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How did I get here?

Back when I was a student here, I got interested in symplectic
resolutions of singularities....

Then someone told me that all the interesting examples of these came
from 3d N = 4 supersymmetric quantum field theories....

And then someone else told me that the most interesting examples of
such theories come from brane configurations in type IIB string
theories....

After that, things get a little blurry, but then I ended up here.
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Hanany-Witten

Hanany and Witten study configurations of D5, NS5 and D3 branes in
type IIB string theory.

They consider how this theory localizes on the plane of the D3’s and
the result they obtain is a quiver gauge theory for a linear quiver (or a
cyclic quiver if we make the x6 direction a circle).
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Hanany-Witten

Hanany and Witten study configurations of D5, NS5 and D3 branes in
type IIB string theory.

They consider how this theory localizes on the plane of the D3’s and
the result they obtain is a quiver gauge theory for a linear quiver (or a
cyclic quiver if we make the x6 direction a circle).

D3
D5 Tall otherNS5 directions
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Hanany-Witten

◮ If all D3 branes end on NS5 branes then we can describe 3d
theory as a quiver gauge theory (this is called cobalanced),
where:
◮ nodes correspond to gaps between NS5 branes
◮ rank of U(vi) is # of D3 branes joining consecutive pairs of

NS5’s.
◮ matter is a bifundamental for each pair of consecutive branes, and

a fundamental for each D5 between NS5’s (wi=# D5’s).

Z I

3 4
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Hanany-Witten

◮ If all D3 branes end on D5 branes then we can describe 3d theory
as a quiver gauge theory (this is called balanced), where:
◮ nodes correspond to gaps between D5 branes
◮ rank of U(vi) is # of D3 branes joining consecutive pairs of D5’s.
◮ matter is a bifundamental for each pair of consecutive branes, and

a fundamental for each NS5 between D5’s (wi=# NS5’s).

but the supersymmetry acts differently!

Z I

3 4
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N = 4 supersymmetry

In a 3d quantum field theory with N = 4 supersymmetry, there are
two topological twists, often called the A- and B-twists.

Definition
The local operators in:

1. the A-twist are called the Coulomb branch chiral ring ACoulomb

2. the B-twist are called the Higgs branch chiral ring AHiggs

From the perspective of the whole theory, these are two natural
classes of 1

2 BPS operators.

The spaces of the Coulomb and Higgs branch are
MCoulomb = Spec(ACoulomb) and MHiggs = Spec(AHiggs)
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N = 4 supersymmetry

If you swap D5 and NS5 in the Hanany-Witten picture, you get the
same theory, but with supersymmetry changed so that A- and B-twists
switch.

This is an example of 3-dimensional mirror symmetry/S-duality.

In the balanced case, we have a nice description of the Coulomb
branch: it is the Nakajima quiver variety of this quiver gauge theory.

Dually, in the cobalanced case, the same Nakajima quiver variety is
the Higgs branch.

More generally, for any good brane configuration, we can write both
the Higgs and Coulomb branches as bow varieties which generalize
quiver varieties.
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Hanany-Witten transitions

This observation becomes much more powerful if we exploit the
existence of Hanany-Witten transitions, which allow us to write a
single theory in terms of both balanced and cobalanced brane
configurations.

Theorem
When we swap the order of an NS5 and D5 brane, the number of D3
branes joining them in the new and old configurations are related by:

Ml K
M

, l

k +1+ 1 =
m +r
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Hanany-Witten transitions

First example: U(1) with n hypers has Higgs branch

X(1,n)
0 = {A ∈ Mn×n(C) | A2 = 0, rk(A) ≤ 1} ←− X(1,n) = T∗CPn−1.

↑

Higgs of OMS 11
-

11
Uli]↑

--

Coulomb of 12== I

1+ 0+1
=1+1

D B
I I IIIIIIQ-Q- -.. -a -0

notHen = 2
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Hanany-Witten transitions

Main example: U(k) with n fundamentals (k ≤ n/2) has Higgs branch

X(k,n)
0 = {A ∈ Mn×n(C) | A2 = 0, rk(A) ≤ k} ←− X(k,n) = T∗Gr(k, n).

- ----
k + 0 + 1 = k + 1

Hl----H- LFF
ID①----------- o
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Hanany-Witten transitions

For funsies: we can also get

X0 = {A ∈ Mn×n(C) | An = 0} ←− X = T∗Fln!

