q-Opers, QQ-Systems \& Bethe Ansatz II

Peter Koroteev

Literature

[arXiv:2108.04184]
q-Opers, QQ-systems, and Bethe Ansatz II: Generalized Minors
P. Koroteev, A. M. Zeitlin
[arXiv:2105.00588]
3d Mirror Symmetry for Instanton Moduli Spaces
P. Koroteev, A. M. Zeitlin
[arXiv:2007.11786] J. Inst. Math. Jussieu

Toroidal q-Opers

P. Koroteev, A. M. Zeitlin
[arXiv:2002.07344] J. Europ. Math. Soc.
q-Opers, QQ-Systems, and Bethe Ansatz
E. Frenkel, P. Koroteev, D. S. Sage, A. M. Zeitlin

[arXiv:1811.09937] Commun.Math.Phys. 381 (2021) 641
($\mathrm{SL}(\mathrm{N}), \mathbf{q}$)-opers, the q-Langlands correspondence, and quantum/classical duality P. Koroteev, D. S. Sage, A. M. Zeitlin
[arXiv:1705.10419] Selecta Math. 27 (2021) 87
Quantum K-theory of Quiver Varieties and Many-Body Systems
P. Koroteev, P. P. Pushkar, A. V. Smirnov, A. M. Zeitlin

Motivation

Quantum Geometry and Integrable Systems

BPS/CFT correspondence

Geometric q-Langlands Correspondence

ODE/IM Correspondence
[Okounkov et al] [Pushkar, Zeitlin, Smirnov] [PK, Pushkar, Zeitlin, Smirnov]
[Bazhanov, Lukyanov, Zamolodchikov]
[Dorey, Tateo]

Enumerative AG/Integrable Systems

Quantum equivariant K-theory of Nakajima quiver varieties

$$
A \circledast B=A \otimes B+\sum_{d=1}^{\infty} A \circledast{ }_{d} B z^{d}
$$

$$
\mathbf{V}^{(\tau)}(\boldsymbol{z})=\sum_{\boldsymbol{d}} \operatorname{ev}_{p_{2}, *}\left(\left.\widehat{\mathcal{O}}_{\mathrm{vir}}^{\boldsymbol{d}} \otimes \tau\right|_{p_{1}}, \mathrm{QM}_{\text {nonsing } p_{2}}^{\boldsymbol{d}}\right) \boldsymbol{z}^{\boldsymbol{d}} \in K_{\mathrm{T} \times \mathbb{C}_{q}^{\times}}(X)_{l o c}[[\boldsymbol{z}]]
$$

Saddle point limit yields Bethe equations for XXZ
Quantum classes satisfy interesting difference equations in equivariant parameters and Kahler parameters

After symmetrization they can be rewritten as eigenvalue equations for trigonometric Ruijsenaars-Schneider (tRS) system
[PK, Zeitlin] [PK]

$$
T_{r}(\mathbf{a})=\sum_{\substack{\mathcal{J} \subset\{1, \ldots, n\} \\|\mathcal{J}|=r}} \prod_{\substack{i \in \mathcal{J} \\ j \notin \mathcal{J}}} \frac{t a_{i}-a_{j}}{a_{i}-a_{j}} \prod_{i \in \mathcal{J}} p_{i} \quad T_{r}(\boldsymbol{a}) \mathrm{V}(\boldsymbol{a}, \vec{\zeta})=S_{r}(\vec{\zeta}, t) \mathrm{V}(\boldsymbol{a}, \vec{\zeta})
$$

In terms of string/gauge theory tRS eigenproblem is Ward identity

(G,q)-Connection

$$
\begin{array}{rrrr}
\text { Principal G-bundle } & \mathcal{F}_{G} \text { over } \mathbb{P}^{1} & M_{q}: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1} & \text { U-Zariski open dense set } \\
& & \mapsto q z &
\end{array}
$$

