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In 1977, Gibbons and Hawking, after using the Euclidean version
of the Schwarzschild solution to study the thermodynamics of a
Schwarzschild black hole, considered the Kerr solution – a rotating
black hole. Upon continuation to imaginary time, the Kerr solution
becomes complex – they called it quasi-Euclidean. By computing
the action of the quasi-Euclidean solution, they were able to get
sensible results for the thermodynamics of a rotating black hole.
So this was at least one case in which it appeared appropriate to
consider complex solutions of the Einstein equations.



Numerous other possible reasons to consider complex spacetime
metrics in quantum gravity have been considered since then. One
involves topology change (Louko and Sorkin 1995).

Here there is no smooth Lorentz signature metric, because the
“time” would have a stagnation point, but if one slightly
regularizes the situation by letting the metric become complex near
the critical point of t, one can get what look like sensible results.



Another motivation has to do with the Hartle-Hawking
wavefunction of the universe (1983). In D dimensions, let Y be a
manifold with metric gD−1. The Hartle-Hawking wavefunction
ΨHH(gD−1) is supposed to be computed by summing over all
manifolds M with boundary Y , and for each such M one does a
path integral over all metrics g on M with boundary value gD−1 on
Y :

One would do something
similar for an ordinary quantum field rather than gravity (with one
important difference: in that case one would not sum over M or its
metric, but make a particular choice).



For usual quantum fields, to find ground states one uses Euclidean
path integrals, so Hartle and Hawking wanted to define a natural
state ΨHH(gD−1) for gravity by a Euclidean path integral on M
(summed over M).



One immediately finds a few strange things about this problem. If
the Einstein-Hilbert action were bounded below, then the
asymptotic behavior of ΨHH(gD−1) in a semiclassical limit of large
volume would be exp(−I(g)) where I(g) is the greatest lower
bound on the action of any metric (on any M) that satisfies the
boundary condition. If the greatest lower bound is positive, we
would get exponential decay fo the wavefunction for large volumes.
For an ordinary field φ with a positive-definite action, the
corresponding wavefunction ΨM(φ) ∼ exp(−I(φ)) decays
exponentially for large φ for precisely this reason.



We don’t want to predict that it is exponentially unlikely to see a
large universe, so we need something else to happen. What saves
us is that actually, the Einstein-Hilbert action in Euclidean
signature is unbounded below so there is no lower bound on the
action of a metric that satisfies the boundary condition, But given
this, what does the gravitational path integral mean? Gibbons,
Hawking, and Perry (1978) suggested that it is a
middle-dimensional “contour” integral in the space of
complex-valued metrics. But what is the contour? The only
concrete idea is to think of it as a sum of “Lefschetz thimbles”
associated to critical points. Semiclassically, this just means that
one sums over classical solutions (with no clear guidance on what
solutions to pick) and for each solution, one evaluates its
contribution perturbatively.



To try to actually compute ΨHH(gD−1) in examples, we need to
pick some classical solutions. Here again we run into what looks
like an obstacle but perhaps is really a benefit: in simple cases
there are (apparently) no real (Euclidean signature) solutions, For
instance, consider Einstein’s theory with a positive cosmological
constant

I =

∫
dDx
√
g

(
− 1

16πG
R + 2Λ

)
.

And let us take the D − 1-manifold Y to be a sphere SD−1 with a
round metric of large radius (compared to 1/

√
GΛ, the length

scale set by the cosmological constant). Then it is believed that in
this problem

there is no real (Euclidean) classical solution
that satisfies the boundary conditions.



If we broaden our horizons a little, however, and allow complex
solutions of the Einstein equations, then there is one that gives a
sensible answer – at least at the level of detail that I will offer
today. (In more detail there are unresolved puzzles.) To explain
how to make complex solutions, let us start with the metric of a
D-sphere

ds2 = ρ2
(
dθ2 + cos2 θdΩ2

)
.

We get a sphere if θ runs on the real axis from −π/2 to π/2. But
there are a lof of other things that we can make by considering a
curve θ(u) in the complex θ-plane (where u is a real variable).



I’ve drawn the θ plane showing some of the zeroes of the function
cos θ:

The reason the zeroes are important is that if the curve θ(u) is
going to have an endpoint, the endpoint has to be one of the
zeroes, or the manifold will have a boundary.



