Quantum Supergroups Extending $\bar{U}_{i}^{H}(\mathfrak{s l}(2))$ (in progress with T. Creutzig and T. Dimofte)

Wenjun Niu

Department of Mathematics/QMAP
UC Davis
January 30, 2023

Outline

(1) Review of boundary vertex operator algebras of $3 \mathrm{~d} \mathcal{N}=4$ abelian gauge theories.
(2) Review of simple current extension of VOAs.
(3) Extending unrolled restricted quantum group $\bar{U}_{i}^{H}(\mathfrak{s l}(2))$.
(9) Koszul dualities of quantum groups.

Boudary VOA of $3 \mathrm{~d} \mathcal{N}=4$ abelian gauge theories

Boudary VOA of $3 \mathrm{~d} \mathcal{N}=4$ abelian gauge theories

- Gauge group $U(1)^{r}$, complex representation $V=\mathbb{C}^{n}$ defined by a charge matrix $\rho: \mathbb{Z}^{r} \rightarrow \mathbb{Z}^{n}$, assume to be a faithful representation.

Boudary VOA of $3 \mathrm{~d} \mathcal{N}=4$ abelian gauge theories

- Gauge group $U(1)^{r}$, complex representation $V=\mathbb{C}^{n}$ defined by a charge matrix $\rho: \mathbb{Z}^{r} \rightarrow \mathbb{Z}^{n}$, assume to be a faithful representation. $\Rightarrow 3 \mathrm{~d} \mathcal{N}=4$ gauge theory \mathcal{T}_{ρ}

Boudary VOA of $3 \mathrm{~d} \mathcal{N}=4$ abelian gauge theories

- Gauge group $U(1)^{r}$, complex representation $V=\mathbb{C}^{n}$ defined by a charge matrix $\rho: \mathbb{Z}^{r} \rightarrow \mathbb{Z}^{n}$, assume to be a faithful representation. $\Rightarrow 3 \mathrm{~d} \mathcal{N}=4$ gauge theory \mathcal{T}_{ρ}
- Has topological twists: A twist and B twist.

Boudary VOA of $3 \mathrm{~d} \mathcal{N}=4$ abelian gauge theories

- Gauge group $U(1)^{r}$, complex representation $V=\mathbb{C}^{n}$ defined by a charge matrix $\rho: \mathbb{Z}^{r} \rightarrow \mathbb{Z}^{n}$, assume to be a faithful representation. $\Rightarrow 3 \mathrm{~d} \mathcal{N}=4$ gauge theory \mathcal{T}_{ρ}
- Has topological twists: A twist and B twist. $\Rightarrow \mathcal{T}_{A, \rho}$ and $\mathcal{T}_{B, \rho}$.

Boudary VOA of $3 \mathrm{~d} \mathcal{N}=4$ abelian gauge theories

- Gauge group $U(1)^{r}$, complex representation $V=\mathbb{C}^{n}$ defined by a charge matrix $\rho: \mathbb{Z}^{r} \rightarrow \mathbb{Z}^{n}$, assume to be a faithful representation. $\Rightarrow 3 \mathrm{~d} \mathcal{N}=4$ gauge theory \mathcal{T}_{ρ}
- Has topological twists: A twist and B twist. $\Rightarrow \mathcal{T}_{A, \rho}$ and $\mathcal{T}_{B, \rho}$.
- Costello-Gaiotto: twisted theories admit holomorphic boundary conditions.

Boudary VOA of $3 \mathrm{~d} \mathcal{N}=4$ abelian gauge theories

- Gauge group $U(1)^{r}$, complex representation $V=\mathbb{C}^{n}$ defined by a charge matrix $\rho: \mathbb{Z}^{r} \rightarrow \mathbb{Z}^{n}$, assume to be a faithful representation. $\Rightarrow 3 \mathrm{~d} \mathcal{N}=4$ gauge theory \mathcal{T}_{ρ}
- Has topological twists: A twist and B twist. $\Rightarrow \mathcal{T}_{A, \rho}$ and $\mathcal{T}_{B, \rho}$.
- Costello-Gaiotto: twisted theories admit holomorphic boundary conditions. \Rightarrow boundary vertex operator algebras (VOA).

Boudary VOA of $3 \mathrm{~d} \mathcal{N}=4$ abelian gauge theories

- Gauge group $U(1)^{r}$, complex representation $V=\mathbb{C}^{n}$ defined by a charge matrix $\rho: \mathbb{Z}^{r} \rightarrow \mathbb{Z}^{n}$, assume to be a faithful representation. $\Rightarrow 3 \mathrm{~d} \mathcal{N}=4$ gauge theory \mathcal{T}_{ρ}
- Has topological twists: A twist and B twist. $\Rightarrow \mathcal{T}_{A, \rho}$ and $\mathcal{T}_{B, \rho}$.
- Costello-Gaiotto: twisted theories admit holomorphic boundary conditions. \Rightarrow boundary vertex operator algebras (VOA). Neumann type boundary condition for A twist and Dirichlet type for B twist.

Boudary VOA of $3 \mathrm{~d} \mathcal{N}=4$ abelian gauge theories

- Gauge group $U(1)^{r}$, complex representation $V=\mathbb{C}^{n}$ defined by a charge matrix $\rho: \mathbb{Z}^{r} \rightarrow \mathbb{Z}^{n}$, assume to be a faithful representation. $\Rightarrow 3 \mathrm{~d} \mathcal{N}=4$ gauge theory \mathcal{T}_{ρ}
- Has topological twists: A twist and B twist. $\Rightarrow \mathcal{T}_{A, \rho}$ and $\mathcal{T}_{B, \rho}$.
- Costello-Gaiotto: twisted theories admit holomorphic boundary conditions. \Rightarrow boundary vertex operator algebras (VOA). Neumann type boundary condition for A twist and Dirichlet type for B twist.
- Costello-Creutzig-Gaiotto: obtain Higgs and Coulomb branch algebra from the boundary VOA.

