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Preliminaries

Throughout we work on a fixed Calabi-Yau 3-fold X
(smooth complex projective variety with KX

∼= OX )
with a fixed ample line bundle OX (1) and hyperplane class
H := c1(OX (1)) ∈ H2(X ,Z)

satisfying the Bogomolov-Gieseker conjecture of Bayer-Macr̀ı-Toda
(for which, see later) such as a quintic 3-fold (Chunyi Li).

Fix a Chern character c ∈ H ev(X ,Q)
(or a numerical K-theory class c ∈ Knum(X ) := K (X )/ kerχ( · , · )).

Consider (semi)stable bundles, or sheaves, or complexes of sheaves
E of class c .



Stability

There are many notions of stability for E .

The ones we consider can be written in terms of some central
charge Z (ch(E )) ∈ C.

Writing Z (E ) = m(E ) exp(2πiθ(E )) we let the slope of E be
µ(E ) := tan θ(E ) and say E is (semi)stable if and only if

µ(F ) (≤) µ(E/F ) for all nonzero F ( E .

Here (≤) means < for stability and ≤ for semistability. (Definition

of F ⊂ E is tricky, but for now can just take subsheaves of sheaves.)

E.g. Z (E ) =
∫
X c1(E ) · H2 + i rank(E ) gives µ(E ) = deg(E)

rank(E) and
slope stability.

E.g. Z (E ) =
[∫

X ch(E (n)) · tdX
]
≤2

+ i rank(E ) for large n� 0
gives Gieseker stability.



DT invariants

Choose c ,H so that Gieseker semistability =⇒ Gieseker stability.
(So all semistable sheaves have only scalar automorphisms.)
Then we can define an invariant DT (c) ∈ Z “counting” Gieseker
stable bundles or sheaves E of class c .

Moduli space Mc of Gieseker stable sheaves is projective scheme with
“perfect obstruction theory” of virtual dimension zero.
Obstructions dual to deformations Ext2(E ,E )0

∼= Ext1(E ,E )∗0 by Serre
duality, and no higher obstructions Ext3(E ,E )0 = Hom(E ,E )∗0 = 0.

Therefore it has a 0-dimensional virtual cycle, whose length is DT (c).

(Closely related to holomorphic bundles being the critical points of the

holomorphic Chern-Simons functional.)

Can think of it as (−1)dimMc e(Mc).
Behrend showed each point E ∈ Mc can be assigned a multiplicity

χB(E ) ∈ Z such that DT (c) is the weighted Euler characteristic

e
(
Mc , χ

B
)

=
∑
i∈Z

i e
(
{χB = i}

)
.



Generalised DT invariants

For general c ,H there are strictly semistable sheaves of charge c ;
counting them is much more complicated.

Given stable objects of smaller charge, we can take all their direct
sums (and extensions) to get semistable objects of charge c but
large automorphism groups.

To invert this process Joyce/Kontsevich-Soibelman took a clever
“plethystic logarithm in the Hall algebra of coherent sheaves of the
same slope” to get more controllable automorphism groups.

Joyce-Song were able to define a generalised invariant J(c) ∈ Q
which reduces to DT (c) ∈ Z when semistable = stable.

Invariant under deformations of X .
Changes via a wall-crossing formula when we change the stability
condition.



The simplest wall crossing formula

Suppose a bundle F sits in an exact sequence

0 −→ A −→ F −→ B −→ 0 (∗)

with A, B stable, and that we can vary the stability condition so
that the slopes of A and B cross.

Just below the wall (µ(A) < µ(B)) F will be stable.
Just above the wall F will be destabilised by (∗), but extensions in
the opposite direction will become stable.

So on crossing the wall we lose a P(Ext1(B,A)) of extensions (∗)
and gain a P(Ext1(A,B)).

So the Euler characteristic changes by −ext1(B,A) + ext1(A,B)
= −ext1(B,A) + ext2(B,A) = χ(B,A) by Serre duality. WCF is

J+[F ] = J−[F ] + (−1)χ(B,A)−1χ(B,A)J[A]J[B].



