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1 Introduction
Here we discuss a sufficient and necessary condition for a presheaf to be representable. Let’s briefly recall the
notion of representability:

1.1 Definition. 𝐹 ∶ 𝖢op → 𝖲𝖾𝗍 is representable if there is an object 𝑐 ∊ 𝖢 such that
𝐹 ≃ 𝖢(−, 𝑐).

Equivalently, suppose 𝑦 ∶ 𝖢 → 𝖢̂ is the Yoneda embedding. Then 𝐹 is representable if 𝐹 is in the essential
image of 𝑦.

The notion of representability is very important: many theorems reduce to this notion of functors being
representable, such as the adjoint functor theorem. Theorems like the Brown representability theorem and Artin
representability also fall under this umbrella of stating that certain functors are representable.

Notice that this notion depends on sizes of categories. Typically 𝖢 will be locally small, and 𝖲𝖾𝗍 or 𝖲𝗉𝖼 (or
whatever the desired presheaves should be taken in) is the category of all small sets or spaces. In this case, 𝖢̂ is
not the small cocompletion of 𝖢, and it is in fact larger than the small cocompletion. The small cocompletion
of 𝖢 consists of the small colimits of representable functors, which is exactly those that are accessible functors
𝖢op → 𝖲𝖾𝗍. However this result works despite the relative sizes of the two categories 𝖢 and 𝖲𝖾𝗍.

I’ve first learned the following theorem from Kelly’s book [Kel05] on enriched categories.

1.2 Theorem. Given a 𝒱-enriched 𝖢 and a presheaf 𝐹 ∶ 𝖢op → 𝒱 . Then 𝐹 is representable if and only if
1. The weighted colimit 𝐿𝐹 ∶= colim𝐹 1𝖢 exists in 𝖢.

2. 𝐹 sends this weighted colimit to a weighted limit. In other words, the natural comparison map
𝐹(𝑟) → lim

𝐹
𝐹

is an equivalence in 𝒱 .
He goes on to use his characterization of representability to understand representability and adjoint functor

theorems and solution set axioms. Notice that adjoint functor theorems follow from representability ones as given
𝐹 ∶ 𝖢 → 𝖣: it has a right adjoint if and only if 𝖣(𝐹−, 𝑑) is a representable presheaf for all 𝑑 ∊ 𝖣.

These representability theorems usually consist of two parts: a colimit/limit preservation piece, and a solution
set axiom. The insight is that several of the solution set axioms are used in order to construct the perhaps large
colimit colim𝐹 1𝖢, as this is clearly a large colimit if 𝖢 itself is large.

The second piece, that the presheaf works well with limits/colimits guarentees the second piece of the theorem:
that it turns this colimit colim𝐹 1𝖢 to a limit.

It is interesting to consider whether there are representability/adjoint functor theorems in greater generality.
For (∞, 1)-categories, Nguyen, Raptis, and Schrade have a direct generalization of the general adjoint functor
theorem [NRS20]. Further, Bourke, Lack, and Vokřínek have done work in this direction for model theoretic
enrichments, which covers the case of usual strict enrichments, but I wonder if work can be done with homotopy
coherent enriched categories for example using Hinich’s definition [Hin23].

We work in the setting of (ordinary) enriched categories, where 𝒱 is a closed symmetric monoidal category,
and our categories 𝖢 are enriched over𝒱 . The following arguments also work using (∞, 1)-categories, for example
in the style of Lurie/Joyal (for example see [Lur09]), which is not quite enrichment over 𝖲𝗉𝖼, but requires a weak
sort of enrichment.
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2 Proof of the theorem
The argument presented here is slightly different then the one given by Kelly in [Kel05],and it also works for (∞, 1)-
categories. This of course also covers the case of ordinary 𝖲𝖾𝗍-enriched categories (or “unenriched” categories).
2.1 Theorem. Given a 𝒱-enriched or (∞, 1)-category 𝖢 and a presheaf 𝐹 ∶ 𝖢op → 𝒱 . Then 𝐹 is representable if
and only if

1. The weighted colimit 𝐿𝐹 ∶= colim𝐹 1𝖢 exists in 𝖢.

2. 𝐹 sends this weighted colimit to a weighted limit. In other words, the natural comparison map

𝐹(𝑟) → lim
𝐹
𝐹

is an equivalence in 𝒱 .
In more detail, so long as the colimit 𝐿𝐹 exists, we have a natural comparison 𝜂𝐹 ∶ 𝐹 → 𝖢(−, 𝐿𝐹), which is an

equivalence if the second point holds.

