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3d N = 4 theories

This talk is an attempt to straighten-out and explain some of what I’ve
learned in thinking about 3d N = 4 theories over the past few years. I
hope it will not end up like the image below:
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3d N = 4 theories

Why 3d N = 4?

For many years, I thought I was interested in “symplectic
singularities” (spoiler: I still am), but then I found out that all the
examples I like come from 3d N = 4 gauge theories.

Every 3d N = 4 SUSY field theory gives us two spaces: the Higgs
branch MH and the Coulomb branch MC.

I’ll be focusing on the latter, though that’s an artificial distinction,
since there should be a duality switching these.
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3d N = 4 theories

The main case where we understand are gauge theories associated to a
compact gauge group G and matter representation T∗N.

The Higgs branch is a hyperhamiltonian reduction T∗N////G.
The chiral ring of (i.e. functions on) the Coulomb branch is the
homology of the moduli space of G-principal bundles with an
N-section on the raviolo (two formal disks glued away from the
origin). We call this the “BFN space.” That is:

C[MC] ∼= HBM
∗

!
N
G

×N
G

N
G

"

Taylor series C = C[[t]] G = G[[t]] N = N[[t]]
Laurent series C = C((t)) G = G((t)) N = N((t))

Both of these are singular affine varieties, with a C∗-action (i.e. a
grading on the chiral ring) and carry a Poisson structure of degree −2
given by a secondary product. In most interesting cases, these are
symplectic singularities.
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3d N = 4 theories

We can attempt to smooth these out using parameters of the field
theory:

The FI parameters are valued in z∗(g)⊗ R3. We can think of
these as adjusting the moment map parameters in the
construction of the Higgs branch, so two of the parameters adjust
complex structure, and the third deforms the Kähler parameter
(and thus gives a partial resolution).
The mass parameters are valued in tF ⊗ R3, the Cartan of the
flavor group F = NU(N)(G)/G.

The torus TF acts on the BFN space, and considering equivariant
homology of this action gives the desired deformation of MC over
tF ⊗ C.

To deform the Kähler parameter, we consider the Coulomb branch for
the theory with gauge group TFG, and consider symplectic GIT
quotient for ŤF.
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Line operators

The structure of the supersymmetry algebra implies the existence of
topological twists which we call QA and QB.

The resulting cohomological field theories are topological (up to
homotopy), and so we obtain rings of local operators which are the
chiral rings C[MC] and C[MH].

An important context for understanding these is the category of line
operators LA/B compatible with these twists.

You can understand the computation of the Coulomb and Higgs
branches in terms of junctions of the trivial line operator with itself.
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Line operators

Thus, in both twists, the categories of line operators are big categories
that contain the trivial line as just one object. These are factorization
categories (close to monoidal):

In the A-twist, LA is the category of D-modules on the loop
space N/G = Map(SpecC,N/G) (i.e. coherent sheaves on the
deRham stack Map(SpecC,N/G)dR).

In the B-twist, LB should be (ind-)coherent sheaves on the de
Rham loop space Map((SpecC)dR,N/G)

Important constructions of objects:

In the A-twist, we can fix a subspace U ⊂ N invariant under a
subgroup G0 ⊂ G, and we can push forward the functions on
U/G0 to N/G. These are called vortex lines.

In the B-twist, we have Wilson lines, that is, the vector bundles
associated to G-representations.
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Line operators

Each invertible object L ∈ LA/B gives a (partial) resolution ML
C/H of

the Higgs/Coulomb branch (making the sheaf corresponding that
object into an ample line bundle L).

Invertible vortex lines ↔ cocharacters S1 → TF

Invertible Wilson lines ↔ characters G → S1

Theorem

The derived category of coherent sheaves on ML
C/H is the quotient of

LA/B by the subcategory of objects M such that Ext•(L−k,M) = 0
for k ≫ 0.

We can also think about this as a subcategory CL: any coherent sheaf
on ML

C/H can be resolved by L−k for k ≫ 0, and we can construct a
line operator by replacing these with L−k.
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Windows defined

Definition

A window for L is a finite set of line operators X1, . . . ,Xm ∈ LA/B
such that

CL ∼= Ext•(
#

Xi) -dgmod ∼= LA/B/
$#

Xi
%⊥

If {Xi} is a window for L and L′ simultaneously, then we obtain an
induced equivalence

Db(Coh(ML
C/H))

∼= Ext•(
#

Xi) -dgmod ∼= Db(Coh(ML′

C/H))
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The B-twist

Windows have mainly been studied in the case of the B-twist, looking
at sets of Wilson lines.

For G = C∗ and N = Cn, MH is the minimal nilpotent orbit in
Mn×n(C). For any non-trivial Wilson line L ∈ Z \ {0}, we have
ML

H = T∗CPn−1.

Theorem (Beilinson)

For any k ∈ Z, the Wilson lines with weights k, . . . , k + n − 1 are a
window.

If L > 0, these are sent to O(k), . . . ,O(k + n − 1) on T∗CPn−1. If
L < 0, then to O(−k), . . . ,O(−k − n + 1).

In the B-twist, work of Halpern-Leistner describes (a bit implicitly)
windows for all L corresponding to each invertible Wilson line.
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The A-twist

A running theme (at least for me) is that the B-twist seems more
familiar, and so it’s tempting to think you should work there, but
actually the A-twist is at least as good, often better, once you
understand it.

So, I’m going to describe for you a large collection of windows for
the type A twist given by vortex line operators.
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The A-twist

On the quotient N/G, we have a natural action of the torus C∗ × TF.

Let µn ⊂ C∗ be the group of nth roots of unity, and let
ϕ : C∗ → C∗ × TF be a homomorphism lifting the inclusion:

ϕ(t) = (t,ϕ0(t)) t ∈ µn.