The rough idea

Fix n� 0 so that H≥1(E (n)) = 0 for all semistable E of charge c .

Now replace E by the cokernel F of a section s ∈ H0(E (n)),

0 −→ O(−n)
s−−→ E −→ F −→ 0.

Then rank(F ) = rank(E )− 1 and ch(F ) = cn := c − e−nH .

To a first approximation, suppose all such E ,F are stable for s 6= 0.

Then we find all F s come from an (E , s), so Mcn is a PN−1-bundle
over Mc (N := χ(E (n)) =

∫
X
c · enH · tdX ), so

J(cn) = (−1)N−1 ·N · J(c).

Now wall-cross to handle stability and get the correct formula....



An example: rank 1 from rank 0

The rough idea actually works perfectly when rank = 1.

Here Mc is a moduli space of ideal sheaves E = IZ , where Z ⊂ X
is a subscheme of dimension ≤ 1. (Possibly tensored by a line bundle.)

Then s ∈ H0(IZ (n)) ↪→ H0(O(n)) cuts out divisor ι : D ↪→ X and

F = coker s = ι∗(IZ )

is a torsion sheaf supported on D. (“D4-D2-D0 brane.”)

In this case E ,F are Gieseker stable and slope stable and are the
only stable sheaves are of this form,

Mcn −→ Mc is a PN−1-bundle, N = χ(c(n)),

and J(cn) = (−1)N−1 · N · J(c).

(Eg rank 2 bundles supported on D ∈
∣∣ n

2H
∣∣ with ch = cn are unstable.)



GW invariants

J(cn) = (−1)N−1 · N · J(c).

The abelian DT invariants J(c) count curves (and points) in X
and — by the MNOP conjecture — can be written in terms of the
Gromov-Witten invariants of X .
(Maulik-Nekrasov-Okounkov-Pandharipande conjecture now proved for

most Calabi-Yau 3-folds by Pandharipande-Pixton.)

The generating series of D4-D2-D0 counts J(cn) are conjectured
by “S-duality” to be vector-valued mock modular forms.
([MSW97, dBCDMV06, GSY07, DM11, AMP19]; possibly need further

wall-crossing to reach attractor stability)

If there’s time at the end we’ll discuss how to try to see this
modularity from a Noether-Lefschetz point of view, following
Maulik-Pandharipande.



Rank r from rank 0

In higher rank r ≥ 1 there are corrections to the “rough idea”.
They mean we can write rank r invariants in terms of rank
r − 1, r − 2, . . . , 0 invariants. Inductively we get to rank 0.

Theorem (arXiv:2103.02915)

For fixed c of rank ≥ 1,

J(c) = F
(
J(α1), J(α2), . . .

)
is a universal polynomial in invariants J(αi ), with all αi of rank 0
and pure dimension 2.

So to express everything in terms of rank 1 (“abelian” theory)
what’s left is to express rank 0 in terms of rank 1. (See later.)



Weak stability conditions

We use the weak stability conditions of Bayer-Macr̀ı-Toda.

Pick b,w ∈ R with w > 1
2b

2.

Instead of Coh(X ) ⊂ D(X ) we work in the abelian category

Ab :=
{
E−1 d−−→ E 0 : µ+

H(ker d) ≤ b , µ−H(coker d) > b
}
.

µ+(F ) is the maximum slope of a subsheaf of F ,

µ−(F ) is the minimum slope of a quotient sheaf of F .

On this we use the central charge
Z (E ) =

[
ch1(E ).H2 − b ch0(E )H3

]
+ i
[
ch2(E ).H − w ch0(E )H3

]
,

i.e. the slope function

νb,w (F ) =

{
ch2(E).H−w ch0(E)H3

ch1(E).H2−b ch0(E)H3 if ch1(E ).H2 − b ch0(E )H3 6= 0,

+∞ if ch1(E ).H2 − b ch0(E )H3 = 0.