-> 111111
P-Q--- --My

Self-dual!
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Bezrukavnikov-Mirković equivalence

Let X = T∗Fln be the cotangent
bundle of the flag variety
X0 = Fln over a field of
characteristic p ≥ 0.

Let Coh0(X) denote the abelian
category of coherent sheaves on
X which are (set-theoretically)
supported on Fln.
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Bezrukavnikov-Mirković equivalence

Consider the algebra
A = Ugln( ). Let U -mod0 be
the principal block of the
category of finite dimensional
modules with central character.
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Bezrukavnikov-Mirković equivalence

Let X = T∗Fln be the cotangent
bundle of the flag variety
X0 = Fln over a field of
characteristic p ≥ 0.

Let Coh0(X) denote the abelian
category of coherent sheaves on
X which are (set-theoretically)
supported on Fln.

Consider the algebra
A = Ugln( ). Let U -mod0 be
the principal block of the
category of finite dimensional
modules with central character.

Theorem (Bezrukavnikov-Mirkovič)

If p ≫ 0, there is an equivalence of derived categories

Db(Coh0(X)) ∼= Db(U).

g
E
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Bezrukavnikov-Mirković equivalence

Let X = T∗Fln be the cotangent
bundle of the flag variety
X0 = Fln over a field of
characteristic p ≥ 0.

Let Coh0(X) denote the abelian
category of coherent sheaves on
X which are (set-theoretically)
supported on Fln.

Consider the algebra
A = Ugln( ). Let U -mod0 be
the principal block of the
category of finite dimensional
modules with central character.

Conjecture (Bezrukavnikov-Mirkovič)

There is an equivalence of derived categories

Db(Coh0(X)) ∼= Db(U).

*
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Bezrukavnikov-Mirković equivalence

Bezrukavnikov calls this a “non-commutative counterpart of the
Springer resolution.”

This equivalence looks very strange, but that’s because you’ve been
thinking about X = T∗Fln too Higgsily. It’s very natural when you use
the Coulomb perspective.

Coh0(X)

geometry

U -mod0

representation theory
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Bezrukavnikov-Mirković equivalence

Bezrukavnikov calls this a “non-commutative counterpart of the
Springer resolution.”

This equivalence looks very strange, but that’s because you’ve been
thinking about X = T∗Fln too Higgsily. It’s very natural when you use
the Coulomb perspective.

Coh0(X)

geometry

U -mod0

representation theory

R̊ -mod0

combinatorial algebra
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BFN Coulomb branches

The balanced Higgs branch/cobalanced Coulomb branch also has a
mathematical description:

Theorem (Braverman–Finkelberg–Nakajima)

The Coulomb branch chiral ring of the sigma model with matter N
gauged by G is the Borel-Moore homology

ACoulomb = HBM
∗

!
N!t"
G!t" × N((t))

G((t))

N!t"
G!t"

"
M0 = Spec(ACoulomb)

You can think of this computation in the category of lines in the
A-twisted TQFT, which we can interpret mathematically as the
D-modules on the loop space N((t))/G((t)).

P

T



*-GET]
=
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BFN Coulomb branches

In our case, G and N define a quiver gauge theory for a linear quiver

G =

r#

i=1

GL(vi) N =

r−1$

i=1

Hom(Cvi ,Cvi+1)⊕
r$

i=1

Hom(Cvi ,Cwi)

In this case, we can think of N!t"/G!t" as the moduli space of quiver
representations with C!t" coefficients and N((t))/G((t)) with C((t))
coefficients.

uNi)
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BFN Coulomb branches

This algebra is generated by scalars in Sym t∗ and monopole
operators indexed by dominant coweights.

You can think of dominant coweights as paths in T/W and scalars as
coupons sitting on these paths. Remarkably, the relations of ACoulomb
become simple and local if you write them this way.

In the quiver case, we can think of U(1)n/Sn as an unordered n-tuple
in S1, and a path in this space as a diagram drawn on the cylinder.

,
w

"
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KLRW algebras

Definition
A (planar) KLRW diagram is a generic collection of curves in
R× [0, 1] which are of the form {(π(t), t) | t ∈ [0, 1]} for
π : [0, 1] → R.

