hopf algebra coloring the N components of
L. Write I(L, i) for the associated link invariant constructed by the previous
three steps.
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3. G-labelings of ∆-complexes

Let (x0, . . . , xn) be an ordered (n + 1)-tuple of points in Rn whose span is
not a proper affine subspace. An n-simplex is the convex hull of (x0, . . . , xn)
plus the data of the ordering of the vertices. Ordered subsets of the vertices
span subsimplices of an n-simplex. There is a unique affine map taking any
n-simplex to any other, preserving the order of the vertices. Identifying all
such simplices using these maps, one obtains what is called “the” n-simplex.
The n-simplex is denoted ∆n. The 1-simplex ∆1 will also be identified with
the closed interval I.

The n-simplex is drawn in such a way that arrows on the edges indicate
the ordering of the vertices:

.

Definition 3.1. ([Hat02] Section 2.1) A ∆-complex is a topological space X
together with a collection of maps {σi}, σi : ∆n → X (n depends on i) such
that

• The restriction σi|int(∆n) is injective, and each point in X lies in one such
restriction.

• The restriction of σi to a face of ∆n is one of the maps σj : ∆n−1 → X.

• A ⊂ X is an open set iff σ−1
i (A) is open for all i.

Informally speaking, a ∆-complex is a space obtained by gluing together
n-simplices in such a way that the edge arrows match. A ∆-complex structure
on a space will often be called a “triangulation.”

Definition 3.2. An isomorphism f : K → K ′ of ∆-complexes is a homeomor-
phism |K| → |K ′| that restricts to an affine order-preserving homeomorphism
on each simplex.

Definition 3.3. Given a ∆-complex K, let |K| denote the underlying topo-
logical space and let K0 denote the set of 0-simplices of K.

Definition 3.4. Given a ∆-complex K, let Cn(K) denote the integral ∆-
chains with coefficients in K; that is, Cn(K) is the free abelian group on the
set of n-simplices of K. Let ∂ : Cn(K)→ Cn−1(K) denote the usual boundary
map.

In particular, Cn(∆n) is canonically isomorphic to Z, and so has a canonical
generator 1. This generator will also be denoted + and its additive inverse −.
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Definition 3.5. If L is a subcomplex, let Cn(K,L) denote relative ∆-chains.
LetHn(K) andHn(K,L) denote the integral ∆-homology groups. Let Cn(K; k×)
denote the ∆-cochains with coefficients in k×. Elements of Cn(K; k×) will be
written multiplicatively.

Example 3.6. Recall that G is a finite group. Define a ∆-complex BG by
starting with a single vertex, gluing on an edge labeled by each element g ∈ G

,

gluing on a 2-simplex to the edges g, h, and gh as follows

,

gluing on the following 3-simplex for triple (g, h, k)

,

and similarly gluing on higher n-simplices. Since any n-simplex in BG is
determined by an ordered n-tuple of elements of G, e.g.,

↔ (g, h, k)

the group Cn(BG; k×) is naturally identified with functions Gn → k×. After
this identification, the coboundary map is

(δc)(g1, . . . , gn+1) = c(g2, . . . , gn+1)c(g1g2, g3, . . . , gn−1)−1c(g1, g2g3, g4, . . . , gn+1)

· · · c(g1, g2, . . . , gngn+1)(−1)nc(g1, g2, . . . , gn)(−1)n+1

.

Definition 3.7. If K is a ∆-complex, say that K is manifold if |K| is a
manifold and ∂|K| is a subcomplex, denoted ∂K.

Definition 3.8. If K is an n-manifold, then an orientation class xK is an
element of Cn(K) that represents a generator of Hn(K, ∂K). The pair (K, xK)
will be called an oriented ∆-complex. In practice K will also be allowed to be
a pseudo-manifold (a collection of simplices of the same dimension so that a
codimension 1 face belongs to at most two simplices).

Remark 3.9. The canonical generator of Cn(∆n) gives a canonical orientation
on ∆n.
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Remark 3.10. If (K, xK) is an oriented manifold, then (∂K, ∂xK) is also an
oriented manifold.

Remark 3.11. If K ′ ⊂ K is a codimension 0 submanifold, then an orientation
on K restricts to an orientation on K ′.

Example 3.12. Here is an oriented ∆-complex structure on I ×∆2:

(10)

The directions on the undirected edges are implied by the indicated directions.

Definition 3.13. Let X be a topological space and S ⊂ X a subset. Let
π1(X;S) denote the groupoid of homotopy classes (rel endpoints) of paths in
X starting and ending in S.

A group can naturally be considered as a category with a single object. For
example, π1(X; {x}) is naturally identified with the group π1(X, x). Think-
ing of groups as categories implies that functors G → H are the same as
homomorphisms G→ H.

Definition 3.14. Write Hom(π1(X;S), G) to denote functors from π1(X;S)
to G.

Definition 3.15. Define Hom(∅, G) to be a single element set.

The following is well-known:

Proposition 3.16. There are natural bijections between the following three
sets

• The set of labelings of the edges of a ∆-complex K by elements of G such
that any 2-simplex is labeled by elements of the form

• Relative homotopy classes of maps (|K|, K0) → (BG, ∗), where ∗ is the
vertex of BG

• Hom(π1(|K|;K0), G).
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Definition 3.17. Write Hom(K,G) to denote any of the three equivalent sets
of Proposition 3.16. Elements of Hom(K,G) will be called G-labelings.

Example 3.18. Here are the G-labelings I ×∆2:

g, h, k, a, b ∈ G (11)

The labelings on all the edges are determined by these five labelings.

Remark 3.19. Given φ ∈ Hom(K,G), φ induces a map

φ∗ : Cn(K)→ Cn(BG)

by taking a particular labeled simplex of K to the associated labeled simplex
of BG. In a similar manner, φ also determines a map |φ| : |K| → |BG| by
mapping a particularly labeled simplex of K to the associated labeled simplex
of BG in an affine manner.

Remark 3.20. Given f : K → K ′ an isomorphism of complexes and φ ∈
Hom(K,G), let f(φ) denote the labeling of K ′ obtained by transporting the
labeling φ to K ′ via the map f .

Definition 3.21. IfK is a manifold and φ ∈ Hom(K,G), then ∂φ ∈ Hom(∂K,G)
denotes φ restricted to ∂K.

Definition 3.22. Let S be a finite set. The groupGS acts on Hom(π1(X;S), G)
(on the right) as follows:

(φ·f)(γ) = f(γ(0))−1φ(γ)f(γ(1)), φ ∈ Hom(π1(X;S,G)), f ∈ GS, γ ∈ π1(X;S).

Call this the “gauge” action.

Remark 3.23. The gauge action gives an action of GK0
on Hom(K,G).

Remark 3.24. If S = {x}, then the gauge action is the conjugation action
on Hom(π1(X, x), G).

The following is easy:

Claim 3.25. If s0, s1 ∈ S are distinct points in the same connected component
of X, then G{s1} acts freely on Hom(π1(X;S), G).
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Corollary 3.26. Suppose S ⊂ X is a finite set that intersects every path
component of X. Then

|Hom(π1(X;S), G)|
|G||S|

is independent of the choice such an S. In particular, it equals∏
xi

|Hom(π1(X, xi), G)|
|G|

where there is one xi ∈ X in each path component of X.

Let c ∈ Cn(BG; k×). Given an n-dimensional oriented ∆-complex (K, xK)
and a G-labeling φ of K, a quantity of interest will be

〈φ∗xK , c〉 ∈ k×.

Example 3.27. If (K, xK) is (10) and φ is (11) then

〈φ∗xK , c〉 =
c(g, g−1ah, h−1bk)c(a, b, k)

c(a, h, h−1bk)
.

Often this will be notated by applying c to a picture of the oriented G-labeling:

〈φ∗xK , c〉 =: c




.

∆n can be thought of as the geometric realization of the simplicial complex
given by the power set of the ordered set [n] := {0, . . . , n}. Put a poset
structure on [n]× [m] by the condition

(a, b) ≤ (c, d)⇔ a ≤ c and b ≤ d.