A meromorphic (\mathbf{G}, \mathbf{q})-connection on \mathcal{F}_{G} is a section A of $\operatorname{Hom}_{\mathcal{O}_{U}}\left(\mathcal{F}_{G}, \mathcal{F}_{G}^{q}\right)$
Choose U so that the restriction $\mathcal{F}_{G} \mid \cup$ of \mathcal{F}_{G} to U is isomorphic to a trivial G-bundle

$$
A(z) \in G(\mathbb{C}(z)) \quad \text { on } \quad U \cap M_{q}^{-1}(U)
$$

Change of trivialization

$$
A(z) \mapsto g(q z) A(z) g(z)^{-1}
$$

(G,q)-Opers

A meromorphic (G, q)-oper on \mathbb{P}^{1} is a triple $\left(\mathcal{F}_{G}, A, \mathscr{F}_{B_{-}}\right)$
A is a meromorphic (G, q)-connection

$$
\mathcal{F}_{B_{-}} \text {is a reduction of } \mathcal{F}_{G} \text { to } B_{-}
$$

Oper condition: Restriction of the connection on some Zariski open dense set U

$$
A: \mathcal{F}_{G} \longrightarrow \mathcal{F}_{G}^{q} \text { to } U \cap M_{q}^{-1}(U)
$$

takes values in the double Bruhat cell

$$
B_{-}\left(\mathbb{C}\left[U \cap M_{q}^{-1}(U)\right]\right) c B_{-}\left(\mathbb{C}\left[U \cap M_{q}^{-1}(U)\right]\right)
$$

$$
\text { Coxeter element: } c=\prod_{i} s_{i}
$$

Locally

$$
A(z)=n^{\prime}(z) \prod_{i}\left(\phi_{i}(z)^{\check{\alpha}_{i}} s_{i}\right) n(z)
$$

$$
\phi_{i}(z) \in \mathbb{C}(z) \text { and } n(z), n^{\prime}(z) \in N_{-}(z)
$$

Miura (G,q)-Opers

Definition: A Miura (G, q)-oper on \mathbb{P}^{1} is a quadruple $\left(\mathcal{F}_{G}, A, \mathcal{F}_{B_{-}}, \mathcal{F}_{B_{+}}\right)$, where $\left(\mathcal{F}_{G}, A, \mathcal{F}_{B_{-}}\right)$ is a meromorphic (G, q)-oper on \mathbb{P}^{1} and $\mathcal{F}_{B_{+}}$is a reduction of the G-bundle \mathcal{F}_{G} to B_{+}that is preserved by the q-connection A.

It can be shown that the two flags $\mathcal{F}_{B_{-}}$and $\mathcal{F}_{B_{+}}$are in generic relative position for some dense set V
The fiber $\mathcal{F}_{G, x}$ of \mathcal{F}_{G} at x is a G-torsor with reductions $\mathcal{F}_{B_{-}, x}$ and $\mathcal{F}_{B_{+}, x}$ to B_{-}and B_{+}, respectively. Choose any trivialization of $\mathcal{F}_{G, x}$, i.e. an isomorphism of G-torsors $\mathcal{F}_{G, x} \simeq G$. Under this isomorphism, $\mathcal{F}_{B_{-}, x}$ gets identified with $a B_{-} \subset G$ and $\mathcal{F}_{B_{+}, x}$ with $b B_{+}$.

Then $a^{-1} b$ is a well-defined element of the double quotient $B_{-} \backslash G / B_{+}$, which is in bijection with W_{G}.

We will say that $\mathcal{F}_{B_{-}}$and $\mathcal{F}_{B_{+}}$have a generic relative position at $x \in X$ if the element of W_{G} assigned to them at x is equal to 1 (this means that the corresponding element $a^{-1} b$ belongs to the open dense Bruhat cell $\left.B_{-} \cdot B_{+} \subset G\right)$.

Structure Theorems

Theorem 1: For any Miura (G, q)-oper on \mathbb{P}^{1}, there exists a trivialization of the underlying G-bundle \mathcal{F}_{G} on an open dense subset of \mathbb{P}^{1} for which the oper q-connection has the form

$$
A(z) \in N_{-}(z) \prod_{i}\left(\left(\phi_{i}(z)^{\check{\alpha}_{i}} s_{i}\right) N_{-}(z) \cap B_{+}(z)\right.
$$

Theorem 2: Let F be any field, and fix $\lambda_{i} \in F^{\times}, i=1, \ldots, r$. Then every element of the set $N_{-} \prod_{i} \lambda_{i}^{\check{\alpha}_{i}} s_{i} N_{-} \cap B_{+}$can be written in the form

$$
\prod_{i} g_{i}^{\check{\alpha}_{i}} e^{\frac{\lambda_{i} t_{i}}{g_{i}} e_{i}}, \quad g_{i} \in F^{\times}
$$

where each $t_{i} \in F^{\times}$is determined by the lifting s_{i}.