1. Each strand is labeled from [1, r] and is colored red or black with
vi black strands and wi red strands with label i.

2. Red strands must be vertical at fixed, distinct x-values (for
example, x = 1/n, 2/n, . . . , 1).

3. We place dots at a finite number of points on black strands,
avoiding crossings.

X,
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KLRW algebras

Definition
A cylindrical KLRW diagram is a generic collection of curves in
R/Z× [0, 1] which are of the form {(π(t), t) | t ∈ [0, 1]} for
π : [0, 1] → R/Z.

1. Each strand is labeled from [1, r] and is colored red or black with
vi black strands and wi red strands with label i.

2. Red strands must be vertical at fixed, distinct x-values (for
example, x = 1/n, 2/n, . . . , 1).

3. We place dots at a finite number of points on black strands,
avoiding crossings.

⑭
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KLRW algebras

We can compose KLRW diagrams by stacking, if the labels on the
bottom of one and top of the other match up to isotopy (never moving
red strands).

Definition
The (planar) KLRW algebra R is the formal -span of planar KLRW
diagrams modulo the local relations below.

⑳

X - X -

! 1 - 14 i= j
+ 1

O ①

i j i j/11 i = k = j + 1 else

X-X = I - I 11 i = k =j
·"

ijk is 1 Cib else!
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KLRW algebras

We can compose KLRW diagrams by stacking, if the labels on the
bottom of one and top of the other match up to isotopy (never moving
red strands).

Definition
The cylindrical KLRW algebra R̊ is the formal -span of cylindrical
KLRW diagrams modulo the local relations below.

· -

i

O= I!↳ X
Il I i = k = j + 1

i j 1
·"X-X

= I - I 11i= +

() =(ijk is hig else
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Coulomb from KLR

To get the algebra ACoulomb, we have to include the ability to pinch
together strands.

Theorem
The ring ACoulomb = eCR̊eC is the algebra of KLR diagrams where all
strands with the same label are pinched together at the top and
bottom (at the same x-value).

Xi
any idempotentofe =

all black w sam ladd together, takeanpotenti



1
=XV=

i = X
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Coulomb from KLR

Example: X(1,n) as a Coulomb branch.

SAEMaxulA=OrkC)E1] D

11 (Maxn(4) bor--an
O

eijte ejits
-

-

I I i -1 2 j+ j i -1 2 j+ j
--- ---

---

- "-
--- ---

-----& ---

----I....---

·

-H
11 i-1 ; j+ jn

- 1n -

1 I I i-1 ; ( jn
- 1n -

1

2: -
&i - 1 &
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Coulomb from KLR

Example: X(2,4) as a Coulomb branch.
SAI1
A
-E rk/A)e23 H

O

M4X4 (4)
2 I 3 Z

e ---

is

ij = grad I strad

wilbe i
,
i + ,
-

~ L j- 1
---

loop around cylinder2 M

2143 Once
double thickness
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Resolved Coulomb branches

To get the resolution T∗CPn−1, need to find not just functions on
T∗CPn−1 but sections Γ(T∗CPn−1,O(k)).

Consider the rings ÃCoulomb,
˜̊R where instead of requiring red strands

to be vertical, they wrap around the cylinder some number of times,
specified by m ∈ Zℓ.

This ring is graded by Zℓ, which induces a U(1)ℓ action on
Spec(ÃCoulomb), and we can define a partial resolution Mm as the GIT
quotient for m:

Mm = Proj
%$

k≥0

Ãkm
Coulomb

&
Ãkm

Coulomb = Γ(Mm,O(k)).

= # of red struc
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Resolved Coulomb branches

Example: T∗CPn−1 as a resolved Coulomb branch.

I I j- 1 j

-
---

---↑ -

Xjle"--

--Mo) -----

11 jj+ n - 1n-
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Resolved Coulomb branches

Example: T∗Gr(2, 4) as a resolved Coulomb branch.

M1dr, 6111) = 14 =
2 I 2 3 Z 2 I 2

Z
2 I 2 3 Z

- -- -
-- -it ~

L - L~
2 21 2 3 2 2 I 2 3 2

X , 1X2 X , 1Xz X21X3

2 I 2 3 Z
2 I 2 3 Z 2 I 2 3 Z

- - -- - -- - -
~ L - L

-
-- -- - -- ~ - -

21 2 3 2 2 I 2 3 2 2 I 2 3 2

X
,
1x4 X21X4 Xz1X4
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Tilting generators

What new does this tell us about geometry?