Proof. Notice that the construction of 𝐿𝐹 ∶= colim𝐹 1𝖢 is exactly asking for a local left adjoint on 𝐹 for the Yoneda
embedding 𝑦 ∶ 𝖢 → 𝖢̂. Observe that by the very definition of the colimit, we have the following equivalence

𝖢̂(𝐹, 𝑦𝑐) ≃ 𝖢(𝐿𝐹, 𝑐) ≃ 𝖢̂(𝑦(𝐿𝐹), 𝑦𝑐) (2.2)

where of course the second equivalence follows from the fully faithfulness of the Yoneda lemma. This shows that
indeed if 𝑦 ∶ 𝖢 → 𝖢̂ were to have a left adjoint, it must send 𝐹 to colim𝐹 1𝐶 .

Also notice that if 𝐹 = 𝖢(−, 𝑟) is already representable, then notice that by 2.2, we see that

𝖢(𝐿𝐹,−) ≃ 𝖢̂(𝐹, 𝑦−) ≃ 𝖢(𝑟, −),

hence 𝐿𝐹 ≃ 𝑟. So we see that if 𝐹 is representable, then clearly the colimit 𝐿𝐹 exists and is calculated by the
representing object 𝑟.

Further if 𝐹 is representable by 𝑟, then notice that clearly again by 2.2, we see

𝐹(𝐿𝐹) ≃ 𝖢(𝐿𝐹, 𝑟) ≃ lim
𝐹
𝖢(−, 𝑟) ≃ lim

𝐹
𝐹

showing that 𝐹 turns the colimit to a limit. Hence these points prove the forward direction.
Now we show the other direction. Suppose that 𝐿𝐹 exists in 𝖢, and that 𝐹 turns this colimit into a limit.
First off, notice that the comparison morphism of colimit to limit

𝐺(𝐿𝐹) → lim
𝐹
𝐺 (2.3)

(which is natural in 𝐺) induced a natural morphism

𝖢̂(𝑦(𝐿𝐹), 𝐺) → 𝖢̂(𝐹, 𝐺). (2.4)

This is because the domain 𝐺(𝐿𝐹) is equivalent to 𝖢̂(𝑦(𝐿𝐹), 𝐺) by the Yoneda lemma. Then, lim𝐹 𝐺 ≃ 𝖢̂(𝐹, 𝐺)
because we have the co-Yoneda lemma: 𝐹 ≃ colim𝐹 𝑦, so

𝖢̂(𝐹, 𝐺) ≃ 𝖢̂(colim
𝐹

𝑦, 𝐺) ≃ lim
𝐹
𝖢̂(𝑦, 𝐺) ≃ lim

𝐹
𝐺.

Now 2.4 induces a natural comparison morphism

𝜂𝐹 ∶ 𝐹 → 𝑦(𝐿𝐹). (2.5)

This morphism corresponds to the unit of the adjunction 𝑦 ⊣ 𝐿 even for 𝐿 only locally defined, as the unit is also
induced by the comparison of colimits

𝐹 ≃ colim
𝐹

𝑦 → 𝑦(colim
𝐹

1𝐶),

and one can see that by taking hom sets into 𝐺 of this comparison map, we get exactly the other comparison map
2.4. We need to show that this morphism is an equivalence. But this follows from a categorical lemma:
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2.6 Lemma. Let 𝖢 be a 𝒱-enriched or (∞, 1)-category and 𝑓 ∶ 𝑐 → 𝑑 a morphism. Then assume that

𝑓∗ ∶ 𝖢(𝑑, 𝑐) → 𝖢(𝑐, 𝑐)

is an equivalence. Then 𝑓 is an equivalence.

We notice that we have this exact situation for the morphism 𝜂𝐹 as 𝑓. The fact that precomposition by 𝜂𝐹 is an
equivalence on

𝖢̂(𝑦(𝐿𝐹), 𝐹) → 𝖢̂(𝐹, 𝐹)
is exactly our second hypothesis, that 𝐹 turns the colimit 𝐿𝐹 into a limit, using the same argument that 2.3 and 2.4
are equivalent morphisms.

