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Main Idea

To connect three areas of physics and math:

• topological quantum field theory (of the cohomological type:
cf. Witten’s topological Yang-Mills in 4 dimensions [since
1988])

• mathematics of Ricci flows on Riemannian manifolds (of the
Hamilton-Perelman type [since 1982])

• nonrelativistic gravity (of the Lifshitz type; [PH, since 2008])

Expected to be useful in both directions.



4

Ricci Flow: History
Hamilton’s Ricci flow:
Eqn for gij(t, x

k), a Riemannian metric on spatial manifold ΣD,

∂gij
∂t

= −2Rij.
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Ricci Flow: History
Hamilton’s Ricci flow:
Eqn for gij(t, x

k), a Riemannian metric on spatial manifold ΣD,

∂gij
∂t

= −2Rij.

Perelman’s Ricci flow:

ġij = −2Rij − 2∇i∂jφ,

φ̇ = −∆φ−Rφ.

DeTurck’s trick: Apply diffeo generated by ξi, ξi = ∂iφ:

ġij = −2Rij,

φ̇ = −∆φ+ (∂φ)2 −Rφ.
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Ricci Flow: History

RHS of Perelman’s Ricci flow follows from a variational
principle, Hamilton’s doesn’t.

Perelman’s F-functional:

F =

∫
dDx
√
ge−φ

(
R+ gij∂iφ∂jφ

)
,

with variations subjected to a fixed-volume condition:

√
ge−φdDx = dm, fixed in time.
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Ricci Flow: History

Importance for topology:

• Poincaré conjecture

• Thurston’s geometrization conjecture for 3-manifolds

• New proof of uniformization theorem for 2-manifolds

• Generalized Smale conjecture

Interesting for physics: A theory of gravity, with central role
played by concepts of entropy, leading to spacetime singularities
with controllable topology change (“Ricci flows with surgery”),
for general evolving 3-geometries.



9

Ricci Flow: Simple Examples

t

Ricci-flat Σ
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Ricci Flow: Simple Examples

t

Ricci-flat Σ Σ of positive curvature
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Ricci Flow: Simple Examples

t

Ricci-flat Σ Σ of positive curvature hyperbolic Σ
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Ricci Flow: The Neckpinch (in D > 2)

s
t

topology change
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Ricci Flow: The Neckpinch (in D > 2)
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ε
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topology change Ricci flow with surgery
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Ricci Flow: The Neckpinch (in D > 2)

s
t

ε

ε

ts+

ts
_

topology change Ricci flow with surgery model of singularity
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Gravity with anisotropic scaling
(also known as Hǒrava-Lifshitz gravity)

Field theory with anisotropic scaling (x = {xi, i = 1, . . . D}):

x→ λx, t→ λzt.

z: dynamical critical exponent – characteristic of RG fixed point.

Many interesting examples: z = 1, 2, . . ., n, . . .
fractions: 3/2 (KPZ surface growth in D = 1), . . ., 1/n, . . .
families with z varying continuously . . .

Condensed matter, dynamical critical phenomena, quantum
critical systems, . . .

Goal: Extend to gravity, with propagating gravitons, formulated
as a quantum field theory of the metric.
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Example: Lifshitz scalar [Lifshitz, 1941]

Gaussian fixed point with z = 2 anisotropic scaling:

S = SK − SV =
1

2

∫
dt dDx

{
Φ̇2 − (∆Φ)2

}
,

(∆ is the spatial Laplacian).

Compare with the Euclidean field theory

W = −1

2

∫
ddx (∂φ)2.

Shift in the (lower) critical dimension:

[φ] =
d− 2

2
, [Φ] =

D − 2

2
.
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Gravity at a Lifshitz point
Spacetime structure: Preferred foliation by leaves of constant
time (avoids the “problem of time”).

Fields: Start with the spacetime metric in ADM decomposition:
the spatial metric gij, the lapse function N , the shift vector Ni.

Symmetries: foliation-preserving diffeomorphisms, Diff(M,F).

Action: S = SK − SV , with

SK =
1

κ2

∫
dt dDx

√
gN

(
KijK

ij − λK2
)

where Kij =
1

N
(ġij −∇iNj −∇jNi) the extrinsic curvature,

and SV =
1

κ2
V

∫
dt dDx

√
gN V(Rijk`,∇i).
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Projectable and nonprojectable theory
N , Ni are the gauge fields for the Diff(M,F) symmetries
generated by δt = f(t), δxi = ξi(t,x). Hence:

(1) we can restrict N(t) to be a function of time only:
projectable theory.