Recall that we call a vector bundle T on an algebraic variety X a
tilting generator if RHom(T,−) induces an equivalence of derived
categories Db(Coh(X)) ∼= Db(End(T)op) -mod.

Theorem (W.)

Over C, there is a tilting generator T on Mm such that
End(T)op = R̊.

Db(Coh(Mm)) ∼= Db(̊R -mod).

In particular, the ring R̊ is a non-commutative crepant resolution of
singularities of M which is D-equivalent to Mm.

37

⑧
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Tilting generators

What new does this tell us about geometry?

Recall that we call a vector bundle T on an algebraic variety X a
tilting generator if RHom(T,−) induces an equivalence of derived
categories Db(Coh(X)) ∼= Db(End(T)op) -mod.

Conjecture (W.)

Over any field, there is a tilting generator T on Mm such that
End(T)op = R̊.

Db(Coh(X)) ∼= Db(̊R -mod).

In particular, the ring R̊ is a non-commutative crepant resolution of
singularities of M which is D-equivalent to Mm.



Quiver theories and IIB Coulomb branches Resolutions: commutative and non-commutative

Tilting generators

To define T , need idempotents where all strands are vertical.

There’s one of these for each possible order on strands. Can encode
this in a word i. Denote by e(i).

This word is really cyclic, but can always start with red at x = 0.

e(233122)
223122
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Tilting generators

We can think of ˜̊ReC as a right module over ÃCoulomb = eC
˜̊ReC. This

has a left R̊-module structure by left multiplication.

Theorem
T is the coherent sheaf obtained on Mm by GIT quotient. That is, for
k ≫ 0, we have Γ(Mm, T ⊗O(k)) ∼= ˜̊RkmeC

In physical terms, these come from vortex line operators, that is,
natural D-modules on loop space.

There is a natural grading, corresponding to scaling C× action.

This breaks up into summands Te(i) of rank
'

vi!, the order of Weyl
group of G.

rg d
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Projective spaces

What tilting generator do we get on T∗CPn−1? The only possibility is
O(a)⊕ · · ·⊕ O(a − n + 1) for some a.

Can get a = 0, 1, . . . , n − 1 depending on conventions.

n=2 m = ( 1
,
0)

111 - O 111 - 0(- )

B 11 1 I

-~
-~

1 I I I &
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Projective spaces

What tilting generator do we get on T∗CPn−1? The only possibility is
O(a)⊕ · · ·⊕ O(a − n + 1) for some a.

Can get a = 0, 1, . . . , n − 1 depending on conventions.

n=2 m = (
,
0)

111 - O 111 - O(1)

I 1
, I

I 1

Th
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Projective spaces

What tilting generator do we get on T∗CPn−1? The only possibility is
O(a)⊕ · · ·⊕ O(a − n + 1) for some a.

Can get a = 0, 1, . . . , n − 1 depending on conventions.

&

n = 3 1122 -> 0 1221 -> O(-2)

12121221(32- OH)

I 122 I 122

---~ Fi- -
I 2 12 I
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Grassmannians

What about T∗G(2, 4)? First non-projective space, and summands of
T have ranks 1 and 2.

Theorem (Suter-W.)

Let T be the tautological bundle on T∗G(2, 4) and O(1) =
( 2T ∗.

Every summand Te(i) is isomorphic to one of:

E

+
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Grassmannians

How do we check something like this?
◮ Elements of

( 2C4 give divisors on T∗G(2, 4). Vector bundle is
trivial when complement is An.

◮ Only need to check that vector bundle is right on open subset of
codim ≥ 2, so enough to find transition function between
patches.

◮ Calculate!
◮ Sneaky trick: Bezrukavnikov says T is GL4-equivariant, so T

must be induced by a representation of P = [ ∗ ∗
0 ∗ ] ⊂ GL4.
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Grassmannians

2 1232

//
(H)- Tena+ 0(1

-F
21232 21232

At Y
221322

2213)
221322

21232 21232 21232

- -/ I -

&-&-& &
221322 22 1322 221322
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Grassmannians

- I

(X , 143)

(x21x4)
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Grassmannians

Thanks!


