Knot Homologies from Landau-Ginsburg Models

Miroslav Rapčák

CERN
with Mina Aganagic and Elise LePage

Berkeley String-Math Seminar, November 28, 2022

1．Introduction

[^0]
1.1. Polynomial invariants

- We will be interested in a construction of various topological invariants associated to links in \mathbb{R}^{3}, such as the Hopf link

that we are going to use for illustration purposes.
- There exists a large zoo of polynomial invariants such as the famous Jones polynomial [Jones (1985)]

$$
\chi_{\text {Jones }}(q)=q+q^{-1}
$$

- Its rescaled version is the $\mathfrak{g l}(2)$ invariant

$$
\chi_{\mathfrak{g} l(2)}(q)=\left(q^{\frac{1}{2}}+q^{-\frac{1}{2}}\right) \chi_{\text {Jones }}(q)=q^{3 / 2}+q^{1 / 2}+q^{-1 / 2}+q^{-3 / 2} .
$$

■ There also exist polynomial invariants associated to other Lie (super) algebras, in particular the series $\mathfrak{g l}(m \mid n)$.

1.2. Homological invariants

- Polynomial invariants often admit categorification in terms of homological invariants.
- An example is the Khovanov homology [Khovanov (2000)]

$$
K H=\oplus_{i, j} K H^{i, j}
$$

that is the homology of a complex

$$
\cdots \rightarrow C^{0, *} \rightarrow C^{1, *} \rightarrow C^{2, *} \rightarrow \ldots
$$

associated to a link.

- The $\mathfrak{g l}(2)$ invariant can be recovered as the Euler characteristic of the complex:

$$
\chi(q)=\sum_{i, j}(-1)^{i} \operatorname{dim}\left(K H^{i, j}\right) q^{j}
$$

- People have also constructed homological invariants associated to $\mathfrak{g l}(m)$ and $\mathfrak{g l}(1 \mid 1)$ (aka Heegaard-Floer-knot homology).
- For example, the complex for the Hopf link reads

$$
\left.\begin{array}{c}
\mathbb{C}^{0, \frac{1}{2}} \\
\mathbb{C}^{0,-\frac{1}{2}} \\
\mathbb{C}^{0,-\frac{1}{2}} \\
\mathbb{C}^{0,-\frac{3}{2}}
\end{array} \begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0
\end{array}\right) \xrightarrow{\mathbb{C}^{1,-\frac{1}{2}}} \xrightarrow{\mathbb{C}^{1, \frac{1}{2}}} \begin{array}{|cccc}
1, \frac{1}{2} \\
\mathbb{C}^{1,-\frac{1}{2}} & \left.\begin{array}{cccc}
0 & 0 & 0 & 0 \\
1 & -1 & 0 & 0 \\
1 & -1 & 0 & 0 \\
0 & 0 & -1 & 1
\end{array}\right)
\end{array} \begin{gathered}
\\
\mathbb{C}^{2, \frac{1}{2}} \\
\mathbb{C}^{2, \frac{3}{2}} \\
\mathbb{C}^{2,-\frac{1}{2}}
\end{gathered}
$$

- The homology is four-dimensional, concentrated at degrees

$$
K H^{2, \frac{3}{2}}=K H^{2, \frac{1}{2}}=K H^{0,-\frac{1}{2}}=K H^{0,-\frac{3}{2}}=\mathbb{C} .
$$

■ We obviously recover the $\mathfrak{g l}(2)$ invariant as

$$
\begin{aligned}
\chi(q) & =(-1)^{2} q^{\frac{3}{2}}+(-1)^{2} q^{\frac{1}{2}}+(-1)^{0} q^{-\frac{1}{2}}+(-1)^{0} q^{-\frac{3}{2}} \\
& =q^{\frac{3}{2}}+q^{\frac{1}{2}}+q^{-\frac{1}{2}}+q^{-\frac{3}{2}} .
\end{aligned}
$$

