9 An Introduction to Elliptic
Functions

The form that Jacobi had given to the theory of elliptic
functions was far from perfection; its flaws are obvious.
At the base we find three fundamental functions sn,
cn and dn. These functions do not have the same
periods...

In Weierstrass’ system, instead of three funda-
mental functions, there is only one, p(u), and it is the
simplest of all having the same periods. It has only
one double infinity; and finally its definition is so that
it does not change when one replaces one system of
periods by another equivalent system.

H. Poincaré, 1899

The theory of elliptic functions, which is of interest in several parts of
mathematics, initially grew out of the study of elliptic integrals. These
can be described generally as integrals of the form [ R(z,\/P(x))dz,
where R is a rational function and P a polynomial of degree three or
four.! These integrals arose in computing the arc-length of an ellipse, or
of a lemniscate, and in a variety of other problems. Their early study was
centered on their special transformation properties and on the discovery
of an inherent double-periodicity. We have seen an example of this latter
phenomenon in the mapping function of the half-plane to a rectangle
taken up in Section 4.5 of the previous chapter.

It was Jacobi who transformed the subject by initiating the systematic
study of doubly-periodic functions (called elliptic functions). In this the-
ory, the theta functions he introduced played a decisive role. Weierstrass
after him developed another approach, which in its initial steps is simpler
and more elegant. It is based on his g function, and in this chapter we
shall sketch the beginnings of that theory. We will go as far as to glimpse
a possible connection with number theory, by considering the Eisenstein
series and their expression involving divisor functions. A number of more
direct links with combinatorics and number theory arise from the theta

IThe case when P is a quadratic polynomial is essentially that of “circular functions”,
and can be reduced to the trigonometric functions sin x, cos x, etc.
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functions, which we will take up in the next chapter. The remarkable
facts we shall see there attest to the great interest of these functions in
mathematics. As such they ought to soften the harsh opinion expressed
above about the imperfection of Jacobi’s theory.

1 Elliptic functions

We are interested in meromorphic functions f on C that have two periods;
that is, there are two non-zero complex numbers w; and wsy such that

ftw)=f(z) and  f(z+ws) = f(2),

for all z € C. A function with two periods is said to be doubly periodic.

The case when w; and wy are linearly dependent over R, that is
ws/wy € R, is uninteresting. Indeed, Exercise 1 shows that in this case f
is either periodic with a simple period (if the quotient ws/w; is rational)
or f is constant (if wo /w is irrational). Therefore, we make the following
assumption: the periods wy and ws are linearly independent over R.

We now describe a normalization that we shall use extensively in this
chapter. Let 7 = wy/w;. Since 7 and 1/7 have imaginary parts of oppo-
site signs, and since 7 is not real, we may assume (after possibly inter-
changing the roles of w; and wy) that Im(7) > 0. Observe now that the
function f has periods wy and wy if and only if the function F'(z) = f(w;2)
has periods 1 and 7, and moreover, the function f is meromorphic if and
only if F is meromorphic. Also the properties of f are immediately
deducible from those of F. We may therefore assume, without loss of
generality, that f is a meromorphic function on C with periods 1 and 7
where Im(7) > 0.

Successive applications of the periodicity conditions yield

(1)  f(z+n+mr)= f(z) for all integers n,m and all z € C,
and it is therefore natural to consider the lattice in C defined by
A={n+mr: n,meZ}.
We say that 1 and 7 generate A (see Figure 1).
Equation (1) says that f is constant under translations by elements
of A. Associated to the lattice A is the fundamental parallelogram

defined by

Py={z€C:z2=a+br where0<a<land0<b<1}.
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/.