Boudary VOA of $3 \mathrm{~d} \mathcal{N}=4$ abelian gauge theories

- Gauge group $U(1)^{r}$, complex representation $V=\mathbb{C}^{n}$ defined by a charge matrix $\rho: \mathbb{Z}^{r} \rightarrow \mathbb{Z}^{n}$, assume to be a faithful representation. $\Rightarrow 3 \mathrm{~d} \mathcal{N}=4$ gauge theory \mathcal{T}_{ρ}
- Has topological twists: A twist and B twist. $\Rightarrow \mathcal{T}_{A, \rho}$ and $\mathcal{T}_{B, \rho}$.
- Costello-Gaiotto: twisted theories admit holomorphic boundary conditions. \Rightarrow boundary vertex operator algebras (VOA). Neumann type boundary condition for A twist and Dirichlet type for B twist.
- Costello-Creutzig-Gaiotto: obtain Higgs and Coulomb branch algebra from the boundary VOA.
- Not a complete analysis. A side, requires a computation of BRST cohomology. B side, needs to include monopole operators. Both sides, need to define a braided tensor category carefully.

B side VOA

B side VOA

- The B side VOA $V_{B, \rho}$ is an extension of an affine Lie superalgebra $V\left(\mathfrak{g}_{*}(\rho)\right)$:

$$
\mathfrak{g}_{*}(\rho)=\left(T^{*} \mathfrak{g}\right)_{\text {even }} \oplus\left(T^{*} V\right)_{\text {odd }} \ni\left(N_{a}, E^{a}, \psi^{i, \pm}\right)
$$

B side VOA

- The B side VOA $V_{B, \rho}$ is an extension of an affine Lie superalgebra $V\left(\mathfrak{g}_{*}(\rho)\right)$:

$$
\mathfrak{g}_{*}(\rho)=\left(T^{*} \mathfrak{g}\right)_{\text {even }} \oplus\left(T^{*} V\right)_{\text {odd }} \ni\left(N_{a}, E^{a}, \psi^{i, \pm}\right)
$$

- Commutation relation:

$$
\left[N_{a}, \psi^{i, \pm}\right]= \pm \rho_{a}^{i} \psi^{i, \pm},\left\{\psi^{i,+}, \psi^{i,-}\right\}=\sum_{a} \rho^{i}{ }_{a} E^{a}
$$

B side VOA

- The B side VOA $V_{B, \rho}$ is an extension of an affine Lie superalgebra $V\left(\mathfrak{g}_{*}(\rho)\right)$:

$$
\mathfrak{g}_{*}(\rho)=\left(T^{*} \mathfrak{g}\right)_{\text {even }} \oplus\left(T^{*} V\right)_{\text {odd }} \ni\left(N_{a}, E^{a}, \psi^{i, \pm}\right)
$$

- Commutation relation:

$$
\left[N_{a}, \psi^{i, \pm}\right]= \pm \rho_{a}^{i} \psi^{i, \pm},\left\{\psi^{i,+}, \psi^{i,-}\right\}=\sum_{a} \rho^{i}{ }_{a} E^{a}
$$

- Bilinear form (Garner):

$$
\kappa\left(N_{a}, N_{b}\right)=\sum \rho^{i}{ }_{a} \rho_{i b}, \kappa\left(N_{a}, E_{b}\right)=\delta_{a b}, \kappa\left(\psi_{i}^{+}, \psi_{j}^{-}\right)=\delta_{i j} .
$$

B side VOA

- The B side VOA $V_{B, \rho}$ is an extension of an affine Lie superalgebra $V\left(\mathfrak{g}_{*}(\rho)\right)$:

$$
\mathfrak{g}_{*}(\rho)=\left(T^{*} \mathfrak{g}\right)_{\text {even }} \oplus\left(T^{*} V\right)_{\text {odd }} \ni\left(N_{a}, E^{a}, \psi^{i, \pm}\right)
$$

- Commutation relation:

$$
\left[N_{a}, \psi^{i, \pm}\right]= \pm \rho_{a}^{i} \psi^{i, \pm},\left\{\psi^{i,+}, \psi^{i,-}\right\}=\sum_{a} \rho^{i}{ }_{a} E^{a}
$$

- Bilinear form (Garner):

$$
\kappa\left(N_{a}, N_{b}\right)=\sum \rho^{i}{ }_{a} \rho_{i b}, \kappa\left(N_{a}, E_{b}\right)=\delta_{a b}, \kappa\left(\psi_{i}^{+}, \psi_{j}^{-}\right)=\delta_{i j} .
$$

- Ballin-Creutzig-Dimofte-N (to appear): monopole operators corresponds to:

$$
\exp \left(\int \sum m^{a} N_{a}\right)
$$

B side VOA

B side VOA

- More precisely, there are automorphisms σ_{b} :

$$
\begin{gathered}
\sigma_{b}\left(N_{a}(z)\right)=N_{a}(z)+\frac{\sum \rho^{i}{ }_{a} \rho_{i b}}{z}, \sigma_{b}\left(E_{a}(z)\right)=E_{a}(z)+\frac{\delta_{a b}}{z}, \\
\sigma_{b}\left(\psi^{i, \pm}(z)\right)=z^{ \pm \rho^{i}{ }_{b}} \psi^{i, \pm}(z)
\end{gathered}
$$

B side VOA

- More precisely, there are automorphisms σ_{b} :

$$
\begin{gathered}
\sigma_{b}\left(N_{a}(z)\right)=N_{a}(z)+\frac{\sum \rho^{i}{ }_{a} \rho_{i b}}{z}, \sigma_{b}\left(E_{a}(z)\right)=E_{a}(z)+\frac{\delta_{a b}}{z}, \\
\sigma_{b}\left(\psi^{i, \pm}(z)\right)=z^{ \pm \rho^{i}{ }_{b}} \psi^{i, \pm}(z)
\end{gathered}
$$

- We use this to twist the vacuum module to get simple modules:

$$
V_{\left\{m^{a}\right\}}:=\left(\prod_{a} \sigma_{a}^{m^{a}}\right) V\left(\mathfrak{g}_{*}(\rho)\right)
$$

B side VOA

- More precisely, there are automorphisms σ_{b} :

$$
\begin{gathered}
\sigma_{b}\left(N_{a}(z)\right)=N_{a}(z)+\frac{\sum \rho^{i}{ }_{a} \rho_{i b}}{z}, \sigma_{b}\left(E_{a}(z)\right)=E_{a}(z)+\frac{\delta_{a b}}{z}, \\
\sigma_{b}\left(\psi^{i, \pm}(z)\right)=z^{ \pm \rho^{i}{ }_{b}} \psi^{i, \pm}(z)
\end{gathered}
$$

- We use this to twist the vacuum module to get simple modules:

$$
V_{\left\{m^{a}\right\}}:=\left(\prod_{a} \sigma_{a}^{m^{a}}\right) V\left(\mathfrak{g}_{*}(\rho)\right)
$$

- The direct sum:

$$
\bigoplus V_{\left\{m^{a}\right\}}
$$

has a VOA structure and is identified as $V_{B, \rho}$.