∆n × ∆m is the geometric realization of the simplicial complex given by the
subset of strictly increasing chains in [n]× [m]. Let σ be a maximal such chain
(so its length is n+m+ 1). σ can be realized as a walk on the lattice [n]× [m]
in the first quadrant of R2. Let (−1)σ = (−1)#(lattice points below walk). Then∑

σ maximal in ∆n×∆m

(−1)σσ ∈ Cn+m(∆n ×∆m)

is an orientation on ∆n ×∆m.
Let (K, xK) and (L, xL) be two oriented ∆-complexes. Working simplex

by simplex, K × L inherits an oriented ∆-complex structure. Call this (K ×
L, xKxL). If the orientation on K is implicit, then write −K for the same
complex with the opposite orientation. Examples can be found in the next
section.
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4. Triangulating a Link Complement

This section introduces triangulations and notation for these triangulations.
Both the triangulations and the notation will be useful in later sections.

Example 4.1. Write S1 to mean I with the endpoints identified. It inherits
an oriented ∆-complex structure from I.

Example 4.2. I × I with the product orientation is

and similarly I × S1 inherits an oriented ∆-complex structure obtained by
gluing the top and bottom together:

.

It will be convenient to indicate I × I and I × S1 by

. (12)

Whether or not the top and bottom edges will be identified should be clear from
context. The horizontal edge of I × S1 in (12) will be called the “longitude”
and the two loops on the ends will be called “meridians.”

Example 4.3. Let D2 be the oriented ∆-complex obtained by gluing together
two edges of ∆2:

.

Glue on a copy of ∆2 to produce an oriented ∆-complex structure on the bigon
B:

.
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It will be convenient to abbreviate D2 and B as

and .

Drawing the interior vertex closer to one of the boundary vertices of the bigon
helps indicate the implied ∆-complex structure.

Example 4.4. This example can be profitably compared to the triangulations
in Section 2.

The following oriented ∆-complexes can be glued (arrows indicating sides
to be glued) to form a new one:

. (13)

When the the long edges of each rectangle are glued together, the result is an
oriented ∆-complex structure on the pair of pants. The boundary of ∆2 has
two positive intervals and one negative interval. The positive intervals should
be thought to correspond to “outputs” and the negative interval to an “input.”
In this ∆-complex structure on the pair of pants, there is one “incoming” input
and two “outgoing” outputs. To change that to one “outgoing” input and two
“outgoing” outputs, add a bigon:

. (14)

To change to one “outgoing” input, one “incoming” output, and one “outgo-
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ing” output, add another bigon:

. (15)

Here’s a ∆-complex structure on the four-holed sphere with two “incoming”
inputs and two “outgoing” outputs:

. (16)

Here’s a ∆-complex structure on the four-holed sphere with one “incoming”
and one “outgoing” input, and one “incoming” and one “outgoing” output:

. (17)

This can be generalized to triangulations of many-holed spheres with a par-
tition of the boundary components into input and output components. For
example, here’s a seven-holed sphere:

. (18)
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Example 4.5. The oriented ∆-complex structure on ∆2 × I is:

.

This will be abbreviated by

.

Gluing two of the faces of ∆2 × I together produces an oriented ∆-complex
structure on D2 × I, abbreviated by

and adding on another copy of ∆2 × I produces a ∆-complex structure on
B × I, denoted by

.
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The oriented ∆-complex structure on I ×∆2 is:

.

This will be abbreviated by

.

Gluing two of the faces together produces a triangulation of I×D2, abbreviated

and gluing on another copy of I ×∆2 produces B × I, abbreviated

.

Note that I ×∆2 is distinguished from ∆2× I in these pictures in that the
first cartesian factor is drawn larger than the second: the I direction in I×∆2

is drawn longer than the I direction in ∆2 × I.

Example 4.6. It will be convenient to abbreviate the triangulation obtained
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by gluing together B × I and I ×B:

= = . (19)

The orientation on this will be called +.

Example 4.7. Let P be the pair of pants. ∂(I ×P ) is divided into five parts:
two copies of P in ∂I ×P and three cylinders in I × ∂P . Collapsing the three
cylinders to circles produces a homeomorphic manifold. The following gives
an oriented ∆-complex structure on this manifold:

. (20)

Some explanation is warranted: there are three copies of −∆2 × I here and
one copy of −I×∆2. There is one copy of I×B. Opposite triangles are glued
together, as are the two opposite bigons:

.

Such identifications will be suppressed from the notation for the rest of the
section.

The boundary of this oriented ∆-complex is a copy of (13) on top and a
copy of its opposite on the bottom.

Example 4.8. Let S be the four-holed sphere. ∂(I × S) has six parts to its
boundary: two copies of S in ∂I × S, and four cylinders in I × ∂S. Collapse
the cylinders to circles to create a homeomorphic manifold. The result can be
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given the following oriented ∆-complex structure:

. (21)

Note that the top is a copy of (16). The following is also a ∆-complex structure
on the same manifold:

(22)

whose top is a copy of (17).

Example 4.9. Similar to the previous example, here are two analogs for the
six-holed sphere:

(23)
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(24)

Note the different triangulations on the hexagonal prism in the middle.

Example 4.10. It should not be hard to determine how to triangulate analogs
of the previous three examples for spheres with more holes and with varying
input and output configurations, as well as varying triangulations of the central
polygon:

.

Example 4.11. Denote the last example as

.

This is best clarified with explicit examples. The following denotes (21):
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the following denotes (22):

and the following denotes (23):

.

Example 4.12. One can boundary sum two of these things together:

(25)

to obtain

(26)

the triangulation of which is, by definition, obtained by taking each part of
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(25) and pressing it onto

.

Explicitly:

. (27)

Complexes like (26) will be called “generalized tangles.” If there are n inputs
and m outputs, it will be called a generalized (n,m)-tangle. To parallel the
language of [RT90], the strips with arrows are called ribbons and the larger
polygons with the dark line through the middle are called “coupons.” The
coupons here need to keep track of the input and output triangulations, unlike
those of Reshetikhin-Turaev.

Example 4.13. There are two different ways of triangulating the following
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generalized (6, 6)-tangle:

.

They will both be denoted by

and it will be left to the user to decide which of the two triangulations to use.

Example 4.14. A generalized (n,m)-tangle can be stacked with a generalized
(m, k)-tangle to form a generalized (n, k)-tangle. Here is an example of two
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generalized (3, 3)-tangles stacked together:

= (28)

where the triangulation is

. (29)

Note that three copies of B× S1 need to be glued in. Here is how the bottom
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hexagons are glued to the copy of ∆3:

.

The copy of ∆3 is needed because the output triangulation of the first gen-
eralized (3, 3)-tangle does not match the input triangulation of the second
generalized (3, 3)-tangle. If the triangulations matched, there would be no
copy of ∆3 and the gluing on the bottom would be simpler:

.

In general one must glue on suitably oriented copies of ∆3 to change from
the output triangulation of the first generalized tangle to the input triangula-
tion from the second generalized tangle, then glue together the two matching
triangulations.

After performing the gluing (29), cylinders passing from one the bottom
coupon to the top are triangulated into two cylinders each. This is notated
in the horizontal lines dividing the corresponding ribbons. One might want to
fuse these pairs of cylinders each into a single cylinder, to be notated like:

. (30)

28



To accomplish this, glue on copies of −∆2 × S1 (in this case, three of them):

. (31)

Example 4.15. The following (1, 1)-tangle will denote the singly-gored ball:

= = . (32)

The following is a different triangulation of the single-gored ball, but with the
same boundary triangulation:

.

Drawn another way:

.
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The Dehn twist on the cylinder that goes against the meridian direction
changes the triangulation of the cylinder as

→ . (33)

Therefore

= . (34)

The bottom solid torus has a different boundary than the usual one: it is
changed by (33). Denote this complex by

=

and similarly the other twist direction by

= . (35)

Example 4.16. The twice-gored ball is

= = . (36)
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Note that the two triangles in the center are glued together.

Example 4.17. To reverse one of the directions in the twice-gored ball glue
on suitably oriented copies of (19):

= = .

Example 4.18. The twice-gored ball (36) has a front and back that are tri-
angulated like

.

A different complex with the same front and back boundary triangulations can
be obtained by creating a half twist in the two interior cylinders:

.

This complex should be thought of as the complement of a tubular neighbor-
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hood of a crossing from a link diagram. An explicit triangulation is:

= . (37)

The following will be shorthand for (37):

.

The opposite crossing can be triangulated as

= = . (38)

Switching one of the directions on the longitudes results in a slightly different
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triangulation, including a copy of (19):

= = . (39)

Example 4.19. Here is a complement of a “cup” in a link

which may be triangulated by

.

This is not exactly the triangulation you want since the cylinder part of the
boundary (which sits on the top of the ∆-complex pictured) is triangulated by

when it should be triangulated like a usual cylinder

.
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As such, fold the two bigons together and glue on a copy of −∆2 × S1:

.