(2) or, we allow N(t,x) to be a spacetime field. New terms,
containing ∇iN/N , are then allowed in S by symmetries:
nonprojectable theory.

Spectrum: Tensor graviton polarizations, plus an extra scalar
graviton. Three options for the scalar: Live with it, gap it, or eliminate it

by an extended gauge symmetry.

Dispersion relation: Nonrelativistic, ω2 ∼ k2z, around this
Gaussian fixed point.

Allowed range of λ: 0 11/D

λ
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RG flows

Assume z > 1 UV fixed point. Relevant deformations trigger
RG flow to lower values of z. Example: Lifshitz scalar.

S =
1

2

∫
dt dDx

{
Φ̇2 − (∆Φ)2−µ2∂iΦ∂iΦ−m4Φ2

}
,

Multicriticality. New phases: modulated.

Similarly for gravity:

S =
1

κ2

∫
dt dDx

√
gN

{
KijK

ij − λK2 − . . .−µ2z−2R−M2z
}
.

Flows in IR to z = 1 scaling. In the IR regime, SV is
dominated by the spatial part of Einstein-Hilbert.
(The z > 1 Gaussian gravity fixed points also emerge in IR in condensed

matter lattice models, [Cenke Xu & PH].)
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Relevant deformations, RG flows, phases
The Lifshitz scalar can be deformed by relevant terms:

S =
1

2

∫
dt dDx

{
φ̇2 − (∆φ)

2−µ2∂iφ∂iφ+m4φ2 − φ4
}

The undeformed z = 2 theory describes a tricritical point,
connecting three phases – disordered, ordered, spatially
modulated (“striped”) [A. Michelson, 1976]:
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Phase structure in the CDT approach

Compare the phase diagram in the causal dynamical
triangulations:
[Ambjørn et al, 1002.3298]

C

B

A

Note: z = 2 is sufficient to explain three phases.
Possibility of a nontrivial z ≈ 2 fixed point in 3 + 1 dimensions?
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RG flows in gravity: z = 1 in IR

Theories with z > 1 represent candidates for the UV description.
Under relevant deformations, the theory will flow in the IR.
Relevant terms in the potential:

∆SV =

∫
dt dDx

√
gN

{
. . .+µ2(R− 2Λ)

}
.

the dispersion relation changes in IR to ω2 ∼ k2 + . . .
the IR speed of light is given by a combination of the couplings
µ2 combines with κ, . . . to give an effective GN .

Sign of k2 in dispersion relation is opposite for the scalar and
the tensor modes! Can we classify the phases of gravity? Can
gravity be in a modulated phase?
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Preliminaries: Structure of spacetime
Goal: Topological quantum gravity, localization to Ricci flows.
Expect M a foliation, by leaves Σ of constant t. Take

MD+1 = I × ΣD, I ⊂ R.

Topological BRST charge Q:

Qgij = ψij

Antighosts and auxiliary:

Qχij = Bij.

Balanced theory – natural to formulate in N = 2 superspace:

Gij(t, x
k, θ, θ̄) = gij + θψij + θ̄χij + θθ̄Bij.
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Primitive Topological Gravity of Ricci
Flow

Supercharges and superderivatives:

Q = ∂θ, Q̄ = ∂θ̄ + θ∂t,

D̄ = ∂θ̄, D = ∂θ − θ̄∂t.

Superalgebra: {Q, Q̄} = ∂t, {D, D̄} = −∂t.

Action: S = 1
κ2(SK − SW ), with

SK =

∫
dDx dt d2θ

√
G
(
GikGj` − λGijGk`

)
D̄GijDGk`

SW =

∫
dDx dt d2θ

√
G
(
. . .+ αRR

(G) + αΛ

)
.
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Localization and Hamilton’s Ricci flow
Action in bosonic components:

SK = −
∫
dDx dt

√
g
(
gikgj` − λgijgk`

)
(Bij − ġij)Bk`

SW =

∫
dDx dt

√
g Bij

{
. . .+ αR

(
1

2
gijR−Rij

)
+ αΛ

1

2
gij
}
.