Now let’s prove the lemma. Suppose we’re given 𝑓 ∶ 𝑐 → 𝑑 as in the lemma. We first notice that 𝑓 has a left
inverse because

𝑓∗𝖢(𝑑, 𝑐) → 𝖢(𝑐, 𝑐)
is an equivalence. We get this inverse 𝑒 ∶ 𝑑 → 𝑐 as the inverse image of the identity 1𝑐, hence 𝑒𝑓 ≃ 1𝑐.

Next we draw the natural squares

𝖢(𝑑, 𝑑) 𝖢(𝑐, 𝑑)

𝖢(𝑑, 𝑐) 𝖢(𝑐, 𝑐)

𝖢(𝑑, 𝑑) 𝖢(𝑐, 𝑑)

𝑓∗

𝑓∗ 𝑓∗
𝑓∗

𝑒∗ 𝑒∗
𝑓∗

from the fact that pre-composition by 𝑓 commutes with post-composition. Notice that now the top and bottom
morphism 𝑓∗ ∶ 𝖢(𝑑, 𝑑) → 𝖢(𝑐, 𝑑) is an equivalence as it is a retract of the middle morphism, which is an
equivalence! This is because the vertical compositions are equivalences since 𝑒𝑓 ≃ 1𝑐.

Now since 𝑓∗ ∶ 𝖢(𝑑, 𝑑) → 𝖢(𝑐, 𝑑) is invertible, we see that 𝑓 must have a right inverse! Hence 𝑓 has a left and
right inverse and is thus an equivalence itself.

3 Adjoint functor theorem
Our main representability theorem 2.1 gives a related adjoint functor theorem. Once again, I learned this formula-
tion from Kelly [Kel05].

3.1 Theorem. Given a functor 𝐹 ∶ 𝖢 → 𝖣 of enriched categories. Then it has a right adjoint if and only it the left
Kan extension 𝐺 ∶= Lan𝐹 1𝖢 exists and is preserved by 𝐹.

Kelly uses the representability theorem 2.1 to prove this, applying it to the functors 𝖣(𝐹−, 𝑑). We however give
a direct argument that works in any 2-category 𝖢, including (∞, 2)-categories. For example, I believe it works on
Riehl and Verity’s notions of∞-cosmoi for doing higher categories [RV22]. Note however this is just as basic as the
representability theorem above; however in a general 2-category one doesn’t have the notion of representability
necessarily. One can probably just instead use the Yoneda embedding 𝖢 → [𝖢op, 𝖢𝖺𝗍] and apply the adjoint functor
theorem for 𝖢𝖺𝗍, but we give a direct argument for simplicity:

3.2 Theorem. Let 𝖢 be a 2-category (or an (∞, 2)-category). Then given a morphism 𝑓 ∶ 𝑐 → 𝑑, it has a right adjoint
iff Lan𝑓 1𝑐 exists and 𝑓 preserves this left Kan extension.

Proof. For the forward direction, notice that if 𝑓 has a right adjoint 𝑔, then clearly 𝑔 itself computes Lan𝑓 1𝑐: we
have the following equivalence

[𝑐, 𝑐](1𝑐, ℎ𝑓) ≃ [𝑑, 𝑐](𝑔, ℎ)
by the unit 𝜂 and counit 𝜀. In particular: given 𝑢 ∶ 1𝑐 → ℎ𝑓 we construct 𝑢̂ ∶ 𝑔 → ℎ as the composite

𝑔 ℎ𝑓𝑔 ℎ.𝑢◦𝑔 ℎ◦𝜀
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Without refering to explicit elements, we can write the equivalence

[𝑐, 𝑐](1𝑐, ℎ𝑓) ≃ [𝑑, 𝑐](𝑔, ℎ)

as given by

[𝑐, 𝑐](1𝑐, ℎ𝑓) [𝑐, 𝑑](𝑔, ℎ𝑓𝑔) [𝑐, 𝑑](𝑔, ℎ)
𝑔1,∗ ℎ𝜀∗

where 𝑔1,∗ is post-composition of 1-cells with 𝑔 (ie “horizontal composition”).
To go the other way, we start with 𝑣 ∶ 𝑔 → ℎ and obtain 𝑣 ∶ 1 → ℎ𝑓 by taking the composite

