Nonabelian DT theory from abelian DT theory

Joint with Soheyla Feyzbakhsh

arXiv:2007.03037 arXiv:2103.02915 arXiv:2108.02828

Contents

- Joyce-Song's generalised DT invariants
- The rough idea: passing from rank r to ranks $\leq r 1$
- Example: rank 1 to rank 0
- Rank r to rank 0
- Weak stability conditions
- Wall crossing
- ▶ Rank 0 to rank −1

Preliminaries

Throughout we work on a fixed Calabi-Yau 3-fold X (smooth complex projective variety with $K_X \cong \mathcal{O}_X$) with a fixed ample line bundle $\mathcal{O}_X(1)$ and hyperplane class $H := c_1(\mathcal{O}_X(1)) \in H^2(X, \mathbb{Z})$

satisfying the Bogomolov-Gieseker conjecture of Bayer-Macrì-Toda (for which, see later) such as a quintic 3-fold (Chunyi Li).

Fix a Chern character $c \in H^{ev}(X, \mathbb{Q})$ (or a numerical K-theory class $c \in K_{num}(X) := K(X) / \ker \chi(\cdot, \cdot)$).

Consider (semi)stable bundles, or sheaves, or complexes of sheaves E of class c.

Stability

There are many notions of stability for E.

The ones we consider can be written in terms of some central charge $Z(ch(E)) \in \mathbb{C}$.

Writing $Z(E) = m(E) \exp(2\pi i\theta(E))$ we let the slope of E be $\mu(E) := \tan \theta(E)$ and say E is (semi)stable if and only if

 $\mu(F) (\leq) \mu(E/F)$ for all nonzero $F \subsetneq E$.

Here (\leq) means < for stability and \leq for semistability. (Definition of $F \subset E$ is tricky, but for now can just take subsheaves of sheaves.)

E.g. $Z(E) = \int_X c_1(E) \cdot H^2 + i \operatorname{rank}(E)$ gives $\mu(E) = \frac{\deg(E)}{\operatorname{rank}(E)}$ and slope stability.

E.g. $Z(E) = \left[\int_X ch(E(n)) \cdot td_X\right]_{\leq 2} + i \operatorname{rank}(E)$ for large $n \gg 0$ gives *Gieseker stability*.

DT invariants

Choose c, H so that Gieseker semistability \implies Gieseker stability. (So all semistable sheaves have only scalar automorphisms.) Then we can define an invariant $DT(c) \in \mathbb{Z}$ "counting" Gieseker stable bundles or sheaves E of class c.

Moduli space M_c of Gieseker stable sheaves is projective scheme with "perfect obstruction theory" of virtual dimension zero. Obstructions dual to deformations $\operatorname{Ext}^2(E, E)_0 \cong \operatorname{Ext}^1(E, E)_0^*$ by Serre duality, and no higher obstructions $\operatorname{Ext}^3(E, E)_0 = \operatorname{Hom}(E, E)_0^* = 0$. Therefore it has a 0-dimensional virtual cycle, whose length is DT(c).

(Closely related to holomorphic bundles being the critical points of the holomorphic Chern-Simons functional.)

Can think of it as $(-1)^{\dim M_c} e(M_c)$.

Behrend showed each point $E \in M_c$ can be assigned a multiplicity $\chi^B(E) \in \mathbb{Z}$ such that DT(c) is the weighted Euler characteristic

$$e(M_c, \chi^B) = \sum_{i \in \mathbb{Z}} ie(\{\chi^B = i\}).$$

Generalised DT invariants

For general c, H there are *strictly semistable* sheaves of charge c; counting them is much more complicated.

Given stable objects of smaller charge, we can take all their direct sums (and extensions) to get semistable objects of charge c but large automorphism groups.

To invert this process Joyce/Kontsevich-Soibelman took a clever "plethystic logarithm in the Hall algebra of coherent sheaves of the same slope" to get more controllable automorphism groups.

Joyce-Song were able to define a generalised invariant $J(c) \in \mathbb{Q}$ which reduces to $DT(c) \in \mathbb{Z}$ when semistable = stable.

Invariant under deformations of X.

Changes via a wall-crossing formula when we change the stability condition.

The simplest wall crossing formula

Suppose a bundle F sits in an exact sequence

$$0 \longrightarrow A \longrightarrow F \longrightarrow B \longrightarrow 0 \tag{(*)}$$

with A, B stable, and that we can vary the stability condition so that the slopes of A and B cross.

Just below the wall $(\mu(A) < \mu(B))$ *F* will be stable.

Just above the wall F will be destabilised by (*), but extensions in the opposite direction will become stable.

So on crossing the wall we lose a $\mathbb{P}(\operatorname{Ext}^{1}(B, A))$ of extensions (*) and gain a $\mathbb{P}(\operatorname{Ext}^{1}(A, B))$.

