Steps for optimization problems: (2 keys!)

1. Draw & label
2. Constraint
3. Formula for the something we want to optimize
4. Domain
5. Find global max/min & justify by table of f'.

1. Above steps must be quite abstract. Let's look at one easier example. (problem from textbook)
 Which rectangle of area 100 in2 minimizes its height plus two times its length?

\[
\begin{align*}
\text{Constraint:} & \quad hl = 100 \\
\Rightarrow h & = \frac{100}{l} \\
\text{Formula:} & \quad S = h + 2l \\
S' & = -\frac{100}{l^2} + 2 = 0 \quad \Rightarrow \text{critical pts: } l = \sqrt{50} \\
S & = \frac{100}{\sqrt{50}} + 2\sqrt{50} \\
\end{align*}
\]

2. It's time for you to try! (from midterm of Fall 2014 Lec003)
 A farmer wants to fence an area of $15,000,000$ square feet in a rectangular field and then divide it in half with a fence parallel to one of the sides of the rectangle. Find the dimensions of the fenced area that will minimize the amount of the fencing material used.

\[
\begin{align*}
\text{Constraint:} & \quad xy = 15,000,000 \\
\Rightarrow y & = \frac{15,000,000}{x} \\
\text{Formula:} & \quad M = 3x + 2y \\
M' & = 3 - \frac{30,000,000}{x^2} \quad (x>0) \\
\Rightarrow \text{critical pts: } & \quad x = 1000 \\
y & = \frac{15,000,000}{1000} = 1500 \\
M' & = -\frac{1}{1000} \Rightarrow x \\
\text{When height is 1000 ft, width is 1500 ft, the material is minimized.}
\end{align*}
\]
Properties of Exponentials and logarithms:

1. \[e^{a+b} = e^a e^b \]
2. \[\ln(a + b) = \ln(a) + \ln(b) \]
3. \[\ln(a b) = \ln(a) + \ln(b) \]

3. Limit computing involving exponentials and logarithms

(these following problems are modified from our textbook; similar problems appear in hw8 as well)

(a) \[\lim_{x \to \infty} \frac{\arctan(x+1)}{\ln x} \]

(b) \[\lim_{x \to \infty} x^3 e^{-x} \]

(c) \[\lim_{x \to \infty} \frac{x^4 e^{-x}}{e^{-x}} \]

(d) \[\lim_{x \to \infty} \frac{e^x - x}{x^2} \]

(e) \[\lim_{x \to \infty} \frac{\ln(x^2)}{\ln x} \]

(f) \[\lim_{x \to \infty} \ln(x+2) - \ln x \]

(g) \[\lim_{x \to \infty} (x + x!) \]

(a) "Plug in": \[\frac{0}{0} \] \Rightarrow \text{L'Hopital}

? = \[\lim_{x \to \infty} \frac{1 + (x+1)^2}{x} \]

(b) "Plug in": \[\frac{0}{0} \] \Rightarrow \text{L'Hopital}

? = \[\lim_{x \to \infty} \frac{1}{x} \left(e^{x+1} \right) \]

(c) Plug in \[\frac{0}{0} \]

highest order: \[e^t \]

\[\frac{1}{e^t} \]

\[\lim_{t \to \infty} \frac{1}{t} \]

\[\frac{1}{e^t} \]

? = \[\frac{1}{2} \]

(d) "Plug in": \[\frac{0}{0} \]

\[\lim_{x \to \infty} \frac{\ln x}{x} \]

? = \[0 \]

(e) "Plug in": \[\frac{0}{0} \]

Can simplify!

? = \[\lim_{x \to \infty} \frac{2 \ln x}{\ln x} \]

? = \[2 \]

(f) \[\lim_{x \to \infty} \frac{\ln(x+2)}{x} \]

? = \[0 \]

(g) \[\lim_{x \to \infty} \frac{\ln(x+1)}{x+1} \]

\[\lim_{x \to \infty} \frac{1}{x+1} \]

? = \[0 \] \Rightarrow \[L = e^0 = 1 \]

(h) \[\lim_{x \to \infty} \frac{x e^x}{x^2 e^x} \]

(i) \[\lim_{x \to \infty} \frac{1 - \cos x}{\ln x} \]

(h) "\[\frac{0}{0} \]"

highest order: \[xe^x \]

\[\frac{x^2 e^x}{x^2 e^x} \]

\[\frac{1}{x e^x} \]

? = \[0 \]

(i) "\[\frac{0}{0} \]"

L'Hopital

? = \[\lim_{x \to \infty} \frac{\sin x}{(x+1) e^x + x e^x} \]

? = \[0 \]

\[\frac{1}{x+1} \]

\[e^x \]

\[1 + 0 \]

\[= 0 \]