Figure 1. The lattice A generated by 1 and 7

The importance of the fundamental parallelogram comes from the fact
that f is completely determined by its behavior on Fy. To see this, we
need a definition: two complex numbers z and w are congruent modulo
Aif

z=w+n+mr for somen,m € Z,

and we write z ~ w. In other words, z and w differ by a point in the
lattice, z — w € A. By (1) we conclude that f(z) = f(w) whenever z ~ w.
If we can show that any point in z € C is congruent to a unique point in
Py then we will have proved that f is completely determined by its values
in the fundamental parallelogram. Suppose z = x + iy is given, and write
z = a + br where a,b € R. This is possible since 1 and 7 form a basis over
the reals of the two-dimensional vector space C. Then choose n and m to
be the greatest integers < a and < b, respectively. If we let w =z —n —
mT, then by definition 2z ~ w, and moreover w = (a — n) + (b — m)7. By
construction, it is clear that w € Fy. To prove uniqueness, suppose that
w and w’ are two points in P, that are congruent. If we write w = a + b7
and v’ =a' + V7, then w —w' = (a —a’) + (b — V)T € A, and therefore
both a —a’ and b— 0 are integers. But since 0 < a,d’ < 1, we have
—1 < a — d < 1, which then implies ¢ — @’ = 0. Similarly b — ' = 0, and
we conclude that w = w’.

More generally, a period parallelogram P is any translate of the
fundamental parallelogram, P = Py + h with h € C (see Figure 2).

Since we can apply the lemma to z — h, we conclude that every point
in C is congruent to a unique point in a given period parallelogram.
Therefore, f is uniquely determined by its behavior on any period par-
allelogram.
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h h+1
Figure 2. A period parallelogram

Finally, note that A and Py give rise to a covering (or tiling) of the
complex plane

(2) C= |J (n+mr+ Ry,
n,mez

and moreover, this union is disjoint. This is immediate from the facts
we just collected and the definition of Py. We summarize what we have
seen so far.

Proposition 1.1 Suppose f is a meromorphic function with two periods
1 and 7 which generate the lattice A. Then:

(i) Ewvery point in C is congruent to a unique point in the fundamental
parallelogram.

(ii) Ewvery point in C is congruent to a unique point in any given period
parallelogram.

(iii) The lattice A provides a disjoint covering of the complex plane, in
the sense of (2).

(iv) The function f is completely determined by its values in any period
parallelogram.
1.1 Liouville’s theorems

We can now see why we assumed from the beginning that f is meromor-
phic rather than just holomorphic.

Theorem 1.2 An entire doubly periodic function is constant.

Proof. The function is completely determined by its values on Py
and since the closure of P, is compact, we conclude that the function is
bounded on C, hence constant by Liouville’s theorem in Chapter 2.
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A non-constant doubly periodic meromorphic function is called an el-
liptic function. Since a meromorphic function can have only finitely
many zeros and poles in any large disc, we see that an elliptic function
will have only finitely many zeros and poles in any given period parallel-
ogram, and in particular, this is true in the fundamental parallelogram.
Of course, nothing excludes f from having a pole or zero on the boundary
of Po.

As usual, we count poles and zeros with multiplicities. Keeping this
in mind we can prove the following theorem.

Theorem 1.3 The total number of poles of an elliptic function in Py is
always > 2.

In other words, f cannot have only one simple pole. It must have at
least two poles, and this does not exclude the case of a single pole of
multiplicity > 2.

Proof. Suppose first that f has no poles on the boundary 0P, of the
fundamental parallelogram. By the residue theorem we have

f(z)dz =2mi Zresf,

0Py

and we contend that the integral is 0. To see this, we simply use the
periodicity of f. Note that

1 1+71 T 0
- f(z)dz:/o f(z)dz+/1 f(z)dz+ 1+Tf(z)alz—i—/T f(z)dz,

and the integrals over opposite sides cancel out. For instance

1 T 1 0
/ f(z)dz+ f(z)dz:/ f(z)dz+ | f(s+T)ds
0 0

147

and similarly for the other pair of sides. Hence f op, f=0and ) resf =
0. Therefore f must have at least two poles in Fy.

If f has a pole on 0P, choose a small h € C so that if P =h+ Py,
then f has no poles on dP. Arguing as before, we find that f must have
at least two poles in P, and therefore the same conclusion holds for F.
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The total number of poles (counted according to their multiplicities)
of an elliptic function is called its order. The next theorem says that
elliptic functions have as many zeros as they have poles, if the zeros are
counted with their multiplicities.

Theorem 1.4 Every elliptic function of order m has m zeros in Py.

Proof. Assuming first that f has no zeros or poles on the boundary
of Py, we know by the argument principle in Chapter 3 that

FE)
or, 1() 12 72N =)

where N; and N, denote the number of zeros and poles of f in Py,
respectively. By periodicity, we can argue as in the proof of the previous
theorem to find that faPO f'/f =0, and therefore N; = N,.