Simple current extensions

Simple current extensions

- Directly dealing with the VOA $V_{B, \rho}$ and its modules is hard, because of lack of boundedness in conformal degrees.

Simple current extensions

- Directly dealing with the VOA $V_{B, \rho}$ and its modules is hard, because of lack of boundedness in conformal degrees. Alternatively, use the relation between $V_{B, \rho}$ and $V\left(\mathfrak{g}_{*}(\rho)\right)$.

Simple current extensions

- Directly dealing with the VOA $V_{B, \rho}$ and its modules is hard, because of lack of boundedness in conformal degrees. Alternatively, use the relation between $V_{B, \rho}$ and $V\left(\mathfrak{g}_{*}(\rho)\right)$.
- The VOA $V\left(\mathfrak{g}_{*}(\rho)\right)$ has a Kazhdan-Lusztig category $K L_{\rho}$, that is BTC.

Simple current extensions

- Directly dealing with the VOA $V_{B, \rho}$ and its modules is hard, because of lack of boundedness in conformal degrees. Alternatively, use the relation between $V_{B, \rho}$ and $V\left(\mathfrak{g}_{*}(\rho)\right)$.
- The VOA $V\left(\mathfrak{g}_{*}(\rho)\right)$ has a Kazhdan-Lusztig category $K L_{\rho}$, that is BTC.
- Fusion rule of $V_{\left\{m^{a}\right\}}$:

$$
V_{\left\{m^{a}\right\}} \times V_{\left\{n^{a}\right\}} \cong V_{\left\{m^{a}+n^{a}\right\}}
$$

Simple current extensions

- Directly dealing with the VOA $V_{B, \rho}$ and its modules is hard, because of lack of boundedness in conformal degrees. Alternatively, use the relation between $V_{B, \rho}$ and $V\left(\mathfrak{g}_{*}(\rho)\right)$.
- The VOA $V\left(\mathfrak{g}_{*}(\rho)\right)$ has a Kazhdan-Lusztig category $K L_{\rho}$, that is BTC.
- Fusion rule of $V_{\left\{m^{a}\right\}}$:

$$
V_{\left\{m^{a}\right\}} \times V_{\left\{n^{a}\right\}} \cong V_{\left\{m^{a}+n^{a}\right\}}
$$

- The isomorphism above is an intertwining operator of $V\left(\mathfrak{g}_{*}(\rho)\right)$ modules, which is also the vertex operator of $V_{B, \rho}$. Denote this by $\mathcal{Y}_{\left\{m^{a}\right\},\left\{n^{a}\right\}}$.

Simple current extensions

- Directly dealing with the VOA $V_{B, \rho}$ and its modules is hard, because of lack of boundedness in conformal degrees. Alternatively, use the relation between $V_{B, \rho}$ and $V\left(\mathfrak{g}_{*}(\rho)\right)$.
- The VOA $V\left(\mathfrak{g}_{*}(\rho)\right)$ has a Kazhdan-Lusztig category $K L_{\rho}$, that is BTC.
- Fusion rule of $V_{\left\{m^{a}\right\}}$:

$$
V_{\left\{m^{a}\right\}} \times V_{\left\{n^{a}\right\}} \cong V_{\left\{m^{a}+n^{a}\right\}}
$$

- The isomorphism above is an intertwining operator of $V\left(\mathfrak{g}_{*}(\rho)\right)$ modules, which is also the vertex operator of $V_{B, \rho}$. Denote this by $\mathcal{Y}_{\left\{m^{a}\right\},\left\{n^{a}\right\}}$.
- Locality is equivalent to the super-commutativity relation:

$$
\mathcal{Y}_{\left\{n^{a}\right\},\left\{m^{a}\right\}}= \pm \mathcal{Y}_{\left\{m^{a}\right\},\left\{n^{a}\right\}} \circ R
$$

Simple current extensions

- Directly dealing with the VOA $V_{B, \rho}$ and its modules is hard, because of lack of boundedness in conformal degrees. Alternatively, use the relation between $V_{B, \rho}$ and $V\left(\mathfrak{g}_{*}(\rho)\right)$.
- The VOA $V\left(\mathfrak{g}_{*}(\rho)\right)$ has a Kazhdan-Lusztig category $K L_{\rho}$, that is BTC.
- Fusion rule of $V_{\left\{m^{a}\right\}}$:

$$
V_{\left\{m^{a}\right\}} \times V_{\left\{n^{a}\right\}} \cong V_{\left\{m^{a}+n^{a}\right\}}
$$

- The isomorphism above is an intertwining operator of $V\left(\mathfrak{g}_{*}(\rho)\right)$ modules, which is also the vertex operator of $V_{B, \rho}$. Denote this by $\mathcal{Y}_{\left\{m^{a}\right\},\left\{n^{a}\right\}}$.
- Locality is equivalent to the super-commutativity relation:

$$
\mathcal{Y}_{\left\{n^{a}\right\},\left\{m^{a}\right\}}= \pm \mathcal{Y}_{\left\{m^{a}\right\},\left\{n^{a}\right\}} \circ R
$$

- Modules $V_{\left\{m^{a}\right\}}$ are called simple currents and $V_{B, \rho}$ is a simple current extension of $V\left(\mathfrak{g}_{*}(\rho)\right)$.

Simple current extensions and modules

Simple current extensions and modules

- A simple current extension then is a commutative superalgebra object in the category of $V\left(\mathfrak{g}_{*}(\rho)\right)$ modules that is a direct sum of simple modules.