Bogomolov-Gieseker conjecture

We assume the Bogomolov-Gieseker conjecture of Bayer-Macr̀ı-
Toda: a certain upper bound on ch3 for νb,w -semistable objects E .

Setting Ci := chi (E ).H3−i , it is(
C 2

1 − 2C0C2

)
w +

(
3C0C3 − C1C2

)
b + (2C 2

2 − 3C1C3) ≥ 0,

It is a sufficient condition for the existence of Bridgeland stability
conditions on X , and has now been proved for some Calabi-Yau
3-folds.

For instance Chunyi Li proved it for many (b,w) (enough for our

applications) on quintic 3-folds X .



Weak stability conditions II

Plot Π(E ) :=
(

ch1(E).H2

ch0(E)H3 ,
ch2(E).H2

ch0(E)H3

)
on the same axes as (b,w).

Then walls of instability for E become straight lines through Π(E )
and Π(F ), where F is a destabilising sub- or quotient- object.

b, ch1.H2

ch0 H3

w = b2

2

w , ch2.H
ch0 H3

Π(E )

Π(F )
ch2(E).H
ch0(E)H3

ch1(E).H2

ch0(E)H3

(b,w)



Walls of instability for cn

b, ch1.H2

ch0 H3

w = b2

2
w , ch2.H

ch0 H3

Π(OX (−n))

Π(cn)

BG wall

Everything tilt
semistable here

Bogomolov-Gieseker =⇒
everything unstable here

Joyce-Song wall



Some aspects of the proof

I The Joyce-Song wall is where the νb,w -slopes of F (of charge
cn) and O(−n)[1] coincide.

I Rotating the exact sequence 0 −→ O(−n)
s−−→ E −→ F −→ 0

in D(X ) gives the destabilising exact triangle

E −→ F −→ O(−n)[1].

I Below the wall F is destabilised by this, above the wall it is
stable iff E is νb,w -semistable and s does not factor through
any semi-destabilising subsheaf.

I Gives wall-crossing formula

Jb,w+(cn) = Jb,w−(cn) + (−1)N−1 · N · Jb,w (c) + · · · ,

where N = χ(E (n)). Lower order terms from sections of
destabilising subsheaves of E (lower rank, so can induct on rank).

I Now wall cross second term down to below the BG wall,
and all other terms up to large volume chamber.



Some more aspects of the proof

I All these further wall crossings involve only sheaves – no more
complexes of sheaves, nor shifts like O(−n)[1].

I These wall crossings spit out destabilising pieces which we also
wall-cross up to the large volume chamber. Their wall-crossing
also involves only sheaves. (So rank never increases.)

I At each stage the discriminant
∆H =

(
ch1.H

2
)2 − 2(ch2.H) ch0 H

3 decreases and cannot
drop below 0.

I So a double induction on rank and ∆H turns
Jb,w+(cn) = Jb,w−(cn) + (−1)N−1 · N · Jb,w (c) + · · · into
Jb,∞(cn) = 0 + (−1)N−1 · N · Jb,∞(c) + · · ·
with · · · of the form F (Jb,∞(αi )), rank(αi ) ≤ r − 1

I A further wall-crossing passes from Jb,∞ to J.

I Thus have written J(c) in terms of J of lower rank sheaves.



Rank 0 to rank −1

Now suppose c has rank 0. We go one step further to rank −1.

Fix n� 0 so that H≥1(E (n)) = 0 for all semistable E of charge c .

For a section s ∈ H0(E (n)), again replace E by the rank −1
complex of sheaves F ∈ D(X )

F :=
{
O(−n)

s−−→ E
}
.

Since s is neither injective nor surjective F is no longer
quasi-isomorphic to a sheaf (unlike when rank(E ) > 0).

So we study νb,w -semistable rank −1 complexes of charge

ch(F ) = cn := c − e−nH . Joyce-Song wall gives relation of Jb,w (c)
to Jb,w (cn) as before.