In the case when a pole or zero of f lies on 0F, it suffices to apply the
argument to a translate of P.

As a consequence, if f is elliptic then the equation f(z) = c has as
many solutions as the order of f for every ¢ € C, simply because f — ¢
is elliptic and has as many poles as f.

Despite the rather simple nature of the theorems above, there remains
the question of showing that elliptic functions exist. We now turn to a
constructive solution of this problem.

1.2 The Weierstrass p function
An elliptic function of order two

This section is devoted to the basic example of an elliptic function. As
we have seen above, any elliptic function must have at least two poles;
we shall in fact construct one whose only singularity will be a double
pole at the points of the lattice generated by the periods.

Before looking at the case of doubly-periodic functions, let us first
consider briefly functions with only a single period. If one wished to
construct a function with period 1 and poles at all the integers, a simple
choice would be the sum

Note that the sum remains unchanged if we replace z by z + 1, and the
poles are at the integers. However, the series defining F' is not absolutely
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convergent, and to remedy this problem, we sum symmetrically, that is,
we define

1 — 1 1
F = [i = — .
<Z) Nl—I>noo Z24+mn z+z[z+n+z—n}

In|<N n=1

On the far right-hand side, we have paired up the terms corresponding
to n and —n, a trick which makes the quantity in brackets O(1/n?),
and hence the last sum is absolutely convergent. As a consequence, F
is meromorphic with poles precisely at the integers. In fact, we proved
earlier in Chapter 5 that F(z) = mcotz.

There is a second way to deal with the series Y~ 1/(z 4+ n), which

is to write it as
1 Z 1 1
z + [ - _] ’
z Z+mn n
n#0

where the sum is taken over all non-zero integers. Notice that 1/(z 4+ n) —
1/n = O(1/n?), which makes this series absolutely convergent. More-
over, since

1 1 1 1 1 1
+ = -—— |+ -,
Z+n Z—mn Z+n n Z2—n —-n

we get the same sum as before.
In analogy to this, the idea is to mimic the above to produce our first
example of an elliptic function. We would like to write it as

1
2 TroE

weA

but again this series does not converge absolutely. There are several
approaches to try to make sense of this series (see Problem 1), but the
simplest is to follow the second way we dealt with the cotangent series.

To overcome the non-absolute convergence of the series, let A* de-
note the lattice minus the origin, that is, A* = A — {(0,0)}, and consider
instead the following series:

1 Z 1 1
2 2 2|
z weA* <Z T w) w
where we have subtracted the factor 1/w? to make the sum converge.
The term in brackets is now

1 1 —22-2w 1
= — as |w| — oo,
w

(z4+w)? @ (24w
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and the new series will define a meromorphic function with the desired
poles once we have proved the following lemma.

Lemma 1.5 The two series

1 1
- - d -
2 (nl+mpr " 2 n+ mr]"

(n,m)#(0,0) n+mreA*
converge if r > 2.

Recall that according to the Note at the end of Chapter 7, the question
whether a double series converges absolutely is independent of the order
of summation. In the present case, we shall first sum in m and then in n.

For the first series, the usual integral comparison can be applied.? For
eachn # 0

1 1 1
Yo = 2 o
2Tl )y~ Tl 2 Tl + )

=
1 1
Ly ]
k>|n|+1
1 o0
LDy
n|” In| T
1 1
= nl” [t

Therefore, r > 2 implies

2 (H+\ml Z| +ZZ \+|m\

(n,m)#(0,0) m|#0 [n|#£0m
1 1
<Y W Tp 2 <W+C|n|”)
|m|#0 [n|#£0
< 0.

To prove that the second series also converges, it suffices to show that
there is a constant ¢ such that

In| + |m| < ¢ln+7mm| for all n,m € Z.

2We simply use 1/k” < 1/x" when k — 1 < 2 < k; see also the first figure in Chapter 8,
Book I.
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We use the notation z < y if there exists a positive constant a such that
x < ay. We also write x ~ y if both <y and y < x hold. Note that for
any two positive numbers A4 and B, one has

(A24+ BHY2~ A+ B.