Simple current extensions and modules

- A simple current extension then is a commutative superalgebra object in the category of $V\left(\mathfrak{g}_{*}(\rho)\right)$ modules that is a direct sum of simple modules.
- One can obtain modules of $V_{B, \rho}$ by starting with a module of $V\left(\mathfrak{g}_{*}(\rho)\right)$, say M, and tensor with $V_{\left\{m^{a}\right\}}$:

$$
\bigoplus V_{\left\{m^{a}\right\}} \times M
$$

Simple current extensions and modules

- A simple current extension then is a commutative superalgebra object in the category of $V\left(\mathfrak{g}_{*}(\rho)\right)$ modules that is a direct sum of simple modules.
- One can obtain modules of $V_{B, \rho}$ by starting with a module of $V\left(\mathfrak{g}_{*}(\rho)\right)$, say M, and tensor with $V_{\left\{m^{a}\right\}}$:

$$
\bigoplus V_{\left\{m^{a}\right\}} \times M
$$

- In general, the action is given by logarithmic intertwiners. For a VOA module, we would like integer moding. This leads to locality condition $R^{2}=\mathrm{Id}$:

$$
V_{\left\{m^{a}\right\}} \times M \longrightarrow M \times V_{\left\{m^{a}\right\}} \longrightarrow V_{\left\{m^{a}\right\}} \times M
$$

Simple current extensions and modules

- This idea was rigorously formulated by Creutzig-Kanade-McRae: if $V \rightarrow W$ is a simple current extension, then there is a tensor functor:

$$
\mathcal{L}: V-\operatorname{Mod}_{l o c} \rightarrow W-\operatorname{Mod}
$$

that preserves composition series.

Simple current extensions and modules

- This idea was rigorously formulated by Creutzig-Kanade-McRae: if $V \rightarrow W$ is a simple current extension, then there is a tensor functor:

$$
\mathcal{L}: V-\operatorname{Mod}_{l o c} \rightarrow W-\operatorname{Mod}
$$

that preserves composition series.

- If we know that V has a good braided tensor category \mathcal{C} and W is an object in \mathcal{C}, then we immediately get a good braided tensor category for W, which is the image of \mathcal{L}.

Simple current extensions and modules

- This idea was rigorously formulated by Creutzig-Kanade-McRae: if $V \rightarrow W$ is a simple current extension, then there is a tensor functor:

$$
\mathcal{L}: V-\operatorname{Mod}_{l o c} \rightarrow W-\operatorname{Mod}
$$

that preserves composition series.

- If we know that V has a good braided tensor category \mathcal{C} and W is an object in \mathcal{C}, then we immediately get a good braided tensor category for W, which is the image of \mathcal{L}.
- We applied this to $V_{B, \rho}$ since $V\left(\mathfrak{g}_{*}(\rho)\right)$ has a Kazhdan-Lusztig category $K L_{\rho}$. The category of line operators for the B twist is defined as $\mathcal{L}\left(K L_{\rho, l o c}\right)$.

Simple current extensions and modules

- This idea was rigorously formulated by Creutzig-Kanade-McRae: if $V \rightarrow W$ is a simple current extension, then there is a tensor functor:

$$
\mathcal{L}: V-\operatorname{Mod}_{l o c} \rightarrow W-\operatorname{Mod}
$$

that preserves composition series.

- If we know that V has a good braided tensor category \mathcal{C} and W is an object in \mathcal{C}, then we immediately get a good braided tensor category for W, which is the image of \mathcal{L}.
- We applied this to $V_{B, \rho}$ since $V\left(\mathfrak{g}_{*}(\rho)\right)$ has a Kazhdan-Lusztig category $K L_{\rho}$. The category of line operators for the B twist is defined as $\mathcal{L}\left(K L_{\rho, l o c}\right)$.
- \mathcal{L} identifies a module M with $\sigma_{b} M$.

Applications to quantum groups

Applications to quantum groups

- We can apply this procedure to quantum groups: leads to quantum group analog of $V_{B, \rho}$.

Applications to quantum groups

- We can apply this procedure to quantum groups: leads to quantum group analog of $V_{B, \rho}$.
- Idea: $V\left(\mathfrak{g}_{*}(\rho)\right)$, and consequently $V_{B, \rho}$, are simple current extensions of copies of $M(2)$ and Heisenberg VOAs (free-field realizations).

Applications to quantum groups

- We can apply this procedure to quantum groups: leads to quantum group analog of $V_{B, \rho}$.
- Idea: $V\left(\mathfrak{g}_{*}(\rho)\right)$, and consequently $V_{B, \rho}$, are simple current extensions of copies of $M(2)$ and Heisenberg VOAs (free-field realizations).
- The quantum group corresponding to $M(2)$ was long conjectured to be $\bar{U}_{i}^{H}(\mathfrak{s l}(2))$ (Flohr, Creutzig-Milas, etc), and quantum group analog of Heisenberg VOAs are simple commutative algebras.

Applications to quantum groups

- We can apply this procedure to quantum groups: leads to quantum group analog of $V_{B, \rho}$.
- Idea: $V\left(\mathfrak{g}_{*}(\rho)\right)$, and consequently $V_{B, \rho}$, are simple current extensions of copies of $M(2)$ and Heisenberg VOAs (free-field realizations).
- The quantum group corresponding to $M(2)$ was long conjectured to be $\bar{U}_{i}^{H}(\mathfrak{s l}(2))$ (Flohr, Creutzig-Milas, etc), and quantum group analog of Heisenberg VOAs are simple commutative algebras.
- Creutzig-Rupert: simple current extension for quantum groups leads to quotients of uprolled quantum groups.

The unrolled-restricted $\bar{U}_{i}^{H}(\mathfrak{s l}(2))$

The unrolled-restricted $\bar{U}_{i}^{H}(\mathfrak{s l}(2))$

- The algebra $\bar{U}_{i}^{H}(\mathfrak{s l}(2))$ is generated by $E, F, H, K^{ \pm}$with relation:

$$
[H, E]=2 E,[H, F]=-2 F,[E, F]=\frac{K-K^{-1}}{2 i}, E^{2}=F^{2}=0
$$

The unrolled-restricted $\bar{U}_{i}^{H}(\mathfrak{s l}(2))$

- The algebra $\bar{U}_{i}^{H}(\mathfrak{s l}(2))$ is generated by $E, F, H, K^{ \pm}$with relation:

$$
[H, E]=2 E,[H, F]=-2 F,[E, F]=\frac{K-K^{-1}}{2 i}, E^{2}=F^{2}=0
$$

Also $K=i^{H}$.

The unrolled-restricted $\bar{U}_{i}^{H}(\mathfrak{s l}(2))$

- The algebra $\bar{U}_{i}^{H}(\mathfrak{s l}(2))$ is generated by $E, F, H, K^{ \pm}$with relation:

$$
[H, E]=2 E,[H, F]=-2 F,[E, F]=\frac{K-K^{-1}}{2 i}, E^{2}=F^{2}=0
$$

Also $K=i^{H}$.