Adding Singularities and Twists

Consider family of polynomials

$$
\left\{\Lambda_{i}(z)\right\}_{i=1, \ldots, r}
$$

(\mathbf{G}, \mathbf{q})-oper with regular singularities can be written as

$$
A(z)=n^{\prime}(z) \prod_{i}\left(\Lambda_{i}(z)^{\check{\alpha}_{i}} s_{i}\right) n(z), \quad n(z), n^{\prime}(z) \in N_{-}(z)
$$

Using structure theorem every Miura (G,q)-oper with singularities reads

$$
A(z)=\prod_{i} g_{i}(z)^{\check{\alpha}_{i}} e^{\frac{\Lambda_{i}(z)}{g_{i}(z)} e_{i}}, \quad g_{i}(z) \in \mathbb{C}(z)^{\times}
$$

$\mathbf{(G , q)}$-oper is Z-twisted if it is equivalent to a constant element of $\mathbf{G} \quad Z \in H \subset H(z) \quad \mathbf{Z}$ is regular semisimple. There are W_{G}

$$
A(z)=g(q z) Z g(z)^{-1}
$$

Z-twisted Miura (G,q)-oper if gauge transform is from Borel

$$
A(z)=v(q z) Z v(z)^{-1}, \quad v(z) \in B_{+}(z)
$$

Plucker Relations

V_{i}^{+}irrep of G with highest weight $\omega_{i} \quad$ Line $\quad L_{i} \subset V_{i} \quad$ stable under B_{+}

Plucker relations: for two integral dominant weights	$L_{\lambda+\mu} \subset V_{\lambda+\mu}$ is the image of $L_{\lambda} \otimes L_{\mu} \subset V_{\lambda} \otimes V_{\mu}$
	under canonical projection $\quad V_{\lambda} \otimes V_{\mu} \longrightarrow V_{\lambda+\mu}$

Conversely, for a collection of lines $\quad L_{\lambda} \subset V_{\lambda}$ satisfying Plucker relations $\exists B \subset G$ such that L_{λ} is stabilized by B for all λ A choice of B is equivalent to a choice of B_{+}-torsor in G

Let $\nu_{\omega_{i}}$ be a generator of the line $L_{i} \subset V_{i}$. This is a vector of weight ω_{i} wrt $H \subset B_{+}$
The subspace of V_{i} of weight $\omega_{i}-\alpha_{i}$ is one-dimensional and spanned by $f_{i} \cdot \nu_{\omega_{i}}$
Thus the 2 d subspace spanned by $\left\{\nu_{\omega_{i}}, f_{i} \cdot \nu_{\omega_{i}}\right\}$ is a B_{+}-invariant subspace of V_{i}

Miura-Pucker (G,q)-Opers

let $\left(\mathcal{F}_{G}, A, \mathcal{F}_{B_{-}}, \mathcal{F}_{B_{+}}\right)$be a Miura (G, q)-oper with regular singularities $\quad\left\{\Lambda_{i}(z)\right\}_{i=1, \ldots, r}$ Associated vector bundle $\quad \mathcal{V}_{i}=\mathcal{F}_{B_{+}} \underset{B_{+}}{\times} V_{i}=\mathcal{F}_{G} \underset{G}{\times} V_{i} \quad$ contains rank-two subbundle $\quad \mathcal{W}_{i}=\mathcal{F}_{B_{+}} \underset{B_{+}}{\times} W_{i}$ associated to $W_{i} \subset V_{i}$, and \mathcal{W}_{i} in turn contains a line subbundle $\quad \mathcal{L}_{i}=\mathcal{F}_{B_{+}}{ }_{B_{+}} L_{i}$

Using structure theorems we obtain \mathbf{r} Miura ($\mathrm{GL}(2), \mathrm{q})$-opers

$$
A_{i}(z)=\left(\begin{array}{cc}
g_{i}(z) & \Lambda_{i}(z) \prod_{j>i} g_{j}(z)^{-a_{j i}} \\
0 & g_{i}^{-1}(z) \prod_{j \neq i} g_{j}(z)^{-a_{j i}}
\end{array}\right)
$$