1.3. Physical/geometric origin

- Polynomial invariants are known to originate from $\mathfrak{g l}(m \mid n)$ Chern-Simons theory in terms of the expectation value of line operators [Witten (1989)].
■ But what is the physics behind homological invariants? Can one reproduce the success of the Chern-Simons theory and learn something new about them?
- An attempt to find such a physical story was presented by [Witten (2011)] and later developed by multiple other people but its complicated nature does not allow any non-trivial calculations.
- Utilising various string-theory dualities and building up on the insights from the work of [Ozscath-Szabo (2008), Auroux (2010), Rasmussen (2003), Seidel-Smith (2008), Gaiotto-Moore-Witten (2015), Webster (2015), ...], Mina Aganagic proposed a new framework to compute the $\mathfrak{g l}(2)$ invariant of links [Aganagic (2020), (2021), (2022)].

1.4. Plan for today:

- Review some aspects of the Aganagic's proposal.

■ Turn it into a calculational tool by making the problem algebraic. [Aganagic-LePage-MR (very soon)]

- Sketch the proof of topological invariance. [Aganagic-LePage-MR (very soon)]
- Comment on the generalization to $\mathfrak{g l}(m \mid n)$ homological invariants. For $\mathfrak{g l}(1 \mid 1)$, see [Aganagic-LePage-MR (very soon)] and for $\mathfrak{g l}(m \mid n)$, see [Aganagic-LePage-MR (soonish)].

2. Aganagic's proposal

2.1. Overview

- Aganagic proposes 4 physical pictures that lead to link invariants. They are mutually related by mirror symmetry in a combination with equivariant localization.
- Today, we are going to be interested in one of the constructions based on the Landau-Ginsburg model living on the strip $\mathbb{R} \times I$ with the target being an n'th symmetric power of a punctured Riemann surface.
- KH can be then identified with the space of supersymmetric groundstates of this model for a particular choice of boundary conditions on the two sides of I.
- As promissed above, we are going to illustrate the whole construction on the example of the Hopf link:

2.2. Stretching the knot

■ Let us start with a knot in \mathbb{R}^{3}, stretch it along one direction as

and cut it into three pieces as show in the figure.

2.3. What target?

- The middle slice of

has the geometry of $\mathbb{C} \times I$ with knot bits inserted along I and placed at fixed positions $z_{1}, \ldots z_{2 n} \in \mathbb{C}$. Let us denote the resulting punctured plane by Σ.
- The desired target space is then $X=\operatorname{Sym}^{n} \Sigma$ and in our Hopf-link example, the second symmetric power of a four-punctured plane.

2.3. What potential?

- The potential $W\left(x_{1}, \ldots, x_{n}\right)$ is a function on $\operatorname{Sym}^{n} \Sigma$ and a natural source of such functions associated to Lie algebras are conformal blocks.
- For example, conformal blocks of the Virasoro algebra \mathcal{W}_{2} on a plane with an insertion of $2 n$ vertex operators in the fundamental representation at z_{i} can be written as

$$
\oint_{C} d x_{1} \ldots d x_{n} \prod_{i<j}\left(z_{i}-z_{j}\right)^{-\epsilon} \prod_{i \neq j}\left(x_{i}-x_{j}\right)^{-\epsilon} \prod_{i, j}\left(x_{i}-z_{j}\right)^{\epsilon}
$$

where different choices of the contour C parametrize different conformal blocks. [Dotsenko-Fateev (1984), Felder (1989)]

- The desired potential W encoding the equivariant grading together with the holomorphic form Ω encoding the Maslov grading can be read off from the integrand of the above expression by

$$
\Omega e^{\epsilon W}=d x_{1} \ldots d x_{n} \prod_{i \neq j}\left(x_{i}-x_{j}\right)^{-\epsilon} \prod_{i, j}\left(x_{i}-z_{j}\right)^{\epsilon}
$$

where $z_{1}, \ldots, z_{2 n}$ are positions of our knot strands and x_{1}, \ldots, x_{n} are coordinates on $\operatorname{Sym}^{n} \Sigma$. We have also dropped x_{i}-independent terms since they only contribute by a constant shift to the potential.