- This is a quasi-triangular Hopf algebra.

$$
\Delta(E)=E \otimes 1+K \otimes E, \Delta(F)=1 \otimes F+K^{-1} \otimes F
$$

R matrix is:

$$
R=i^{H \otimes H / 2}(1+2 i E \otimes F)
$$

The unrolled-restricted $\bar{U}_{i}^{H}(\mathfrak{s l}(2))$

- The algebra $\bar{U}_{i}^{H}(\mathfrak{s l}(2))$ is generated by $E, F, H, K^{ \pm}$with relation:

$$
[H, E]=2 E,[H, F]=-2 F,[E, F]=\frac{K-K^{-1}}{2 i}, E^{2}=F^{2}=0
$$

Also $K=i^{H}$.

- This is a quasi-triangular Hopf algebra.

$$
\Delta(E)=E \otimes 1+K \otimes E, \Delta(F)=1 \otimes F+K^{-1} \otimes F
$$

R matrix is:

$$
R=i^{H \otimes H / 2}(1+2 i E \otimes F)
$$

- There are one dimensional representations M_{n} labelled by \mathbb{Z}, such that $E=F=0$ and $H=2 n$.

First example: symplectic fermion

First example: symplectic fermion

- This quantum group conjecturally have the same category as $M(2)=V_{\chi_{+} \chi_{-}}^{\mathbb{C}^{\times}}$.

First example: symplectic fermion

- This quantum group conjecturally have the same category as $M(2)=V_{\chi+\chi_{-}}^{\mathbb{C}^{\times}}$.
- Under this correspondence, $M_{n} \mapsto V_{\chi+\chi_{-}-}^{\mathbb{C}^{\times}}$.

First example: symplectic fermion

- This quantum group conjecturally have the same category as $M(2)=V_{\chi+\chi_{-}}^{\mathbb{C}^{\times}}$.
- Under this correspondence, $M_{n} \mapsto V_{\chi+\chi_{-}-}^{\mathbb{C}^{\times}}$.
- The quantum group analog of $M(2) \hookrightarrow V_{\chi_{+} \chi_{-}}$is:

$$
M_{0} \hookrightarrow \bigoplus M_{n}=: \mathcal{A} .
$$

First example: symplectic fermion

- This quantum group conjecturally have the same category as $M(2)=V_{\chi+\chi_{-}}^{\mathbb{C}^{\times}}$.
- Under this correspondence, $M_{n} \mapsto V_{\chi+\chi_{-}-}^{\mathbb{C}^{\times}}$.
- The quantum group analog of $M(2) \hookrightarrow V_{\chi_{+} \chi_{-}}$is:

$$
M_{0} \hookrightarrow \bigoplus M_{n}=: \mathcal{A} .
$$

- Modules of $\bar{U}_{i}^{H}(\mathfrak{s l}(2))$ local to \mathcal{A} satisfies $i^{2 H}=K^{2}=1$.

First example: symplectic fermion

- This quantum group conjecturally have the same category as $M(2)=V_{\chi+\chi_{-}}^{\mathbb{C}^{\times}}$.
- Under this correspondence, $M_{n} \mapsto V_{\chi+\chi-}^{\mathbb{C}^{\times}, n}$.
- The quantum group analog of $M(2) \hookrightarrow V_{\chi_{+} \chi_{-}}$is:

$$
M_{0} \hookrightarrow \bigoplus M_{n}=: \mathcal{A}
$$

- Modules of $\bar{U}_{i}^{H}(\mathfrak{s l}(2))$ local to \mathcal{A} satisfies $i^{2 H}=K^{2}=1$.
- Take such M, then $M_{n} \otimes M$ differ from M only by the action of $H \mapsto H+2 n$.

First example: symplectic fermion

- This quantum group conjecturally have the same category as $M(2)=V_{\chi+\chi_{-}}^{\mathbb{C}^{\times}}$.
- Under this correspondence, $M_{n} \mapsto V_{\chi+\chi-}^{\mathbb{C}^{\times}, n}$.
- The quantum group analog of $M(2) \hookrightarrow V_{\chi_{+} \chi_{-}}$is:

$$
M_{0} \hookrightarrow \bigoplus M_{n}=: \mathcal{A}
$$

- Modules of $\bar{U}_{i}^{H}(\mathfrak{s l}(2))$ local to \mathcal{A} satisfies $i^{2 H}=K^{2}=1$.
- Take such M, then $M_{n} \otimes M$ differ from M only by the action of $H \mapsto H+2 n . \Rightarrow i^{H}=K$ is the parity operator.

First example: symplectic fermion

- This quantum group conjecturally have the same category as $M(2)=V_{\chi+\chi_{-}}^{\mathbb{C}^{\times}}$.
- Under this correspondence, $M_{n} \mapsto V_{\chi+\chi-}^{\mathbb{C}^{\times}, n}$.
- The quantum group analog of $M(2) \hookrightarrow V_{\chi_{+} \chi_{-}}$is:

$$
M_{0} \hookrightarrow \bigoplus M_{n}=: \mathcal{A}
$$

- Modules of $\bar{U}_{i}^{H}(\mathfrak{s l}(2))$ local to \mathcal{A} satisfies $i^{2 H}=K^{2}=1$.
- Take such M, then $M_{n} \otimes M$ differ from M only by the action of $H \mapsto H+2 n . \Rightarrow i^{H}=K$ is the parity operator.
- The action of E and F are well-defined. Take $\chi_{+}=K E$ and $\chi_{-}=F$, we find commutation relation:

$$
\left\{\chi_{+}, \chi_{-}\right\}=\frac{K^{2}-1}{2 i}=0
$$

First example: symplectic fermion

- This quantum group conjecturally have the same category as $M(2)=V_{\chi+\chi_{-}}^{\mathbb{C}^{\times}}$.
- Under this correspondence, $M_{n} \mapsto V_{\chi+\chi-}^{\mathbb{C}^{\times}, n}$.
- The quantum group analog of $M(2) \hookrightarrow V_{\chi_{+} \chi_{-}}$is:

$$
M_{0} \hookrightarrow \bigoplus M_{n}=: \mathcal{A}
$$

- Modules of $\bar{U}_{i}^{H}(\mathfrak{s l}(2))$ local to \mathcal{A} satisfies $i^{2 H}=K^{2}=1$.
- Take such M, then $M_{n} \otimes M$ differ from M only by the action of $H \mapsto H+2 n . \Rightarrow i^{H}=K$ is the parity operator.
- The action of E and F are well-defined. Take $\chi_{+}=K E$ and $\chi_{-}=F$, we find commutation relation:

$$
\left\{\chi_{+}, \chi_{-}\right\}=\frac{K^{2}-1}{2 i}=0
$$

- Conclusion: local \mathcal{A} modules are in one-to-one correspondence with modules of the algebra generated by χ_{+}, χ_{-}and K, namely, the exterior algebra of two variables.