On the one hand A < (A% 4 B?)Y/2 and B < (A% 4 B?)'/2, so that
A+ B < 2(A% + B?)'/2. On the other hand, it suffices to square both
sides to see that (42 + B2?)1/2 < A+ B.

The proof that the second series in Lemma 1.5 converges is now a
consequence of the following observation:

In| + |m| ~ |n +m7| whenever 7 € H.
Indeed, if 7 = s + it with s,t € R and ¢t > 0, then
In+m7| = [(n +ms)? + (mt)2]? = |n + ms| + |mt| = |n +ms| + |m|,
by the previous observation. Then, |n + ms|+ |m| = |n| + |m|, by con-

sidering separately the cases when |n| < 2|m||s| and |n| > 2 |m||s]|.

Remark. The proof above shows that when r > 2 the series
> |n+ m7|™" converges uniformly in every half-plane Im(7) > ¢ > 0.
In contrast, when r = 2 this series fails to converge (Exercise 3).

With this technical point behind us, we may now return to the defini-
tion of the Weierstrass g function, which is given by the series

-5+ 3 [eror

weA*

wof

_ L 3 [ 1 1 ]
22 z+n+mr)2  (n+mr)2|’
(n,m)#(0,0) ( ) ( )
We claim that p is a meromorphic function with double poles at the
lattice points. To see this, suppose that |z| < R, and write

1 1 1 1 1
-5 ¥ |maw)t X e s

|w|<2R |lw|>2R

The term in the second sum is O(1/|w|?) uniformly for |z| < R, so by
Lemma 1.5 this second sum defines a holomorphic function in |z| < R.
Finally, note that the first sum exhibits double poles at the lattice points
in the disc |z| < R.
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Observe that because of the insertion of the terms —1/w?; it is no
longer obvious whether @ is doubly periodic. Nevertheless this is true,
and @ has all the properties of an elliptic function of order 2. We gather
this result in a theorem.

Theorem 1.6 The function @ is an elliptic function that has periods 1
and 7, and double poles at the lattice points.

Proof. It remains only to prove that p is periodic with the correct
periods. To do so, note that the derivative is given by differentiating the
series for o termwise so

) 1
Y& =2 )

n,meZ

This accomplishes two things for us. First, the differentiated series con-

verges absolutely whenever z is not a lattice point, by the case r = 3 of

Lemma 1.5. Second, the differentiation also eliminates the subtraction

term 1/w?; therefore the series for ' is clearly periodic with periods 1

and 7, since it remains unchanged after replacing z by z + 1 or z + 7.
Hence, there are two constants a and b such that

p(z+1)=p(z)+a and p(z+7)=p(z)+0.

It is clear from the definition, however, that p is even, that is, p(z) =
p(—2), since the sum over w € A can be replaced by the sum over —w €
A. Therefore p(—1/2) = p(1/2) and p(—7/2) = p(7/2), and setting z =
—1/2 and z = —7/2, respectively, in the two expressions above proves
that a =b = 0.

A direct proof of the periodicity of @ can be given without differenti-
ation; see Exercise 4.
Properties of p

Several remarks are in order. First, we have already observed that p is
even, and therefore p' is odd. Since g’ is also periodic with periods 1
and 7, we find that

1+7
o172 = o/ = o (H) =0
Indeed, one has, for example,

©'(1/2) = —p'(-1/2) = ¢/ (-1/2+ 1) = —¢/(1/2).
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Since g’ is elliptic and has order 3, the three points 1/2, 7/2, and
(14 7)/2 (which are called the half-periods) are the only roots of ¢’ in
the fundamental parallelogram, and they have multiplicity 1. Therefore,
if we define

p(1/2) =€y, p(T/2)=e2, and p<1;T> = ez,

we conclude that the equation (z) = e; has a double root at 1/2. Since
p has order 2, there are no other solutions to the equation p(z) = e; in
the fundamental parallelogram. Similarly the equations g(z) = e5 and
p(z) = e3 have only double roots at 7/2 and (1 4 7)/2, respectively. In
particular, the three numbers eq,es, and ez are distinct, for otherwise
g would have at least four roots in the fundamental parallelogram, con-
tradicting the fact that p has order 2. From these observations we can
prove the following theorem.