1𝑐 𝑔𝑓 ℎ𝑓.𝜂 𝑣◦𝑓

These two constructions clearly invert each other because of the unit and counit laws.
Again on hom categories, we could write

[𝑐, 𝑑](𝑔, ℎ) [𝑐, 𝑐](𝑔𝑓, ℎ𝑓) [𝑐, 𝑐](1𝑐, ℎ𝑓)
𝑓1,∗ 𝜂∗

where 𝑓1,∗ is again precomposition of 1-cells.
Hence we see the left kan extension Lan𝑓 1𝑐 exists. Further, we note that 𝑓 preserves this left kan extension:

we have the equivalence
[𝑐, 𝑑](𝑓, ℎ𝑓) ≃ [𝑐, 𝑐](𝑓𝑔, ℎ)

by an analogous argument to above, using the unit and counit.
Now for the more interesting direction: let us write 𝑔 ∶= Lan𝑓 1𝑐. Then we have a natural unit 2-cell

𝜂 ∶ 1𝑐 → 𝑔𝑓 from the equivalence
[𝑑, 𝑐](𝑔, ℎ) ≃ [𝑐, 𝑐](1𝑐, ℎ𝑓). (3.3)

Here 𝜂 arises from plugging in ℎ = 𝑔 and tracking the identity of 𝑔 on the left hand side.
Next, we observe 𝑓𝑔 is the Left Kan extension of 𝑓 along 𝑓, hence we have an equivalence

[𝑐, 𝑐](𝑓, ℎ𝑓) ≃ [𝑑, 𝑐](𝑓𝑔, ℎ). (3.4)

Letting ℎ = 1𝑑 and plugging in the identity of 𝑓 gives us a counit 𝜀 ∶ 𝑓𝑔 → 1𝑑.
We now need to check that these satisfy the triangle identities. Let’s begin with 𝜀𝑓◦𝑓𝜂 ≃ 1𝑓 . Notice that the

fact that 𝑓 preserves the LKE implies that since 𝜂 ∶ 1 → 𝑔𝑓 is the unit for 𝑔 as a LKE, we have 𝑓𝜂 ∶ 𝑓 → 𝑓𝑔𝑓 is
the unit for 𝑓𝑔 as a LKE.

Hence the adjunct to 𝑓𝜂 is the identity 𝑓𝑔 → 𝑓𝑔. Now observe we have the following square:

[𝑐, 𝑑](𝑓, 𝑓𝑔𝑓) [𝑑, 𝑑](𝑓𝑔, 𝑓𝑔)

[𝑐, 𝑑](𝑓, 𝑓) [𝑑, 𝑑](𝑓𝑔, 1𝑑).

≃

(𝜀𝑓)∗ 𝜀∗
≃

It commutes by the naturality of the equivalence 3.4. Notice that if we trace 𝐹𝜂 on the upper left: it goes to the
right to 1𝑓𝑔 as they are adjuncts, which then maps to 𝜀. The other way, we get the adjunct of 𝜀𝑓◦𝑓𝜂. Since the
adjunct of 𝜀𝑓◦𝑓𝜂 is 𝜀, it must be 1𝑓 , as this is the definition of 𝜂! Hence 𝜀𝑓◦𝑓𝜂 ≃ 1𝑓 .

Now the second triangle identity follows from the first: we want to show that 𝐺𝜀◦𝜂𝐺 is 1𝑔. To do so, we show
that it is adjunct to 𝜂 ∶ 1 → 𝑔𝑓.

We calculate the adjunct to be the composite

1𝑔 𝑔𝑓

𝑔𝑓 𝑔𝑓𝑔𝑓 𝑔𝑓.

𝜂

𝜂 𝑔𝑓𝜂
𝜂𝑔𝑓 𝑔𝜀𝑓

The square commutes because it computes the horizontal composition 𝜂 ∗ 𝜂. Notice that the top route then
composes to 𝜂, using our previous triangle identity! Hence our adjunct is indeed 𝜂, and we’ve shown the second
triangle identity.
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