Second example: $V(\mathfrak{g l}(1 \mid 1))$

Second example: $V(\mathfrak{g l}(1 \mid 1))$

- $V_{k}(\mathfrak{g l}(1 \mid 1))$ has a free field realization using $V_{\chi_{+} \chi_{-}}$and Heisenberg $\mathcal{H}_{C, D}$ with $(C, D)=1$:

$$
N \mapsto \partial D, E \mapsto k \partial C, \psi_{ \pm} \mapsto \sqrt{k} \chi_{ \pm} e^{ \pm C}
$$

Second example: $V(\mathfrak{g l}(1 \mid 1))$

- $V_{k}(\mathfrak{g l}(1 \mid 1))$ has a free field realization using $V_{\chi_{+} \chi_{-}}$and Heisenberg $\mathcal{H}_{C, D}$ with $(C, D)=1$:

$$
N \mapsto \partial D, E \mapsto k \partial C, \psi_{ \pm} \mapsto \sqrt{k} \chi_{ \pm} e^{ \pm C}
$$

- $V(\mathfrak{g l}(1 \mid 1))$ is a simple current extension of $M(2) \otimes \mathcal{H}_{C, D}$:

$$
V(\mathfrak{g l}(1 \mid 1))=\bigoplus M_{n} \otimes \mathcal{F}_{n C}
$$

Second example: $V\left(\mathfrak{g l}^{\curlyvee}(1 \mid 1)\right)$

- $V_{k}(\mathfrak{g l}(1 \mid 1))$ has a free field realization using $V_{\chi_{+} \chi_{-}}$and Heisenberg $\mathcal{H}_{C, D}$ with $(C, D)=1$:

$$
N \mapsto \partial D, E \mapsto k \partial C, \psi_{ \pm} \mapsto \sqrt{k} \chi_{ \pm} e^{ \pm C}
$$

- $V(\mathfrak{g l}(1 \mid 1))$ is a simple current extension of $M(2) \otimes \mathcal{H}_{C, D}$:

$$
V(\mathfrak{g l}(1 \mid 1))=\bigoplus M_{n} \otimes \mathcal{F}_{n C}
$$

- The quantum group analog of $\mathcal{H}_{C, D}$ is $H=\mathbb{C}[C, D]$ with R matrix $R=\exp (\pi i(C \otimes D+D \otimes C))$. It has modules $\mathbb{C}_{c, d}$.

Second example: $V(\mathfrak{g l}(1 \mid 1))$

- $V_{k}(\mathfrak{g l}(1 \mid 1))$ has a free field realization using $V_{\chi_{+} \chi_{-}}$and Heisenberg $\mathcal{H}_{C, D}$ with $(C, D)=1$:

$$
N \mapsto \partial D, E \mapsto k \partial C, \psi_{ \pm} \mapsto \sqrt{k} \chi_{ \pm} e^{ \pm C}
$$

- $V(\mathfrak{g l}(1 \mid 1))$ is a simple current extension of $M(2) \otimes \mathcal{H}_{C, D}$:

$$
V(\mathfrak{g l}(1 \mid 1))=\bigoplus M_{n} \otimes \mathcal{F}_{n C}
$$

- The quantum group analog of $\mathcal{H}_{C, D}$ is $H=\mathbb{C}[C, D]$ with R matrix $R=\exp (\pi i(C \otimes D+D \otimes C))$. It has modules $\mathbb{C}_{c, d}$.
- The quantum group analog of the above extension is:

$$
\tilde{\mathcal{A}}=\bigoplus M_{n} \otimes \mathbb{C}_{0, n}
$$

as a module of $\bar{U}_{i}^{H}(\mathfrak{s l}(2)) \otimes H$.

Second example: $V(\mathfrak{g l}(1 \mid 1))$

- Locality with $\tilde{\mathcal{A}}$ means:

$$
i^{2 H}(-1)^{2 C}=1
$$

so $i^{H}(-1)^{C}$ is now the parity operator.

Second example: $V(\mathfrak{g l}(1 \mid 1))$

- Locality with $\tilde{\mathcal{A}}$ means:

$$
i^{2 H}(-1)^{2 C}=1
$$

so $i^{H}(-1)^{C}$ is now the parity operator.

- Besides E and F, the action of C is well-defined, so is $H / 2-D$. If we define $\psi_{+}=K E$ and $\psi_{-}=2 i F$, we find:

$$
\left\{\psi_{+}, \psi_{-}\right\}=1-K^{2}=(-1)^{-2 C}-1
$$

Second example: $V(\mathfrak{g l}(1 \mid 1))$

- Locality with $\tilde{\mathcal{A}}$ means:

$$
i^{2 H}(-1)^{2 C}=1
$$

so $i^{H}(-1)^{C}$ is now the parity operator.

- Besides E and F, the action of C is well-defined, so is $H / 2-D$. If we define $\psi_{+}=K E$ and $\psi_{-}=2 i F$, we find:

$$
\left\{\psi_{+}, \psi_{-}\right\}=1-K^{2}=(-1)^{-2 C}-1
$$

- Local $\tilde{\mathcal{A}}$ modules are in one-to-one correspondence with modules generated by $\psi_{ \pm}, E=-k C$ and $N=H / 2-D$. This is the unrolled-restricted quantum group for $\mathfrak{g l}(1 \mid 1)$.

