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Overview

This talk reports on various joint works: with Shende, Kucharski,
Longhi, Georgieva, Ng

Plan:

Skein valued open GW-invariants

Skein recursion for the toric brane and for knot conormals in
the resolved conifold

Some applications: quantum curves, basic holomorphic disks,
and quivers.
(Some of the material here is largely conjectural and uses results of many authors not appropriately

referred to on these slides.)



Skeins on branes

Geometric setting:

(X , ω) 3-dim symplectic Calabi-Yau, c1(X ) = 0.
Main examples: C3, T ∗S3, and O(−1)⊕2 → CP1.

L ⊂ X Maslov zero Lagrangian.
Main examples: toric brane, knot conormals, 0-section.



Skeins on branes

Holomorphic curves:

J acs on X compatible with ω. (S , j) Riemann surface. A
holomorphic curve is a map u : (S , ∂S)→ (X , L) that solves
the Cauchy-Riemann equation: ∂̄Ju = 1

2 (du + J ◦ du ◦ j) = 0.

The Cauchy-Riemann equation is Fredholm and the expected
dimension of the moduli space of solutions is

(dimC X − 3)χ(S) + 2crel1 (u∗TX ) = 0 + 0.

The A-model topological string partition function localizes on
holomorphic curves.



Skeins on branes

The dimension count indicates after perturbation, moduli space of
solutions is an oriented zero-manifold. Counting we compute the
topological string partition function. The count should be invariant
under deformations. For closed curves nodal solutions appear in
codim 2, invariant under deformation. For open curves boundary
nodes have codimension one, not invariant. There are invariant
curve counts in this setting, in the skein.

For general curves we use the HOMFLY skein. For curves invariant
under an involution that fixes the Lagrangian we use the
Kauffmann skein.



Skeins on branes

For example, Sk(S3) = C[q±1, a±1], Sk(S1 × R2) is a free
commutative algebra on countably many generators Am (m − 1
crossings, m times around).



Skeins on branes

Bare curves: A stable map u : S → X is bare if all its irreducible
components have positive symplectic area.

Skein valued curve counts are based on counting bare holomorphic
curves by their boundary in the framed skein.

Auxiliary framing data: Generic vector field ξ on L and 4-chain C
with ∂C = 2 · L and ±J · ξ along the boundary.



Skeins on branes

The skein valued curve count is then a sum over all disconnected
bare holomorphic curves where the contribution of
u : (S , ∂S)→ (X , L) is

w(u) z−χ(S) alk(L,u) 〈u(∂S)〉 ∈ Sk(L)

w(u) – rational weight of u as a weighted point in the moduli
space

χ(S) – Euler characteristic of S

lk(L, u) – linking between u and L

〈u(∂S)〉 – the boundary of u in the skein of L.



Skeins on branes – comments

The bare condition has to do with separating high and low energy
contributions.

The 4-chain (or something similar) is needed for the deformation
invariance of CS theory deformed by holomorphic curves:∫
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Skeins on branes – comments

With z = (q − q−1) the bare curve count is like the first term
(d=1) in the GV formula for the contribution to GW from a curve
of Euler characteristic χ in homology class x :

exp

( ∞∑
d=1

xd

d
(qd − q−d)−χ

)



Skeins on branes

To show invariance one constructs a perturbation scheme that
leaves constant maps unperturbed and shows.

1) Bare solutions transversely cut out, embeddings, tangent along
boundary spans together with ξ a 2-plane everywhere.

2) Constant curves bubble off only in codimension ≥ two
⇒ for 1-parameter families, all solutions near boundary are bare
with ghosts.



Skeins on branes

3) Degeneracies in 1-parameter families of solutions have standard
form.
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Skeins on branes

4) At tangencies with ξ a kink is traded for a 4-chain intersection.
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Skeins on branes – comments

Skein counts are inductive in Euler characteristic. Usual
perturbative treatment is not.



Ooguri-Vafa large N duality

Geometric setup: K ⊂ S3 – knot. LK ⊂ T ∗S3 – Lagrangian
conormal ≈ S1 × R2. Shift LK off of 0-section S3 (non-exact).
Transition to resolved conifold X = {O(−1)⊕2 → CP1}.

21{ z  + z  + z  + z  = 0 }3 4
2 2 2 2



Ooguri-Vafa large N duality

Theorem

The GW partition function equals the generating function for the
colored HOMFLY:

ΨK (x , a, gs) =
∑
k≥0

HK ,n(a, e
gs
2 )enx ,



Ooguri-Vafa large N duality

SFT-stretch
LK

LK

S3
ε

S3K

For a small shift of the conormal there is a unique holomorphic
cylinder. SFT stretching removes all boundaries from the 0-section
(outside curves asymptotic to Reeb orbits of index 2 gives negative
dimension). Calculating the skein valued invariant gives the colored
HOMFLY (obvious for once around, for many times we use info
about the unknot). Curves in the stretched structure are the same
as in the conifold for small area CP1.