Theorem 1.7 The function (¢')? is the cubic polynomial in p

(9')? =4(p —e1)(p — e2)(p — €3).

Proof. The only roots of F(2) = (p(z) — e1)(p(z) — e2)(p(2) — e3) in
the fundamental parallelogram have multiplicity 2 and are at the points
1/2,7/2, and (14 7)/2. Also, (¢')? has double roots at these points.
Moreover, F has poles of order 6 at the lattice points, and so does (g')?
(because g’ has poles of order 3 there). Consequently (¢)?/F is holo-
morphic and still doubly-periodic, hence this quotient is constant. To
find the value of this constant we note that for z near 0, one has

-2
p(z):—+ and p/(z):?_}_?

where the dots indicate terms of higher order. Therefore the constant
is 4, and the theorem is proved.

We next demonstrate the universality of p by showing that every el-
liptic function is a simple combination of p and g'.

Theorem 1.8 FEuvery elliptic function f with periods 1 and 7 is a rational
function of  and ¢’.

The theorem will be an easy consequence of the following version of it.

Lemma 1.9 FEvery even elliptic function F with periods 1 and T is a
rational funcion of p.
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Proof. If F has a zero or pole at the origin it must be of even order,
since F' is an even function. As a consequence, there exists an integer m
so that Fp™ has no zero or pole at the lattice points. We may therefore
assume that F itself has no zero or pole on A.

Our immediate goal is to use g to construct a doubly-periodic function
G with precisely the same zeros and poles as F'. To achieve this, we recall
that p(z) — p(a) has a single zero of order 2 if a is a half-period, and two
distinct zeros at a and —a otherwise. We must therefore carefully count
the zeros and poles of F.

If a is a zero of F, then so is —a, since F' is even. Moreover, a is
congruent to —a if and only if it is a half-period, in which case the zero
is of even order. Therefore, if the points a1, —as,. .., am, —a,, counted
with multiplicities® describe all the zeros of F, then

[p(2) — p(a1)] - [p(2) — plam)]

has precisely the same roots as F. A similar argument, where
b1, —=b1,. .., bm, —by, (with multiplicities) describe all the poles of F', then
shows that

is periodic and has the same zeros and poles as F. Therefore, F/G is
holomorphic and doubly-periodic, hence constant. This concludes the
proof of the lemma.

To prove the theorem, we first recall that g is even while ' odd. We
then write f as a sum of an even and an odd function,

f(Z) = feven(z) + fodd(z)v
where in fact

f(z) + f(=2)
2

F2) = f(=2)

feven(z) - 2

and  foqa(2) =

Then, since foqa/g’ is even, it is clear from the lemma applied t0 foven
and foqa/¢’ that f is a rational function of p and g'.

3If a; is not a half-period, then a; and —a; have the multiplicity of F' at these points.
If a; is a half-period, then a; and —a; are congruent and each has multiplicity half of the
multiplicity of F' at this point.
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2 The modular character of elliptic functions and Eisen-
stein series

We shall now study the modular character of elliptic functions, that is,
their dependence on 7.

Recall the normalization we made at the beginning of the chapter. We
started with two periods w; and ws linearly that are independent over R,
and we defined 7 = wy /wy. We could then assume that Im(7) > 0, and
also that the two periods are 1 and 7. Next, we considered the lattice
generated by 1 and 7 and constructed the function g, which is elliptic of
order 2 with periods 1 and 7. Since the construction of o depends on 7,
we could write g, instead. This leads us to change our point of view and
think of p,(z) primarily as a function of 7. This approach yields many
interesting new insights.

Our considerations are guided by the following observations. First,
since 1 and 7 generate the periods of p,(z), and 1 and 7+ 1 generate
the same periods, we can expect a close relationship between p.(z) and
pr+1(2). In fact, it is easy to see that they are identical. Second, since
T = wy /w1, by the normalization imposed at the beginning of Section 1,
we see that —1/7 = —w; /wy (with Im(—1/7) > 0). This corresponds
essentially to an interchange of the two periods w; and ws, and thus we
can also expect an intimate connection between ©, and p_;,,. In fact,
it is easy to verify that p_;/,(2) = 7%p-(72).

