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Introduction

Relation between two topics:
Donaldson-Thomas (DT) invariants of non-compact Calabi-Yau
3-folds: counts of stable coherent sheaves (or complexes of coherent
sheaves) on X or special Lagrangian submanifolds of its mirror Y .
Holomorphic curves in a hyperkähler manifold M.

Basic relation between X and M through physics:
IIA-IIB string theory on X × R4: N = 2 4d field theory T
M: Coulomb branch of T on S1 × R3, Seiberg–Witten integrable
system.
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Plan

General expected picture [Kontsevich-Soibelman 1303.3253]

A concrete example [B 1909.02985-1909.02992, B-Descombes-Le Floch-Pioline 2210.10712]:
▶ DT invariants for coherent sheaves on local P2: X = KP2 = OP2(−3),

non-compact Calabi-Yau 3-fold.
▶ holomorphic curves in M, (M, I): elliptic fibration, (M, J) = P2 \ E ,

ALH⋆ metric [Collins-Jacob-Lin 1904.08363].
An heuristic/physics derivation of the general correspondence
[B 2210.17001]

▶ Holomorphic Floer theory for M.
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Geometry: DT invariants

DT invariants:
Ωγ(u) ∈ Z

counts of geometric objects on a Calabi-Yau 3-fold X , with given
topology class γ ∈ Zn and satisfying a (Bridgeland) stability condition
u.
Examples:
▶ Stable holomorphic vector bundles of Chern character γ for a Kähler

parameter u.
▶ Special Lagrangian submanifolds of class γ for a complex parameter u.
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Physics: BPS states in N = 2 4d field theories

N = 2 supersymmetric 4d field theories
▶ B: Coulomb branch of vacua of the 4d theory, B ≃ Cr .
▶ In a generic vacuum u ∈ B \ ∆, abelian gauge theory U(1)r

▶ Supersymmetry: charge γ, central charge Zγ(u) ∈ C, BPS bound

|M| ≥ |Zγ(u)|

▶ Space of BPS states, saturating the BPS bound: Hγ(u)
▶ BPS index

Ωγ(u) = TrHγ (u)(−1)F
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From geometry to physics

Geometric constructions from string theory: IIA or IIB string on
Calabi-Yau 3-fold X
Expectation: the universal cover of B \ ∆ naturally maps to the space
of Bridgeland stability conditions.
DT invariants = BPS indices: stability u ∈ B \ ∆
From now on: consider N = 2 4d field theories without gravity.
▶ Geometrically: non-compact Calabi-Yau 3-folds.
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Wall-crossing
Ωγ(u): constant function of u away from codimension one loci in B,
called walls, across which Ωγ(u) jumps discontinuously.
Jumps controlled by a universal wall-crossing formula
[Kontsevich-Soibelman]:

{Ωγ(u−)}γ → {Ωγ(u+)}γ .

Example: N = 2 SU(2) gauge theory
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Seiberg-Witten integrable system

M: Coulomb branch of the theory on R3 × S1, hyperkähler manifold
of complex dimension 2r , complex integrable system:

π : M −→ B

Low energy: 3d N = 4 sigma model with target M
Twistor sphere of complex structures I, J , K
▶ π I-holomorphic: in complex structure I, generic fibers of π are abelian

varieties of dimension r .
▶ for every θ ∈ R/2πZ, generic fibers of π are special Lagrangians in

complex structure Jθ = (cos θ)J + (sin θ)K .
u ∈ B \ ∆, γ ∈ π2(M, π−1(u)) → H1(π−1(u),Z) = Z2r ,

Zγ(u) =
∫

γ
ΩI
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Seiberg-Witten integrable system

Class S on C : π : M → B is (essentially) the Hitchin integrable
system for C .
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Expectation

For every point u ∈ B \ ∆, and class γ ∈ π2(M, π−1(u)),

Ωγ(u) = Nγ(u) .

▶ Ωγ(u): DT/BPS invariants counting u-stable objects of class γ.
▶ Nγ(u): count of Jθ-holomorphic disks in M with boundary on the fiber

π−1(u) and of class γ, where θ = ArgZγ(u).
Evidence:
▶ BPS spectrum {Ωγ(u)} → hyperkähler geometry of M

[Gaiotto-Moore-Neitzke]
▶ Jθ-holomorphic disks: instantons/quantum corrections to construct the

mirror of (M, ωθ) [Fukaya, Kontsevich-Soibelman,...]
▶ Same wall-crossing formula [Kontsevich-Soibelman]
▶ Tropical curves in B from holomorphic disks and attractor trees from

DT invariants [Kontsevich-Soibelman]
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Expectation

Problems:
The embedding of B in the space of Bridgeland stability conditions is
not known in general.
Defining counts of holomorphic disks is difficult in general (see Y-S. Lin for

surfaces)
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Examples:

Log Gromov–Witten invariants: algebro-geometric version of
holomorphic disks used by Gross-Siebert in their mirror symmetry
construction.
DT invariants of quivers with potential versus log Gromov–Witten
invariants of toric and cluster varieties [Argüs-B, arXiv:2302.02068].
This talk:
▶ DT invariants counting coherent sheaves on local P2