Here are some of the solutions we can make with curves in this
picture. First real ones

On the left, a sphere, on the right de Sitter space in Lorentz
signature (the metric being ds2 = ρ2(−du2 + cosh2 u dΩ2)). These
are both considered physically sensible solutions.



Here is another solution that is considered important:

The spacetime is a
hemisphere (Euclidean signature) glued onto half of de SItter
spacetime (Lorentz signature). It describes creation from nothing
of a closed universe that then expands exponentially fast.



A smoother version of the same picture:

Now we have a smooth
complex metric, which is asymptotically Lorentzian in the future.



These last two pictures solve the problem of finding a classical
solution of Einstein’s equations with cosmological constant whose
boundary is a round sphere of arbitrarily large radius. The only
trick is that the solution is complex. Because it is complex, the
“action”, which here is a multiple of the volume∫

M
dθ cosD−1 θdΩ

is complex. It has the general form −S/2 + iIR with a negative
real part −S/2 being half the “de Sitter entropy” of Gibbons and
Hawking – and an imaginary part iIR. So the semiclassical answer
is

ΨHH(ρ) ∼ exp(S/2− iIR(ρ))

where ρ is the radius of the sphere that we are producing from
“nothing.” This answer is considered physically sensible, more or
less – both the real part and the imaginary part of the exponent.



However, once we start to allow complex metrics, we are opening
Pandora’s box. We could do lots of other things that will not give
physically sensible results. Here is a complex metric on SD with an
action different from the standard value:

A closed loop in the θ
plane would instead give a complex classical solution with topology
S1 × SD−1 and zero action.



Here is a complex solution which, if we allow it, gives a
contribution to “creation of a universe from nothing” with an even
more negative real part of the action:

We can make it worse by
starting, say, at θ = 5π/2 or 7π/2.



So in short we need a principle that would help us select what
complex solutions we consider sensible. Kontsevich and Segal in
arXiv:2105.10161 made a suggestion for a distinguished class of
“allowable” complex metrics, with the property that ordinary
quantum field theory makes sense when coupled to allowable
complex metrics. Their motivation was not quantum gravity at all;
their goal was to develop an alternative to (some of) the standard
axioms of quantum field theory: the new axiom set would assert
that quantum field theory can be consistently coupled to allowable
metriics. But if there is a good class of complex metrics in which
ordinary quantum field theory can be defined, it is natural to think
this might be the class one should work in for quantum gravity.



My main observation is that the “good” complex metrics that
seem to have given useful results – in the examples that I described
and some other examples that we will not really have time for –
seem to be allowable, and the obvious “bad” ones, including the
ones I’ve mentioned, and some others that can be constructed
similarly, do not seem to be allowable. I should add, before I go on,
that Louko and Sorkin, in their work on topology change (1995)
that I mentioned before, had a notion of “good” complex metrics
that, though not developed as systematically, was somewhat
similar to the notion of Kontsevich and Segal.



The idea of Kontsevich and Segal was to require that the theory of
a free p-form field A makes sense, for every p = 0, · · · ,D − 1.
Setting F = dA and q = p + 1, the action is

Iq =

∫
M

√
det gg i1j1g i2j2 · · · g iq jqFi1Fi2j2 · · ·Fi+qjq .

The requirement that they impose for a metric g to be “allowable”
is that Re Iq > 0 for every real (nonzero) F and all q. The intuitive
idea is that positivity of the real part of the action implies that the
path integral of an antisymmetric tensor field coupled to the metric
g makes sense. Since the positivity of the real part is supposed to
hold for arbitrary real F , it is really a pointwise condition on M: at
each point, the quadratic form√

det gg i1j1g i2j2 · · · g iq jqFi1Fi2j2 · · ·Fiq jq on ∧qT ∗M has positive real
part.



One might be a little skeptical of attaching so much weight to
antisymmetric tensor fields. Why not symmetric tensors, for
instance? According to a result by Weinberg and me (1980 - with
an assist from Sidney Coleman), the only massless fields that have
local energy-momentum tensors, and therefore can potentially be
defined in curved spacetime, are the antisymmetric tensors (and
their nonlinear versions for p = 0, 1, which are nonlinear
sigma-models and nonabelian gauge fields). So actually, by
including antisymmetric tensor fields of all ranks, one is essentially
including all quantum field theories that can be derived from
underlying classical field theories. So it is well-motivated to
consider this class of theories.