- Concretely, we have

$$
\Omega=d x_{1} \ldots d x_{n}, \quad W=-\sum_{i \neq j} \log \left(x_{i}-x_{j}\right)+\sum_{i, j} \log \left(x_{i}-z_{j}\right)
$$

- The choice of the contour C is going to be related to the choice of boundary conditions for our model as we are going to see next.

2.4. Caps

■ We have associated the Landau-Ginsburg model on $I \times \mathbb{R}$ to the middle slice. From the perspective of this middle part, the other two slices specify a boundary condition on the two sides of the interval I.

- To a collection of caps, we associate a Lagrangian that is a symmetric product of lines in Σ stretched between two punctures joined by an arch.
- In our example

2.4. Cups

- If the knot strands on the other side had been simple cups, the Lagrangians would have been symmetric products of figure eights:

- But since they are more complicated, we need to braid them

2.5. Intersection points

- Desired homological invariants arise from counting intersection points between the cap Lagrangian L_{1} and the braided cup Lagrangian L_{2} in our Landau-Ginsburg model.
- The analogue of the Khovanov's homological degree is the standard Maslov degree encoded by Ω. The analogue of the ϵ degree is the equivariant degree encoded by W. These come from the lift of the phase of $\Omega e^{\epsilon W}$ into a single-valued function on L_{1} and L_{2}.
- Can we find an algorithm to find these intersection points in possibly complicated configurations?
- We are going to find a solution to this problem by making the problem algebraic.

3. Single strand $n=1$

3.1. The boring unknot

- At first sight, the configuration containing a single pair of punctures seems boring since

corresponding to the unknot would be the only configuration one can engineer.

3.2. Reduced homology

- Luckily, it turns out that cutting one of the strands such as in

leads to the reduced-homology invariant categorifying

$$
\chi_{\text {Jones }}(q)=\frac{\chi_{\mathfrak{g l}(2)}(q)}{q^{1 / 2}+q^{-1 / 2}}
$$

- Using this proposal, finding reduced homology for any rational knot (those coming from capping a braid of four strands) becomes almost trivial.

3.3. Intersection points

- In this simple example, we can immediately see that there are two intersection points and there is no disk not intersecting with a puncture that could possibly lead to a non-trivial differential:

■ Identifying degrees of the punctured disk allows us to identify their relative Maslov and equivariant degrees and then recover the Jones polynomial $q+q^{-1}$.

- Counting disks in more complicated setups (more involved braiding and multiple strands) becomes a rather involved problem, so we will now develop an algebraic approach.

3.4. Thimbles

- Each brane in our category of branes can be represented in terms of a complex of a special set of (thimble) branes T_{i} generating our brane category (projective generators).
- Thimbles T_{i} are branes supported along straight lines in between punctures such as the five thimbles in

3.5. Morphisms between thimbles

- Morphisms between branes are in correspondence with their intersection points.
- Naively, thimbles do not intersect but deforming one of the branes (tilting in our picture), one can identify non-trivial morphisms. In particular, we find one morphism $T_{i} \rightarrow T_{j}$ for each pair T_{i}, T_{j} :

- We are going to use a strand notation for the morphisms.

3.6. Adding dots and the KLRW algebra

- Branes in Landau-Ginsburg models can generally carry more structure since they can support a nontrivial flat vector bundle. To get the desired invariant, we need to introduce such a modification resulting into the algebra of strands decorated by dots

■ This algebra is known as the KLRW algebra [Webster (2019), Aganagic-Danilenko-Li-Zhou (in progress)] and was previously studied from a dual B-model perspective.

