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1. Introduction



1.1. Polynomial invariants

We will be interested in a construction of various topological
invariants associated to links in R3, such as the Hopf link

that we are going to use for illustration purposes.

There exists a large zoo of polynomial invariants such as the
famous Jones polynomial [Jones (1985)]

χJones(q) = q + q−1.

Its rescaled version is the gl(2) invariant

χgl(2)(q) = (q
1
2 + q−

1
2 )χJones(q) = q3/2 + q1/2 + q−1/2 + q−3/2.

There also exist polynomial invariants associated to other Lie
(super) algebras, in particular the series gl(m|n).



1.2. Homological invariants

Polynomial invariants often admit categorification in terms of
homological invariants.

An example is the Khovanov homology [Khovanov (2000)]

KH = ⊕i ,jKH
i ,j ,

that is the homology of a complex

· · · → C 0,∗ → C 1,∗ → C 2,∗ → . . .

associated to a link.

The gl(2) invariant can be recovered as the Euler
characteristic of the complex:

χ(q) =
∑
i ,j

(−1)idim(KH i ,j)qj .

People have also constructed homological invariants associated
to gl(m) and gl(1|1) (aka Heegaard-Floer-knot homology).



For example, the complex for the Hopf link reads
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The homology is four-dimensional, concentrated at degrees
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2 = C.

We obviously recover the gl(2) invariant as

χ(q) = (−1)2q
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1.3. Physical/geometric origin

Polynomial invariants are known to originate from gl(m|n)
Chern-Simons theory in terms of the expectation value of line
operators [Witten (1989)].

But what is the physics behind homological invariants? Can
one reproduce the success of the Chern-Simons theory and
learn something new about them?

An attempt to find such a physical story was presented by
[Witten (2011)] and later developed by multiple other people
but its complicated nature does not allow any non-trivial
calculations.

Utilising various string-theory dualities and building up on the
insights from the work of [Ozscath-Szabo (2008), Auroux (2010),

Rasmussen (2003), Seidel-Smith (2008), Gaiotto-Moore-Witten

(2015), Webster (2015), . . . ], Mina Aganagic proposed a new
framework to compute the gl(2) invariant of links [Aganagic

(2020), (2021), (2022)].



1.4. Plan for today:

Review some aspects of the Aganagic’s proposal.

Turn it into a calculational tool by making the problem
algebraic. [Aganagic-LePage-MR (very soon)]

Sketch the proof of topological invariance.
[Aganagic-LePage-MR (very soon)]

Comment on the generalization to gl(m|n) homological
invariants. For gl(1|1), see [Aganagic-LePage-MR (very soon)]

and for gl(m|n), see [Aganagic-LePage-MR (soonish)].



2. Aganagic’s proposal



2.1. Overview

Aganagic proposes 4 physical pictures that lead to link
invariants. They are mutually related by mirror symmetry in a
combination with equivariant localization.

Today, we are going to be interested in one of the
constructions based on the Landau-Ginsburg model living on
the strip R× I with the target being an n’th symmetric power
of a punctured Riemann surface.

KH can be then identified with the space of supersymmetric
groundstates of this model for a particular choice of boundary
conditions on the two sides of I .

As promissed above, we are going to illustrate the whole
construction on the example of the Hopf link:



2.2. Stretching the knot

Let us start with a knot in R3, stretch it along one direction as

and cut it into three pieces as show in the figure.



2.3. What target?

The middle slice of

has the geometry of C× I with knot bits inserted along I and
placed at fixed positions z1, . . . z2n ∈ C. Let us denote the
resulting punctured plane by Σ.

The desired target space is then X = Symn Σ and in our
Hopf-link example, the second symmetric power of a
four-punctured plane.



2.3. What potential?

The potential W (x1, . . . , xn) is a function on Symn Σ and a
natural source of such functions associated to Lie algebras are
conformal blocks.