So we are led to consider the group of transformations of the upper half-
plane Im(7) > 0, generated by the two transformations 7 — 7+ 1 and
T+ —1/7. This group is called the modular group. On the basis of
what we said, it can be expected that all quantities intrinsically attached
to p,(z) reflect the above transformations. We see this clearly when we
consider the Eisenstein series.

2.1 Eisenstein series

The Eisenstein series of order k is defined by
BO= Y o
k(T) = —
2o ™ T

whenever k is an integer > 3 and 7 is a complex number with Im(7) > 0.
If A is the lattice generated by 1 and 7, and if we write w = n + mr,
then another expression for the Eisenstein series is Ew e /wk.

Theorem 2.1 FEisenstein series have the following properties:
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(i) The series Ey(7T) converges if k>3, and is holomorphic in the
upper half-plane.

(ii) Ex(1) =0 if k is odd.
(i) Ex(T) satisfies the following transformation relations:

En(t+1) = Ex(r) and Ei(1) =71 "EL(~1/7).

The last property is sometimes referred to as the modular character
of the Eisenstein series. We shall return to these and other modular
identities in the next chapter.

Proof. By Lemma 1.5 and the remark after it, the series Ey(7)
converges absolutely and uniformly in every half-plane Im(7) > > 0,
whenever k > 3; hence Fj(7) is holomorphic in the upper half-plane
Im(7) > 0.

By symmetry, replacing n and m by —n and —m, we see that whenever
k is odd the Eisenstein series is identically zero.

Finally, the fact that Ej(7) is periodic of period 1 is clear from the fact
that n + m(7 + 1) = n +m + m7, and that we can rearrange the sum by
replacing n +m by n. Also, we have

(n+ m(—l/T))'€ = T*k(m' — m)k,

and again we can rearrange the sum, this time replacing (—m,n) by
(n,m). Conclusion (iii) then follows.

Remark. Because of the second property, some authors define the
Eisenstein series of order k to be 3., 10 1/(n 4+ m7)?*, possibly
also with a constant factor in front.

The connection of the Fj with the Weierstrass g function arises when
we investigate the series expansion of p near 0.

Theorem 2.2 For z near 0, we have

1
p(z) ==+ 3E42% + 5Eg2* + - -
z

1 o0
=5+ > (2k + 1) Eapy2".
k=1

Proof. From the definition of g, if we note that we may replace w by
—w without changing the sum, we have

1 1 1 1 1 1
-5+ 3 o) -7+ L oo 3

weA* weA*
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where w = n + m7. The identity

Z(€+ Dw®,  for |w| <1,

1
A—wp =
(I-wp

which follows from differentiating the geometric series, implies that for
all small z

where we have used the fact that Fy3o = 0 whenever ¢ is odd.

From this theorem, we obtain the following three expansions for z
near 0:

-2
p,(Z) = ? + 6E4Z + 20E523 4+ N

4  24F,
(@/(2))2:; ——z 80Ee+-,
1 9F,

(p(z))3:;+7+15Eg+--~ .

From these, one sees that the difference (¢'(2))? — 4(p(2))3 + 60E40(2) +
140FEj is holomorphic near 0, and in fact equal to 0 at the origin. Since
this difference is also doubly periodic, we conclude by Theorem 1.2 that it
is constant, and hence identically 0. This proves the following corollary.

Corollary 2.3 If go = 60F, and g3 = 140FE5, then

(9)° =49 — g20 — 3.
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Note that this identity is another version of Theorem 1.7, and it al-
lows one to express the symmetric functions of the e;’s in terms of the
Eisenstein series.

2.2 Eisenstein series and divisor functions

We will describe now the link between Eisenstein series and some number-
theoretic quantities. This relation comes about if we consider the Fourier
coefficients in the Fourier expansion of the periodic function Ej (7). Equiv-
alently, we can write £(z) = E(7) with z = €27 and investigate the
Laurent expansion of £ as a function of z.

We begin with a lemma.
Lemma 2.4 If k > 2 and Im(7) > 0, then

[e.o]

1 _ <_27Tz)k - — T
I e VT ;Ek e

n=—oo

Proof. This identity follows from applying the Poisson summation
formula to f(z) = 1/(z + 7)¥; see Exercise 7 in Chapter 4.