3.7. Composing morphisms

- The algebra structure can be determined by identifying disks.
- For example, let us start with $T_{2} \rightarrow T_{3}$:

and compose with $T_{3} \rightarrow T_{4}$:

■ The existence of the Maslov-degree-zero disk

tells us that the composition is non-trivial and allows us to identify the product in terms of the morphism associated with the blue intersection point.

- The resulting algebra is given by composition of strands together with relation

when the two strands go in opposite directions [Webster (2022), Aganagic-Danilenko-Peng (in progress)].

3.8. Grading

- Looking at the potential and identifying the ϵ degree of various disks, one can show that assigning degrees

gives a consistent grading on the strand algebra.

3.9. Resolving brane

- We have found that the algebra of $\operatorname{Hom}(T, T)$ for $T=\bigoplus_{i} T_{i}$ admits a nice description in terms of the above strand algebra. We are now going to use T to describe a Lagrangian L in terms of a complex of thimbles T_{i}.
- First, one can construct a module for the strand algebra $\operatorname{Hom}(T, T)$ by intersecting the Lagrangian L with T, i.e. identifying $\operatorname{Hom}(T, L)$.
- Secondly, finding a projective resolution of such a module yields the desired complex of thimbles.
- This is a rather non-trivial construction and we are going to find an alternative proposal.

3.10. Resolving brane - an alternative proposal

- We would like to represent the brane of interest as a complex of thimbles T_{i} with the differential given by a collection of strand-algebra elements.
- It turns out that in the simple example of a single strand, we can read off the complex almost completely directly from the geometry!
- This is rather surprising since finding a projective resolution explicitly is usually a rather challenging task.
- In the first step, let us stretch our cycle into vertical bits resembling thimbles and horisontal bits corresponding to maps between them:

- Using the stretched representation of the cycle

one can read off directly:

$$
T_{1} \xrightarrow{H H \mid} T_{4} \xrightarrow{\| H \mid} T_{3} \stackrel{-|X| \mid}{\leftrightarrows} T_{2} \stackrel{-|X| \mid}{\longleftrightarrow} T_{4} \stackrel{-|H|}{\longleftrightarrow} T_{2} \xrightarrow{-y| | \mid}
$$

- Colapsing the above into a standard complex produces

$$
T_{2} \xrightarrow{\binom{-|X|}{-W| | \mid}} \underset{T_{1}}{T_{4}} \xrightarrow{\left(\begin{array}{cc}
-|H| & 0 \\
0 H H \mid
\end{array}\right)} \underset{T_{4}}{T_{2}(-|N|| ||H|)} T_{3}
$$

- This complex closes only up to dotted generators.
- One can easily find the full complex by writing an ansatz for all possible dotted corrections consistent with the equivariant and the Maslov degree and solve for $\delta^{2}=0$. One gets

- More importantly, one can assign the ϵ degree to all thimbles by knowing the degree of our strand-algebra generators.

3.11. Reduced homology

- To find the reduced homology, we need to intersect with the cap brane.
- One can see that the I_{i} brane stretched between the $(i-1)$ 'th and i 'th puncture has a one-dimensional intersection only with T_{i}, i.e. $\operatorname{Hom}\left(T_{i}, l_{j}\right)=\mathbb{C} \delta_{i, j}:$

- Intersecting with I_{2} thus picks all the T_{2} factors in our complex.
- In our example

and we indeed get a two-dimensional homology

$$
H^{4}=\mathbb{C}\{1\}, \quad H^{2}=\mathbb{C}\{-1\}
$$

with the Euler characteristic recovering the Jones polynomial

$$
\chi=(-1)^{4} q^{1}+(-1)^{2} q^{-1}=q+q^{-1}
$$

4. Multiple strands $n>1$

4.1. General stategy

- Working on symmetric products is much more challenging.

■ Intersection points become n-touples of points on the punctured surface and one has nontrivial disks such as

These are hard to count.

- We are going to solve the problem by

1 Taking a naive symmetric product of the individual complexes we found above.
2 Writing an ansatz for correction terms in the differential δ and solving for $\delta^{2}=0$. This step makes counting disks algebraic!