Z-twisted Miura-Plucker (G,q)-oper is meromorphic Miura (G,q)-oper on P1 such that for each Miura (GL(2),q)-oper

$$
A_{i}(z)=\left.v(z q) Z v(z)^{-1}\right|_{W_{i}}=v_{i}(z q) Z_{i} v_{i}(z)^{-1}
$$

where $v_{i}(z)=\left.v(z)\right|_{W_{i}}$ and $Z_{i}=\left.Z\right|_{W_{i}}$

QQ-System

Theorem: There is a one-to-one correspondence between the set of nondegenerate Z twisted Miura-Plücker (G, q)-opers and the set of nondegenerate polynomial solutions of the $Q Q$-system

$$
\begin{aligned}
& \widetilde{\xi}_{i} Q_{-}^{i}(z) Q_{+}^{i}(q z)-\xi_{i} Q_{-}^{i}(q z) Q_{+}^{i}(z)= \\
& \Lambda_{i}(z) \prod_{j>i}\left[Q_{+}^{j}(q z)\right]^{-a_{j i}} \prod_{j<i}\left[Q_{+}^{j}(z)\right]^{-a_{j i}}, \quad i=1, \ldots, r, \\
& \widetilde{\xi}_{i}=\zeta_{i} \prod_{j>i} \zeta_{j}^{a_{j i}}, \quad \xi_{i}=\zeta_{i}^{-1} \prod_{j<i} \zeta_{j}^{-a_{j i}}
\end{aligned}
$$

Proof uses

$$
v(z)=\prod_{i=1}^{r} y_{i}(z)^{\check{\alpha}_{i}} \prod_{i=1}^{r} e^{-\frac{Q_{-}^{i}(z)}{Q_{+}^{i}(z)} e_{i}} \ldots, \quad g_{i}(z)=\zeta_{i} \frac{Q_{+}^{i}(q z)}{Q_{+}^{i}(z)}
$$

XXZ Bethe Ansatz Equations for G

roots of Q+

$$
\frac{Q_{+}^{i}\left(q w_{i}^{k}\right)}{Q_{+}^{i}\left(q^{-1} w_{i}^{k}\right)} \prod_{j} \zeta_{j}^{a_{j i}}=-\frac{\Lambda_{i}\left(w_{k}^{i}\right) \prod_{j>i}\left[Q_{+}^{j}\left(q w_{k}^{i}\right)\right]^{-a_{j i}} \Pi_{j<i}\left[Q_{+}^{j}\left(w_{k}^{i}\right)\right]^{-a_{j i}}}{\Lambda_{i}\left(q^{-1} w_{k}^{i}\right) \prod_{j>i}\left[Q_{+}^{j}\left(w_{k}^{i}\right)\right]^{-a_{j i}} \Pi_{j<i}\left[Q_{+}^{j}\left(q^{-1} w_{k}^{i}\right)\right]^{-a_{j i}}}
$$

Space of nondegenerate solutions of QQ-system for G		Nondegenerate Z-twisted Miura-Plucker (G,q)-ope with regular singularities
Space of nondegenerate solutions of XXZ for G	$?$	Nondegenerate Z-twisted Miura (G,q)-opers with regular singularities

SL(2) Example

$A(z)=\left(\begin{array}{cc}g(z) & \Lambda(z) \\ 0 & g(z)^{-1}\end{array}\right)$

Z-twisted q-oper condition

$$
A(z)=v(z q) Z v(z)^{-1}, \quad Z=\left(\begin{array}{cc}
\zeta & 0 \\
0 & \zeta^{-1}
\end{array}\right)
$$

Gauge transformation reads

$$
v(z)=\left(\begin{array}{cc}
y(z) & 0 \\
0 & y(z)^{-1}
\end{array}\right)\left(\begin{array}{cc}
1 & -\frac{Q_{-}(z)}{Q_{+}(z)} \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
y(z) & -y(z) \frac{Q_{-}(z)}{Q_{+}(z)} \\
0 & y(z)^{-1}
\end{array}\right)
$$