We can consider the fixed points of the induced action of µn on N; this
carries an action of the fixed points of µn in its action on loop group G.

Nµn = t−ϕN((tn)) Gµn = t−ϕG((tn))tϕ

Note, these fixed points only depend on φ|µn , but some of our later
constructions depend on φ itself.
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The A-twist

Consider fixed points of µn on G/G.

This is a finite union of orbits of G((tn)), in bijection with orbits
of W ⋉ ntZ on tZ.

The orbit through tλG is isomorphic to G((tn))/Pλ for the
parahoric

Pλ = G((tn)) ∩ tϕ+λG[[t]]t−ϕ−λ

If the orbit in tZ is free (i.e. generically) then this parahoric is an
Iwahori.

The components of (G×G N)µn are of the form

G((tn))×Pλ (N((tn)) ∩ tϕ+λN[t])
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The A-twist

Thus, we have an induced map Xφ = (G×G N)µn → N((tn)). Let Sφ
be the pushforward of the functions by this map (defining a sum of
vortex line operators), and let R = HBM,G((tn))

∗ (Xφ ×N((tn)) Xφ).

Theorem

If MC is smooth at a generic mass parameter, then Sφ gives a window
for ML

C for any invertible vortex line L. That is,

Db(Coh(ML
C))

∼= Db(R -mod),

and R is a non-commutative crepant resolution of ML
C.

I like think of these morally as the resolutions corresponding to purely
imaginary complexified Kähler parameter.
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The A-twist

Question to the audience:

What is the physical meaning of this construction?

My motivation was to understand Kaledin’s construction of a tilting
generator (which is the coherent sheaf corresponding to the line
operator Sφ), which passes through quantization in characteristic p.

Have no fear! The characteristic p part is only relevant because
equivariant cohomology over Fp localizes to the fixed points of
µp ⊂ C∗, so this was a way of accessing these fixed points without
actually knowing about the Coulomb branch.
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Derived equivalences

One primary important application of these windows is a large
number of equivalences

Db(Coh(ML
C))

∼= Ext•(Sφ) -dgmod ∼= Db(Coh(ML′
C ))

These are different for different φ! In fact, these generate an action of
π1(T◦

F), the fundamental group of the generic points in flavor torus.

These exactly correspond to complexified Kähler parameters for MC,
and you can think of the induced equivalences as coming from a path
varying these parameters.
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Quiver gauge theories

We’ll specialize to the case of a quiver gauge theory for a quiver Γ:

G =
&

i∈Γ
GL(vi) N =

#

i→j

Hom(Cvi ,Cvj)⊕
#

i∈Γ
Hom(Cvi ,Cwi)

We can only smooth MC using mass parameters coming from
framing (square) nodes if Γ is type ADE and wi is only non-zero on
minuscule nodes, so assume this for now. (Affine type A can be
smoothed using mass parameters coming from the cycle.)
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Quiver gauge theories

We’ll specialize to the case of a quiver gauge theory for a quiver Γ:

G =
&

i∈Γ
GL(vi) N =

#

i→j

Hom(Cvi ,Cvj)⊕
#

i∈Γ
Hom(Cvi ,Cwi)

We can only smooth MC using mass parameters coming from
framing (square) nodes if Γ is type ADE and wi is only non-zero on
minuscule nodes, so assume this for now. (Affine type A can be
smoothed using mass parameters coming from the cycle.)

In this case, we can interpret N/G and N/G as moduli spaces of
quiver representations over C and C respectively, and the BFN space
as QR over C with a choice of two invariant lattices.
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Cylindrical diagrams

Cocharacter ϕ lands in F =
'

GL(Cwi), so corresponds to weights
ci,1, . . . , ci,wi for our cocharacter. To consider mod n, embed Z/nZ as
the n-torsion points of S1, and think of as (red) points on the circle.

Each component corresponds to some λ, again considered mod n, and
up to action of W: unordered vi-tuples xi,1, . . . , xi,vi , also drawn on
circle.
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Cylindrical diagrams

Homology classes in Xφ ×N((tn)) Xφ can be represented by “KLRW’
diagrams” drawn on a cylinder joining two such decorated circles.
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Cylindrical diagrams

Theorem

The convolution algebra R has a presentation by cylindrical KLRW
diagrams with the same local relations.
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Knot homology

Wall-crossing functors correspond to same type of diagrams, but we
let red strands cross and wrap around the cylinder.
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Knot homology

Wall-crossing functors correspond to same type of diagrams, but we
let red strands cross and wrap around the cylinder. Can extend to knot
homology by adding in cups and caps.
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Link homology

Theorem

These braid and cup/cap functors define a functor

from the category of oriented affine ribbon tangles, labeled with
minuscule fundamentals,

to the category of dg-categories with morphisms given by
functors up to quasi-isomorphism.
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Link homology

Making a labeled ribbon link annular in the boring way, this gives a
link homology Dcoh(K).

Theorem

The following link homologies are all the same:

Dcoh(K), constructed from the affine tangle action above.

the invariant constructed in my older knot homology work
(which matches Khovanov-Rozansky in type A).

Aganagić’s physical construction.
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Link homology

Of course, this gives an annular knot invariant as well.

Conjecture

In type A, this agrees with annular Khovanov-Rozansky homology (as
defined by Queffelec and Rose).

The categories of R -mod for all possible labelings by fundamentals
should carry an action of annular foams (by the web bimodules
defined by Mackaay-W.)

This reduces to the check that a single unknot looped around the
cylinder has the right value. I can do this calculation in sl2, and am
one ugly complex away from doing so in sln.
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Thanks

Thanks for listening.
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