So the Euler characteristic changes by $-ext^{1}(B, A) + ext^{1}(A, B)$ = $-ext^{1}(B, A) + ext^{2}(B, A) = \chi(B, A)$ by Serre duality. WCF is

$$J_{+}[F] = J_{-}[F] + (-1)^{\chi(B,A)-1}\chi(B,A)J[A]J[B].$$

The rough idea

Fix $n \gg 0$ so that $H^{\geq 1}(E(n)) = 0$ for all semistable E of charge c. Now replace E by the cokernel F of a section $s \in H^0(E(n))$,

$$0 \longrightarrow \mathcal{O}(-n) \xrightarrow{s} E \longrightarrow F \longrightarrow 0.$$

Then rank(F) = rank(E) - 1 and ch(F) = c_n := $c - e^{-nH}$.

To a first approximation, suppose all such E, F are stable for $s \neq 0$. Then we find all Fs come from an (E, s), so M_{c_n} is a \mathbb{P}^{N-1} -bundle over M_c $(N := \chi(E(n)) = \int_X c \cdot e^{nH} \cdot td_X)$, so

$$J(c_n) = (-1)^{N-1} \cdot N \cdot J(c).$$

Now wall-cross to handle stability and get the correct formula....

An example: rank 1 from rank 0

The rough idea actually works perfectly when rank = 1.

Here M_c is a moduli space of ideal sheaves $E = \mathcal{I}_Z$, where $Z \subset X$ is a subscheme of dimension ≤ 1 . (Possibly tensored by a line bundle.)

Then $s \in H^0(\mathcal{I}_Z(n)) \hookrightarrow H^0(\mathcal{O}(n))$ cuts out divisor $\iota \colon D \hookrightarrow X$ and

 $F = \operatorname{coker} s = \iota_*(I_Z)$

is a torsion sheaf supported on D. ("D4-D2-D0 brane.")

In this case E, F are Gieseker *stable* and slope stable and are the only stable sheaves are of this form,

 $M_{c_n} \longrightarrow M_c$ is a \mathbb{P}^{N-1} -bundle, $N = \chi(c(n))$,

and $J(c_n) = (-1)^{N-1} \cdot N \cdot J(c)$.

(Eg rank 2 bundles supported on $D \in \left|\frac{n}{2}H\right|$ with ch = c_n are unstable.)

GW invariants

 $J(c_n) = (-1)^{N-1} \cdot N \cdot J(c).$

The abelian DT invariants J(c) count curves (and points) in X and — by the MNOP conjecture — can be written in terms of the Gromov-Witten invariants of X.

(Maulik-Nekrasov-Okounkov-Pandharipande conjecture now proved for most Calabi-Yau 3-folds by Pandharipande-Pixton.)

The generating series of D4-D2-D0 counts $J(c_n)$ are conjectured by "*S*-duality" to be vector-valued mock modular forms. ([MSW97, dBCDMV06, GSY07, DM11, AMP19]; possibly need further wall-crossing to reach attractor stability)

If there's time at the end we'll discuss how to try to see this modularity from a Noether-Lefschetz point of view, following Maulik-Pandharipande.

Rank r from rank 0

In higher rank $r \ge 1$ there are corrections to the "rough idea". They mean we can write rank r invariants in terms of rank $r-1, r-2, \ldots, 0$ invariants. Inductively we get to rank 0.

Theorem (arXiv:2103.02915) For fixed c of rank ≥ 1 ,

 $J(c) = F(J(\alpha_1), J(\alpha_2), \dots)$

is a universal polynomial in invariants $J(\alpha_i)$, with all α_i of rank 0 and pure dimension 2.

So to express everything in terms of rank 1 (*"abelian"* theory) what's left is to express rank 0 in terms of rank 1. (See later.)

Weak stability conditions

We use the weak stability conditions of Bayer-Macri-Toda. Pick $b, w \in \mathbb{R}$ with $w > \frac{1}{2}b^2$. Instead of $Coh(X) \subset D(X)$ we work in the abelian category

 $\mathcal{A}_b := \{ E^{-1} \xrightarrow{d} E^0 : \ \mu_H^+(\ker d) \le b \,, \ \mu_H^-(\operatorname{coker} d) > b \}.$

 $\mu^+(F)$ is the maximum slope of a subsheaf of F, $\mu^-(F)$ is the minimum slope of a quotient sheaf of F.