We find

$$
g(z)=\zeta_{i} y(z q) y(z)^{-1}
$$

$$
\Lambda(z)=y(z) y(z q)\left(\zeta \frac{Q_{-}(z)}{Q_{+}(z)}-\zeta^{-1} \frac{Q_{-}(z q)}{Q_{+}(z q)}\right)
$$

The q-oper condition becomes the SL(2) QQ-system

$$
\zeta Q_{-}(z) Q_{+}(z q)-\zeta^{-1} Q_{-}(z q) Q_{+}(z)=\Lambda(z)
$$

To get Bethe equations $\quad Q_{+}(z)=\prod_{k=1}^{\prime \prime \prime}\left(z-w_{k}\right) \quad$ evaluate at roots of $\mathrm{Q} \quad \frac{\Lambda\left(w_{k}\right)}{\Lambda\left(q^{-1} w_{k}\right)}=-\zeta^{2} \frac{Q_{+}\left(q w_{k}\right)}{Q_{+}\left(q^{-1} w_{k}\right)}, \quad k=1, \ldots, m$.

$$
\Lambda(z)=\prod_{p=1}^{L} \prod_{j_{p}=0}^{r_{p}-1}\left(z-q^{-j_{p}} z_{p}\right)
$$

XXZ Bethe equations

$$
q^{r} \prod_{p=1}^{L} \frac{w_{k}-q^{1-r_{p}} z_{p}}{w_{k}-q z_{p}}=-\zeta^{2} q^{m} \prod_{j=1}^{m} \frac{q w_{k}-w_{j}}{w_{k}-q w_{j}}, \quad k=1, \ldots, m
$$

Quantum Backlund Transformation

Theorem: Consider the following q-gauge transformation

$$
A \mapsto A^{(i)}=e^{\mu_{i}(q z) f_{i}} A(z) e^{-\mu_{i}(z) f_{i}}, \quad \text { where } \quad \mu_{i}(z)=\frac{\prod_{j \neq i}\left[Q_{+}^{j}(z)\right]^{-a_{j i}}}{Q_{+}^{i}(z) Q_{-}^{i}(z)}
$$

changes the set of Q-functions

$$
\begin{array}{ll}
Q_{+}^{j}(z) \mapsto Q_{+}^{j}(z), & j \neq i, \\
Q_{+}^{i}(z) \mapsto Q_{-}^{i}(z), & Z \mapsto s_{i}(Z)
\end{array}
$$

$$
\begin{aligned}
\left\{\widetilde{Q}_{+}^{j}\right\}_{j=1, \ldots, r} & =\left\{Q_{+}^{1}, \ldots, Q_{+}^{i-1}, Q_{-}^{i}, Q_{+}^{i+1} \ldots, Q_{+}^{r}\right\} \\
\left\{\widetilde{z}_{j}\right\}_{j=1, \ldots, r} & =\left\{z_{1}, \ldots, z_{i-1}, z_{i}^{-1} \prod z_{j}^{-a_{j i}}, \ldots, z_{r}\right\}
\end{aligned}
$$

Now the strategy is to successively apply Backlund transformations according to the reduced decomposition of the element of the Weyl group
Consider longest element

$$
w_{0}=s_{i_{1}} \ldots s_{i_{\ell}}
$$

Theorem: Every Z-twisted Miura-Plucker (G,q)-oper is Z-twisted Miura (G,q)-oper

The proof based on properties of double Bruhat cells addresses existence of the diagonalizing element $\mathrm{v}(\mathrm{z})$ (to be constructed later)

(SL(N),q)-Opers

The QQ-system

$$
\xi_{i} \phi_{i}(z)-\xi_{i+1} \phi_{i}(q z)=\rho_{i}(z)
$$

$\phi_{i}(z)=\frac{Q_{i}^{-}(z)}{Q_{i}^{+}(z)}$,
$\rho_{i}(z)=\Lambda_{i}(z) \frac{Q_{i-1}^{+}(q z) Q_{i+1}^{+}(z)}{Q_{i}^{+}(z) Q_{i}^{+}(q z)}$
q-Oper condition

$$
v(q z)^{-1} A(z)=Z v(z)^{-1}
$$

Diagonalizing element
Polynomials $\quad Q_{i, \ldots, j}^{-}(z)$
form extended $Q Q$-system

