э

UW/PI

Noncommutative resolutions of Coulomb branches

Ben Webster

University of Waterloo Perimeter Institute for Theoretical Physics

October 25, 2021

イロト イポト イヨト イヨト

Ben Webster

Windows 00000000 Quiver gauge theories

This talk is an attempt to straighten-out and explain some of what I've learned in thinking about $3d \mathcal{N} = 4$ theories over the past few years. I hope it will not end up like the image below:

Ben Webster

Coulomb branches

UW/PI

(日)

Coulomb branches	Windows	Quiver gauge theories
000000	0000000	000000000
$3d \mathcal{N} = 4$ theories		

Why $3d \mathcal{N} = 4$?

For many years, I thought I was interested in "symplectic singularities" (spoiler: I still am), but then I found out that all the examples I like come from $3d \mathcal{N} = 4$ gauge theories.

Every $3d \mathcal{N} = 4$ SUSY field theory gives us two spaces: the Higgs branch \mathfrak{M}_H and the Coulomb branch \mathfrak{M}_C .

I'll be focusing on the latter, though that's an artificial distinction, since there should be a duality switching these.

イロト 不得 とくほ とくほとう

Coulomb branches	Windows	Quiver gauge theories
	0000000	000000000
$3d \mathcal{N} = 4$ theories		

The main case where we understand are gauge theories associated to a compact gauge group G and matter representation T^*N .

- The Higgs branch is a hyperhamiltonian reduction $T^*N////G$.
- The chiral ring of (i.e. functions on) the Coulomb branch is the homology of the moduli space of *G*-principal bundles with an *N*-section on the raviolo (two formal disks glued away from the origin). We call this the "BFN spaçe." That is:

$$\mathbb{C}[\mathfrak{M}_C] \cong H^{BM_\ell}_* \left(\frac{\mathsf{N}}{\mathsf{G}} \times_{\frac{\mathsf{N}}{\mathsf{G}}} \frac{\mathsf{N}}{\mathsf{G}} \right)$$

Taylor series $C = \mathbb{C}[[t]]$	G = G[[t]]	N = N[[t]]
Laurent series $\mathfrak{C} = \mathbb{C}((t))$	$\mathcal{G} = G((t))$	$\mathcal{N} = N((t))$

Both of these are singular affine varieties, with a \mathbb{C}^* -action (i.e. a grading on the chiral ring) and carry a Poisson structure of degree -2 given by a secondary product. In most interesting cases, these are symplectic singularities.

Ben Webster

We can attempt to smooth these out using parameters of the field theory:

- The FI parameters are valued in j*(g) ⊗ R³. We can think of these as adjusting the moment map parameters in the construction of the Higgs branch, so two of the parameters adjust complex structure, and the third deforms the Kähler parameter (and thus gives a partial resolution).
- The mass parameters are valued in $\mathfrak{t}_F \otimes \mathbb{R}^3$, the Cartan of the flavor group $F = N_{U(N)}(G)/G$.

The torus T_F acts on the BFN space, and considering equivariant homology of this action gives the desired deformation of \mathfrak{M}_C over $\mathfrak{t}_F \otimes \mathbb{C}$.

To deform the Kähler parameter, we consider the Coulomb branch for the theory with gauge group $T_F G$, and consider symplectic GIT quotient for \check{T}_F .

Ben Webster

Coulomb branches	Windows 00000000	Quiver gauge theories
Line operators		

The structure of the supersymmetry algebra implies the existence of topological twists which we call Q_A and Q_B .

The resulting cohomological field theories are topological (up to homotopy), and so we obtain rings of local operators which are the chiral rings $\mathbb{C}[\mathfrak{M}_C]$ and $\mathbb{C}[\mathfrak{M}_H]$.

An important context for understanding these is the category of line operators $\mathscr{L}_{A/B}$ compatible with these twists.

You can understand the computation of the Coulomb and Higgs branches in terms of junctions of the trivial line operator with itself.

イロト (行) () () () ()

Coulomb branches
Windows
Quiver gauge theories

00000●0
00000000
00000000

Line operators
Coulomb Cou

Thus, in both twists, the categories of line operators are big categories that contain the trivial line as just one object. These are factorization categories (close to monoidal): $H_{1}D_{0}$

- In the A-twist, ℒ_A is the category of D-modules on the loop space N/𝔅 = Map(Spec 𝔅, N/𝔅) (i.e. coherent sheaves on the deRham stack Map(Spec 𝔅, N/𝔅)_{dR}).
- In the B-twist, \mathscr{L}_B should be (ind-)coherent sheaves on the de Rham loop space $Map((Spec C)_{dR}, N/G)$

Important constructions of objects:

- In the A-twist, we can fix a subspace $U \subset \mathbb{N}$ invariant under a subgroup $\mathcal{G}_0 \subset \mathcal{G}$, and we can push forward the functions on U/\mathcal{G}_0 to \mathbb{N}/\mathcal{G} . These are called **vortex lines**.
- In the B-twist, we have **Wilson lines**, that is, the vector bundles GRN associated to *G*-representations. T^kN///5 ✓ V

・ロト ・聞 ト ・ヨト ・ヨト

Coulomb branches	Windows 00000000	Quiver gauge theories
Line operators		

Each invertible object $L \in \mathscr{L}_{A/B}$ gives a (partial) resolution $\mathfrak{M}_{C/H}^{L}$ of the Higgs/Coulomb branch (making the sheaf corresponding that object into an ample line bundle \mathcal{L}).

- Invertible vortex lines \leftrightarrow cocharacters $S^1 \rightarrow T_F$
- Invertible Wilson lines \leftrightarrow characters $G \rightarrow S^1$

Theorem

The derived category of coherent sheaves on $\mathfrak{M}_{C/H}^{L}$ is the quotient of $\mathscr{L}_{A/B}$ by the subcategory of objects \mathcal{M} such that $\operatorname{Ext}^{\bullet}(L^{-k}, \mathcal{M}) = 0$ for $k \gg 0$.

We can also think about this as a subcategory C_L : any coherent sheaf on $\mathfrak{M}_{C/H}^L$ can be resolved by \mathcal{L}^{-k} for $k \gg 0$, and we can construct a line operator by replacing these with L^{-k} .

イロト イポト イヨト イヨト 二日

Coulomb branches	Windows	Quiver gauge theories
	0000000	
Windows defined		

Definition

A window for *L* is a finite set of line operators $X_1, \ldots, X_m \in \mathscr{L}_{A/B}$ such that

$$\mathcal{C}_L \cong \operatorname{Ext}^{\bullet}(\bigoplus X_i) \operatorname{-dgmod} \cong \mathscr{L}_{A/B} / \langle \bigoplus X_i \rangle^{\perp}$$

If $\{X_i\}$ is a window for *L* and *L'* simultaneously, then we obtain an induced equivalence

$$D^{b}(\operatorname{Coh}(\mathfrak{M}_{C/H}^{L})) \cong \operatorname{Ext}^{\bullet}(\bigoplus X_{i}) \operatorname{-dgmod} \cong D^{b}(\operatorname{Coh}(\mathfrak{M}_{C/H}^{L'}))$$

<ロト < 同ト < 回ト < 回ト :

UW/PI

Ben Webster

The P twist		
000000	0000000	00000000
Coulomb branches	Windows	Quiver gauge theories

Windows have mainly been studied in the case of the B-twist, looking at sets of Wilson lines.

For $G = \mathbb{C}^*$ and $N = \mathbb{C}^n$, \mathcal{M}_H is the minimal nilpotent orbit in $M_{n \times n}(\mathbb{C})$. For any non-trivial Wilson line $L \in \mathbb{Z} \setminus \{0\}$, we have $\mathcal{M}_H^L = T^* \mathbb{CP}^{n-1}$.

Theorem (Beilinson)

For any $k \in \mathbb{Z}$, the Wilson lines with weights $k, \ldots, k + n - 1$ are a window.

If L > 0, these are sent to $\mathcal{O}(k), \ldots, \mathcal{O}(k+n-1)$ on $T^*\mathbb{CP}^{n-1}$. If L < 0, then to $\mathcal{O}(-k), \ldots, \mathcal{O}(-k-n+1)$.

In the B-twist, work of Halpern-Leistner describes (a bit implicitly) windows for all *L* corresponding to each invertible Wilson line.

Ben Webster

ヘロト 人間 とくほとくほとう

Coulomb branches 0000000	Windows ○○●○○○○○	Quiver gauge theories
The A-twist		

A running theme (at least for me) is that the B-twist seems more familiar, and so it's tempting to think you should work there, but actually the A-twist is at least as good, often better, once you understand it.

So, I'm going to describe for you a large collection of windows for the type A twist given by vortex line operators.

イロト イ理ト イヨト イヨト

UW/P

Ben Webster

$$\varphi(t) = (t, \varphi_0(t)) \qquad t \in \mu_n.$$

We can consider the fixed points of the induced action of μ_n on \mathcal{N} ; this carries an action of the fixed points of μ_n in its action on loop group \mathcal{G} .

$$\mathcal{N}^{\mu_n} = t^{-\varphi} N((t^n)) \qquad \mathcal{G}^{\mu_n} = t^{-\varphi} G((t^n)) t^{\varphi}$$

イロト イ押ト イヨト イヨト

UW/PI

Note, these fixed points only depend on $\phi|_{\mu_n}$, but some of our later constructions depend on ϕ itself.