An alternate proof consists of noting that it first suffices to establish
the formula for k = 2, since the other cases are then obtained by differ-
entiating term by term. To prove this special case, we differentiate the
formula for the cotangent derived in Chapter 5

<

1
E =mcotmT.
n—+rT1

n=—oo

This yields

0 2

1 T
Z (n+7)%  sin®(n7)’

n=—oo

Now use Euler’s formula for the sine and the fact that

o0

w . ,
E rw’ = ———  with w = e*™""
(1-w)

r=1
to obtain the desired result.

As a consequence of this lemma, we can draw a connection between
the Eisenstein series, the zeta function, and the divisor functions. The
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divisor function o,(r) that arises here is defined as the sum of the ¢t
powers of the divisors of r, that is,

r)= Z dt.
d|r
Theorem 2.5 If k > 4 is even, and Im(7) > 0, then
2(—1)k/2 277 -
Ep(r) = 2¢(k) + ——2——"2 Z o1 (r)e

Proof.  First observe that o;_1(r) < rrf=! =% If Im(7) = ¢, then
whenever t > t; we have 27| < ¢72™%0 and we see that the series in
the theorem is absolutely convergent in any half-plane t > t, by compar-
ison with >°°2  rke=27"0_ To establish the formula, we use the definition
of Fy, that of ¢, the fact that k is even, and the previous lemma (with 7
replaced by m7) to get successively

1
Ei(1) = Z T mr)F

(n,m)#(0,0)
‘Z%_*;M_Z_m Tk

G+ Y

m#0n=—o0

+2Z Z n+m7'

m>0n=—o0

27” i k—1 27rzm7-£
o 123 S
m>0
2 k/2 2 k
_ QC(k) 7'(' Z Zek 1 2m7-m€
m>0 (=1
2(—1)k/2 27r

— () + 2ECTE za e

This proves the desired formula.

Finally, we turn to the forbidden case k = 2. The series we have in
mind Z(n m)#£(0,0) 1/(n+m7)? no longer converges absolutely, but we
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seek to give it a meaning anyway. We define

1

m

summed in the indicated order with (n,m) # (0,0). The argument given
in the above theorem proves that the double sum converges, and in fact
has the expected expression.

Corollary 2.6 The double sum defining F converges in the indicated
order. We have

F(r) =2¢(2) - 87 ) o(r)e*™",
r=1

where o(r) = Zd‘r d is the sum of the divisors of r.

It can be seen that F(—1/7)7~2 does not equal F(7), and this is the
same as saying that the double series for F' gives a different value (13’ ,
the reverse of F') when we sum first in m and then in n. It turns out
that nevertheless the forbidden Eisenstein series F(7) can be used in
a crucial way in the proof of the celebrated theorem about representing
an integer as the sum of four squares. We turn to these matters in the
next chapter.

3 Exercises

1. Suppose that a meromorphic function f has two periods w; and w2, with
wa/wi € R.

(a) Suppose wz /w1 is rational, say equal to p/q, where p and q are relatively
prime integers. Prove that as a result the periodicity assumption is equiva-
lent to the assumption that f is periodic with the simple period wo = %wl.
[Hint: Since p and q are relatively prime, there exist integers m and n such
that mq + np = 1 (Corollary 1.3, Chapter 8, Book I).]

(b) If wa/w; is irrational, then f is constant. To prove this, use the fact that
{m —n7} is dense in R whenever 7 is irrational and m,n range over the
integers.

2. Suppose that ai,...,a, and b1, ...,b, are the zeros and poles, respectively, in
the fundamental parallelogram of an elliptic function f. Show that

a1+ +ar —br — - — by = nw1 + mw2
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for some integers n and m.

[Hint: If the boundary of the parallelogram contains no zeros or poles, simply inte-
grate zf'(z)/f(z) over that boundary, and observe that the integral of f'(2)/f(2)
over a side is an integer multiple of 27wi. If there are zeros or poles on the side
of the parallelogram, translate it by a small amount to reduce the problem to the
first case.]

3. In contrast with the result in Lemma 1.5, prove that the series

Z ; where 7 € H
n+mrEN* |TL + mT|2

does not converge. In fact, show that

1/(n®> +m?) =2rlogR+O(1) as R — oo.