Over other walls we show destabilising factors also rank −1
complexes and rank 0 sheaves with strictly smaller degree
ch1.H

2 < c .H2 allowing us to set up an induction on this degree
(in place of rank used earlier). Magic before was that all semistable
factors (except JS) were subsheaves – therefore of lower rank; now
magic sauce is that we always get these rk 0 sheaves and rk -1
complexes (no rank -2 etc) of *lower degree*.



Rank −1 to rank 1

The shift by [1] of the derived dual of F

F∨[1] :=
{
E∨

s−−→ O(n)
}

has rank 1, and after wall crossing becomes a stable pair. After a
further, older wall-crossing (Bridgeland, Toda) it becomes an ideal
sheaf, recovering the MNOP (or GW) invariants again.

So the “rough idea” in this case gives a simple universal formula
relating rank 0 to rank 1 DT invariants (or D4-D2-D0 counts to
curve counts), just as we wanted.



GW invariants

Recall the rank 1 to rank 0 WCF J(cn) = (−1)N−1 ·N · J(c) where
the rank 1 DT invariants J(c) are equivalent to GW invariants.

The generating series of D4-D2-D0 counts J(cn) are conjectured
by “S-duality” to be vector-valued mock modular forms.

Can try to see this modularity from a Noether-Lefschetz point of
view, following Maulik-Pandharipande.

For simplicity assume H1(OX ) = 0 = H2(X ,Z)tors and
H2(X ,Z) = Z.H.



Digression: modular forms and Noether-Lefschetz theory

Since slope stability invariant under ⊗O(1),

J(0, nH, β − D2/2, m) = J(0, nH, nH2+β − D2/2, m + . . . ).

Hence all information encoded in the vector of generating series(∑
m

J(0, nH, β, m)qm+...

)
β ∈ H4(X ,Z)

nH ∪H2(X ,Z)

.

Finite group by Lefschetz. On support D ∈ |nH| of one of these
sheaves it can be described as

H4(X ,Z)

nH ∪ H2(X ,Z)
=

H2(D,Z)/Λ

H2(X ,Z)
∣∣
D

=
Λ∗

Λ
,

where Λ is the primitive cohomology of D,

Λ := H2
prim(D,Z) =

〈
H|D

〉⊥ ⊂ H2(D,Z).



Noether-Lefschetz theory

Our theorem (stable rank 0 sheaves are cokernels of maps from OX (−n)

to ideal sheaves) shows we’re counting sheaves ι∗(L⊗ IZ ), where

(∗) ι : D ↪→ X is a divisor D ∈ |nH| and ι∗ c1(L) = β.

Z ⊂ D is zero dimensional; “counting” and summing over qm+...

= q length(Z)+... gives modular form η(q) by Göttsche’s formula.

Leaves counting of classes (∗), i.e. counting D in Noether-
Lefschetz loci in |O(n)| for class β.

Each smooth D ∈ |O(n)| defines a point in the quotient Q of the
period domain of Hodge structures on Λ by Aut

(
H2(D,Z),H|D

)
= ker

(
Aut Λ→ Aut

(
Λ∗/Λ

))
. Gives |O(n)| 99K Q.

Want intersection with universal Noether-Lefschetz loci NLd ,β ⊂ Q
of Hodge structures with an extra (1, 1) class ` ∈ Λ∗ of “coset”
[`] = β ∈ Λ∗/Λ and square d = m + . . . (equivalent to discriminant

of 〈c1(L),H|D〉 ⊂ H2(D,Z)).



Mock modular forms

Summing these cohomology classes over d = `2 = m + . . .⊕
β ∈Λ∗/Λ

∑
d

[NLd ,β] qd

we get modular forms valued in H∗(Q) [Borcherds, Kudla-Millson,
Garcia, . . . ]. Pulling back and integrating over |O(n)| would give
the modularity we seek if all D ∈ |O(n)| were smooth.

Compactifying the moduli space of Hodge structures Q to allow
degenerations of D — especially splittings D = D1 + · · ·+ Dk — is
expected to lead to corrections (non-holomorphic modular completions

made from k − 1 iterated Eichler integrals involving the contributions of

the D1, . . . ,Dk) giving vector-valued mock modular forms.