Localization to solutions of Bij = 0:

ġij = (gikgj` − λ̃gijgk`)
δW

δgk`
.

This is Hamilton’s Ricci flow when we set

αR = 2, αΛ = 0, λ̃ =
1

D − 2
.



26

Gauge Theory I:
Spatial Diffeomorphisms

Physicist’s instinct: Symmetries, in particular gauge symmetries.

Gauging spatial diffeomorphisms: The shift vector ni.

Under ξi(t, xk):

δni = ξ̇i + ξk∂kn
i − ∂kξink.

Morally speaking, ni plays the role of the gauge field for spatial
diffeomorphisms in bosonic gravity (relativistic or not).

In the supersymmetric case, ξi becomes a superfield,

Ξi(t, θ, θ̄, xk) = ξi + . . .

Type C, A, B: Chiral, antichiral, balanced.
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Shift Superfields

In our N = 2 supersymmetric theory, we must introduce several
“shift superfields”:

N i = ni + . . . ,

but also Si, S̄i, to covariantize supertime derivatives,

Ġij → ∇tGij = Ġij −Nk∂kGij − ∂iNkGkj − ∂jNkGik,

DGij → DGij = DGij − Sk∂kGij − ∂iSkGkj − ∂jSkGik,
D̄Gij → D̄Gij = D̄Gij − S̄k∂kGij − ∂iS̄kGkj − ∂jS̄kGik,

followed by constraints: DSi = Sk∂kS
i, D̄S̄i = S̄k∂kS̄

i,

N i = −D̄Si −DS̄i + S̄k∂kS
i + Sk∂kS̄

i.
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Geometric Interpretation I:
Flat Connection on Supertime

Turns out that in retrospect, one can interpret these constraints
precisely as equivalent to the condition of vanishing curvatures

W = 0

where the W ’s are defined as obstructions against the covariant
derivatives

∇t, D, D̄
satisfying the same algebra as the original ∂t, D and D̄:

{D, D̄} = −∂t, zero otherwise.
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Geometric Interpretation II:
Super Yang-Mills with G = Diff(Σ)

Even more surprisingly, the formulation is identical to the
supersymmetric Yang-Mills construction, with:

• The role of spacetime played by the supertime (t, θ, θ̄),

• The role of the internal gauge group played by the inifinite-dimensional

Diff(Σ), generated by the Lie algebra elements ξi(xk),

• The role of adjoint index A played by the multi-index (i, xk)

Then N i(t, θ, θ̄, xk) is AAt (t, θ, θ̄), and Si = AAθ , S̄i = AA
θ̄

.

Constraints in superspace:
Exactly the “conventional constraints” of SYM!

Useful for BCJ?
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Action

is again given by

S =
1

κ2
(SK − SW ),

with

SK =

∫
dDx dt d2θ

√
G
(
GikGj` − λGijGk`

)
D̄GijDGk`

SW =

∫
dDx dt d2θ

√
G
(
. . .+ αRR

(G) + αΛ

)
.

Localization:

The LHS of the flow equation replaces ġij with ∇tgij.

Bonus: We can now perform DeTurck’s trick, if needed.
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Gauge Theory II: Time Translations

Now we wish to extend the gauge symmetry to full Diff(M,F),
foliation-preserving diffeos.

To gauge time translations in the bosonic theory, one introduces
the lapse function n:

δn = fṅ+ ḟn.

The simplest case: n(t), projectable theory.

To supersymmetrize, we promote f(t) to a superfield,

F (t, θ, θ̄) = f + θϕ+ θ̄ϕ̄+ θθ̄α.



32

Lapse Superfields: Projectable

Covariantize the derivatives. First,

∇tGij → DtGij ≡ E∇tGij.

More importantly, the superderivatives are covariantized:

DGij → DθGij ≡ EDGij + Θ∇tGij,
D̄Gij → Dθ̄Gij ≡ ĒD̄Gij + Θ̄∇tGij,

followed by constraints:

DΘ = −ΘΘ̇, D̄Θ̄ = −Θ̄ ˙̄Θ, E = Ē = 1,

and
E = 1− D̄Θ−DΘ̄−Θ ˙̄Θ− Θ̄Θ̇.
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The Nonprojectable Theory

Importantly, the construction extends naturally to the case
where the lapse superfields E, E , Ē , Θ and Θ̄ are
nonprojectable, i.e., functions of not only supertime coordinates
(t, θ, θ̄) but also of xi.