This example should be compared to the cup in (7). Denote this ∆-complex
by

.

Example 4.20. Here is a complement of a “cap” in a link

which may be triangulated by

.

This is not exactly the triangulation you want since the cylinder part of the
boundary (which sits on the top of the ∆-complex pictured) is triangulated by

.

To get the correct triangulation, glue on a copy of−∆3, two copies of−∆2×S1,
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and glue the two disks together:

. (40)

This example should be compared to the cap in (7). Denote this ∆-complex
by

.

Example 4.21. Here’s another triangulation of the singly-gored ball:

except that the “interior” cylinder of the singly-gored ball, which sits on the
top here, does not have the correct triangulation. It an extra disk and triangle:

.

Glue on a copy of ∆3 to obtain
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and then fold up the two faces in the middle and glue in a copy of −∆2 × S1:

.

This example should be compared with the right side of (8). Denote this
∆-complex by

.

Let

denote the result of gluing in a solid cylinder.

Example 4.22. The tangles

, , , , , , ,

can be glued together either horizontally (as in Example 4.12) or vertically (as
in Example 4.14). Write, for example,

to denote two crossing complements glued together horizontally:

.

As in Example 4.13, write
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to denote both

and

even though these give slightly different triangulations.
Similarly write

(41)

to denote the vertical stacking

or write

(42)

to denote the vertical stacking

etc.

Example 4.23. It is now possible to triangulate a link complement. First
put the link complement in the form (6) so that cups and caps are directed
only to the right and that there are dotted lines coming out of cups and caps.
Divide the link projection into pieces like

, , , , , , ,
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and glue them together as prescribed in Example 4.22. There are some details
that were not presented here, for example when various arrows are turned the
other way:

or when certain of these generalized tangles are turned upside down. These
details are left to the reader.

Here is a complete example (compare with (9)):
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which also might be written, as in Example 4.22,

.

This is a generalized tangle in the ball. Glue one side of the ball to the other
to get a triangulation of the link complement in S3.

The boundary of each tube around each link component here is divided
into many cylinders. It can be reduced to a single cylinder by gluing on many
copies of −∆2 × S1 (as in (31)), the result of which will be denoted by

.
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5. Dijkgraaf-Witten Theory

(The TQFT defined below in Definition 5.1 is not quite the same as the one
defined by Dijkgraaf and Witten (and technically isn’t even a TQFT in the
sense of Atiyah). You can, however, construct the usual Dijkgraaf-Witten
TQFT from it. See Remark 5.13 below.)

Fix a cocycle c ∈ Cn(BG; k×) so that c(g1, . . . , gn) = 1 if some gi = e.

Definition 5.1. Let (L, xL) denote an oriented (n− 1)-manifold and (K, xK)
an oriented n-manifold. The n-dimensional Dijkgraaf-Witten TQFT is a col-
lection of vector spaces Zn(L, xL), operations on those vector spaces, and vec-
tors Zn(K, xK) ∈ Zn(∂K, ∂xK). These data are described as follows:

• For each (L, xL), define a vector space Zn(L, xL) = kHom(L,G), the free
k-module on the set Hom(L,G). (This vector space does not depend on
the whole ∆-complex structure on L, but the following operations do.)

• Suppose ∂L decomposes as a union of three subcomplexes M1, M2, and
M3 such that the Mi do not pairwise intersect in a top-dimensional face.
Suppose f : M1 → M2 is an orientation reversing isomorphism of ∆-
complexes. Write Lf to denote L glued along f . Then orientation xL
descends to an orientation on Lf , call it xLf . A G-labeling φ of L de-
scends to a G-labeling of Lf if f(φM1) = φM2 . Define a gluing map

glue : Zn(L, xL)→ Zn(Lf , xLf )

φ 7→

{
φ if f(φM1) = φM2

0 otherwise
.

• The same notation as in the previous bullet. Define an ungluing map

unglue : Zn(Lf , xLf )→ Zn(L, xL)

φ 7→ φ.

Note that the image of the ungluing map is in those labelings φ where
f(φ|M1) = φ|M2 .

• Define a pairing map

pair : Zn(L, xL)⊗Zn(L,−xL)→ k (43)

by

φ⊗ψ 7→

{
1 if φ = ψ

0 otherwise
.
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• For each (K, xK) define

Zn(K, xK) =
1

|G||K0\(∂K)0|
∑

φ∈Hom(K,G)

〈φ∗xK , c〉∂φ

an element of Zn(∂K, ∂xK).

Remark 5.2. If the orientation K or L is implied from context, often the xK
or xL will be omitted: Zn(K), Zn(L), etc.

Remark 5.3. If f : L1 → L2 is an orientation-preserving isomorphism of
∆-complexes, recall that f induces a map Hom(L1, G)→ Hom(L2, G) and so
induces a map (also called f)

f : Zn(L1, xL1)→ Zn(L2, xL2).

Example 5.4. Here are examples of the gluing and ungluing maps when
n = 2:

(44)

Remark 5.5. There’s a natural isomorphism between Zn(L1 tL2, xL1 + xL2)
and Zn(L1, xL1)⊗Zn(L2, xL2). The tensor product in (44) is an example a
convenience that will be used freely in what follows: identify Zn(L, xL) with⊗

i Zn(Li, xLi) where Li are the connected components of L.

Claim 5.6. The quantity Zn(K, xK) depends only the oriented ∆-complex
structure on ∂K, the set K0, and the singular homology class of the ∆-chain
xK.

Proof. For Φ,Φ′ maps from (|K|, K0) to (BG, ∗) say Φ ∼ Φ′ if Φ is homotopic
to Φ′ through homotopies that are the identity on ∂K. Let c ∈ Cn

sing(|BG|, k×)
be a singular cocycle whose restriction of the complex BG is cohomologous to
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c in Cn(BG; k×). Using the fact that c is a cocycle, it is not hard to check
that

Zn(K, xK) =
1

|G||K0\(∂K)0

∑
ψ∈Hom(∂K,G)

∑
Φ∈Maps((|K|,K0),(|BG|,∗))

Φ|∂K=|ψ|

〈Φ∗xK , c〉ψ

where Φ∗ is the induced map on singular chains.
This description of Zn(K, xK) only makes a reference to the oriented ∆-

complex structure on ∂K, the set K0, and the singular homology class of the
∆-chain xK .

Corollary 5.7. If K is a closed manifold, Zn(K, xK) is an invariant of un-
derlying oriented manifold and does not depend on the chosen triangulation.

Claim 5.8 (“Gluing Law”). Let (K, xK) be an oriented n-manifold. Write
∂K = L1∪L2∪L3 where the subcomplexes Li do not pairwise share any (n−1)-
simplices. Write xLi for the restriction of ∂xK to Li. Suppose f : L1 → L2 is
an orientation reversing isomorphism of ∆-complexes. Let Kf denote K glued
along f . The orientation xK descends to an orientation xKf on Kf . Write
(abusively) unglue(Zn(K, xK)) to denote the image of Z(K, xK) under the map

Zn(∂K, ∂xK)
unglue→ Zn(L1 t L2 t L3, xL1 + xL2 + xL3)

→ Zn(L1, xL1)⊗Zn(L2, xL2)⊗Z(L3, xL3)

where the second arrow is the natural isomorphism from Remark 5.5. Then

Zn(Kf , xKf ) =
1

|G|#newly interior vertices
pair12((f ⊗ id⊗ id)(unglue(Zn(K, xK))).

Here pair12 means apply the pairing map (43) to the first two tensor factors. A
“newly interior vertex” is a vertex that was on the boundary of K but becomes
interior in Kf .

Proof. Exercise.

Remark 5.9. The pairing map is nondegenerate and will be used to identify
Z(L,−xL) with Z(L, xL)∗.

GL0
acts (on the right, say) on Hom(L,G) via the gauge action (see Def-

inition 3.22) and so it acts on Z(L, xL) = kHom(L,G) by permuting the
canonical basis. For q ∈ GL0

and ψ ∈ Hom(L,G), let ψ · q denote q acting on
ψ.

It will be useful to modify the gauge action to incorporate the cocycle c.
Observe that a G-labeling of the ∆-complex for I × L is determined by a
labeling of {0} × L and I × L0. The latter labeling is nothing but an element
q ∈ GL0

. Therefore Hom(I × L,G) is in bijection with pairs (ψ, q) where
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ψ ∈ Hom(L,G) and q : L0 → G. Let φψ,q be the corresponding G-labeling of
I × L.