For example, conformal blocks of the Virasoro algebra W2 on
a plane with an insertion of 2n vertex operators in the
fundamental representation at zi can be written as∮

C
dx1 . . . dxn

∏
i<j

(zi − zj)
−ϵ

∏
i ̸=j

(xi − xj)
−ϵ

∏
i ,j

(xi − zj)
ϵ

where different choices of the contour C parametrize different
conformal blocks. [Dotsenko-Fateev (1984), Felder (1989)]



The desired potential W encoding the equivariant grading
together with the holomorphic form Ω encoding the Maslov
grading can be read off from the integrand of the above
expression by

ΩeϵW = dx1 . . . dxn
∏
i ̸=j

(xi − xj)
−ϵ

∏
i ,j

(xi − zj)
ϵ

where z1, . . . , z2n are positions of our knot strands and
x1, . . . , xn are coordinates on SymnΣ. We have also dropped
xi -independent terms since they only contribute by a constant
shift to the potential.

Concretely, we have

Ω = dx1 . . . dxn, W = −
∑
i ̸=j

log(xi − xj) +
∑
i ,j

log(xi − zj)

The choice of the contour C is going to be related to the
choice of boundary conditions for our model as we are going
to see next.



2.4. Caps

We have associated the Landau-Ginsburg model on I × R to
the middle slice. From the perspective of this middle part, the
other two slices specify a boundary condition on the two sides
of the interval I .

To a collection of caps, we associate a Lagrangian that is a
symmetric product of lines in Σ stretched between two
punctures joined by an arch.

In our example



2.4. Cups

If the knot strands on the other side had been simple cups,
the Lagrangians would have been symmetric products of
figure eights:

But since they are more complicated, we need to braid them



2.5. Intersection points

Desired homological invariants arise from counting
intersection points between the cap Lagrangian L1 and the
braided cup Lagrangian L2 in our Landau-Ginsburg model.

The analogue of the Khovanov’s homological degree is the
standard Maslov degree encoded by Ω. The analogue of the ϵ
degree is the equivariant degree encoded by W . These come
from the lift of the phase of ΩeϵW into a single-valued
function on L1 and L2.

Can we find an algorithm to find these intersection points in
possibly complicated configurations?

We are going to find a solution to this problem by making the
problem algebraic.



3. Single strand n = 1



3.1. The boring unknot

At first sight, the configuration containing a single pair of
punctures seems boring since

corresponding to the unknot would be the only configuration
one can engineer.



3.2. Reduced homology

Luckily, it turns out that cutting one of the strands such as in

leads to the reduced-homology invariant categorifying

χJones(q) =
χgl(2)(q)

q1/2 + q−1/2
.

Using this proposal, finding reduced homology for any rational
knot (those coming from capping a braid of four strands)
becomes almost trivial.



3.3. Intersection points

In this simple example, we can immediately see that there are
two intersection points and there is no disk not intersecting
with a puncture that could possibly lead to a non-trivial
differential:

Identifying degrees of the punctured disk allows us to identify
their relative Maslov and equivariant degrees and then recover
the Jones polynomial q + q−1.

Counting disks in more complicated setups (more involved
braiding and multiple strands) becomes a rather involved
problem, so we will now develop an algebraic approach.



3.4. Thimbles

Each brane in our category of branes can be represented in
terms of a complex of a special set of (thimble) branes Ti

generating our brane category (projective generators).

Thimbles Ti are branes supported along straight lines in
between punctures such as the five thimbles in



3.5. Morphisms between thimbles

Morphisms between branes are in correspondence with their
intersection points.

Naively, thimbles do not intersect but deforming one of the
branes (tilting in our picture), one can identify non-trivial
morphisms. In particular, we find one morphism Ti → Tj for
each pair Ti ,Tj :

We are going to use a strand notation for the morphisms.



3.6. Adding dots and the KLRW algebra

Branes in Landau-Ginsburg models can generally carry more
structure since they can support a nontrivial flat vector
bundle. To get the desired invariant, we need to introduce
such a modification resulting into the algebra of strands
decorated by dots

This algebra is known as the KLRW algebra [Webster (2019),

Aganagic-Danilenko-Li-Zhou (in progress)] and was previously
studied from a dual B-model perspective.



3.7. Composing morphisms

The algebra structure can be determined by identifying disks.