Large N duality – comments

Moduli spaces for planar unknot.

Real curves can be counted as in ordinary GW theory. For any knot
K the count in the basic homology class in H2(T ∗S3; LK ∪ S3) is
one cylinder, i.e., 1. The skein count corresponds in the stretched
picture to a count in H2(T ∗S3 \ S3; LK ).



The toric brane in C3

The toric brane in C3 provides a universal model for ‘crossing a
basic disk’ and illustrates how to calculate skein invariants ‘from
infinity’.

Strategy for curve counts from infinity: (X , L) has ideal
contact boundary (∂X , ∂L). The boundary of 1-dimensional
moduli spaces consists of R-invariant curves at infinity and rigid
curves in the bulk. The boundary is zero in the skein. The outside
then determines the inside.



The toric brane in C3

C3 with coordinates z = (z1, z2, z3).

C3 → R3, z 7→ (rα(z), rβ(z), rγ(z)),

rα(z) = |z1|2 − |z2|2, rβ(z) = |z2|2 − |z3|2, rγ(z) = Im(z1z2z3).

Fiber at (rα, rβ, rγ):

|z1|2 = rα + |z3|2, |z2|2 = rβ + |z3|2,
Im(|z1||z2||z3|e i(θ1+θ2+θ3)) = rγ

⇒ generic fiber T 2 × R.



The toric brane in C3

Lagrangians L1, L2, L3 ≈ S1 × R2.

L1 : rα = 0, rβ = r∗1 , rγ ≥ 0 and Re(z1z2z3) = 0,

L2 : rβ = 0, rα = r∗2 , rγ ≥ 0 and Re(z1z2z3) = 0,

L3 : rα − rβ = 0, rα = r∗3 , rγ ≥ 0 and Re(z1z2z3) = 0,

We restrict attention to L1 and parameterize it(
|z3|e iθ, (|z3|+ r∗1 )e iφ, |z3|e−i(θ+φ−π

2
)
)



The toric brane in C3

As |z3| → ∞, L1 is asymptotic to the R-invariant Lagrangian(
ρe iθ, ρe iφ, ρe−i(θ+φ−π

2
)
)
.

Consider the image under the Hopf map S5 → CP2:

[e i(2θ+φ) : e i(2φ+θ) : i ].

A Clifford torus and the Legendrian ∂L1 is a 3-fold cover
(Bohr-Sommerfeld). The Reeb chords of ∂L1 are Bott degenerate
and come in T 2-families, length k 2π

3 , index ≥ 1, with equality only
for k = 1.



The toric brane in C3

To find holomorphic curves one can either use curves on the
Clifford torus or draw the front of ∂L1 in R5 ⊂ S5:



The toric brane in C3

We learn then that the skein valued curve count Ψ on the toric
brane satsifies the operator equation:

(©− P1,0 − P0,1) Ψ = 0.

The operators ©− P1,0 and P0,1 have a common eigen-basis in
the positive skein Wλ where λ runs over partitions of positive
integers. The operator equation has a unique solution in Sk+:

Ψ =
∑
λ

Wλ

∏
�∈λ

q−c(�)/2

qh(�)/2 − q−h(�)/2
,

where h is the hook length and c the content, here we use
z = q1/2 − q−1/2.



The toric brane in C3

Interpretation of the equation

(©− P1,0 − P0,1) Ψ = 0.



Conormals of knots

Consider the conormal LK ⊂ T ∗S3 of a knot in the resolved
conifold. If K = U there is similarly an immediate recursion
relation of the form(

©− P1,0 − P0,1 + a2P1,1

)
ΨU = 0.

For more general knots the recursion will appear from a skein
valued Legendrian SFT. Schematically, the boundary of a
1-dimensional moduli space looks as follows:

The recursion relation will then appear after the degree 0 chords
have been eliminated from the equation.



Generalized curves

The standard approach to open GW invariants with one copy of
the Lagrangian correspond to U(1) gauge theory and in the case of
bare curves to a = q = egs after projection to ‘homology +
linking’, we call them generalized curves.

w(u) z−χ(S) alk(L,u) 〈u(∂S)〉 ∈ Sk(L)→

w(u) (q − q−1)−χ(S) qlk(L,u) [u(∂S)] ∈ Q[q±] ̂[H2(X , L)]



Generalized curves

E.g., for the toric brane and the unknot conormal the recursion
relations then read:

(1− e x̂ − e p̂)ψ(x) = 0, ψ(x) =
∑
k

(q2; q2)−1
k ekx ,

(z ; q2)k = (1− z)(1− zq2) . . . (1− zq2(k−1)),

(1− e p̂ − e x̂ + a2e x̂e p̂)Ψ(x) = 0, Ψ(x) =
∑
k

Ck(a, q)ekx ,

where x generates H1(L) and log a generates H2(X ), e x̂ is
multiplication by ex and e p̂ = egs∂x .