The condition that c(g1, . . . , gn) = 1 if some gi = e ensures that 〈(φψ,q)∗xIxL, c〉
vanishes if q is the identity element in the group GL0

. Since c is a cocycle,
considering the obvious G-labeling on ∆2 × L shows that

〈(φψ,q1q2)∗xIxL, c〉 = 〈(φψ,q1)∗xIxL, c〉〈(φψ·q1,q2)∗xIxL, c〉.

It follows that one may make the following definition

Definition 5.10. Define a linear action of GL0
on Zn(L, xL) by

ψ • q := 〈(φψ,q)∗xIxL, c〉ψ · q.

Example 5.11. Zn(I × L, xIxL) is an element of Zn(L, xL)∗⊗Zn(L, xL) (see
Remarks 5.5 and 5.9) and thus can be thought of an endomorphism of Zn(L, xL).
It is not hard to see that Zn(I ×L, xIxL) is |G||L0| times the projection to the
trivial part of the • action. It is also not hard to use the gluing law (Claim
5.8) in conjunction with gluing a collar neighborhood of ∂K onto K to see
that Zn(K, xK) is always in the GK0

-trivial part of Zn(∂K, ∂xK).

Definition 5.12. Let Zn(L, xL)G
L0

denote the trivial part of the • action on
Zn(L, xL).

Remark 5.13. To recover Dijkgraaf and Witten’s original TQFT, define, for

an oriented (n − 1)-manifold Σ, Z̃n(Σ) := Zn(L, xL)G
L0

for some oriented ∆-

complex structure L on Σ. One can show that Z̃n(Σ) is, up to canonical
isomorphism, independent of the ∆-complex structure L. Use 1

|G||L0| times the

pairing (43) to identify Z̃n(−Σ) with Z̃n(Σ)∗. Zn(K, xk) is always in theG(∂K)0-

trivial part and so for an oriented n-manifold M one can define Z̃n(M) :=

Zn(K, xK) for some ∆-complex structureK onM. Then Z̃n becomes an actual
functor from the category of n-cobordisms to vector spaces. For example,
because of the restriction to GL0

-trivial part and the extra factor of 1

|G||L0| in

the identification of Zn(L,−xL) with Zn(L, xL)∗, the linear map Z̃n(I × Σ) is

the identity map on Z̃n(Σ).

Example 5.14. Given a copy of −∆3, drawn like

one can unglue the boundary in the following way:

.
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And1

Z

  unglued
=

∑
g,h,k

c(g, h, k)−1 . (45)

and so this is a map

Z

 → Z

  .

7→ c(g, h, k)−1 . (46)

Of course there are many other ways that

Zn

 
can be viewed as a map of vector spaces: simply decompose the ∂∆3 in another
way.

Example 5.15. If c = 1, then

Zn(K, xK) =
|Hom(K,G)|
|G||K0|

(see Corollary 3.26).

Example 5.16. Let K be an oriented manifold with ∂K = L1 tL2. Suppose
there exists a ∆-complex (L, xL) and ∆-complex isomorphisms f1 : (L1, xL1)→
(L,−xL) and f2 : (L2, xL2)→ (L, xL). Then Z(K, xK) can be thought to lie in
Zn(L, xL)∗⊗Zn(L, xL) ∼= End(Zn(L, xL)). Let K ′ denote the result of gluing
L1 to L2, with induced orientation xK′ . Then the gluing law implies that

Zn(K ′, xK′) =
1

|G||L0| trZn(L,xL)(Zn(K, xK)).

In particular

Zn(S1 × L, xS1xL) = dimZn(L, xL)G
L0

.

1The notation
unglue
= in equation (45) means the appropriate ungluing map has been

applied to the left hand side.
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Example 5.17. Let L = K1 t · · · tKN ⊂ S3 be a link made of knots Ki. Let
νL denote a tubular neighborhood of L in S3. For each Ki choose a directed
meridian and a directed longitude on ∂(νKi). In particular this turns L into
a directed framed link. The meridians and longitudes define a ∆-complex
structure on ∂(S3 \ νL):

→

Extend this ∆-complex structure to the rest of S3 \ νL. Pick your favorite
orientation on S3. After possibly gluing on some copies of S1 × B to the
boundary (which will reverse some meridians), the induced orientations on
the boundary agree with +S1 × S1 (the first cartesian factor of S1 is the
longitude). Write (K, xK) for the oriented ∆-complex structure on S3 \ νL
thus constructed. Then

Z3(K, xK) ∈ Z3(S1 × S1)⊗N

is an invariant of the directed framed link L. (In fact, Z3(K, xK) sits inside
(Z3(S1 × S1)G)⊗N (see Example (5.11)).

When c = 1 and L = K is a knot, then Z3(K, xK) admits a simple descrip-
tion: it is the sum of the boundary restrictions of all elements Hom(π1(S3 \
νK), G).

Example 5.18. Any closed oriented 3-manifoldM can be written as surgery
on a framed link L. An oriented ∆-complex structure on M can be obtained
taking K in the last example and gluing on a copy of −D2×S1 on each torus
boundary component.

By the gluing law,

Z3(M) =
1

|G|N
〈Z3(K, xK), Z3(−D2 × S1)⊗ · · ·⊗Z3(−D2 × S1)︸ ︷︷ ︸

N copies

〉

where 〈, 〉 denotes the pairing map (43). Thus Dijkgraaf and Witten’s 3-
manifold invariant can be expressed in terms of link invariants of a surgery
presentation.

6. An Algebra from the TQFT

In this section fix a positive integer n, a cocycle c ∈ Cn(BG; k×) such that
c(g1, . . . , gn) = 1 if any gi = e, and fix (M,xM) an oriented closed (n − 2)-
manifold. Often the orientation on M will be supressed and −M will be
written for (M,−xM). The orientation on (e.g.) I×M will be xIxM , as usual.
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A G-labeling on I×M is determined by a G-labeling φ of {0}×M and a G-
labeling q of I×M0. Such labelings form bases of Zn(I×M) and Zn(−I×M) ∼=
Z(I ×M)∗ drawn (respectively):

, .

Tracing through the identification of Z(−I ×M) with Z(I ×M)∗, one sees
that these labelings give dual bases. Note that q can and will be thought of
as an element of the group GM0

. The letter e will (abusively) also be used to
denote the identity in GM0

as well as in G.
A typical G-labeling of ∆2 ×M can be denoted

and this will be simplified to

Define

cφ(q1, q2) := c


 .

Since ∂∆2 is three intervals glued together, there is an ungluing map:

Zn(−(∂∆2)×M)→ Zn(−I ×M)⊗Zn(−I ×M)⊗Zn(I ×M)

7→ (47)

the right side is drawn in Zn((−I × M) t (−I × M) t (I × M)) but this
canonically isomorphic to Zn(−I ×M)⊗Zn(−I ×M)⊗Z(I ×M). It equally
well could be drawn

7→ ⊗ ⊗ (48)

The notation (48) does not keep track of the data of which tensor factor
corresponds to which part of the original boundary, whereas the notation (47)
does.
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After ungluing,

Zn(−∆2×M)
unglued

=
∑

φ∈Hom(M,G)

q∈GM0

cφ(q1, q2)−1 ⊗ ⊗ .

(49)
Equation (49) describes an algebra structure on M with unit∑

φ

.

Note that the unit is Zn(D2×M) unglued into Zn(I×M). Write A to denote
Zn(I ×M) with this unital algebra structure. Denote the multiplication in A
by ? so that

? =

 if φ1 · q1 = φ2

0 otherwise
.

Remark 6.1. Zn(∆2×M) similarly defines a map A→ A⊗A and Z(−D2×
M) defines a map A → k. One can check that this extra structure turns A
into a Frobenius algbera. This point will not be pursued here.

Definition 6.2. Given φ ∈ Hom(M,G), let Aφ ⊂ A denote the subalgebra
spanned by those elements

{ }q∈Stab(φ)

i.e, those elements for which {0} ×M and {1} ×M are both labeled by φ.

Claim 6.3. Aφ is isomorphic to a central extension of the group algebra
k Stab(φ) by the cocycle c−1

φ ∈ C2(B Stab(φ); k×).

Proof. Easy.

Corollary 6.4. Aφ is semisimple.

Write {πAφj }j to denote the simple projectors in Aφ. Let {α} denote the

collection of GM0
-orbits of Hom(M,G). Fix representatives φα ∈ α for each.