The constraints just become awfully more complicated;
for example,

E = EĒ − D̄Θ + S̄k∂kΘ−DΘ̄ + Sk∂kΘ̄

−Θ
(

˙̄Θ−Nk∂kΘ̄
)
− Θ̄

(
Θ̇−Nk∂kΘ

)
,

. . .

Now we are ready to write down the action.
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Action

is again given by

S =
1

κ2
(SK − SW ),

where now

SK =

∫
dDx dt d2θ

√
GN

(
GikGj` − λGijGk`

)
Dθ̄GijDθGk`,

SW =

∫
dDx dt d2θ

√
GN

(
. . .+ αRR

(G) + αΦG
ij∂iΦ∂jΦ + αΛ

)
.

(Here we have used N = 1/E and Φ = − logN .)

Perelman’s F-functional is our superpotential, for αR = αΦ = 2
and αΛ = 0.

Perelman’s “dilaton” is (minus the log of) the lapse function!
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Perelman’s Ricci Flow
from Topological Quantum Gravity

Localization in our nonprojectable theory:

eφ∇tgij = −αRRij +
1

2
αR[1 + (2−D)λ̃]gijR−αR∇i∂jφ

+ αR[1 + (1−D)λ̃]gij∆φ+ (αR − αΦ)∂iφ∂jφ

+

{
1

2
αΦ[1 + (2−D)λ̃]− αR[1 + (1−D)λ̃]

}
gij(∂φ)2

+
1

2
αΛ(1− λ̃D)gij.

Lots of junk, which does not look like Perelman’s equation.

First, reframe:

eφgij = g̃ij,
D

2
φ = φ̃
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Perelman’s Fixed-Volume Condition

Recall that Perelman holds a volume element fixed,

e−φ̃
√
g̃ measure fixed in time.

In our frame, this simply becomes:

∇t
√
g = 0!

This suggests to take the limit of

λ→ ±∞, or λ̃→ 1

D
.

The fixed-volume condition is realized dynamically, not as a
gauge-fixing choice!
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Perelman’s Equations

Rewrite theory in Perelman’s variables g̃ij, φ̃.

Set α̃R = α̃Φ = 2, λ = ±∞. Then:

∇̃tg̃ij −
2

D
g̃ij∇̃tφ̃ = −2R̃ij − 2∇i∂jφ̃+

2

D
g̃ijR̃+

2

D
g̃ij∆̃φ̃.

This is just the sum of the two Perelman equations!

(
∇̃tg̃ij + 2R̃ij + 2∇i∂jφ̃

)
− 2

D
g̃ij

(
∇̃tφ̃+ R̃+ ∆̃φ̃

)
= 0.

One can match Perelman’s equations exactly, by performing an
alternate gauge-fixing which also fixes time diffeomorphisms.
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Perelman’s W-Functional
For shrinking Ricci solitons, Perelman introduces an even more
useful W-functional:

W =

∫
dDx

√
g̃e−φ̃

{
τ
(
R̃− g̃ij∂iφ̃∂jφ̃

)
+ φ̃−D

}
,

and fixes the following volume:

1

(4πτ)D/2
e−φ̃

√
g̃.

We reproduce that by changing our variables to

g̃ij = eφgij, φ̃ =
D

2
[φ− log(4πτ)].

Similarly for W+-functional for expanding solitons, introduced
by Feldman, Ilmanen and Ni.
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Generic Flows

s

t
s

t’

Perelman’s frame
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Generic Flows

s

t
s

t’

Perelman’s frame our frame
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Outlook

Exciting connection of three previously disconnected areas:

Topological QFT (of the cohomological type), mathematical
theory of Ricci flow, nonrelativistic quantum gravity.

Sets the stage for many intriguing questions, both in physics
and in math. Partial list:

• observables and correlation functions,

• probes: branes/strings, Perelman’s L-volume and L-length, . . .

• Hartle-Hawking wavefunction and initial value problem,

• quantum topology change and Ricci flows with surgery,

• short-distance completeness in D = 3 at z = 2?

• renormalization group properties, perturbative and not,

• dependence on spatial dimension D,

• quantum gravity out of equilibrium, theory in real time . . .