General result for $V_{B, \rho}$

General result for $V_{B, \rho}$

- Ballin-Creutzig-Dimofte-N (to appear): $V_{B, \rho}$ is a simple current extension of $M(2)^{\otimes n} \otimes \mathcal{H}_{C, D}^{\otimes r}$:

$$
V_{B, \rho}=\bigoplus_{n_{i}, m_{a}} \bigotimes_{n_{i}} M_{n_{i}} \otimes \mathcal{F}_{\left(\sum n_{i} \rho^{i} a+\frac{1}{2} \sum m_{b} \rho_{i b} \rho^{i}{ }_{a}\right) C^{a}+m_{a} D^{a}}
$$

General result for $V_{B, \rho}$

- Ballin-Creutzig-Dimofte-N (to appear): $V_{B, \rho}$ is a simple current extension of $M(2)^{\otimes n} \otimes \mathcal{H}_{C, D}^{\otimes r}$:

$$
V_{B, \rho}=\bigoplus_{n_{i}, m_{a}} \bigotimes_{n_{i}} M_{n_{i}} \otimes \mathcal{F}_{\left(\sum n_{i} \rho^{i}{ }_{a}+\frac{1}{2} \sum m_{b} \rho_{i b} \rho^{i}{ }_{a}\right) C^{a}+m_{a} D^{a}}
$$

- Creutzig-Dimofte-N. (in progress): local modules of the corresponding extension of $\bar{U}_{i}^{H}(\mathfrak{s l}(2))^{\otimes n} \otimes H^{\otimes r}$ is identified with modules of an algebra $U_{q} \mathfrak{g}_{*}(\rho)$ generated by $N_{a}, \psi^{ \pm, i}$ and $K_{a}^{ \pm}$with commutator:

$$
\left[N_{a}, \psi^{ \pm, i}\right]= \pm \rho_{a}{ }^{i} \psi^{ \pm, i},\left\{\psi^{+, i}, \psi^{-, i}\right\}=\left(\prod_{a} K_{a}^{\rho^{i} a}-1\right)
$$

and $e^{2 \pi i N_{a}}=1$.

General result for $V_{B, \rho}$

- Ballin-Creutzig-Dimofte-N (to appear): $V_{B, \rho}$ is a simple current extension of $M(2)^{\otimes n} \otimes \mathcal{H}_{C, D}^{\otimes r}$:

$$
V_{B, \rho}=\bigoplus_{n_{i}, m_{a}} \bigotimes_{n_{i}} M_{n_{i}} \otimes \mathcal{F}_{\left(\sum n_{i} \rho^{i} a+\frac{1}{2} \sum m_{b} \rho_{i b} \rho^{i}{ }_{a}\right) C^{a}+m_{a} D^{a}}
$$

- Creutzig-Dimofte-N. (in progress): local modules of the corresponding extension of $\bar{U}_{i}^{H}(\mathfrak{s l}(2))^{\otimes n} \otimes H^{\otimes r}$ is identified with modules of an algebra $U_{q} \mathfrak{g}_{*}(\rho)$ generated by $N_{a}, \psi^{ \pm, i}$ and $K_{a}^{ \pm}$with commutator:

$$
\left[N_{a}, \psi^{ \pm, i}\right]= \pm \rho_{a}{ }^{i} \psi^{ \pm, i},\left\{\psi^{+, i}, \psi^{-, i}\right\}=\left(\prod_{a} K_{a}^{\rho^{i} a}-1\right)
$$

and $e^{2 \pi i N_{a}}=1$.

- This is a quantum group for $\mathfrak{g}_{*}(\rho)$, and $\operatorname{Rep}\left(U_{q} \mathfrak{g}_{*}(\rho)\right)$ has a BTC structure.

General result for $V_{B, \rho}$

- Ballin-Creutzig-Dimofte-N (to appear): $V_{B, \rho}$ is a simple current extension of $M(2)^{\otimes n} \otimes \mathcal{H}_{C, D}^{\otimes r}$:

$$
V_{B, \rho}=\bigoplus_{n_{i}, m_{a}} \bigotimes_{n_{i}} M_{n_{i}} \otimes \mathcal{F}_{\left(\sum n_{i} \rho^{i} a+\frac{1}{2} \sum m_{b} \rho_{i b} \rho^{i}{ }_{a}\right) C^{a}+m_{a} D^{a}}
$$

- Creutzig-Dimofte-N. (in progress): local modules of the corresponding extension of $\bar{U}_{i}^{H}(\mathfrak{s l}(2))^{\otimes n} \otimes H^{\otimes r}$ is identified with modules of an algebra $U_{q} \mathfrak{g}_{*}(\rho)$ generated by $N_{a}, \psi^{ \pm, i}$ and $K_{a}^{ \pm}$with commutator:

$$
\left[N_{a}, \psi^{ \pm, i}\right]= \pm \rho_{a}{ }^{i} \psi^{ \pm, i},\left\{\psi^{+, i}, \psi^{-, i}\right\}=\left(\prod K_{a}^{\rho^{i} a}-1\right)
$$

and $e^{2 \pi i N_{a}}=1$.

- This is a quantum group for $\mathfrak{g}_{*}(\rho)$, and $\operatorname{Rep}\left(U_{q} \mathfrak{g}_{*}(\rho)\right)$ has a BTC structure.
- Conjecture: $\operatorname{Rep}\left(U_{q} \mathfrak{g}_{*}(\rho)\right)$ and $V_{B, \rho^{-}}-\operatorname{Mod}$ are equivalent as BTC.

Koszul duality of $U_{q} \mathfrak{g}_{*}(\rho)$

Koszul duality of $U_{q} \mathfrak{g}_{*}(\rho)$

- The algebra $U_{q} \mathfrak{g}_{*}(\rho)$ has interesting Koszul dualities.

Koszul duality of $U_{q} \mathfrak{g}_{*}(\rho)$

- The algebra $U_{q} \mathfrak{g}_{*}(\rho)$ has interesting Koszul dualities.
- Koszul dualize $\psi^{i,+} \mapsto x_{i}$, we get generators $x_{i}, K_{a}^{ \pm}$and odd $\psi^{i,-}$, with differential:

$$
\mathrm{d} \psi^{i,-}=\left(\prod_{a} K_{a}^{\rho^{i} a}-1\right) x_{i}
$$

Koszul duality of $U_{q} \mathfrak{g}_{*}(\rho)$

- The algebra $U_{q} \mathfrak{g}_{*}(\rho)$ has interesting Koszul dualities.
- Koszul dualize $\psi^{i,+} \mapsto x_{i}$, we get generators $x_{i}, K_{a}^{ \pm}$and odd $\psi^{i,-}$, with differential:

$$
\mathrm{d} \psi^{i,-}=\left(\prod_{a} K_{a}^{\rho^{i} a}-1\right) x_{i}
$$

This is (derived) subscheme of $G \times V$ defined by $z x=x$.