Let {Wφα,j}j∈Jα denote a complete collection of simple modules for Aφα . Define

Vφα,j := Wφα,j ⊗
Aφα

A.

The Vφα,j form a complete set of simple right A-modules. It is possible to form
a projector onto Vφα,j by smearing the projectors for Aφα around A:

πφα,j =
1

| Stab(φα)|
∑

q∈GM0

? π
Aφα
j ? .
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Corollary 6.5. A is semisimple.

Corollary 6.6. A ∼=
⊕

α

⊕
j∈Jα End(Vφα,j).

From now on, index a complete set of simples of A by i, so that

A ∼=
⊕
i

End(Vi) ∼= V ∗i ⊗Vi. (50)

Remark 6.7. If V is an A-module, then V admits a grading by Hom(M,G):

V ∼=
⊕

φ∈Hom(M,G)

Vφ

where Vφ := V Aφ. Note that the grading provides a map

V → V ⊗ kHom(M,G)

definined on pure elements in Vφ by v 7→ v⊗φ. Since A can be viewed as a
bimodule over itself, it is graded by Hom(M,G) × Hom(M,G). The grading
records the labelings on {0}×M and {1}×M . There’s an associated grading
map

gr : A 7→ kHom(M,G)⊗A⊗ kHom(M,G)

7→ φ ⊗ ⊗ φ · q.

The isomorphism

A ∼=
⊕
i

V ∗i ⊗Vi

is an isomorphism of bigraded A-modules.

Remark 6.8. Some thought with the definition for dimVφα,j shows that

dimVφα,j = |φα ·GM0| dimWφα,j.

Example 6.9. A natural example of A-modules comes from cylinders of
(n− 1)-manifolds. Let (L, xL) be an oriented (n− 1)-manifold, possibly with
boundary. Write x∂L = ∂xL. ∂(I × L) is divided into three parts: {0} × L,
I × ∂L, and {1} × L. In ∂(xIxL), the first part gets the orientation −xL, the
second part gets the orientation −xIx∂L, and the third part gets the orien-
tation xL. Thus after ungluing these three parts apart, Z(I × L, xIxL) is an
element in

Z(L,−xL)⊗Z(I × ∂L,−xIx∂L)⊗Z(L, xL)

∼= Z(L, xL)∗⊗Z(I × ∂L, xIx∂L)∗⊗Z(L, xL)

and this almost provides an action of Z(I × ∂L, xIx∂L) on Z(L, xL). One
reason that it is not an action is that the identity element in Z(I×∂L, xI∂xL)

acts as |G||L0\(∂L)0| times the projection to Zn(I×∂L, xIxL)G
L0\(∂L)0

. However,
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when multiplied by |G|−|L0\(∂L)0| and restricted to Zn(I × ∂L, xIxL)G
L0\(∂L)0

,
the element Z(I × L, xIxL) does give an action.

Since gluing top to bottom is a trace times |G|−|L0\(∂L)0|, (see Example
5.16), it follows that

Z(S1 × L, xIxL) ∈ Z(S1 × ∂L,−xS1x∂L)
unglue→ Z(I × ∂L,−xIx∂L)

is the character of the module Z(I × L, xIxL)L
0\(∂L)0 .

It will be helpful to develop some diagrammatic notation for k-linear maps.
This notation will look similar to the blue arrow notation of Section 2 but is
different in several important respects, including the facts that the arrows are
not forced to lie in a plane and do not have to be read in just a single direction.

Write

to denote a linear map f : V → V ; alternatively, an element of V ∗⊗V .
Reading an arrow in reverse is the adjoint map, gluing arrows end to end is
composition (equivalently, contraction of V ⊗V ∗ → k), and therefore

is the identity map V → V and

is the trace of the map f : V → V . Disjoint union stands for tensor product,
so

(51)

stands for f ⊗ g : V ⊗V → V ⊗V . One can also, however, think of (51) as a
map End(V )→ End(V ) as follows:

namely, precomposition by f and postcomposition by g. Similarly,
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gives composition of endomorphisms

i.e., multiplication in the algebra End(V ). Let {Vi} be a collection of vector
spaces. Then the multiplication in the algebra

⊕
i End(Vi) is∑

i

.

If {Vi} is a complete collection of simple modules for A, this describes the
multiplication for A under the isomorphism A ∼=

⊕
i End(Vi).

The red arrows permit the following very elegant notation:

Zn

 ×M

 =
∑
i

.

The simplex is drawn on the right side only to indicate context (i.e., where are
the two inputs and where is the output). It should be regarded like comment
text in a program.

According to the gluing theorem, gluing together simplices along oppositely
oriented faces corresponds to contracting A with A∗. Under the isomorphism
A ∼=

⊕
i End(Vi), this translates to gluing the ends of arrows together if the

labeling i matches on the two arrows. For example

Zn

 ×M

 =
∑
i

and

Zn

(
×M

)
=

1

|G||M0|

∑
i

=
∑
i

dimVi
|G||M0| .

so therefore

Zn

 ×M

 =
∑
i

dimVi
|G||M0|

  . (52)

Think of (52) as a map A→ A∗. Then its inverse is given by

Zn

 ×M


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so that

Zn

 ×M

 =
∑
i

|G||M0|

dimVi
. (53)

Gluing two of these onto −∆2 and also gluing on a copy of (52), then

Zn

 ×M

 =
∑
i

|G||M0|

dimVi
.

This notation allows a simple proof of the following theorem:

Theorem 6.10. Let Σg be the closed surface of genus g. Then

Zn(Σg ×M) =
∑
i

(
|G|M0

dimVi

)2g−2

where the sum on the right hand side ranges over the simple Z(I×M)-modules
(in particular the result is independent of orientation on Σg).

Proof. Let τ be some triangulation of Σg. Let V (τ), E(τ), F (τ) denote the
vertices, edges, and faces of τ . Splice in a bigon B at each edge and replace
each face by

.

This gives Σg the structure oriented ∆-complex. Note that

Zn

 ×M

 =
∑
i

|G||M0|

dimVi
. (54)

and

Zn

 ×M

 =
1

|G||M0|

∑
i

=
∑
i

dimVi
|G||M0| . (55)

After placing each of these red arrows diagrams in the surface and contracting,
one is left with a small circle around each vertex of τ . Each circle contributes
a factor of dimVi. There’s an overall factor of |G||V (τ)| in the definition of Zn,
so each vertex of τ contributes in total a factor dimVi

|G||M0| . Equation (54) shows

that each edge of τ contributes a factor of |G|
|M0|

dimVi
. Equation (55) shows that

each face of τ contributes a factor of dimVi
|G||M0| . Thus

Zn(Σg ×M) =
∑
i

(
dimVi
|G||M0|

)|V (τ)|
(
|G||M0|

dimVi

)|E(τ)|(
dimVi
|G||M0|

)|F (τ)|
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=
∑
i

(
|G||M0|

dimVi

)−χ(Σg)

.

Remark 6.11. It may seem like the quantity |G||M0|

dimVi
depends on the vertices

of M , but:
|G||M0|

dimVφα,j
=

|G||M0|

|φα ·GM0| dimWφα,j

=
| Stab(φα)|
Wφα,j

and the isomorphism type of Stab(φα) is independent of the ∆-complex struc-
ture on M , essentially because of Claim 3.25.

7. A Quasi-Hopf Algebra for n = 3

In this section set n = 3 and fix a cocycle c ∈ C3(BG; k×) such that c(g1, . . . , gn) =
1 if gi = e for some i. Write Z = Z3.

Definition 7.1. Write D to denote the algebra Z(I ×S1) with multiplication
as defined in the previous section. Note that D depends on G and c.

The choice of letter D refers to the fact that D is called the “twisted
Drinfeld double” of G [Wil08]. The goal of this section is to use the 3d TQFT
to imbue D with the structure of a quasi-Hopf algebra.

Since M = S1, Hom(M,G) is in bijection with G and

cx(g, h) =
c(x, g, h)c(g, h, (gh)−1x(gh))

c(g, g−1xg, h)
.

Drawn in the notation of Section 4, equation (49) becomes

Z


 unglued

=
∑
x,g,h

cx(g, h)−1 .

As used in Section 4, each rectangle represents a cylinder so the G-labelings
on the two long edges are the same. For simplicity, only one labeling will be
notated from now on. Also recall that Z(D2 × S1) provides the unit for D.

