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Boudary VOA of 3d N = 4 abelian gauge theories

Gauge group U(1)r, complex representation V = Cn defined by a
charge matrix ρ : Zr → Zn, assume to be a faithful representation.
⇒ 3d N = 4 gauge theory Tρ
Has topological twists: A twist and B twist. ⇒ TA,ρ and TB,ρ.
Costello-Gaiotto: twisted theories admit holomorphic boundary
conditions. ⇒ boundary vertex operator algebras (VOA).
Neumann type boundary condition for A twist and Dirichlet type
for B twist.

Costello-Creutzig-Gaiotto: obtain Higgs and Coulomb branch
algebra from the boundary VOA.

Not a complete analysis. A side, requires a computation of BRST
cohomology. B side, needs to include monopole operators. Both
sides, need to define a braided tensor category carefully.
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B side VOA

The B side VOA VB,ρ is an extension of an affine Lie superalgebra
V (g∗(ρ)):

g∗(ρ) = (T ∗g)even ⊕ (T ∗V )odd 3 (Na, E
a, ψi,±)

Commutation relation:

[Na, ψ
i,±] = ±ρiaψi,±, {ψi,+, ψi,−} =

∑
a

ρiaE
a

Bilinear form (Garner):

κ(Na, Nb) =
∑

ρiaρib, κ(Na, Eb) = δab, κ(ψ+
i , ψ

−
j ) = δij .

Ballin-Creutzig-Dimofte-N (to appear): monopole operators
corresponds to:

exp(

∫ ∑
maNa)
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B side VOA

More precisely, there are automorphisms σb:

σb(Na(z)) = Na(z) +

∑
ρiaρib
z

, σb(Ea(z)) = Ea(z) +
δab
z
,

σb(ψ
i,±(z)) = z±ρ

i
bψi,±(z)

We use this to twist the vacuum module to get simple modules:

V{ma} := (
∏
a

σm
a

a )V (g∗(ρ))

The direct sum: ⊕
V{ma}

has a VOA structure and is identified as VB,ρ.
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Simple current extensions

Directly dealing with the VOA VB,ρ and its modules is hard,
because of lack of boundedness in conformal degrees.
Alternatively, use the relation between VB,ρ and V (g∗(ρ)).

The VOA V (g∗(ρ)) has a Kazhdan-Lusztig category KLρ, that is
BTC.

Fusion rule of V{ma}:

V{ma} × V{na} ∼= V{ma+na}

The isomorphism above is an intertwining operator of V (g∗(ρ))
modules, which is also the vertex operator of VB,ρ. Denote this by
Y{ma},{na}.

Locality is equivalent to the super-commutativity relation:

Y{na},{ma} = ±Y{ma},{na} ◦R

Modules V{ma} are called simple currents and VB,ρ is a simple
current extension of V (g∗(ρ)).
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Simple current extensions and modules

A simple current extension then is a commutative superalgebra
object in the category of V (g∗(ρ)) modules that is a direct sum of
simple modules.

One can obtain modules of VB,ρ by starting with a module of
V (g∗(ρ)), say M , and tensor with V{ma}:⊕

V{ma} ×M.

In general, the action is given by logarithmic intertwiners. For a
VOA module, we would like integer moding. This leads to locality
condition R2 = Id:

V{ma} ×M −→M × V{ma} −→ V{ma} ×M
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Simple current extensions and modules

This idea was rigorously formulated by Creutzig-Kanade-McRae:
if V →W is a simple current extension, then there is a tensor
functor:

L : V -Modloc →W -Mod

that preserves composition series.

If we know that V has a good braided tensor category C and W is
an object in C, then we immediately get a good braided tensor
category for W , which is the image of L.

We applied this to VB,ρ since V (g∗(ρ)) has a Kazhdan-Lusztig
category KLρ. The category of line operators for the B twist is
defined as L(KLρ,loc).

L identifies a module M with σbM .
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Applications to quantum groups

We can apply this procedure to quantum groups: leads to
quantum group analog of VB,ρ.

Idea: V (g∗(ρ)), and consequently VB,ρ, are simple current
extensions of copies of M(2) and Heisenberg VOAs (free-field
realizations).

The quantum group corresponding to M(2) was long conjectured

to be U
H
i (sl(2)) (Flohr, Creutzig-Milas, etc), and quantum group

analog of Heisenberg VOAs are simple commutative algebras.

Creutzig-Rupert: simple current extension for quantum groups
leads to quotients of uprolled quantum groups.
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The unrolled-restricted U
H
i (sl(2))

The algebra U
H
i (sl(2)) is generated by E,F,H,K± with relation:

[H,E] = 2E, [H,F ] = −2F, [E,F ] =
K −K−1

2i
, E2 = F 2 = 0.

Also K = iH .

This is a quasi-triangular Hopf algebra.

∆(E) = E ⊗ 1 +K ⊗ E, ∆(F ) = 1⊗ F +K−1 ⊗ F.