On this we use the central charge $Z(E) = [ch_1(E).H^2 - bch_0(E)H^3] + i[ch_2(E).H - wch_0(E)H^3],$ i.e. the slope function

$$\nu_{b,w}(F) = \begin{cases} \frac{ch_2(E).H - w ch_0(E)H^3}{ch_1(E).H^2 - b ch_0(E)H^3} & \text{if } ch_1(E).H^2 - b ch_0(E)H^3 \neq 0, \\ +\infty & \text{if } ch_1(E).H^2 - b ch_0(E)H^3 = 0. \end{cases}$$

Bogomolov-Gieseker conjecture

We assume the Bogomolov-Gieseker conjecture of Bayer-Macrì-Toda: a certain upper bound on ch₃ for $\nu_{b,w}$ -semistable objects E. Setting $C_i := ch_i(E).H^{3-i}$, it is

 $\left(C_1^2 - 2 C_0 C_2 \right) w + \left(3 C_0 C_3 - C_1 C_2 \right) b + \left(2 C_2^2 - 3 C_1 C_3 \right) \ \geq \ 0,$

It is a sufficient condition for the existence of *Bridgeland stability conditions* on X, and has now been proved for some Calabi-Yau 3-folds.

For instance Chunyi Li proved it for many (b, w) (enough for our applications) on quintic 3-folds X.

Weak stability conditions II

Plot
$$\Pi(E) := \left(\frac{\operatorname{ch}_1(E).H^2}{\operatorname{ch}_0(E)H^3}, \frac{\operatorname{ch}_2(E).H^2}{\operatorname{ch}_0(E)H^3}\right)$$
 on the same axes as (b, w) .

Then walls of instability for *E* become straight lines through $\Pi(E)$ and $\Pi(F)$, where *F* is a destabilising sub- or quotient- object.

Walls of instability for c_n

Some aspects of the proof

- ► The Joyce-Song wall is where the v_{b,w}-slopes of F (of charge c_n) and O(-n)[1] coincide.
- Rotating the exact sequence 0 → O(-n) → E → F → 0 in D(X) gives the destabilising exact triangle

$E \longrightarrow F \longrightarrow \mathcal{O}(-n)[1].$

- Below the wall F is destabilised by this, above the wall it is stable iff E is v_{b,w}-semistable and s does not factor through any semi-destabilising subsheaf.
- Gives wall-crossing formula

 $J_{b,w_{+}}(c_{n}) = J_{b,w_{-}}(c_{n}) + (-1)^{N-1} \cdot N \cdot J_{b,w}(c) + \cdots,$

where $N = \chi(E(n))$. Lower order terms from sections of destabilising subsheaves of E (lower rank, so can induct on rank).

Now wall cross second term down to below the BG wall, and all other terms up to large volume chamber.

Some more aspects of the proof

- ► All these further wall crossings involve only sheaves no more complexes of sheaves, nor shifts like O(-n)[1].
- These wall crossings spit out destabilising pieces which we also wall-cross up to the large volume chamber. Their wall-crossing also involves only sheaves. (So rank never increases.)
- ► At each stage the discriminant $\Delta_H = (ch_1 \cdot H^2)^2 - 2(ch_2 \cdot H) ch_0 H^3 \text{ decreases and cannot}$ drop below 0.
- ► So a double induction on rank and Δ_H turns $J_{b,w_+}(c_n) = J_{b,w_-}(c_n) + (-1)^{N-1} \cdot N \cdot J_{b,w}(c) + \cdots$ into $J_{b,\infty}(c_n) = 0 + (-1)^{N-1} \cdot N \cdot J_{b,\infty}(c) + \cdots$ with \cdots of the form $F(J_{b,\infty}(\alpha_i))$, rank $(\alpha_i) \leq r-1$
- A further wall-crossing passes from $J_{b,\infty}$ to J.
- ▶ Thus have written *J*(*c*) in terms of *J* of lower rank sheaves.

Rank 0 to rank -1

Now suppose c has rank 0. We go one step further to rank -1. Fix $n \gg 0$ so that $H^{\geq 1}(E(n)) = 0$ for all semistable E of charge c. For a section $s \in H^0(E(n))$, again replace E by the rank -1complex of sheaves $F \in D(X)$

 $F := \{\mathcal{O}(-n) \xrightarrow{s} E\}.$

Since s is neither injective nor surjective F is no longer quasi-isomorphic to a sheaf (unlike when rank(E) > 0).

So we study $\nu_{b,w}$ -semistable rank -1 complexes of charge $ch(F) = c_n := c - e^{-nH}$. Joyce-Song wall gives relation of $J_{b,w}(c)$ to $J_{b,w}(c_n)$ as before.