In Section 4, −I ×∆2 was drawn like

. (56)

In almost all instances in Section 4 where −I×∆2 appeared, its three vertical
edges were identified. This is the convention in this section:
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Convention 7.2. The picture (56) refers to −I × ∆2 with its three vertical
edges identified.

In particular, its G-labelings are

and note that

c


 = cg(x, y)−1

where

cg(x, y) :=
c(g, g−1xg, g−1yg)c(x, y, g)

c(x, g, g−1yg)
.

Hence

Z


 unglued

=
∑
g,x,y

cg(x, y)−1 . (57)

The right side of (57) is almost a map D → D⊗D: if you were to forget the
top and bottom triangles, it’d be

7→
∑
ab=x

cg(a, b)−1 ⊗ . (58)

In fact, define ∆ : D → D⊗D to be the map (58). The top and bottom
triangles can be “remembered” using the grading map:

gr : D 7→ kG⊗D⊗ kG

7→ x⊗ ⊗ g−1xg.
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More precisely, identify Z(±∆2) with kG⊗ kG via

7→ g⊗h

and then (57) is given by the composition

D
∆→ D⊗D gr⊗ gr→ kG⊗D⊗ kG⊗ kG⊗D⊗ kG (59)

→ kG⊗ kG⊗D⊗D⊗ kG⊗ kG

where the last map is a reordering of the tensor factors. In what follows, the
top and bottom labelings will not be detailed in the notation. For example,
write

Z


 unluged

= ∆⊗(top and bottom triangles). (60)

The actual top and bottom labelings can be recovered using (59).
As described in Example 6.9, Z(I × D2) is a module for A = Z(I × S1).

Namely,

Z


 unglued

=
∑
g,h,k

. (61)

(This calculation uses the fact that c(g1, g2, g3) = 1 if some gi = e.) Identify
Z(D2) with kG by

Z(D2)→ kG

7→ h.

Then the action of D on Z(D2) can be read off (61): the element

acts by |G| times a projection onto the trivial part of kG ∼= Z(D2) if x = e,
and 0 otherwise.
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Let V0 = Z(D2)G. Example (6.9) indicates that D acts on V0. V0 is the
1-dimensional space:

V0 = span

{∑
h

}
.

V ∗0 ⊗V0 is canonically identified with k by sending the identity transformation
in V ∗0 ⊗V0

∼= End(V0) to 1 ∈ k. Define

ε : D → k

ε =
∑
g

is the representation of D into End(V0) ∼= k ∼= End(k). V0 is called the trivial
representation. Then

Z


 unglued

= ε⊗(top and bottom disks) (62)

which is shorthand for

Z


 unglued

= ε⊗

(∑
h

)
⊗

(∑
k

)
.

As before, the details of the top and bottom labelings will often be omitted
from the notation:

Z


 unglued

= ε⊗(top and bottom disks).

Remark 7.3. In later bookkeeping of factors of |G|, the reader may find it
helpful to note that the pairing between(∑

h

)
and

(∑
k

)

is |G|. When the gluing law is applied, this factor of |G| will often cancel with
a factor of |G|−1 from the vertex in D2.
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Remark 7.4. Observe that the projector in D for V0, call it π0, is

π0 =
1

|G|
∑
g

and therefore

Z


 unglued

= |G|π0⊗(top and bottom disks). (63)

Define Φ ∈ D⊗D⊗D by

Φ =
∑
g,h,k

c(g, h, k) ⊗ ⊗ .

Proposition 7.5. ∆, ε, and Φ give D the structure of a quasi-bialgebra.

Sketch of Proof. ε is an algebra morphism because

and

have the same boundary ∆-complex structure, and so Z applied to each is the
same. A similar proof shows that ∆ is an algebra morphism.

(∆⊗ id) ◦∆ and (id⊗∆) ◦∆ are obtained by applying Z to the following
complexes (vertical edges identified, as usual):

.

To the left complex, glue a copy of −∆3 to the top and a copy of +∆3 to the
bottom to produce a complex with the same boundary ∆-complex structure
as the right complex. This proves that

(id⊗∆)(∆(a)) = Φ(∆⊗ id)(∆(a))Φ−1, ∀a ∈ A.

The identity

(∆⊗ id⊗ id)(Φ)(id⊗ id⊗∆)(Φ) = (Φ⊗ 1)(id⊗∆⊗ id)(Φ)(1⊗Φ)
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has a similar proof, by considering

and using that c is a cocycle.
Combining (60) and (62) gives

Z


 = (ε⊗ id) ◦∆⊗(top and bottom bigons). (64)

Change the triangulation on the top and bottom by gluing on copies of ±∆3

to the top and bottom:

. (65)

The labelings on these copies of ∆3 will be of the form

.

Since c(e, g, h) = 1 (by assumption) gluing on the copies of ∆3 does not change
(64). Take (65) and pinch the top and bottom together:

.

On the one hand,

Z


 unglued

= id .

On the other hand, the gluing law says that

Z


 =

|G|2

|G|2
Z


 = Z


 (66)
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the denominator factor of |G|2 coming from two newly interior vertices and one
numerator factor of |G| coming from each pairing of the a pair of triangles. It
follows that (ε⊗ id)◦∆ = id. A similar triangulation shows that (id⊗ ε)◦∆ =
id .

The identity
(id⊗ ε⊗ id)(Φ) = 1⊗ 1

follows immediately from the assumption c(g, e, h) = 1.

Next consider applying Z to (19):

Z




unglued

=
∑
x,g

cx−1(g, g−1)cg(x, x−1) .

This would be a map D → D, if it weren’t for the top and bottom bigons.
Define

S : D → D

7→ cx−1(g, g−1)cg(x, x−1)

and write

Z




unglued

= S⊗(top and bottom bigons). (67)

Define

α :=
∑
x

(the unit in D), and

β :=
∑
x

c(x, x−1, x)−1 .

The element β has the following interpretation. There is a different natural
triangulation of the cylinder, namely:

. (68)
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β is the image of ∑
x

under the map (46).

Claim 7.6. For all a ∈ D, S2(a) = βaβ−1.

Proof. Note that

Z


 = S2⊗(top and bottom).

The top (and, with opposite orientation, the bottom) has a copy of the trian-
gulation (68):

.

Glue on a copy of −∆3 on top and ∆3 on the bottom to turn change this
triangulation. Then glue on two multiplication maps:

. (69)

Applying Z to this complex and ungluing the two boundary cylinders gives a
map

a 7→ β−1S2(a)β.

Each factor of β corresponds to one of the two copies of ∆3 glued to the top
and bottom. It is not hard to see that the triangulation resulting from (69)
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looks like

with the left and right edges identified. Z applied to this manifestly gives the
identity map, whence

a = β−1S2(a)β.

Proposition 7.7. S, α, β give D the structure of a quasi-Hopf algebra.

Proof. One can check each of the axioms of a quasi-Hopf algebra directly using
the fact that c is a cocycle. The reader might find it informative, though, to
relate (1) and (2) to the respective triangulations

and .

β will enter the second one in a manner similar to the proof of Claim 7.6.

8. The Vector Space Associated to a Surface

Recall from (63) that

Z


 unglued

= |G|π0.

Therefore

Z




unglued

= |G|∆(π0).

As usual the tensor factors corresponding to the top and bottom parts of the
complex are dropped from the notation. Write

Z




unglued

= |G|∆(π0).
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Then

Z




unglued

= |G|((S⊗ id) ◦∆)(π0).

Pinch the top and bottom together: this introduces two new interior vertices
but these cancel with factors of |G| coming from the pairing maps on the top
and the bottom, so

Z




unglued

= |G|((S⊗ id) ◦∆)(π0).

Also:

and

have the same boundary ∆-complex, hence

Z


 unglued

= |G|((S⊗ id) ◦∆)(π0). (70)

Example 8.1. For two D-modules W1 and W2,

Z




acts in W ∗
1 ⊗W2 as |G| times the projection onto the trivial part; and

Z


 unglued

= |G|((id⊗∆)(S⊗ id)∆)(π0).
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acts in W ∗
1 ⊗W2⊗W3 as |G| times the projection onto the trivial part; and

Z


 unglued

= |G|((∆⊗∆)(S⊗ id)∆)(π0)

acts in (W1⊗W2)∗⊗W3⊗W4 as |G| times the projection onto the trivial part;
and

Z




= Z




unglued
= |G|(((S⊗ id)(id⊗S))(∆⊗∆)(S⊗ id)∆)(π0)

acts in (W1⊗W ∗
2 )∗⊗(W ∗

3 ⊗W4) as |G| times the projection onto the trivial
part; and

Z




unglued

= |G|((((∆⊗ id)∆)⊗((∆⊗ id)∆))(S⊗ id)∆)(π0)

acts in ((W1⊗W2)⊗W3)∗⊗((W4⊗W5)⊗W6) acts as |G| times the projection
onto the trivial part. Etc.