For example, let us start with T2 → T3:

and compose with T3 → T4:



The existence of the Maslov-degree-zero disk

tells us that the composition is non-trivial and allows us to
identify the product in terms of the morphism associated with
the blue intersection point.

The resulting algebra is given by composition of strands
together with relation

when the two strands go in opposite directions [Webster

(2022), Aganagic-Danilenko-Peng (in progress)].



3.8. Grading

Looking at the potential and identifying the ϵ degree of
various disks, one can show that assigning degrees

gives a consistent grading on the strand algebra.



3.9. Resolving brane

We have found that the algebra of Hom(T ,T ) for T =
⊕

i Ti

admits a nice description in terms of the above strand algebra.
We are now going to use T to describe a Lagrangian L in
terms of a complex of thimbles Ti .

First, one can construct a module for the strand algebra
Hom(T ,T ) by intersecting the Lagrangian L with T , i.e.
identifying Hom(T , L).

Secondly, finding a projective resolution of such a module
yields the desired complex of thimbles.

This is a rather non-trivial construction and we are going to
find an alternative proposal.



3.10. Resolving brane - an alternative proposal

We would like to represent the brane of interest as a complex
of thimbles Ti with the differential given by a collection of
strand-algebra elements.

It turns out that in the simple example of a single strand, we
can read off the complex almost completely directly from the
geometry!

This is rather surprising since finding a projective resolution
explicitly is usually a rather challenging task.

In the first step, let us stretch our cycle into vertical bits
resembling thimbles and horisontal bits corresponding to maps
between them:



Using the stretched representation of the cycle

one can read off directly:

Colapsing the above into a standard complex produces



This complex closes only up to dotted generators.

One can easily find the full complex by writing an ansatz for
all possible dotted corrections consistent with the equivariant
and the Maslov degree and solve for δ2 = 0. One gets

More importantly, one can assign the ϵ degree to all thimbles
by knowing the degree of our strand-algebra generators.



3.11. Reduced homology

To find the reduced homology, we need to intersect with the
cap brane.

One can see that the Ii brane stretched between the (i − 1)’th
and i ’th puncture has a one-dimensional intersection only with
Ti , i.e. Hom(Ti , Ij) = Cδi ,j :

Intersecting with I2 thus picks all the T2 factors in our
complex.



In our example

and we indeed get a two-dimensional homology

H4 = C{1}, H2 = C{−1}

with the Euler characteristic recovering the Jones polynomial

χ = (−1)4q1 + (−1)2q−1 = q + q−1



4. Multiple strands n > 1



4.1. General stategy

Working on symmetric products is much more challenging.

Intersection points become n-touples of points on the
punctured surface and one has nontrivial disks such as

These are hard to count.

We are going to solve the problem by

1 Taking a naive symmetric product of the individual complexes
we found above.

2 Writing an ansatz for correction terms in the differential δ and
solving for δ2 = 0. This step makes counting disks algebraic!



4.2. Strand algebra

Thimbles are now symmetric products of thimbles Ti from
before. For example, for n = 2, we have a thimble



Morphisms are going to be represented by n strands. Note
that we have multiple intersection points between each pair of
thimbles and correspondingly, we have strands that do or do
not cross. For example



Analogously to the single-strand case, one can analyze
Maslov-degree-zero disks and derive all the relations in the
strand algebra.

Disks now look more complicated such as the one in



The full set of relations in the upstairs algebra consists of the
above relations from the n = 1 case together with

This defines the full KLRW algebra. [Webster (2015)]



4.3. Resolving individual cycles

Recall that we can resolve individual cycles of

(up to dotted corrections) as



4.4. Taking naive product

The naive symmetric product produces a grid of thimbles



The crossing/straight strands can be identified directly from
the picture

by identifying if the given morphism line crosses the second
thimble as in



One can collapse the above grid of maps into a standard
complex of the form

and assign the ϵ grading to each of the thimble.



The first two differentials are explicitly

and analogously for d3, d4, d5, d6.



