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Main ldea

_ (of the cohomological type:
cf. Witten's topological Yang-Mills in 4 dimensions [since

1988])

o on Riemannian manifolds (of the
Hamilton-Perelman type [since 1982])

o (of the Lifshitz type; [PH, since 2008])
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Ricci Flow: History

Eqn for g;;(t,z"), a Riemannian metric on spatial manifold

Apply diffeo generated by &, & = 0;¢:



RHS of Perelman’s Ricci flow follows from a variational
principle, Hamilton's doesn't.

F = /de ge=? (R + gijf?@@j@ ,
with variations subjected to a fixed-volume condition:

\/§e_¢de = dm, fixed in time.



Ricci Flow: History

A theory of gravity, with central role
played by concepts of entropy, leading to
with controllable topology change (“Ricci flows with surgery”),
for general evolving 3-geometries.



Ricci Flow: Simple Examples
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Ricci Flow: Simple Examples
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Ricci Flow: The Neckpinch (in D > 2)

topology change
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Ricci Flow: The Neckpinch (in D > 2)

topology change model of singularity
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Gravity with anisotropic scaling

(also known as gravity)

Field theory with ( ):

— characteristic of RG fixed point.

Many interesting examples:
fractions: (KPZ surface growth in D = 1), .. .,
families with z varying continuously ...

Condensed matter, dynamical critical phenomena, quantum
critical systems, ...

, with propagating gravitons, formulated
as a quantum field theory of the metric.



Example: Lifshitz scalar [ifshitz, 1941]

Gaussian fixed point with z = 2 anisotropic scaling:

(  is the spatial Laplacian).

Compare with the Euclidean field theory

Shift in the (lower) critical dimension:
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Gravity at a Lifshitz point

Preferred foliation by leaves of constant
time

Start with the spacetime metric in ADM decomposition:
the spatial metric | the lapse function , the shift vector

foliation-preserving diffeomorphisms,

with

where the extrinsic curvature,

and



Projectable and nonprojectable theory

are the gauge fields for the symmetries
generated by . Hence:
we can restrict to be a function of time only:
or, we allow to be a spacetime field. New terms,
containing , are then allowed in S by symmetries:

Tensor graviton polarizations, plus an extra scalar
graviton. Three options for the scalar: Live with it, gap it, or eliminate it
by an extended gauge symmetry.

Nonrelativistic, ~around this
Gaussian fixed point.

01/D 1
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RG flows

Assume z > 1 UV fixed point. Relevant deformations trigger
RG flow to lower values of z. Lifshitz scalar.

New phases: modulated.

In the IR regime, Sy is
dominated by the spatial part of Einstein-Hilbert.
(The z > 1 Gaussian gravity fixed points also emerge in IR in condensed
matter lattice models, [Cenke Xu & PH].)
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The Lifshitz scalar can be deformed by relevant terms:

S — % / dt dPx {¢2 — (A¢)? —120;00:¢ + m*¢? — ¢4}

The undeformed z = 2 theory describes a tricritical point,
connecting three phases — disordered, ordered, spatially
modulated ( “striped”)

<




Compare the phase diagram in the causal dynamical
triangulations:

B

Note: z = 2 is sufficient to explain three phases.
Possibility of a nontrivial z = 2 fixed point in 3 + 1 dimensions?



Theories with z > 1 represent candidates for the UV description.
Under relevant deformations, the theory will flow in the IR.
Relevant terms in the potential:

ASy = /dthx\/g}N [ 4i2(R—20))

the dispersion relation changes in IR to w? ~ k% + ...
the IR speed of light is given by a combination of the couplings
u? combines with «, ... to give an effective Gy.

Sign of k2 in dispersion relation is opposite for the scalar and
the tensor modes! Can we classify the phases of gravity? Can
gravity be in a modulated phase?



Goal: Topological quantum gravity, localization to Ricci flows.
Expect M a foliation, by leaves X of constant ¢t. Take

MPT =T x %P, I C R.

Topological BRST charge Q:
Qgi; = Vij
Antighosts and auxiliary:
Qxij = Bij-
Balanced theory — natural to formulate in N/ = 2 superspace:

Gij(t,2",0,0) = gij + 0i; + Oxi; + 00B;;.



Supercharges and superderivatives:

Q:aea Q:a§+98ta
D:ag, Dz@g—é@t

Superalgebra:

Action: S = 25(Sk — Sw), with

Sk = / dPx dt d*0vVG (G*G7* — MG G**) DG ;DG

Sw = /dDa:dtdQQ\/a ( ..+ apR® +aA) .



Action in bosonic components:

OK = — / dPz dt\/g (gikgje = )\gijgke) (Bij — 9i5)Bre

1 - 1
S :/dedt@Bq;j{...%—ozR (;}”R—R”) +04A§g”}.

Localization to solutions of B;; = 0:

. ~ oW
9ij = (gz’kgje - )‘gz’jgkﬁ)(s—-
gk
This is when we set
~ 1
OéR:27 OéA:O, )\:—

D —2



Physicist's instinct: Symmetries, in particular gauge symmetries.
Gauging spatial diffeomorphisms: The shift vector
Under £4(¢, 2%):

on' = & + Fopnt — 9RE'n”.