Over other walls we show destabilising factors also rank -1 complexes and rank 0 sheaves with strictly smaller degree ch_1 . $H^2 < c$. H^2 allowing us to set up an induction on this degree (in place of rank used earlier). Magic before was that all semistable factors (except JS) were subsheaves – therefore of lower rank; now

The shift by [1] of the *derived dual* of F

 $F^{\vee}[1] := \left\{ E^{\vee} \xrightarrow{s} \mathcal{O}(n) \right\}$

has rank 1, and after wall crossing becomes a stable pair. After a further, older wall-crossing (Bridgeland, Toda) it becomes an ideal sheaf, recovering the MNOP (or GW) invariants again.

So the "*rough idea*" in this case gives a simple universal formula relating rank 0 to rank 1 DT invariants (or D4-D2-D0 counts to curve counts), just as we wanted.

Recall the rank 1 to rank 0 WCF $J(c_n) = (-1)^{N-1} \cdot N \cdot J(c)$ where the rank 1 DT invariants J(c) are equivalent to GW invariants.

The generating series of D4-D2-D0 counts $J(c_n)$ are conjectured by "*S*-duality" to be vector-valued mock modular forms.

Can try to see this modularity from a Noether-Lefschetz point of view, following Maulik-Pandharipande.

For simplicity assume $H^1(\mathcal{O}_X) = 0 = H^2(X, \mathbb{Z})_{\text{tors}}$ and $H^2(X, \mathbb{Z}) = \mathbb{Z}.H.$

Digression: modular forms and Noether-Lefschetz theory

Since slope stability invariant under $\otimes \mathcal{O}(1)$,

 $J(0, nH, \beta - D^2/2, m) = J(0, nH, nH^2 + \beta - D^2/2, m + ...).$

Hence all information encoded in the vector of generating series

$$\left(\sum_{m} J(0, nH, \beta, m) q^{m+\dots}\right)_{\beta \in \frac{H^4(X,\mathbb{Z})}{nH \cup H^2(X,\mathbb{Z})}}$$

Finite group by Lefschetz. On support $D \in |nH|$ of one of these sheaves it can be described as

$$\frac{H^4(X,\mathbb{Z})}{nH\cup H^2(X,\mathbb{Z})} = \frac{H^2(D,\mathbb{Z})/\Lambda}{H^2(X,\mathbb{Z})\big|_D} = \frac{\Lambda^*}{\Lambda},$$

where Λ is the *primitive cohomology* of *D*,

$$\Lambda := H^2_{\mathrm{prim}}(D,\mathbb{Z}) = \langle H|_D \rangle^\perp \subset H^2(D,\mathbb{Z}).$$

Noether-Lefschetz theory

Our theorem (stable rank 0 sheaves are cokernels of maps from $\mathcal{O}_X(-n)$ to ideal sheaves) shows we're counting sheaves $\iota_*(L \otimes I_Z)$, where

(*) $\iota: D \hookrightarrow X$ is a divisor $D \in |nH|$ and $\iota_* c_1(L) = \beta$.

 $Z \subset D$ is zero dimensional; "counting" and summing over $q^{m+\dots} = q^{\text{length}(Z)+\dots}$ gives modular form $\eta(q)$ by Göttsche's formula.

Leaves counting of classes (*), i.e. counting D in Noether-Lefschetz loci in $|\mathcal{O}(n)|$ for class β .

Each smooth $D \in |\mathcal{O}(n)|$ defines a point in the quotient Q of the period domain of Hodge structures on Λ by $\operatorname{Aut}(H^2(D,\mathbb{Z}),H|_D) = \operatorname{ker}(\operatorname{Aut}\Lambda \to \operatorname{Aut}(\Lambda^*/\Lambda))$. Gives $|\mathcal{O}(n)| \dashrightarrow Q$.

Want intersection with universal Noether-Lefschetz loci $NL_{d,\beta} \subset Q$ of Hodge structures with an extra (1,1) class $\ell \in \Lambda^*$ of "coset" $[\ell] = \beta \in \Lambda^*/\Lambda$ and square $d = m + \ldots$ (equivalent to discriminant of $\langle c_1(L), H|_D \rangle \subset H^2(D, \mathbb{Z})$).

Mock modular forms

Summing these cohomology classes over $d = \ell^2 = m + \dots$

$$\bigoplus_{\beta \in \Lambda^*/\Lambda} \sum_{d} [NL_{d,\beta}] q^d$$

we get modular forms valued in $H^*(Q)$ [Borcherds, Kudla-Millson, Garcia, ...]. Pulling back and integrating over $|\mathcal{O}(n)|$ would give the modularity we seek if all $D \in |\mathcal{O}(n)|$ were smooth.

Compactifying the moduli space of Hodge structures Q to allow degenerations of D — especially splittings $D = D_1 + \cdots + D_k$ — is expected to lead to corrections (non-holomorphic modular completions made from k - 1 iterated Eichler integrals involving the contributions of the D_1, \ldots, D_k) giving vector-valued mock modular forms.