Ben Webster

Consider fixed points of μ_n on \mathcal{G}/\mathcal{G} . $\neg \mathcal{G}$

This is a finite union of orbits of G((tⁿ)), in bijection with orbits of W κ nt_Z on t_Z. ≪ GL or bits unorder restored restored
The orbit through t^λG is isomorphic to G((tⁿ))/P_λ for the restored restored

$$\mathcal{P}_{\lambda} = G((t^n)) \cap t^{\varphi+\lambda}G[[t]]t^{-\varphi-\lambda}$$

If the orbit in $t_{\mathbb{Z}}$ is free (i.e. generically) then this parahoric is an Iwahori. = all residues different.

The components of $(\mathcal{G} \times^{\mathsf{G}} \mathsf{N})^{\mu_n}$ are of the form

$$G((t^n)) \times^{\mathcal{P}_{\lambda}} (N((t^n)) \cap t^{\varphi+\lambda} N[t])$$

イロト 不得 トイヨト イヨト 二日

Coulomb branches	Windows	Quiver gauge theories
	00000000	
The A-twist		

Thus, we have an induced map $X_{\phi} = (\mathcal{G} \times^{\mathbf{G}} \mathbb{N})^{\mu_n} \to N((t^n))$. Let S_{ϕ} , be the pushforward of the functions by this map (defining a sum of vortex line operators), and let $\mathbb{R} = H^{BM,G((t^n))}_*(X_{\phi} \times_{N((t^n))} X_{\phi})$.

Theorem

If \mathfrak{M}_C is smooth at a generic mass parameter, then S_{ϕ} gives a window for \mathfrak{M}_C^L for any invertible vortex line L. That is,

 $\begin{array}{c} \mathcal{E} \times \mathcal{F} \left(\begin{array}{c} \mathsf{T} \phi \end{array} \right) \xrightarrow{\mathsf{T}} \mathcal{O}^{\mathsf{b}}(\mathrm{Coh}(\mathfrak{M}_{C}^{L})) \cong D^{b}(\mathsf{R}\operatorname{-mod}), \\ \mathcal{F} \phi \end{array} \right) \xrightarrow{\mathsf{c}} \mathcal{F} \xrightarrow{\mathsf{c}} \mathcal{O}^{\mathsf{b}}(\mathfrak{O}_{K} - \mathfrak{f} \partial \cdot \mathsf{mod}), \\ \text{and } \mathsf{R} \text{ is a non-commutative crepant resolution of } \mathfrak{M}_{C}^{\mathsf{c}}. \end{array} \right)$

I like think of these morally as the resolutions corresponding to purely imaginary complexified Kähler parameter. $\oint_{X} \cdot \hat{\chi}$

イロト イ理ト イヨト イヨト

Coulomb branches 0000000	Windows 00000000	Quiver gauge theories
The A-twist		

Question to the audience:

What is the physical meaning of this construction?

My motivation was to understand Kaledin's construction of a tilting generator (which is the coherent sheaf corresponding to the line operator S_{ϕ}), which passes through quantization in characteristic *p*.

Have no fear! The characteristic *p* part is only relevant because equivariant cohomology over \mathbb{F}_p localizes to the fixed points of $\mu_p \subset \mathbb{C}^*$, so this was a way of accessing these fixed points without actually knowing about the Coulomb branch.

ヘロト 不得 とうほう 不良 とう

Coulomb branches 0000000	Windows	Quiver gauge theories
Derived equivalences		

One primary important application of these windows is a large number of equivalences

$$D^{b}(\operatorname{Coh}(\mathfrak{M}_{C}^{L})) \cong \operatorname{Ext}^{\bullet}(S_{\phi}) \operatorname{-dgmod} \cong D^{b}(\operatorname{Coh}(\mathfrak{M}_{C}^{L'}))$$

These are different for different ϕ ! In fact, these generate an action of $\pi_1(T_F^\circ)$, the fundamental group of the generic points in flavor torus.

These exactly correspond to complexified Kähler parameters for \mathfrak{M}_C , and you can think of the induced equivalences as confine from a path varying these parameters.

< □ > < 同 > < 三 > <

Coulomb branches 0000000	Windows 00000000	Quiver gauge theories
Quiver gauge theories		

We'll specialize to the case of a quiver gauge theory for a quiver Γ :

$$G = \prod_{i \in \Gamma} GL(v_i) \qquad N = \bigoplus_{i \to j} \operatorname{Hom}(\mathbb{C}^{v_i}, \mathbb{C}^{v_j}) \oplus \bigoplus_{i \in \Gamma} \operatorname{Hom}(\mathbb{C}^{v_i}, \mathbb{C}^{w_i})$$

We can only smooth \mathfrak{M}_C using mass parameters coming from framing (square) nodes if Γ is type ADE and w_i is only non-zero on minuscule nodes, so assume this for now. (Affine type A can be smoothed using mass parameters coming from the cycle.)