1<n24+m2<R?

4. By rearranging the series

5 X e =)

weA*

show directly, without differentiation, that p(z + w) = p(z) whenever w € A.

[Hint: For R sufficiently large, note that p(z) = p™(z)+ O(1/R), where
et (2) =272+ >o<lwl<r((z + W) —w). Next, observe that both

P (2 +1) = p"(z) and p"(z + 1) — p"(2) are O(X p_cc i< pre W 72) = O(1/R)]

5. Let o(z) be the canonical product
o(z) =z [ Ba(z/my),
j=1

where 7; is an enumeration of the periods {n + m7} with (n,m) # (0,0), and
By(z) = (1 — 2)e+=/2,

(a) Show that o(z) is an entire function of order 2 that has simple zeros at all
the periods n + m7, and vanishes nowhere else.

(b) Show that

==+ [ L IR SR
. o . 2
o(z) =z (nmE(0) LZ TR TMT 0 +m7r  (n+m7)

and that this series converges whenever z is not a lattice point.
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(c) Let L(z) = —0'(2)/o(2). Then

6. Prove that o is a quadratic polynomial in g.

7. Setting 7 = 1/2 in the expression

oo
> o .
2 - . 2 b
o (m+T1) sin?(77)

deduce that

m>1, m odd m>1

Similarly, using 3" 1/(m + 7)* deduce that

1 nt 1 m
2 a2 i gy =

m>1, m odd m>1

These results were already obtained using Fourier series in the exercises at the
end of Chapters 2 and 3 in Book I.

8. Let

1
E4(T) = Z m

(n,m)#(0,0)

be the Eisenstein series of order 4.
(a) Show that E4(r) — /45 as Im(1) — oo.
(b) More precisely,

4

‘E4(T) -

3 <ce ?™ ifr=gx+itandt>1.

(c) Deduce that

4

’E4(7') - 7'742—5 <ct ™t ™t ifr=jtand 0 <t<1.
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4 Problems

1. Besides the approach in Section 1.2, there are several alternate ways of deal-
ing with the sum Y. 1/(z 4 w)?, where w = n 4+ m7. For example, one may sum
either (a) circularly, (b) first in n then in m, (c) or first in m then in n.

(a) Prove that if z ¢ A, then

. 1
R S S T KRN

n24+m2<R2
exists and S1(z) = p(z) + c1.
(b) Similarly,

1
2 (E m) = 52(2)

m

exists and Sa2(z) = p(z) + c2, where ¢ = F(7), and F is the forbidden Eisen-
stein series.

(c) Also

1
2 (; (z+n+m7)2> = 5(2)

exists with S3(z) = p(2) + ¢3, and ¢3 = F(7), the reverse of F.

[Hint: To prove (a), it suffices to show that limg_., Z 1/(n+mr)’=c
1<n24+m2<R2

exists. This is proved by a comparision with f1<x2+y2<R2 ﬁg =I(R). It can

be shown that I(R) = 0, which follows because (z + yT)*2 = —(0/0z)(x + yq-)*l.]

2. Show that

oo

) 1
APV T

m=—oo

where c¢ is an appropriate constant. In fact, by part (b) of the previous problem

c=—F(7).

3." Suppose (2 is a simply connected domain that excludes the three roots of the

polynomial 4z° — g2z — g3. For wo € Q and wo fixed, define the function I on Q by
“ dz

N wo V423 —goz — g3

Then the function I has an inverse given by p(z + «) for some constant «; that is,

I(w) w € Q.

I(p(z+a)) = 2
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for appropriate a.
[Hint: Prove that (I(p(z + «)))’ = %1, and use the fact that g is even.]

4." Suppose T is purely imaginary, say 7 = it with ¢ > 0. Consider the division
of the complex plane into congruent rectangles obtained by considering the lines
x =n/2, y=tm/2 as n and m range over the integers. (An example is the rect-
angle whose vertices are 0,1/2,1/2 + 7/2, and 7/2.)

(a) Show that p is real-valued on all these lines, and hence on the boundaries
of all these rectangles.

(b) Prove that p maps the interior of each rectangle conformally to the upper
(or lower) half-plane.