In the red arrow notation of section 6, the multiplication in D is

Z


 unglued

=
∑
i

(71)

and

Z


 unglued

=
∑
i

|G|
dimVi

.
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On the other hand, (70) implies that

Z


 unglued

= |G|
∑
i,j

.

Here π0 is understood (read top to bottom) as acting in V ∗i ⊗Vj—this is indi-
cated by the triangulation behind the red arrows. Similarly,

Z


 unglued

= |G|
∑
i,j,k

where again the gray triangulation behind the red arrows indicates that π0,
read top to bottom, acts in V ∗i ⊗(Vj ⊗Vk). Equivalently, it is the projection
from Hom(Vi, Vj ⊗Vk) to HomD(Vi, Vj ⊗Vk). It becomes a bit cumbersome
writing π0 everywhere, so instead use a solid red bar to denote π0:

Z


 unglued

= |G|
∑
i,j,k

.

Thus:

Z


 unglued

= |G|
∑
i,j,k,l

Z


 unglued

= |G|
∑
i,j,k,l

Z




unglued

= |G|
∑

i,j,k,l,m,n

.
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For example, in the last picture the red arrow diagram acts in

Hom((Vi⊗Vj)⊗Vk, (Vl⊗Vm)⊗Vn)

as projection to

HomD((Vi⊗Vj)⊗Vk, (Vl⊗Vm)⊗Vn).

The parenthization is indicated by the gray triangulation drawn below the red
arrow. Gluing on copies of −∆2×S1 and contracting the red arrows from (71)
shows that, for example

Z




unglued

= |G|
∑
i,j,k

.

(72)
Note that the right hand side of (72) sits inside2 D⊗ 6. Since

D ∼=
⊕
i

V ∗i ⊗Vi

each end of a boundary cylinder in (72) corresponds to an end of a red arrow,
one end corresponding to V ∗i for some i and the other to Vi for the same i.

Let (L, xL) be an oriented closed surface built from pieces like (13)-(18).
For example, here are two genus 2 surfaces and one torus:

L1 = (73)

L2 =

2actually, in D⊗ 6⊗(top and bottom triangles)

64



S1 × S1 = .

There’s a injective ungluing map

Z(L, xL)
unglue
↪→ D⊗N ⊗Z(±∆2)⊗N

′

where N is the number of cylinders and N ′ is the number of triangles in
decomposition of the surface. The triangle part will be dropped from the
notation:

Z(L, xL)
unglue
↪→ D⊗N .

Similarly, there’s also a gluing map

D⊗N
glue
� Z(L, xL).

Recall that
Z(I × L, xIxL) : Z(L, xL)→ Z(L, xL).

Precompose with the gluing map and postcompose with the ungluing map to
think of Z(I × L, xIxL) as a map D⊗N → D⊗N . Since

Z


 =

∑
i

then by the gluing law, Z(I × L1, xIxL1) is the contraction of

|G|2
∑
i1,j1,...

.
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The contraction simply sets k1 = i5 = k2 etc. Therefore,

Z(I × L1, xIxL1) = |G|2
∑
i,j,k

. (74)

In particular,

Z(L1, xL1)
G2

= image(Z(I × L1, xIxL1)) (75)

∼=
⊕
i,j,k

HomD(Vi, Vj ⊗Vk)∗⊗HomD(Vj ⊗Vk, Vi)∗. (76)

The reason for the duals is that the projections π0 in (74) are read top to
bottom while the map Z(I × L1, xIxL1) is read bottom to top. Thus the
map Z(I × L1, xIxL1) is the adjoint of the projectors. In a similar way, the
triangulation

leads to

Z(L2, xL2)
G2 ∼= HomD(V ∗i , Vj ⊗Vk)∗⊗HomD(Vj ⊗Vk, Vi)∗.

66



Note that there is an isomorphism Z(L1, xL1)
G2 ∼= Z(L2, xL2)

G2
, but the two

different triangulations L1 and L2 lead to different expressions of these vector
spaces in terms of the modules of D. By the gluing law, Z(I ×S1×S1) is the
contraction of

|G|
∑
i,j,k

.

Contracting just sets i = j = k, so

Z(I × S1 × S1) = |G|
∑
i

. (77)

In other words, Z(I × S1 × S1) is |G| times the projection of D to its center
and Z(S1 × S1)G is isomorphic to the center of D. In notation more in line
with (75),

Z(S1 × S1)G ∼=
⊕
i

HomD(Vi, Vi)
∗. (78)

Remark 8.2. Recall from (50) that

D ∼=
⊕
i

End(Vi) ∼=
⊕
i

V ∗i ⊗Vi.

(78) might seem a little strange since, at first sight, it might seem like HomD(Vi, Vi)
∗

should be part of D∗ ∼=
⊕

i End(Vi)
∗, whereas the ungluing map

Z(S1 × S1)
unglue
↪→ D

identifies Z(S1×S1)G with a subset of D. But by looking at the triangulation,
HomD(Vi, Vi)

∗ ∼= Vi⊗V ∗i is identified with the V ∗i ⊗Vi part of D with the two
tensor factors switched. Under these identifications, pairing an element of
HomD(Vi, Vi)

∗ with idVi is the same as pairing the corresponding element of D
by χi. See Example 8.4 below.
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Remark 8.3. In general, there is an expression like (76) for any surface ob-
tained by piecing together parts like (13)-(18). This level of generality will not
be needed here and details are left to the reader.

Example 8.4. Suppose ∂K is (isomorphic as an oriented ∆-complex to) a
disjoint union of N copies of S1 × S1.

By using the isomorphism (78), Z(K, xK) can be thought of as an element
in HomD(Vi, Vi)

∗ and

〈Z(K, xK), idVi1 ⊗ idVi2 ⊗ · · ·⊗ idViN 〉 (79)

is an invariant of the oriented manifold K together with a marking on its
boundary.

Alternatively, by using the ungluing map

Z(S1 × S1)G
unglued
↪→ D

one can think of Z(K, xK) in D and

〈Z(K, xK), χi1 ⊗χi2 ⊗ · · ·⊗χiN 〉 (80)

is an invariant of the oriented manifold K together with a marking of its
boundary. By Remark 8.2, (79) and (80) are the same. The perspective (80)
will the one preferred in what follows.

If |K| = S3 \ νL as in Example 5.17, then (80) produces invariants of
directed framed links where components are “colored” by irreps of D.

Example 8.5. In Example 5.18, a closed oriented 3-manifold M was con-
structed by surgery on a framed link L. Since

Z(−D2 × S1)
unglued

=
∑
x

=
∑
i

dimVi
|G|

χi

it follows that Z(M) is

1

|G|2N
∑

i1,i2,...,iN

(dimVi1)(dimVi2) · · · (dimViN )〈Z(K, xK), χi1 ⊗χi2 ⊗ · · ·⊗χiN 〉.

In particular, the closed 3-manifold invariant for the TQFT can be written in
terms of the link invariants. This should be compared to the relation between
the papers [Wit89] and [RT91]: the former (conjecturally) develops a TQFT
for all manifolds and the latter (rigorously) constructs the closed manifold
invariants of that TQFT from its link invariants via a surgery presentations
of manifolds.
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Example 8.6. Suppose K is such that ∂K is (isomorphic as an oriented
∆-complex to) the triangulation (73). Then, using the isomorphism (76),
Z(K, xK) sits inside⊕

i,j,k

HomD(Vi, Vj ⊗Vk)∗⊗HomD(Vj ⊗Vk, Vi)∗.

In particular, for αijk ∈ HomD(Vi, Vj ⊗Vk) and βjki ∈ HomD(Vj ⊗Vk, Vi),

〈Z(K, xK), αijk⊗ β
jk
i 〉

is an invariant of K plus its boundary triangulation. This sort of idea can be
generalized to produce, for example, invariants of directed ribbon graphs in
S3 with edges colored by representations of D.

This example can be generalized to manifolds with boundary triangulated
in other ways, as in Remark 8.3.

Consider the oriented surfaces

(L3, xL3) :=

(L4, xL4) := .