Kontsevich and Segal give a rather explicit description of the
allowable metrics. If g is allowable, then there is a real basis of the
tangent space at any given point in which the metric is diagonal

gij = δijλi

where ∑
i

|Arg λi | < π.

Conversely, such a metric is allowable.



The proof goes as follows. The q = 1 case of the condition of
allowability says that the matrix

√
gg ij has positive real part.

Writing this matrix as A + iB, it follows that A and B can be
simultaneously diagonalized by a real linear transformation. (First
diagonalize A and use the remaining SO(D) symmetry to also
diagonalize B.) So there is a real basis that makes

√
gg ij diagonal.

In the same basis, the inverse matrix (
√
g)−1g is diagonal, and,

multiplying by a complex scalar, so is g .



Once we write
gij = λiδij

the condition for the quadratic form√
det gg i1j1g i2j2 · · · g iq jqFi1Fi2j2 · · ·Fiq jq to be positive at a given

point, for all q, is that for any subset S of the set {1, 2, · · · , q},

Re

(
∏
i

λi )
1/2
∏
j∈S

λ−1j

 > 0.

The condition for this to be true for all S is∑
i

|Arg λi | < π.



A corollary, noted by Kontsevich and Segal, is that the space of
allowable metrics is contractible onto the space of Euclidean
metrics. After writing gij = λiδij , since the allowability condition
says that the λi are not negative, we can in a unique way rotate
the λi in the complex plane to make them positive, thus contacting
the space of allowable metrics onto the space of Euclidean ones.
Thus for example, in two dimensions the Gauss-Bonnet integral∫
M d2x

√
gR/4π can be defined for a large class of not necessarily

allowable complex metrics. As noted by Louko and Sorkin, in
general it is a topological invariant (invariant under continuous
deformation of g in the space of complex metrrics) but not equal
to its usual value. However, for an allowable complex metric, the
Gauss-Bonnet integral has its standard value.



If g is allowable, then the volume of M, namely
∫
M dDx

√
g , has

positive real part, since this is the q = 0 case of allowability. But
Kontsevich and Segal prove that if M has an allowable metric,
then the induced metric on any submanifold N of M is also
allowable. Therefore the real part of the volume of N is also
positive. We can take that as an indication that perturbative string
theory, and brane theory, are well-defined on such an M.



The condition for allowability∑
i

|Arg λi | < π

shows that a Lorentz signature metric, for instance

ds2 = −dt2 + d~x2,

is not quite allowable. It is on the border of the space of allowable
metrics. It can be perturbed in either of two ways to make it
allowable:

ds2 = −(1∓ iε)dt2 + d~x2.



The two choices

ds2 = −(1∓ iε)dt2 + d~x2

differ by the sign of
√

det g . For an allowable metric,
√

det g has
positive real part, by definition, but when we approach Lorentz
signature by taking ε→ 0,

√
det g approaches the positive or

negative imaginary axis, depending on the sign of the iε. In one
case, the limit is a standard Lorentz signature path integral in
which the integrand is e iS (with S being the usual Lorentz
signature action). In the other case, we get a complex conjugate
Lorentz signature path integral with the integrand being e−iS . In
the Schwinger-Keldysh approach to thermal physics, the path
integral with e iS propagates the ket, and the path integral with
e−iS propagates the bra. (Which is which really depends on a
convention.) Either way, the ε in this formalism is playing a similar
role to the usual Feynman iε: the Lorentz signature evolution is
always accompanied by a little bit of Euclidean evolution as a
regulator.



Clearly, we cannot go continuously from ε > 0 to ε < 0. This helps
in understanding what is wrong with some of the oddball metrics
that I described before.



The oddball metrics that I described before, and others I don’t
have time for today, violate the condition

∑
i |Arg λi | < π:

An allowable metric cannot
cross any of the lines Re θ = (n + 1/2)π, n ∈ Z, on which
Re cos θ = 0 and cos2 θ < 0. Crossing one of those lines is like
crossing from positive to negative ε.



The same applies here



There are other examples I would have wanted to talk about given
more time. One of the more interesting is why the quasi-Euclidean
metrics of Gibbons and Hawking, which I mentioned at the start,
turn out to be allowable whenever the black hole is such that one
would expect quantum corrections to be well-defined.