Generalized curves

For the trefoil T , ÂTΨT (x) = 0,

ÂT (ex , ep, a, q) = qa6e3p(a2 − q−3e2p)(a2 − q−1ep)

+ q−5/2(a2 − q−2e2p)
(
(q2e2p + q3e2p − q3ep + q4)a4

−(qe3p + q3e2p + qe2p)a2 + e4p
)
ex

+ (a2 − q−1e2p)(ep − q)e2x .



Basic holomorphic disks and quivers

It was observed that the generating function for the colored
HOMFLY can be written as a quiver partition function for a
symmetric quiver. The geometry behind such expressions can be
understood if we assume that there is a finite set of basic
holomorphic disks (the quiver nodes) attached to LK such that all
holomorphic curves lie in a neighborhood of LK ∪ {basic disks}.



Basic holomorphic disks and quivers

As for generalized curves, we must keep track of the linking
number between disks to count generalized curves. The result is an
expression of the following form:

ΨK (ex , a, q) = ψ
(
ex1e

∑n
j=1 C1j gs∂xj

)
· · ·ψ

(
exme

∑n
j=1 Cmj gs∂xj

)
=

∑
(d1,...,dm)∈Zm

+

(−q)
∑

ij Cijdidj

m∏
j=1

edjxj

(q2, q2)dj
,

where exi = qni aki e lix .

Geometric characters of nodes: Cij is linking between disks i
and j , Cii self-linking or framing data for attaching the disk, ni is
4-chain intersections (invariant self-linking minus framing), (ki , li )
homology class in H2(X , LK ).



Basic holomorphic disks and quivers

For the unknot the desired form can be obtained from toric
geometry.

For conormals of other knots the quiver picture might come from
viewing their conormals as a ‘cover’ or the unknot conormal.



Basic holomorphic disks and quivers

U



Non-uniqueness of quivers

Different quivers can give rise to the same partition function.
There are two main sources.



Basic holomorphic disks and quivers

In the right variables, the recursion relation for the quiver partition
function takes a familiar form. Consider quiver variables xi with
duals yi and symmetric quiver matrix Cij .

1) Unlinking: X ′i = (−q)Cii xi
∏m

j=1 y
Cij

j ⇒ X ′i X
′
j = X ′jX

′
i .

2) Nesting: Zi = X ′i
∏

j<i yj ⇒ ZjZi = q2sgn(j−i)ZiZj .

3) Toric brane variable: Z = Z1 + · · ·+ Zm ⇒

Z r =
∑
|d|=r

[
r
d

]
q2

Zd1
1 . . .Zdm

m ,

[
r
d

]
q2

=
(q2; q2)r

(q2; q2)d1 . . . (q
2; q2)dm

Let

P =
∞∑
r=0

1

(q2; q2)r
Z r ⇒ : P : = Ψ(x1, . . . , xm).



Basic holomorphic disks and quivers

4) The meridian of LK is Y =
∏m

j=1 yk and YZ = q2ZY . Since

Z r = Z · Z r−1 we have

(1− Y − Z )P = 0.

In general there are also basic disks with xi = xni , ni 6= 1. The
formula above generalizes with Z (k) =

∑
ni≥k and Y =

∏m
j=1 y

nj
j

to total meridian.

YP = (1− q2(nmax−1)Z (nmax )) . . . (1− Z (1))P



Basic holomorphic disks and quivers – observations and
conjectures

Refined partition function:

ΨK (ex , a, q, t) =
∑

(d1,...,dm)∈Zm
+

(−q)
∑

ij Cijdidj

m∏
j=1

edjxj

(q2, q2)dj
,

where exi = (−t)Ciiqli aki enix .

In examples the nth symmetrically colored HOMFLY homology can
be computed from the refined partition function as the number of
n-vortices. Concretely, the monomials of (q2; q2)−1

n which are the
coefficients of enx .



Basic holomorphic disks and quivers – observations and
conjectures

To get to sl(N) homologies, a = qN . There is a differential acting
on HOMFLY homology coming from multiplication by closed BPS
states in the conifold. The action can be viewed as unlinking of a
small fiber circle with a disk with a2q−2Nt.



Basic holomorphic disks and quivers – observations and
conjectures

Conjecture (E,Kucharski,Longhi)

The partition function of any knot conormal has the form of a
generating function of a finite quiver. The quiver nodes come in
unknot pairs and the pairs come in ‘sl(1)-pairs’ and such a quiver
representation is unique.
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