4.2. Strand algebra

- Thimbles are now symmetric products of thimbles T_{i} from before. For example, for $n=2$, we have a thimble

■ Morphisms are going to be represented by n strands. Note that we have multiple intersection points between each pair of thimbles and correspondingly, we have strands that do or do not cross. For example

- Analogously to the single-strand case, one can analyze Maslov-degree-zero disks and derive all the relations in the strand algebra.
- Disks now look more complicated such as the one in

- The full set of relations in the upstairs algebra consists of the above relations from the $n=1$ case together with

$$
\begin{aligned}
& ||X||=0 \\
& \|X||=\|+1=\|| \\
& |N|||=|N|=||| | \\
& |N| 1|+|N|=|||1|
\end{aligned}
$$

■ This defines the full KLRW algebra. [Webster (2015)]

4.3. Resolving individual cycles

- Recall that we can resolve individual cycles of

(up to dotted corrections) as

$$
\begin{aligned}
& T_{2} \xrightarrow{| || | \mid} T_{3}^{-} \stackrel{\||H|}{\leftrightarrows} T_{4} \stackrel{-|X| \mid}{\leftrightarrows} T_{2}^{-||H|} T_{4} \xrightarrow{\| \mid X} T_{5} \xrightarrow{-||H|}
\end{aligned}
$$

4.4. Taking naive product

- The naive symmetric product produces a grid of thimbles

- The crossing/straight strands can be identified directly from the picture

by identifying if the given morphism line crosses the second thimble as in

- One can collapse the above grid of maps into a standard complex of the form

and assign the ϵ grading to each of the thimble.
- The first two differentials are explicitly
and analogously for $d_{3}, d_{4}, d_{5}, d_{6}$.

4.5. Adding dots

- One can decorate the complex by adding dotted corrections:

4.6. Ansatz for corrected differential

■ To " count disks algebraically", let us write an asatz for correction terms in the differential by including all maps consistent with the Maslov and the ϵ grading and that do not contain any dots:

$$
\begin{aligned}
& d_{1}=\left(\begin{array}{c}
\|H\|_{\|} \\
-|I| X \\
-X_{1} \mid \| \\
\left\|X_{1}\right\|
\end{array}\right)
\end{aligned}
$$

4.7. Solving for $\delta^{2}=0$

$$
\begin{aligned}
& d_{1}=\left(\begin{array}{c}
-\mid X X \| \\
-\|| | X \\
-x \mid\| \| \\
\| \| x \mid
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& 0 x_{6} \text { Wh-\|then -y|l| } \\
& \text { and }
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow x_{4}=x_{8}=-1
\end{aligned}
$$

- The full solution reads

4.9. Intersecting with caps

- Intersecting with the cap brane I_{24} selects

- The resulting complex reads
- The homology is given by

$$
H^{0}=\mathbb{C}\{-1\}, \quad H^{2}=\mathbb{C}\{-3\} \oplus \mathbb{C}\{-2\}, \quad H^{4}=\mathbb{C}\{-4\}
$$

- One recovers the $\mathfrak{g l}(2)$ invariant (up to the overall factor) as the Euler characteristic

$$
\begin{aligned}
\chi & =(-1)^{0} q^{-4}+(-1)^{2}\left(q^{-3}+q^{-2}\right)+(-1)^{4} q^{-1} \\
& =q^{-5 / 2}\left(q^{3 / 2}+q^{1 / 2}+q^{-1 / 2}+q^{-3 / 2}\right)
\end{aligned}
$$

- We have checked the construction for all knots up to seven crossings! ... Using computer. . .