R matrix is:
R = iH⊗H/2(1 + 2iE ⊗ F ).

There are one dimensional representations Mn labelled by Z, such
that E = F = 0 and H = 2n.
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First example: symplectic fermion

This quantum group conjecturally have the same category as
M(2) = V C×

χ+χ− .

Under this correspondence, Mn 7→ V C×,n
χ+χ− .

The quantum group analog of M(2) ↪→ Vχ+χ− is:

M0 ↪→
⊕

Mn =: A.

Modules of U
H
i (sl(2)) local to A satisfies i2H = K2 = 1.

Take such M , then Mn ⊗M differ from M only by the action of
H 7→ H + 2n. ⇒ iH = K is the parity operator.
The action of E and F are well-defined. Take χ+ = KE and
χ− = F , we find commutation relation:

{χ+, χ−} =
K2 − 1

2i
= 0.

Conclusion: local A modules are in one-to-one correspondence
with modules of the algebra generated by χ+, χ− and K, namely,
the exterior algebra of two variables.
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Second example: V (gl(1|1))

Vk(gl(1|1)) has a free field realization using Vχ+χ− and Heisenberg
HC,D with (C,D) = 1:

N 7→ ∂D, E 7→ k∂C, ψ± 7→
√
kχ±e

±C .

V (gl(1|1)) is a simple current extension of M(2)⊗HC,D:

V (gl(1|1)) =
⊕

Mn ⊗FnC

The quantum group analog of HC,D is H = C[C,D] with R matrix
R = exp(πi(C ⊗D +D ⊗ C)). It has modules Cc,d.
The quantum group analog of the above extension is:

Ã =
⊕

Mn ⊗ C0,n,

as a module of U
H
i (sl(2))⊗H.
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Second example: V (gl(1|1))

Locality with Ã means:

i2H(−1)2C = 1

so iH(−1)C is now the parity operator.

Besides E and F , the action of C is well-defined, so is H/2−D. If
we define ψ+ = KE and ψ− = 2iF , we find:

{ψ+, ψ−} = 1−K2 = (−1)−2C − 1

Local Ã modules are in one-to-one correspondence with modules
generated by ψ±, E = −kC and N = H/2−D. This is the
unrolled-restricted quantum group for gl(1|1).
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General result for VB,ρ

Ballin-Creutzig-Dimofte-N (to appear): VB,ρ is a simple current
extension of M(2)⊗n ⊗H⊗rC,D:

VB,ρ =
⊕
ni,ma

⊗
ni

Mni ⊗F(
∑
niρia+ 1

2

∑
mbρibρia)Ca+maDa

Creutzig-Dimofte-N. (in progress): local modules of the

corresponding extension of U
H
i (sl(2))⊗n ⊗H⊗r is identified with

modules of an algebra Uqg∗(ρ) generated by Na, ψ
±,i and K±a with

commutator:

[Na, ψ
±,i] = ±ρaiψ±,i, {ψ+,i, ψ−,i} = (

∏
a

Kρia
a − 1).

and e2πiNa = 1.

This is a quantum group for g∗(ρ), and Rep(Uqg∗(ρ)) has a BTC
structure.

Conjecture: Rep(Uqg∗(ρ)) and VB,ρ-Mod are equivalent as BTC.
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Koszul duality of Uqg∗(ρ)

The algebra Uqg∗(ρ) has interesting Koszul dualities.

Koszul dualize ψi,+ 7→ xi, we get generators xi,K
±
a and odd ψi,−,

with differential:
dψi,− = (

∏
a

Kρia
a − 1)xi

This is (derived) subscheme of G× V defined by zx = x.

This derived subscheme is nothing but L(V/G), appears in
Ben-Zvi-Francis-Nadler. Has an E2 structure.

Dualizing both ψi,±, get xi, yi with a potential:

W = 〈y, (z − 1)x〉.

This appears in Gammage-Hilburn.

Quantum group perspective gives an explicit BTC structure.
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Two comments on the quantum group: comment 1

The relation to L(V/G) ⇒ the quantum group Uqg∗(ρ) is the
Drinfeld double of the subalgebra generated by Na, ψ

i,+. One can
write this subalgebra as:

C[G] n ∧V.

This doesn’t help much, since one can’t construct braiding using
this. One can if one unrolls Ka.

This however, does suggests what algebra should appear for
non-abelian gauge theory. First guess: quantum double for:

C[G] n ∧V.

Likely to replace C[G] by Uqg (irresponsible statement).
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Two comments on the quantum group: comment 2

BTC structure from VOA is hard, but we have a better
understanding now.

It is equivalent to a category of modules of g∗(ρ), with braiding
given by eπiΩ, and associator given by solutions of KZ equation.

Proving the equivalence between U
H
i (sl(2)) and M(2) will result in

a Drinfeld’s isomorphism for these quantum supergroups.
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Last word

Thank you!
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