Finally, we end this section with a discussion of analytic continuation (the third of the “miracles” we mentioned in the introduction). It states that the “genetic code” of a holomorphic function is determined (that is, the function is fixed) if we know its values on appropriate arbitrarily small subsets. Note that in the theorem below, Ω is assumed connected.
Theorem 4.8 Suppose f is a holomorphic function in a region Ω that vanishes on a sequence of distinct points with a limit point in Ω. Then f is identically 0.

In other words, if the zeros of a holomorphic function f in the connected open set Ω accumulate in Ω, then $f = 0$.

Proof. Suppose that $z_0 \in \Omega$ is a limit point for the sequence $\{w_k\}_{k=1}^{\infty}$ and that $f(w_k) = 0$. First, we show that f is identically zero in a small disc containing z_0. For that, we choose a disc D centered at z_0 and contained in Ω, and consider the power series expansion of f in that disc

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n.$$

If f is not identically zero, there exists a smallest integer m such that $a_m \neq 0$. But then we can write

$$f(z) = a_m(z - z_0)^m(1 + g(z - z_0)),$$

where $g(z - z_0)$ converges to 0 as $z \to z_0$. Taking $z = w_k \neq z_0$ for a sequence of points converging to z_0, we get a contradiction since $a_m(w_k - z_0)^m \neq 0$ and $1 + g(w_k - z_0) \neq 0$, but $f(w_k) = 0$.

We conclude the proof using the fact that Ω is connected. Let U denote the interior of the set of points where $f(z) = 0$. Then U is open by definition and non-empty by the argument just given. The set U is also closed since if $z_n \in U$ and $z_n \to z$, then $f(z) = 0$ by continuity, and f vanishes in a neighborhood of z by the argument above. Hence $z \in U$. Now if we let V denote the complement of U in Ω, we conclude that U and V are both open, disjoint, and

$$\Omega = U \cup V.$$

Since Ω is connected we conclude that either U or V is empty. (Here we use one of the two equivalent definitions of connectedness discussed in Chapter 1.) Since $z_0 \in U$, we find that $U = \Omega$ and the proof is complete.

An immediate consequence of the theorem is the following.

Corollary 4.9 Suppose f and g are holomorphic in a region Ω and $f(z) = g(z)$ for all z in some non-empty open subset of Ω (or more generally for z in some sequence of distinct points with limit point in Ω). Then $f(z) = g(z)$ throughout Ω.
Suppose we are given a pair of functions f and F analytic in regions Ω and Ω', respectively, with $\Omega \subset \Omega'$. If the two functions agree on the smaller set Ω, we say that F is an **analytic continuation** of f into the region Ω'. The corollary then guarantees that there can be only one such analytic continuation, since F is uniquely determined by f.