4.5. Adding dots

One can decorate the complex by adding dotted corrections:



4.6. Ansatz for corrected differential

To ”count disks algebraically”, let us write an asatz for
correction terms in the differential by including all maps
consistent with the Maslov and the ϵ grading and that do not
contain any dots:



4.7. Solving for δ2=0



The full solution reads



4.9. Intersecting with caps

Intersecting with the cap brane I24 selects



The resulting complex reads

The homology is given by

H0 = C{−1}, H2 = C{−3} ⊕ C{−2}, H4 = C{−4}

One recovers the gl(2) invariant (up to the overall factor) as
the Euler characteristic

χ = (−1)0q−4 + (−1)2(q−3 + q−2) + (−1)4q−1

= q−5/2(q3/2 + q1/2 + q−1/2 + q−3/2)

We have checked the construction for all knots up to seven
crossings! . . . Using computer. . .



6. Topological invariance



6.1. Topological invariance

To show topological invariance, one needs to check multiple
moves [Bigelow (2002)].

The following three

are obviously satisfied by construction.



On the other hand, the other two moves are

and



They translate into the equivalence of

and

Both transitions are implied by a simpler move



6.2. Sketch of the proof

To prove the equivalence, we can first resolve the branes L1
and L2 on each side in terms of complexes of thimbles.

Identify chain maps f1 : L1 → L2 and f2 : L2 → L1 so that
both f1 ◦ f2 and f2 ◦ f1 are homotopic to the identity morphism.

This can be shown by an explicit calculation.



6. Generalization to gl(k|l)



6.1. Target space

For general gl(k|l), the target space consists of k + l − 1
copies of the above symmetric power

X = (SymnΣ)k+l−1

(one for each simple root).

We are going to call each factor corresponding to the
fermionic root fermionic.



6.2. Potential

To find the potential, realize an existence of a two-parametric
generalization of the Virasoro algebra Wk|l [Gaiotto-MR
(2017)] that generalizes further the well-known Wk algebra
known e.g. from the AGT correspondence.

Analogously to the Virasoro algebra W2 above, one can write
down conformal blocks with the insertion of fundamental and
anti-fundamental vertex operators in the free-field realization
[Prochazka-MR (2018)].

The integrand can be again identified with ΩeϵW of our
Landau-Ginsburg model that allows us to identify the Maslov
and the equivariant degree. Note that in the free-field
realization, we are required to introduce k + l − 1 screening
currents for each simple root.



6.2. Potential

Compared to the gl(2) case, we need to distinguish the
fundamental and the anti-fundamental representation
(decoupling the diagonal gl(1) factor, they were
indistinguishable). We need n insertions of the fundamental
and n insertions of the anti-fundamental field.

Note that Ω can generally receive further contributions
compared to the above if the integrand contains
ϵ-independent factors.

Note also the non-trivial duality

k ↔ l ϵ ↔ −1− ϵ

This gives an alternative grading even in the gl(2) story above.



6.3. Branes

We are going exchange a single figure-eight by a bundle of
figure-eights for each bosonic root and ovals for each
fermionic root.

For example, a cup in the gl(2|1) invariant is going to be
represented by



6.4. Strand algebra

The strand algebra consists of strands of different colors.

First, we need to distinguish fundamental and
anti-fundamental punctures.

Secondly, each strand is labelled by the corresponding simple
root.

Fermionic roots do not support any dots.

Counting disks, one can easily derive relations in the strand
algebra. They are analogous but more complicated to write
down.

From the potential, one can easily derive the Maslov and the
equivariant degree.

One substantial difference is that for m ̸= 0 ̸= n, there is a
non-trivial differential Q turning the strand-algebra into a
differential-graded-algebra.



6.5. Counting disks

To count disks algebraicaly, one needs to first write the
approximate differential δ0 analogously to the above. (There
is one technical complication requiring us to remove some of
the geometric maps.)

For super-algebras, some of the geometric maps do not have
Maslov degree one and we need to introduce twisted
complexes with an approximate differential δ0.

To find the deformation δ = δ0 + δ1, we need to solve the
Maurer-Cartan equation

Qδ + δ2 = 0



7. Summary



We have developed a new algorithm for computing the
Khovanov homology and the gl(1|1) homology (aka
Heegaard-Floer-knot homology).

We have a proposal for invariants associated to any gl(k |l)
and more. More checks are being done.