Morally speaking, n* plays the role of the gauge field for spatial
diffeomorphisms in bosonic gravity (relativistic or not).

In the supersymmetric case, £* becomes a superfield,
=4(t,0,0,2") =& + ...

Chiral, antichiral, balanced.



In our N/ = 2 supersymmetric theory, we must introduce several
“shift superfields” :

but also S?, S?, to covariantize supertime derivatives,

Gij — thij = G’LJ — N’“c‘?ka — &Nkaj — 8ijGik,
DGz‘j — DGZ] = DG@] — Skaka — 8@Skaj — ajSkGik,
DGij — ﬁGw — DGw — Skaszj — &Ska — @S"“Gik,

followed by constraints:



Turns out that in retrospect, one can interpret these constraints
precisely as equivalent to the condition of vanishing curvatures

W =20

where the W's are defined as obstructions against the covariant
derivatives

Vi, D, D
satisfying the same algebra as the original d;, D and D:

{D,D} = —0;,  zero otherwise.
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Geometric Interpretation ll:
Super Yang-Mills with ¥ = Diff(X)

e The role of spacetime played by the supertime (¢, 0, 0),

e The role of the internal gauge group played by the inifinite-dimensional
Diff(3), generated by the Lie algebra elements &°(z"),

e The role of adjoint index A played by the multi-index (7, z*)

Constraints in superspace:



is again given by .
S =—(Sxk — Sw),

= =
with

Sk = / dPx dt d*0VG (G*GI* — A\GYG*) DGy DGe

Sw = /dedtd29\/a ( ..+ apR© +aA) .

Localization:
The LHS of the flow equation replaces g;; with V.g;;.

Bonus: We can now perform if needed.



Now we wish to extend the gauge symmetry to full Diff(M, F),
foliation-preserving diffeos.

To gauge time translations in the bosonic theory, one introduces
the lapse function n:

on = fn+ fn.

The simplest case: projectable theory.

To supersymmetrize, we promote f(t) to a superfield,

F(t,0,0) = f + 0o+ 0p + 00a.



Covariantize the derivatives. First,
thz’j — -@tGij — EthZ]
More importantly, the superderivatives are covariantized:

DGij — ggGij = SDGZJ 7 @VtGij,
@Gij — @gGi]‘ = gﬁGw -+ éthij,

followed by constraints:

and



Importantly, the construction extends naturally to the case
where the lapse superfields F, £, £, © and © are
nonprojectable, i.e., functions of not only supertime coordinates

(t,0,0) but also of x°.

The constraints just become awfully more complicated:;
for example,

E=E&E — DO + S¥9,0 — DO + S¥9,0

e (@ = Nkaké) e (@ = N’fak@) ,



Is again given by .
S =—(Sx — Sw),

e
where now

Sy = / dPa dt 20VGN (GFGI — AGIGH) D4G1; DoGr,

S / P dt dPOVEN (... + arRD + agGI900;® + ay )
(Here we have used N =1/F and ® = —log N.)

Perelman’s for ap = agp = 2
and ap = 0.



Localization in our nonprojectable theory:

1 -
+ ag|l + (1 — D)S\]gijﬁ¢ + (ar — a9)0;00;¢

+ {%a@[l + (2= D)A] — ag[l+ (1 - D)S\]} 9:(09)"

1 o
+ 50&/\(1 — )\D)Qw

Lots of junk, which does not look like Perelman’s equation.

First, reframe: D
€¢gij — §ij, §¢ = ¢



Recall that Perelman holds a volume element fixed,
e/ measure fixed in time.

In our frame, this simply becomes:

Viy/g = 0!
This suggests to take the limit of

= 1
A — + P p—
O, or D

The fixed-volume condition is realized dynamically, not as a
gauge-fixing choice!



~

Rewrite theory in Perelman’s variables g;;, ¢.

Set Then:

- 2~ - . -2 -2
Vtgz-j — Egijvtgb = —2Rij — 2Vi8jgb + Bgin + EQZJAQb

This is just the sum of the two Perelman equations!

. . . 9 S
(Vigis + 28i; +2¥:0;0) — =G5 (Vi + R+ Ad) = 0.

One can match Perelman’s equations exactly, by performing an
alternate gauge-fixing which also fixes time diffeomorphisms.



For shrinking Ricci solitons, Perelman introduces an even more
useful VW-functional:

W:/de ge—03 {7’ (R—gij&-qg@qu) +(5—D},

and fixes the following volume:

1 _d /=
e ?\/3.

(47T)

We reproduce that by changing our variables to

D

9ij = €¢gija Cg — 5[925 — log(4mT)).

Similarly for YW, -functional for expanding solitons, introduced
by Feldman, [Imanen and Ni.



Generic Flows




Generic Flows




Exciting connection of three previously disconnected areas:

Topological QFT (of the cohomological type),

Sets the stage for many intriguing questions, both in physics
and in math. Partial list:

e® observables and correlation functions,

e probes: branes/strings, Perelman’s L-volume and L-length, . ..

e quantum topology change and Ricci flows with surgery,

e short-distance completeness in D = 3 at z = 27

e dependence on spatial dimension D,

® quantum gravity out of equilibrium, theory in real time .