Coulomb branches	Windows 0000000	Quiver gauge theories
Quiver gauge theories		

We'll specialize to the case of a quiver gauge theory for a quiver Γ :

$$G = \prod_{i \in \Gamma} GL(v_i) \qquad N = \bigoplus_{i \to j} \operatorname{Hom}(\mathbb{C}^{v_i}, \mathbb{C}^{v_j}) \oplus \bigoplus_{i \in \Gamma} \operatorname{Hom}(\mathbb{C}^{v_i}, \mathbb{C}^{w_i})$$

We can only smooth \mathfrak{M}_C using mass parameters coming from framing (square) nodes if Γ is type ADE and w_i is only non-zero on minuscule nodes, so assume this for now. (Affine type A can be smoothed using mass parameters coming from the cycle.)

In this case, we can interpret N/G and N/G as moduli spaces of quiver representations over C and C respectively, and the BFN space as QR over C with a choice of two invariant lattices.

イロト 不得 トイヨト イヨト

Windows 00000000 Quiver gauge theories

Cocharacter φ lands in $F = \prod GL(\mathbb{C}^{w_i})$, so corresponds to weights $c_{i,1}, \ldots, c_{i,w_i}$ for our cocharacter. To consider mod n, embed $\mathbb{Z}/n\mathbb{Z}$ as the *n*-torsion points of S^1 , and think of as (red) points on the circle.

Each component corresponds to some λ , again considered mod n, and up to action of W: unordered v_i -tuples $x_{i,1}, \ldots, x_{i,v_i}$, also drawn on circle.

イロト イ押ト イヨト イヨト

Coulomb branches	Windows 0000000	Quiver gauge theories
Cylindrical diagrams		

Homology classes in $X_{\phi} \times_{N((t^n))} X_{\phi}$ can be represented by "KLRW" diagrams" drawn on a cylinder joining two such decorated circles.

Ben Webster

Coulomb branches 0000000	Windows 00000000	Quiver gauge theories
Cylindrical diagrams		

Theorem

The convolution algebra R *has a presentation by cylindrical KLRW diagrams with the same local relations.*

Ben Webster

UW/PI

Image: A image: A

Knot homology		
000000	0000000	00000000
Coulomb branches	Windows	Quiver gauge theories

Wall-crossing functors correspond to same type of diagrams, but we let red strands cross and wrap around the cylinder.

Ben Webster

Coulomb branches	Windows 00000000	Quiver gauge theories
Knot homology		

Wall-crossing functors correspond to same type of diagrams, but we let red strands cross and wrap around the cylinder. Can extend to knot homology by adding in cups and caps.

イロト イポト イヨト イヨト

UW/PI

Ben Webster

Coulomb branches	Windows 00000000	Quiver gauge theories
Link homology		

Theorem

These braid and cup/cap functors define a functor

- from the category of oriented affine ribbon tangles, labeled with minuscule fundamentals,
- to the category of dg-categories with morphisms given by functors up to quasi-isomorphism.

Ben Webster

A D > A A P > A

Coulomb branches 0000000	Windows 00000000	Quiver gauge theories
Link homology		

Making a labeled ribbon link annular in the boring way, this gives a link homology $\mathcal{D}_{coh}(K)$.

Theorem

The following link homologies are all the same:

- $\mathscr{D}_{coh}(K)$, constructed from the affine tangle action above.
- the invariant constructed in my older knot homology work (which matches Khovanov-Rozansky in type A).
- Aganagić's physical construction.

ヘロト 人間 とくほとう ほとう

Coulomb branches 0000000	Windows 00000000	Quiver gauge theories
Link homology		

Of course, this gives an *annular* knot invariant as well.

Conjecture

In type A, this agrees with annular Khovanov-Rozansky homology (as defined by Queffelec and Rose).

The categories of R-mod for all possible labelings by fundamentals should carry an action of annular foams (by the web bimodules defined by Mackaay-W.)

This reduces to the check that a single unknot looped around the cylinder has the right value. I can do this calculation in \mathfrak{sl}_2 , and am one ugly complex away from doing so in \mathfrak{sl}_n .

ヘロト 不得 とうほう 不良 とう

Thanks for listening.

Ben Webster

UW/PI

æ

・ロト ・聞 ト ・ヨト ・ヨト