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What is a quantum curve?

Algebraic curves are ubiquitous in modern mathematical
physics

Y(x,p) =0

0) WKB curve in one-dimensional quantum mechanics

|) Seiberg-Witten curves of supersymmetric gauge theories
2) Mirror manifolds to toric (non-compact) Calabi-Yaus

3) “Spectral curves” for large N matrix models

4) Spectral curves for integrable systems

5) A-polynomials of knots



In all these problems, the “classical” theory is described by
the periods of the Liouville one-form

p(x)dx

along the one-cycles of the curve



An important example for this talk is local mirror

symmetry
toric Calabi-Yau mirror T P\ __
manifold X curve (et ef) =0

Here, the periods of the Liouville form determine the
“prepotential” of topological string theory on X.
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This looks very much like a WKB approximation to a
quantum mechanical problem underlying the curve

Therefore, it is tempting to think that the corrections to the
“classical” theory can be obtained by “quantizing” the curve
In an appropriate way

In the case of local mirror symmetry, this leads to the idea
that the higher genus free energies of the topological string

ZNgde

can be obtained by “quantizing” the mirror curve [ADKMV]



Perturbative quantization schemes

There are two perturbative quantization schemes for
curves which produce a series of quantum corrections to
the prepotential.

The first one is based on a direct quantization of the curve,
by promoting the canonically conjugate x,p variables to
Heisenberg operators

X, p| = ih

This leads to a Schroedinger-type equation

Y(x,p = —ih0;)Y(x,h) =0



One can now use the all-orders WKB method to obtain
“quantum’ versions of the Liouville form and the periods

p(z,h) ~ p(z) an th

n>1

HH) = 7{1 p(zhydz 28 5(;5 h) _ ]é p(z, B)dz

This procedure was applied to SW/mirror curves by
[Mironov-Morozov, ACDKV]



However, the quantum prepotential obtained in this way

F(t,h) =) Fu(t)h*"

n>0

does not describe the usual topological string free
energy. Rather, it gives the so-called “Nekrasov-Shatashvili
free energy”



A different “quantization” scheme is obtained by the
topological recursion of Eynard-Orantin

Z($,p) — {Fg (t)}g:()71’27...

This does give the topological string free energies
(BKMP conjecture, now a theorem) but there is no obvious
relation to conventional quantization

There has been recent progress in relating topological
recursion to some sort of quantization of the curve [Bouchard-
Eynard, Iwaki, Eynard-Garcia Failde, Orantin-Marchal], but their resulting
quantum curves have infinitely many quantum corrections and
| will not follow this route



Another shortcoming is that these approaches are
perturbative in nature.

We recall that the “total free energy” of topological string
theory

tgs ZF 292

g>0

does not define a function, since it is a factorially divergent
series

Fg(t) ~ (29)!

Topological recursion does not give much insight on this
problem.



A full quantum realization of topological string theory
should give a non-perturbative definition of the theory, in
which the series appears as the asymptotic expansion of a
well-defined function.

It turns out that progress along this direction can be made
if one looks at the quantum curve as an operator on the

natural Hilbert space L*(R)

This might seem unnatural from the point of view of
complex geometry, since the spectral theory of operators
is very sensitive to reality and positivity issues. However,
one can “‘complexify” afterwards, as we will see.



Operators from curves

By quantizing interesting families of curves one obtains
2
well-known operators on L“(R)  as well as new ones:

|) SW curves of Argyres-Douglas theories lead to

Schroedinger operators with polynomial potentials
[e.g. Ito-Shu, Grassi-Gu]

p°+ Vn(z)— E=0 ~ H=p"+ Vy(x)

2) SW curves of SU(N) theories lead to deformed
Schroedinger operators [Grassi-M.M]

2cosh(p) + Vn(z) — E =0 » H=2coshp+ Vn(x)




3) Mirror curves of toric CYs lead to a new family of
“Weyl” or exponentiated Heisenberg operators

X%OX
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For simplicity | will consider polytopes with a single inner point



The spectral problem defined by quantum curves is
therefore a fascinating generalization of the spectral
theory of one-dimensional Schroedinger operators

The main question we want to address is:
is there a relation between the spectral theory of these
operators, and the geometric, “quantum’ objects
associated to the underlying curves!?

| will from now on focus on (local) mirror curves



Spectral theory

Theorem .