▶ One of the few examples where the embedding in the space of
Bridgeland stability conditions is known.
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Local P2

X = KP2 = OP2(−3) non-compact Calabi-Yau 3-fold
▶ Zero section ι : P2 ↪→ X

DP2(X ): bounded derived category of sheaves on X set-theoretically
supported on P2

▶ ι∗ : DbCoh(P2) → DP2(X )
▶ O(n) := ι∗OP2(n) (D4-branes with n units of D2-charges)

IIA string theory on X : N = 2 4d theory.
▶ Seiberg-Witten geometry π : M → B?
▶ Mirror symmetry: B \ ∆ = H/Γ1(3), modular curve. M: universal

family of elliptic curves.
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M → B
A fundamental domain FC of Γ1(3) acting on H:

The modular curve B \ ∆ = H/Γ1(3):

O

C

LV

Figure:
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M′ → B’

Work on the 3:1 cover B′ of B resolving the orbifold point.
M′ → B′: elliptic fibration with 3 singular fibers.
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Map to the space of stability conditions

Stab(DP2(X )): space of Bridgeland stability conditions on DP2(X ),
complex manifold of dimension 3
Bayer-Macri (2009):

B̃ \ ∆ = H → Stab(DP2(X ))

τ 7→ (A(τ), Z (τ))

Central charge, additive map:

Z (τ) : Γ = K0(DP2(X )) = Z3 → C

γ 7→ Zγ(τ)
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At the orbifold point

At the orbifold point O.

A(τO) = Coh0(C3/(Z/3Z)) = Repnilp(Q, W )

induced by the exceptional collection O, O(1), O(2) on P2.

n1

n2

n3

Xi Yj

Zk

Potential W =
∑

i ,j,k ϵijkZkYjXi with ϵijk the totally antisymmetric tensor
with ϵ123 = 1.
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DT/BPS invariants

To summarize:
B̃ \ ∆ = H → Stab(DP2(X ))

τ 7→ (A(τ), Z (τ))
We can then do DT theory.
▶ Moduli spaces

M(γ, τ) = {τ -semistable objects in A(τ) of class γ}

▶ DT/BPS invariants:
Ω(γ, τ) ∈ Z

▶ Wall-crossing as a function of τ ∈ H.
Goal: study of the DT/BPS invariants using flow trees organized in
“scattering diagrams" in B̃ \ ∆ = H
▶ supergravity attractor picture
▶ Kontsevich-Soibelman wall-structure on base of complex integrable

systems.

Pierrick Bousseau DT Invariants and Holomorphic Curves 18 / 38



Scattering diagrams
Pick a phase θ ∈ R/2πZ
▶ For every γ ∈ Γ, consider the 1-dimensional locus, “rays":

R+
γ (θ) := {τ ∈ H | Arg(Zγ(τ)) = θ , Ω(γ, τ) ̸= 0} ⊂ H

▶ Orient rays such that |Zγ(τ)| increases.
▶ Decorate the rays by generating functions of DT invariants, get a

scattering diagram Dθ
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Main result

Theorem (B., Descombes, Le Floch, Pioline, 2022)
For every θ ∈ R/2πZ, the scattering diagram Dθ can be uniquely
reconstructed from:

Explicit initial rays coming from the conifold points.
Scatterings imposed by the consistency condition.

Algorithmic reconstruction of the full BPS spectrum (except pure D0)
at any point of the physical space of stability conditions.
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Initial rays

At the conifold point τO = 0, ZO(τO) = 0. Infinitly many initial rays
corresponding to the objects O[k], k ∈ Z.

General conifold point: apply Γ1(3), spherical object E becoming massless,
infinitly many initial rays corresponding to the objects E [k], k ∈ Z.
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Reconstruction from initial rays

Rays of Dθ are gradient flow lines of Re(e−iθZγ(τ)).
Key point: for every γ ∈ Γ, the holomorphic function

H → C

τ 7→ Zγ(τ)

has no critical point on H:

d
dτ

Zγ(τ) = (−rτ + d)C(τ) ̸= 0

Study of the boundary behavior: C(τ) → 0 when τ goes to a conifold
point, not otherwise.
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The scattering diagram Dπ
2
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The scattering diagram D0
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The scattering diagram D0

The global picture of D0 also give a clear description of the
correspondence between normalized (−1 < µ ≤ 0) torsion free
Gieseker semi-stable sheaves on P2 and representations of the
Beilinson quiver.
For these objects D0 gives a path from the large volume point to the
orbifold point avoiding the walls of marginal stability.
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Holomorphic disks?

Expectation: for every θ ∈ R/2πZ, the scattering diagram Dθ should
describe Jθ-holomorphic disks in M′.
Problem: how to describe M′ as a complex manifold for the complex
structure Jθ?
▶ We only know that (M′, I) is an elliptic fibration over B.