Koszul duality of $U_{q} \mathfrak{g}_{*}(\rho)$

- The algebra $U_{q} \mathfrak{g}_{*}(\rho)$ has interesting Koszul dualities.
- Koszul dualize $\psi^{i,+} \mapsto x_{i}$, we get generators $x_{i}, K_{a}^{ \pm}$and odd $\psi^{i,-}$, with differential:

$$
\mathrm{d} \psi^{i,-}=\left(\prod_{a} K_{a}^{\rho^{i} a}-1\right) x_{i}
$$

This is (derived) subscheme of $G \times V$ defined by $z x=x$.

- This derived subscheme is nothing but $\mathcal{L}(V / G)$, appears in Ben-Zvi-Francis-Nadler. Has an E_{2} structure.

Koszul duality of $U_{q} \mathfrak{g}_{*}(\rho)$

- The algebra $U_{q} \mathfrak{g}_{*}(\rho)$ has interesting Koszul dualities.
- Koszul dualize $\psi^{i,+} \mapsto x_{i}$, we get generators $x_{i}, K_{a}^{ \pm}$and odd $\psi^{i,-}$, with differential:

$$
\mathrm{d} \psi^{i,-}=\left(\prod_{a} K_{a}^{\rho^{i} a}-1\right) x_{i}
$$

This is (derived) subscheme of $G \times V$ defined by $z x=x$.

- This derived subscheme is nothing but $\mathcal{L}(V / G)$, appears in Ben-Zvi-Francis-Nadler. Has an E_{2} structure.
- Dualizing both $\psi^{i, \pm}$, get x_{i}, y_{i} with a potential:

$$
W=\langle y,(z-1) x\rangle
$$

This appears in Gammage-Hilburn.

Koszul duality of $U_{q} \mathfrak{g}_{*}(\rho)$

- The algebra $U_{q} \mathfrak{g}^{*}(\rho)$ has interesting Koszul dualities.
- Koszul dualize $\psi^{i,+} \mapsto x_{i}$, we get generators $x_{i}, K_{a}^{ \pm}$and odd $\psi^{i,-}$, with differential:

$$
\mathrm{d} \psi^{i,-}=\left(\prod_{a} K_{a}^{\rho^{i} a}-1\right) x_{i}
$$

This is (derived) subscheme of $G \times V$ defined by $z x=x$.

- This derived subscheme is nothing but $\mathcal{L}(V / G)$, appears in Ben-Zvi-Francis-Nadler. Has an E_{2} structure.
- Dualizing both $\psi^{i, \pm}$, get x_{i}, y_{i} with a potential:

$$
W=\langle y,(z-1) x\rangle
$$

This appears in Gammage-Hilburn.

- Quantum group perspective gives an explicit BTC structure.

Two comments on the quantum group: comment 1

Two comments on the quantum group: comment 1

- The relation to $\mathcal{L}(V / G) \Rightarrow$ the quantum group $U_{q} \mathfrak{g}_{*}(\rho)$ is the Drinfeld double of the subalgebra generated by $N_{a}, \psi^{i,+}$.

Two comments on the quantum group: comment 1

- The relation to $\mathcal{L}(V / G) \Rightarrow$ the quantum group $U_{q} \mathfrak{g}_{*}(\rho)$ is the Drinfeld double of the subalgebra generated by $N_{a}, \psi^{i,+}$. One can write this subalgebra as:

$$
\mathbb{C}[G] \ltimes \wedge V .
$$

Two comments on the quantum group: comment 1

- The relation to $\mathcal{L}(V / G) \Rightarrow$ the quantum group $U_{q} \mathfrak{g}_{*}(\rho)$ is the Drinfeld double of the subalgebra generated by $N_{a}, \psi^{i,+}$. One can write this subalgebra as:

$$
\mathbb{C}[G] \ltimes \wedge V
$$

- This doesn't help much, since one can't construct braiding using this. One can if one unrolls K_{a}.

Two comments on the quantum group: comment 1

- The relation to $\mathcal{L}(V / G) \Rightarrow$ the quantum group $U_{q} \mathfrak{g}_{*}(\rho)$ is the Drinfeld double of the subalgebra generated by $N_{a}, \psi^{i,+}$. One can write this subalgebra as:

$$
\mathbb{C}[G] \ltimes \wedge V .
$$

- This doesn't help much, since one can't construct braiding using this. One can if one unrolls K_{a}.
- This however, does suggests what algebra should appear for non-abelian gauge theory. First guess: quantum double for:

$$
\mathbb{C}[G] \ltimes \wedge V
$$

Two comments on the quantum group: comment 1

- The relation to $\mathcal{L}(V / G) \Rightarrow$ the quantum group $U_{q} \mathfrak{g}_{*}(\rho)$ is the Drinfeld double of the subalgebra generated by $N_{a}, \psi^{i,+}$. One can write this subalgebra as:

$$
\mathbb{C}[G] \ltimes \wedge V .
$$

- This doesn't help much, since one can't construct braiding using this. One can if one unrolls K_{a}.
- This however, does suggests what algebra should appear for non-abelian gauge theory. First guess: quantum double for:

$$
\mathbb{C}[G] \ltimes \wedge V
$$

- Likely to replace $\mathbb{C}[G]$ by $U_{q} \mathfrak{g}$ (irresponsible statement).

Two comments on the quantum group: comment 2

Two comments on the quantum group: comment 2

- BTC structure from VOA is hard, but we have a better understanding now.

Two comments on the quantum group: comment 2

- BTC structure from VOA is hard, but we have a better understanding now.
- It is equivalent to a category of modules of $\mathfrak{g}_{*}(\rho)$, with braiding given by $e^{\pi i \Omega}$, and associator given by solutions of KZ equation.

Two comments on the quantum group: comment 2

- BTC structure from VOA is hard, but we have a better understanding now.
- It is equivalent to a category of modules of $\mathfrak{g}_{*}(\rho)$, with braiding given by $e^{\pi i \Omega}$, and associator given by solutions of KZ equation.
- Proving the equivalence between $\bar{U}_{i}^{H}(\mathfrak{s l}(2))$ and $M(2)$ will result in a Drinfeld's isomorphism for these quantum supergroups.

Last word

Thank you!