—1
[Grassi-Hatsuda- The operator px = OX on L2 (R)
M.M., Kashaev-M.M,,
Laptev-Schimmer-

~

is positive definite and of trace class

\_ J
Takhtakjan]
(assuming h > () and some conditions on “‘mass
parameters’)
Discrete spectrum € , n=U1,

and all its traces are finite

Tl"pf;(ZE:G_EE”<QQ7 (=1,2,---
n>0



Since the operator is of trace class, we can define its Fredholm
determinant

Zx (k) =det (1+rpx) =[] (14 ")
n>0

which is an entire function of x = e*

It can be shown that ~ is identified with the modulus of the
CY, therefore this is an entire function on the CY moduli
space

Zx(k) =14 Y Zx(N,h)sY
N=1

\ “fermionic”

spectral traces
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At weak coupling, when A — (0 , these quantities are related
to the NS topological string

Surprisingly, the strong coupling limit 4 — oo leads to the
conventional topological string



The strong coupling result is conveniently formulated by using
topological string theory in “conifold” coordinates.We recall that,
in the moduli space of the CY, there is a conifold point where the

mirror curve becomes singular.

large radius
Re(t) — oo

conifold point
te =0

We can parametrize the moduli space by a special vanishing
coordinate at the conifold, ..



A conjecture

Let us consider the following 't Hooft limit of the fermionic
spectral traces

N — o0 h — oo

Then,

log Zx (N,h) ~ Y Fy(tc)h*™>9
g=>0
1

note that h= —
gs



Corollary: a “volume conjecture”

Explicit calculations show that these spectral traces are very
similar to state integrals for hyperbolic three-manifolds (or to
partition functions of 3d susy theories)

It turns out that the volume conjecture for state integrals
[Kashaev, Andersen-Kashaev] has a counterpart in this context:

h — o0

ZX (N7 h) ~ €Xp (—hV) N fixed

value of the Kahler
V' . parameter at the conifold
point



In order to obtain the traditional Gromov-Witten free
energies, one can instead consider the following limit of the
Fredholm determinant

h — o0, =1 fixed

St =

One has, conjecturally, the asymptotic expansion

10g _.X ZF hz 29

g=>0

(this asymptotics has however oscillatory corrections)



One striking consequence of this picture is the following. The
topological string free energies F,(t) have a branch cut
structure and are singular at the conifold point. However, in
the non-perturbative version, the Fredholm determinant is an
entire function with no singularity!

stringy quantum
moduli space moduli space

Therefore, branch cuts and singularities are artifacts of the
asymptotic expansion (i.e. of perturbation theory)
[cf. Maldacena-Moore-Seiberg-Shih]



Although | have emphasized asymptotic results, we have
conjectured an exact expression for the Fredholm
determinant of quantum curves, in terms of (refined) BPS
invariants of the toric CY. Roughly,

=x (k) = Z exp Z F,(t + 2mihn)h?9~* + WKB

ne/ g>0

This provides in principle a complete solution of the
spectral problem for these “VVeyl-type” operators



Note that this spectral problem is different from the one
addressed by Nekrasov and Shatashvili: we quantize curves,
not integrable systems. The two problems are identical in
curves of genus one with a 5d susy gauge theory
realization; for curves of genus g>1 they are different,
albeit not completely unrelated.

However, our solution of the spectral problem gives non-

perturbative corrections to the quantization conditions of
NS



Some applications and extensions

In an independent development, it has been found that tau
functions of Painleve functions can be written in terms of 4d
instanton partition functions by using the same type of Zak
transform [Gamayun-lorgov-Lissovvy]

Zexp ZF

nez

2mihn) h?9 ™

SW/4d limit

This fits in our framework, after taking a “geometric
engineering”’/4d limit of the appropriate Calabi-Yau. It leads to
a reinterpretation of the tau function as a spectral
determinant [Bonelli-Grassi-Tanzini]



Complexification

So far we have required 7 to be real and positive, but it is
clearly interesting to complexify it.

It turns out that the integral kernel of X can be computed
explicitly in many cases [Kashaev-M.M] . It involves Faddeev’s
quantum dilogarithm

<I>b(a?) b2 x h

which can be analytically continued to the complex plane.
This makes it possible to reformulate topological string
partition functions in the language of (double) g-series,
study their resurgent properties in the complex 5 plane,
and so on [in progress with Jie Gu].



Open problems

| have presented a precise “duality’” between (conventional)
topological strings and the spectral theory of trace class
operators. This provides a non-perturbative definition of
topological strings (in the spirit of AdS/CFT) and has many
implications in both fields.

What is lacking is a more physical understanding of this
duality. Formally, it suggests a deep relationship with a 3d
SUSY theory, or with one-dimensional fermions, but this has
not been made more concrete



Mathematically, most of our conjectures are unambiguous
and well-defined, but probably very hard to prove (it also
seems to be difficult to find mathematicians who know well
both sides of the conjectures, i.e. spectral theory and
Gromov-Witten theory!)



Thank you for your attention!