This is a little subtle. The thermodynamics of a Schwarzschild
black hole is related to a standard thermal ensemble Tr exp(−βH).
The thermodynamics of a rotating (Kerr) black hole is related to a
more general ensemble Tr exp(−β(H −ΩJ) where J is a conserved
angular momentum and Ω is called the angular velocity. However,
in asymptotically flat spacetime, this ensemble is unstable because
a particle far from the black hole can have a negative value of
H − ΩJ. Hence the quantum corrections to this ensemble are not
well-defined, and it turns out that this is reflected in the fact that
the quasi-Euclidean metric is not allowable.



It was noted in the early days of the AdS/CFT correspondence by
Hawking and Reall, with further work by Hawking, Hunter, and M.
Taylor, that the situation is better in Anti de Sitter space. A black
hole that is rotating not too fast (i.e. Ω is sufficiently small) has
the property that H − ΩJ is bounded below. This is the case that
one can hope that the quantum corrections will make sense. It
turns out that precisely when H − ΩJ is bounded below, the
quasi-Euclildean metric of Gibbons and Hawking is allowable.



in Lorentz signature, the condition for H − ΩJ to be bounded
below for excitations outside the horizon is that the Killing vector
field V that generates this conserved charge should be everywhere
timelike outside the horizon. Thus when and only when V is
everywhere timelike outside the horizon, we can hope that the
quasi-Euclidean metric will be allowable.



With this in mind, let us take a look at a rotating black hole in
four dimensions. A general form of the metric is

ds2 = −N2dt2 + ρ2(Nφdt + dφ)2 + grrdr
2 + gθθdθ

2.

Rotations and time translations shift φ and t. The functions N,
Nφ, grr , gθθ depend only on r , θ, not on t, φ. The horizon is the
outermost surface with N2 = 0. Part of the definition of
“asymptotically flat” or “asymptotically Anti de Sitter” is that
Nφ → 0 at r →∞. An important fact in constructing the
quasi-Euclidean solution is the function Nφ is a constant on the
horizon. In fact, this constant Nh is none other than the angular
velocity Ω that appears in the thermodynamics. In constructing
the quasi-Euclidean metric, it is convenient to introduce a new
angular coordinate φ̃ = φ− Ωt. The metric is then

ds2 = −N2dt2 + ρ2((Nφ − Ω)dt + dφ̃)2 + grrdr
2 + gθθdθ

2.



In these coordinates

ds2 = −N2dt2 + ρ2((Nφ − Ω)dt + dφ̃)2 + grrdr
2 + gθθdθ

2

the vector field that generates H − ΩJ is just ∂t |φ̃, and the
condition for it to be everywhere timelike outside the horizon is
just gtt > 0. Further, in these coordinates, the quasi-Euclidean
metric is constructed by discarding the region behind the horizon,
forgetting the value of φ̃ on the horiizon, and replacing t → iτ , to
get

ds2 = −N2dτ2 + ρ2(i(Nφ − Ω)dτ + dφ̃)2 + grrdr
2 + gθθdθ

2.

From the criterion for allowability, it is rather immediate that this
four-dimensional metric is allowable if and only if, at fixed r , θ, the
two-dimensional metric

−N2dτ2 + ρ2(i(Nφ − Ω)dτ + dφ̃)2

is allowable.



Thus we reduce to understanding the allowability of a
two-dimensional metric

Adτ2 + 2πBdτdφ̃+ Cdφ̃2

for real A,B,C . It turns out that such a metric is allowable if and
only if A,C > 0. Necessity follows from positivity of Re

√
gg−j ,

and once one knows A,C > 0, one can put the metric in the form∑2
i=1 λiδij with |λ1| = |λ2| < π/2.



In the appllication to the black hole, C is always positive, and A is
positive everywhere outside the horizon if and only if the ensemble
Tr exp(−β(H − ΩJ)) associated to the black hole that we are
trying to study is well-defined. So in other words, precisely when it
is expected that quantum corrections to the black hole will make
sense, the quasi-Euclidean metric is allowable.



In short, I’ve explained a little of why it is motivated to consider
complex solutions of Einstein’s equations in the context of
quantum gravity, why a good class of allowed metrics is needed,
and why the class identified by Kontsevich and Segal (and in
embryo by Louko and Sorkin) has at least some of the right
properties. There is a lot missing. To understand the “Euclidean”
path integral of gravity requires much more than a knowledge of
what is a good class of complex metrics. Ideally one wants an
integration cycle.