$$
v(z)^{-1}=\left(\begin{array}{cccccc}
\frac{1}{Q_{1}^{+}(z)} & \frac{Q_{1}^{-}(z)}{Q_{2}^{+}(z)} & \frac{Q_{12}^{-}(z)}{Q_{3}^{+}(z)} & \ldots & \frac{Q_{1, \ldots, r-1}^{-}(z)}{Q_{r}^{+}(z)} & Q_{1, \ldots, r}^{-}(z) \\
0 & \frac{Q_{1}^{+}(z)}{Q_{2}^{+}(z)} & \frac{Q_{2}^{-}(z)}{Q_{3}^{+}(z)} & \ldots & \frac{Q_{2, \ldots, r-1}^{-}(z)}{Q_{r}^{+}(z)} & Q_{2, \ldots, r}^{-}(z) \\
0 & 0 & \frac{Q_{2}^{+}(z)}{Q_{3}^{+}(z)} & \ldots & \frac{Q_{3, \ldots, r-1}^{-}(z)}{Q_{r}^{+}(z)} & Q_{3, \ldots, r}^{-}(z) \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & \ldots & \ldots & \ldots & \frac{Q_{r-1}^{+}(z)}{Q_{r}^{+}(z)} & Q_{r}^{-}(z) \\
0 & \ldots & \ldots & \ldots & 0 & Q_{r}^{+}(z)
\end{array}\right)
$$

Quantum Wronskians

$(\mathrm{SL}(\mathrm{N}), \mathrm{q})$-oper can also be constructed from flag of subbundles $\left(E, A, \mathcal{L}_{\bullet}\right)$, such that the induced maps $\quad \bar{A}_{i}: \mathcal{L}_{i} / \mathcal{L}_{i-1} \longrightarrow \mathcal{L}_{i+1}^{q} / \mathcal{L}_{i}^{q}$ are isomorphisms

The quantum determinants

$$
\mathcal{D}_{k}(s)=e_{1} \wedge \cdots \wedge e_{r+1-k} \wedge Z^{k-1} s(z) \wedge Z^{k-2} s(q z) \wedge \cdots \wedge Z s\left(q^{k-2}\right) \wedge s\left(q^{k-1} z\right)
$$

vanish at q-oper singularities

$$
W_{k}(s)=P_{1}(z) \cdot P_{2}\left(q^{2} z\right) \cdots P_{k}\left(q^{k-1} z\right), \quad P_{i}(z)=\Lambda_{r} \Lambda_{r-1} \cdots \Lambda_{r-i+1}(z)
$$

Diagonalizing condition

$$
\operatorname{det}_{i, j}\left[\xi_{r+1-k+i}^{k-j} s_{r+1-k+i}\left(q^{j-1} z\right)\right]=\alpha_{k} W_{k} \mathcal{V}_{k}
$$

Components of the section of the line subbundle are the Q-polynomials!

$$
s_{r+1}(z)=Q_{r}^{+}(z), \quad s_{r}(z)=Q_{r}^{-}(z)
$$

$$
s_{k}(z)=Q_{k, \ldots, r}^{-}(z)
$$

Quantum/Classical Duality

Consider T*G/B

Construct the corresponding space of (SL(N),h)-opers

Specify components of the section of L1

$$
s_{1}(z)=z-p_{1}, \quad, \ldots, \quad s_{k+r}(z)=z-p_{k+l}
$$

$$
p_{k+l+1-p}=-\frac{Q_{p}^{+}(0)}{Q_{p-1}^{+}(0)}
$$

Then the space of functions on the space of such h-opers

$$
\left.\operatorname{Fun}(\hbar \mathrm{Op})\left(F \mathbb{F} l_{L}\right)\right) \cong \frac{\mathbb{C}\left(\left\{\xi_{i}\right\},\left\{a_{i}\right\},\left\{p_{i}\right\}, \hbar\right)}{\left\{H_{i}\left(\left\{p_{j}\right\},\left\{\xi_{j}\right\}, \hbar\right)=e_{i}\left(a_{1}, \ldots, a_{L}\right\}\right)_{i=1, \ldots, L}}
$$

is described by trigonometric Ruijsenaars-Schneider model with n particles

$$
H_{k}=\sum_{\substack{\mathcal{J} \subset\{1, \ldots, L\} \\|\mathcal{J}|=k}} \prod_{\substack{i \in \mathcal{J} \\ j \notin \mathcal{J}}} \frac{\xi_{i}-\hbar \xi_{j}}{\xi_{i}-\xi_{j}} \prod_{m \in \mathcal{J}} p_{m}
$$