Each of these triangulations has a single interior basepoint and G acts on the
set of G-labelings via this basepoint. Equation (72) shows that

Z(L3, xL3)
G ∼=

⊕
i,j,k

V ∗i ⊗Vj ⊗Vk⊗HomD(Vi, Vj ⊗Vk)∗. (81)

An equation analogous to (72) shows that

Z(L4, xL4)
G ∼=

⊕
i,j,k,l

V ∗i ⊗V ∗j ⊗Vk⊗Vl⊗HomD(Vi⊗Vj, Vk⊗Vl)∗. (82)

By example (6.9), 1
|G|Z(I×L3, xIxL3) defines an action of D⊗ 3 on Z(L3, xL3)

G

and 1
|G|Z(I×L4, xIxL4) defines an action of D⊗ 4 on Z(L4, xL4)

G. The isomor-

phisms (81) and (82) are isomorphisms of D⊗ 3 and D⊗ 4 modules, respectively.
Isomorphisms like (81) and (82) for arbitrary compact surfaces with boundary
can be constructed by the interested reader.
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9. The Link Invariant

Recall from Example 4.11 that

= .

Therefore (see (72))

Z


 unglued

= |G|
∑
i,j,k

(83)

To unclutter notation, for A ∈ HomD(Vi, Vj ⊗Vk) ⊂ V ∗i ⊗(Vj ⊗Vk), let

Z


 = |G| .

In other words, A has been “plugged into” (83), viewed as a map from top to
bottom. To further simplify notation superimpose the red arrows on just the
bottom triangulation of (20):

Z


 = |G| . (84)

Generalize the notation (84) in the obvious way so that, for example, for
A ∈ HomD(Vi⊗Vj, Vk⊗Vl):

Z




= |G| .

70



For A ∈ HomD(Vi1 ⊗Vj1 , Vk1 ⊗Vl1) and B ∈ HomD(Vi2 ⊗V ∗j2 , V
∗
k2
⊗Vl2), let

Z




denote A and B “plugged into”

Z




.

Because of (27), it follows that

Z





= |G|2 . (85)

As before, the red arrows are superimposed on the “bottom” triangulation of
(27).
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Given
A ∈ HomD(Vi1 ⊗(Vi2 ⊗Vi3), Vj1 ⊗(Vj2 ⊗Vj3)

B ∈ HomD((Vj1 ⊗Vj2)⊗Vj3 , Vk1 ⊗(Vk2 ⊗Vk3))

let

Z




be the result of “plugging in” A and B into

Z





.
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Then, using (29), it follows that

Z





= |G|2 . (86)

Two comments are in order. First, Φ gets placed here because of the 3-simplex
in (29). This 3-simplex is there because the parenthizations of the codomain
of A and the domain of B do not match. Second, there is some cancellation
that goes into the identity (86). Because of (53), there’s a factor of

|G|
dimVj1

|G|
dimVj2

|G|
dimVj3

that comes from the three copies of B × S1. To go from (29) to (30), three
copies of −∆2 × S1 are glued on. These introduce three new interior vertices
and hence a factor of |G|−3. These also introduce three new red circles labeled
j1, j2, and j3. Therefore gluing on these three copies of −∆2 × S1 multiplies
the expression by

dimVj1
|G|

dimVj2
|G|

dimVj3
|G|

exactly canceling the contribution from the three copies of B × S1.
The result of (85) and (86) and their easy generalizations is that the pieces

glue together horizontally and vertically in the same way as the blue arrow
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pieces from section 2:

.

For example, form the generalized tangle

by gluing together the following generalized tangles

If A1 ∈ HomD(Vi, Vj ⊗Vk), A2 ∈ HomD(Vk, Vl⊗Vm), A3 ∈ HomD(Vj ⊗Vk, Vn)
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and A4 ∈ HomD(Vn⊗Vl, Vp), then

Z





= |G|4 .

Recall the convention (see (5)) that copies of Φ are omitted from the blue
arrow notation.

Define

R =
∑
a,b

⊗

so that

R−1 =
∑
a,b

cb(a, a
−1) ⊗ .

Also define

v =
∑
x

.

so that

v−1 =
∑
x

cx(x, x
−1) .

Claim 9.1. The elements R and v give D the structure of a ribbon Hopf
algebra.

This claim is proved in [AC92] and will not be proved here. The interested
reader might prove the axioms related R, v, and Φ by using the triangulations
in Section 4.

In the following proposition an algebra element a applied to a red arrow
labeled i means the linear map ρi(a), where ρi : D → End(Vi) is the ith
representation.
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Proposition 9.2. The identities (87)-(96) hold:

Z

( )
=
∑
i

(87)

Z

( )
=
∑
i

(88)

Z

( )
=
∑
i

(89)

Z

( )
=
∑
i,j

=
∑
i,j

(90)

Z

( )
=
∑
i,j

=
∑
i,j

(91)

Z

( )
=
∑
i,j

=
∑
i,j

(92)

Z

( )
=
∑
i

(93)
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Z

( )
=
∑
i

(94)

Z

( )
=
∑
i

(95)

Z

( )
= (96)

There are other slight permutations involving flipping some of the general-
ized tangles upside down and/or reversing some of the directions of the arrows.

Proof. Each of these identities follows from applying Z to the relevant trian-
gulations in Section 4.

The solid torus glued on the bottom of the right side of (34) doesn’t have
the usual triangulation from D2 × S1 because of (33). One can check that
Z applied to this solid torus is v. Then (88) follows immediately and (89) is
similar.

The

part of R comes from the following cylinder in (38), emphasized here in green:

.
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Note that the top and bottom of the green quadrilateral are identified when
the top copy of −∆2 × S1 is glued in, so the green quadrilateral is indeed a
cylinder. Then (90) follows. (91) and (92) are similar, using triangulations
(37) and (39), respectively.

(93) and (94) follow from Examples 4.19 and 4.20, respectively. The only
subtle point is the factor of β in Ci comes from the extra −∆3 in (40).

(95) and (96) follow from Example 4.21.

Remark 9.3. Since End(V0) is identified with k by sending the identity map
to 1 ∈ k, all isolated red arrows labeled by 0 can be dropped from the notation.

Since a link diagram can be built from the elementary tangles of Propo-
sition 9.2 (plus some small variations, like reversing directions of arrows), it
follows that Z(S3 \ νL) can be written in terms of the link invariant detailed
in Section 2. Take the same example as in Section 2 and decompose it into
tangles
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The tangles on the right glue to

.

but many copies of −∆2 × S1 can be glued on to produce

. (97)

Note that, in the process of gluing together, there is generally one copy of
−∆2× S1 for every copy of B× S1, and these produce canceling factors dimVi

|G|

and |G|
dimVi

. However, as the lines on each of the two link components indicate,

there are two copies of B×S1 that are not matched with copies of −∆2×S1.
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It follows that, for T the tangle in 97,

Z (T ) =
∑
i,j

|G|
dimVi

|G|
dimVj





πi⊗ πj

Remark 9.4. The copies of πi and πj come from the two red arrows not
cancelled by copies of −∆2 × S1.

Each of the coefficients of πi⊗ πj in Z(T ) are link invariants. It follows
that

Theorem 9.5. For the ribbon quasi-Hopf algebra D, the recipe in section 2 for
constructing a directed framed link invariant actually produces an invariant of
the directed framed link.

More can be said, however. The link (97) sits inside a ball whose boundary
is triangulated by the following two disks glued together along their bound-
aries:

.

These two disks can be glued together to produce a triangulation of the link
inside S3. In the process of gluing the two disks, one has to insert a copy
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of B × S1 to make the arrow orientations match. The pairing between the
G-labelings on the disks produces a factor of |G|2 and the three new interior
vertices produce a factor of |G|−3. Therefore,

Z


S3 \



=
1

|G|
∑
i,j

|G|
dimVi

|G|
dimVj

tr





πi⊗ πj.

As before, this identity generalizes to an arbitrary framed directed link L. It
follows that the relation between the Dijkgraaf-Witten link invariant and the
blue-arrow link invariant I(L, i) derived from the quasi-Hopf algebra algebra
D is:

Theorem 9.6. Let (K, xK) be the ∆-complex structure on the complement of
a tubular neighborhood of a directed framed link L, as in Example 5.17. Write
I(L, i) for the blue-arrow invariant from obtained from a projection of L with
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components colored by i = (i1, . . . , iN). Then

I(L, i) =
1

|G|N−1
〈Z(K, xK), χi1 ⊗ · · ·⊗χiN 〉.
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