6. Topological invariance

6.1. Topological invariance

- To show topological invariance, one needs to check multiple moves [Bigelow (2002)].
- The following three

are obviously satisfied by construction.
- On the other hand, the other two moves are

and

- They translate into the equivalence of

and

- Both transitions are implied by a simpler move

6.2. Sketch of the proof

- To prove the equivalence, we can first resolve the branes L_{1} and L_{2} on each side in terms of complexes of thimbles.
■ Identify chain maps $f_{1}: L_{1} \rightarrow L_{2}$ and $f_{2}: L_{2} \rightarrow L_{1}$ so that both $f_{1} \circ f_{2}$ and $f_{2} \circ f_{1}$ are homotopic to the identity morphism.
- This can be shown by an explicit calculation.

6. Generalization to $\mathfrak{g l}(k \mid /)$

6.1. Target space

- For general $\mathfrak{g l}(k \mid /)$, the target space consists of $k+I-1$ copies of the above symmetric power

$$
X=\left(\operatorname{Sym}^{n} \Sigma\right)^{k+l-1}
$$

(one for each simple root).

- We are going to call each factor corresponding to the fermionic root fermionic.

6.2. Potential

- To find the potential, realize an existence of a two-parametric generalization of the Virasoro algebra $\mathcal{W}_{k \mid /}$ [Gaiotto-MR (2017)] that generalizes further the well-known \mathcal{W}_{k} algebra known e.g. from the AGT correspondence.
- Analogously to the Virasoro algebra \mathcal{W}_{2} above, one can write down conformal blocks with the insertion of fundamental and anti-fundamental vertex operators in the free-field realization [Prochazka-MR (2018)].
- The integrand can be again identified with $\Omega e^{\epsilon W}$ of our Landau-Ginsburg model that allows us to identify the Maslov and the equivariant degree. Note that in the free-field realization, we are required to introduce $k+I-1$ screening currents for each simple root.

6.2. Potential

■ Compared to the $\mathfrak{g l}(2)$ case, we need to distinguish the fundamental and the anti-fundamental representation (decoupling the diagonal $\mathfrak{g l}(1)$ factor, they were indistinguishable). We need n insertions of the fundamental and n insertions of the anti-fundamental field.

- Note that Ω can generally receive further contributions compared to the above if the integrand contains ϵ-independent factors.
- Note also the non-trivial duality

$$
k \leftrightarrow I \quad \epsilon \leftrightarrow-1-\epsilon
$$

This gives an alternative grading even in the $\mathfrak{g l}(2)$ story above.

6.3. Branes

- We are going exchange a single figure-eight by a bundle of figure-eights for each bosonic root and ovals for each fermionic root.
- For example, a cup in the $\mathfrak{g l}(2 \mid 1)$ invariant is going to be represented by

6.4. Strand algebra

- The strand algebra consists of strands of different colors.
- First, we need to distinguish fundamental and anti-fundamental punctures.
- Secondly, each strand is labelled by the corresponding simple root.
- Fermionic roots do not support any dots.
- Counting disks, one can easily derive relations in the strand algebra. They are analogous but more complicated to write down.
- From the potential, one can easily derive the Maslov and the equivariant degree.
- One substantial difference is that for $m \neq 0 \neq n$, there is a non-trivial differential Q turning the strand-algebra into a differential-graded-algebra.

6.5. Counting disks

- To count disks algebraicaly, one needs to first write the approximate differential δ_{0} analogously to the above. (There is one technical complication requiring us to remove some of the geometric maps.)
- For super-algebras, some of the geometric maps do not have Maslov degree one and we need to introduce twisted complexes with an approximate differential δ_{0}.
- To find the deformation $\delta=\delta_{0}+\delta_{1}$, we need to solve the Maurer-Cartan equation

$$
Q \delta+\delta^{2}=0
$$

7．Summary

$$
\text { 4ロ〉4司 } 1 \equiv \text { ミ }
$$

- We have developed a new algorithm for computing the Khovanov homology and the $\mathfrak{g l}(1 \mid 1)$ homology (aka Heegaard-Floer-knot homology).
- We have a proposal for invariants associated to any $\mathfrak{g l}(k \mid I)$ and more. More checks are being done.

[^0]: 4ロ4司〉4 三