Generalized Wronskians

Consider big cell in Bruhat decomposition

$$
\begin{gathered}
G_{0}=N_{-} H N_{+} \\
g=n_{-} h n_{+}
\end{gathered}
$$

$V_{i}^{+} \quad$ irrep of G with highest weight ω_{i}

$$
h \nu_{\omega_{i}}^{+}=[h]^{\omega_{i}} \nu_{\omega_{i}}^{+}
$$

Define principal minors for group element g For SL(N) they are standard minors of matrices

$$
\Delta^{\omega_{i}}(g)=[h]^{\omega_{i}}, \quad i=1, \ldots, r
$$

$$
\Delta_{u \omega_{i}, v \omega_{i}}(g)=\Delta^{\omega_{i}}\left(\tilde{u}^{-1} g \tilde{v}\right) \quad u, v \in W_{G}
$$

Proposition Action of the group element on the highest weight vector in

$$
g \cdot \nu_{\omega_{i}}^{+}=\sum_{w \in W} \Delta_{w \cdot \omega_{i}, \omega_{i}}(g) \tilde{w} \cdot \nu_{\omega_{i}}^{+}+\ldots
$$

where dots stand for the vectors, which do not belong to the orbit \mathcal{O}_{W}.

Generalized Minors and QQ-system

The set of generalized minors $\left\{\Delta_{w \cdot \omega_{i}, \omega_{i}}\right\}_{w \in W ; i=1, \ldots, r}$ creates a set of coordinates on G / B^{+}, known as generalized Plücker coordinates. In particular, the set of zeroes of each of $\Delta_{w \cdot \omega_{i}, \omega_{i}}$ is a uniquely and unambiguously defined hypersurface in G / B.

Proposition For a W-generic Z-twisted Miura-Plücker (G, q)-oper with q-connection $A(z)=v(q z) Z v(z)^{-1}$, where $v(z) \in B_{-}(z)$ we have the following relation:

$$
\Delta_{w \cdot \omega_{i}, \omega_{i}}\left(v^{-1}(z)\right)=Q_{+}^{w, i}(z)
$$

for any $w \in W$.
Proof: \quad Since $\quad \Delta^{\omega_{i}}\left(v^{-1}(z)\right)=Q_{+}^{i}(z)$
Diagonalizing gauge transformation

$$
v^{-1}(z)=\prod_{i=1}^{r} e^{\frac{Q_{-}^{i}(z)}{Q_{+}^{i}(z)} f_{i}} \prod_{i=1}^{r}\left[Q_{+}^{i}(z)\right]^{\check{\alpha}_{i}} \ldots
$$

$$
v^{-1}(z) \nu_{\omega_{i}}^{+}=Q_{+}^{i}(z) \nu_{\omega_{i}}^{+}+Q_{-}^{i}(z) f_{i} \nu_{\omega_{i}}^{+}+\ldots
$$

Fundamental Relation for Generalized Minors

[Fomin Zelevinsky]

Proposition 4.8. Let, $u, v \in W$, such that for $i \in\{1, \ldots, r\}, \ell\left(u w_{i}\right)=\ell(u)+1, \ell\left(v w_{i}\right)=$ $\ell(v)+1$. Then

$$
\begin{equation*}
\Delta_{u \cdot \omega_{i}, v \cdot \omega_{i}} \Delta_{u w_{i} \cdot \omega_{i}, v w_{i} \cdot \omega_{i}}-\Delta_{u w_{i} \cdot \omega_{i}, v \cdot \omega_{i}} \Delta_{u \cdot \omega_{i}, v w_{i} \cdot \omega_{i}}=\prod_{j \neq i} \Delta_{u \cdot \omega_{j}, v \cdot \omega_{j}}^{-a_{j i}} \tag{4.7}
\end{equation*}
$$

Can we make sense of this relation using our approach of q-Opers?