[Collins-Jacob-Lin]:
▶ (M′, J π

2
) = P2 \ E , where E ⊂ P2 is a smooth cubic. Affine algebraic

variety.
▶ (M′, J0) ≃ (M′, I), elliptic fibration. Twin torus fibrations.

In both cases, use algebro-geometric definition of counts of
holomorphic disks as log Gromov–Witten invariants.
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Holomorphic disks?

Theorem (Gräfnitz, B.)
The scattering diagram Dπ

2
describes log curves in (M′, J π

2
) = P2 \ E.

Corollary (B.)
Correspondence between DT invariants of KP2 of phase π

2 and counts of
log curves in P2 \ E

Pierrick Bousseau DT Invariants and Holomorphic Curves 27 / 38



Holomorphic disks?

Applications:
Proof of Takahashi’s conjecture on Gromov–Witten invariants of
(P2, E ) [B.].
Proof of quasimodularity of generating series of DT invariants
[B-Fan-Guo-Wu].
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The scattering diagram D0

Theorem (Gross-Hacking-Keel)
The scattering diagram D0 describes log curves in (M′, J0).

Corollary (B.)
Correspondence between DT invariants of KP2 of phase 0, DT invariants of
the quiver (Q, W ), and counts of log curves in the elliptic fibration
(M′, J0).
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General question

Why are the counts of BPS states of a N = 2 4d theory given by counts
of holomorphic curves in the Seiberg–Witten geometry π : M → B?

Mirror symmetry and hyperkähler rotation for X = KP2 .
In general?
▶ Stronger conjecture formulated using holomorphic Floer theory.
▶ Physics derivation.
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Mirror symmetry and hyperkähler rotation

How to go from coherent sheaves on X = KP2 to Jθ-holomorphic
curves in the Coulomb branch π : M → B?
Claim: the mirror Y of X is the non-compact Calabi-Yau 3-fold
Y : uv = π − t.
▶ Hyperkähler rotation: Jθ-holomorphic disks in M → special

Lagrangian disks in (M, I) of phase θ.
▶ Suspension → closed special Lagrangians in Y .
▶ Mirror symmetry → stable coherent sheaves on X .

Physics: IIA on X ↔ IIB on Y ↔ IIA on M and NS5 on π−1(u) ↔
M on M and M5 on π−1(u) ↔ IIB on B, D3 on u (string junctions
on D3-brane probe)
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Holomorphic Floer theory

[Kontsevich-Soibelman] [Doan-Rezchikov], [B.]

(M, I, ΩI): holomorphic symplectic manifold.
▶ Hyperkähler structure I, J , K , Jθ := (cos θ)J + (sin θ)K .
▶ L1, L2 ⊂ M: I-holomorphic Lagrangian, ΩI |L1 = ΩI |L2 = 0.

P: space of paths between L1 and L2, W :=
∫
p d−1ΩI (multivalued!)

▶ Critical points: intersection points L1 ∩ L2.
▶ Gradient flow lines: Jθ holomorphic curves, u : R2 → M.
▶ ζ-instantons, u : R3 → M, solutions to Fueter equation

∂τ u + I∂su + Jθ∂tu = 0 .

LG model for (P, W ):
▶ p, q ∈ L1 ∩ L2 → vector space Hpq of 2d BPS states of (P, W )
▶ L1, L2 → category Brane(P, W )
▶ M → 2-category of I-holomorphic Lagrangians (A-model versus

Rozansky-Witten B-model).
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Holomorphic Floer theory and DT invariants
Back to a N = 2 4d field theory.
How to recover the BPS spectrum {Ωγ(u)} from holomorphic Floer
theory? Correct holomorphic symplectic manifolds M and
holomorphic Lagrangians L1, L2 ?
▶ M: Seiberg-Witten integrable system
▶ L1 = π−1(u): fiber of π : M → B over u ∈ B.
▶ L2 = S: natural section of π. Physical definition: boundary condition

for the 3d sigma model of target M defined by the cigar geometry
[Nekrasov-Witten]. Hitchin system example: Hitchin section.
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Holomorphic Floer theory and DT invariants
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Holomorphic Floer theory and DT invariants

L1 ∩ L2 = π−1(u) ∩ S = {p}
But π1(P) ̸= 0 and W is multivalued.
π1(P) = π2(M, π−1(u)): on P̃, critical points of W indexed by

γ ∈ π2(M, π−1(u))
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Holomorphic Floer theory and DT invariants
Conjecture (B)
Given a N = 2 4d field theory, the space of BPS states Hγ(u) of class γ in
the vacuum u is isomorphic to the vector space H0γ associated by
holomorphic Floer theory for the Seiberg-Witten integrable system M to
the lifts 0 and γ of the intersection point between the fiber π−1(u) and
the section S:

Hγ(u) ≃ H0γ

Gradient flow lines are naturally Jθ-holomorphic disks with boundary on
π−1(u) and so one recovers the previous expectation in the numerical limit.
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Physics derivation
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Thank you for your attention !
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