Generalized Wronskians

The approach is similar to Miura-Plucker q-Opers
Let $\nu_{\omega_{i}}^{+}$be a generator of the line $L_{i}^{+} \subset V_{i}^{+}$
V_{i}^{+}irrep of G with highest weight ω_{i}
The subspace $L_{c, i}^{+}$of V_{i} of weight $c^{-1} \cdot \omega_{i}$ is one-dimensional and is spanned by $s^{-1} \nu_{\omega_{i}}^{+}$

Associated vector bundle

$$
\nu_{i}^{+}=\mathcal{F}_{B_{+}} \times{ }_{B_{+}} V_{i}^{+}=\mathcal{F}_{G} \times V_{i}^{+}
$$

Contains line subbundles

$$
\mathcal{L}_{i}^{+}=\mathcal{F}_{H} \underset{H}{\times} L_{i}^{+}, \quad \mathcal{L}_{c, i}^{+}=\mathcal{F}_{H} \underset{H}{\times} L_{c, i}^{+}
$$

Define generalized Wronskian on \mathbb{P}^{1} as quadruple $\left(\mathcal{F}_{G}, \mathcal{F}_{B_{+}}, \mathscr{G}, Z\right)$
\mathscr{G} is a meromorphic section of a principle bundle \mathcal{F}_{G}
s.t. for sections $\left\{v_{i}^{+}, v_{c, i}^{+}\right\}_{i=1, \ldots, r}$ of line bundles $\left\{\mathcal{L}_{i}^{+}, \mathcal{L}_{c, i}^{+}\right\}_{i=1, \ldots, r}$ on $U \cap M_{q}^{-1}(U)$

$$
\mathscr{G}^{q} \cdot v_{i}^{+}=Z \cdot \mathscr{G} \cdot v_{c, i}^{+}
$$

Adding Singularities

Effectively the above definition means that the Wronskian, written as an element of $G(z)$, satisfies

$$
Z^{-1} \mathscr{G}(q z) \nu_{\omega_{i}}^{+}=\mathscr{G}(z) \cdot s_{\phi}(z)^{-1} \cdot \nu_{\omega_{i}}^{+} \quad s_{\phi}(z)=\prod_{i} \phi_{i}^{-\check{\alpha}_{i}} s_{i}
$$

Define generalized Wronskian with regular singularities if

$$
s_{\Lambda}(z)^{-1}=\prod_{i}^{\mathrm{inv}} s_{i} \Lambda_{i}^{\check{\alpha}_{i}}
$$

Fomin-Zelevinsky relations then read

$$
\begin{aligned}
& \Delta_{\omega_{i}, \omega_{i}} \Delta_{w_{i} \cdot \omega_{i}, c^{-1} \cdot \omega_{i}}-\Delta_{w_{i} \cdot \omega_{i}, \omega_{i}} \Delta_{\omega_{i}, c^{-1} \cdot \omega_{i}} \\
&=\prod_{j<i=i_{l}} \Delta_{\omega_{j}, c^{-1} \cdot \omega_{j}}^{-a_{j i}} \prod_{j>i=i_{l}} \Delta_{\omega_{j}, \omega_{j}}^{-a_{j i}}, \quad i=1, \ldots, r,
\end{aligned}
$$

q-Opers and q-Wronskians

Theorem 1:

Theorem 2:

$$
\text { For a given } Z \text {-twisted }(G, q) \text {-Miura oper, there exists a unique gener- }
$$

alized q-Wronskian

$$
\mathscr{W}(z) \in B_{-}(z) w_{0} B_{-}(z) \cap B_{+}(z) w_{0} B_{+}(z) \subset G(z)
$$

satisfying the system of equations

$$
\begin{aligned}
& \mathscr{W}\left(q^{k+1} z\right) \nu_{\omega_{i}}^{+}=Z^{k} \mathscr{W}(z) s^{-1}(z) s^{-1}(q z) \ldots s^{-1}\left(q^{k} z\right) \nu_{\omega_{i}}^{+} \\
& i=1, \ldots, r, \quad k=0,1, \ldots, h-1
\end{aligned}
$$

where h is the Coxeter number of G.

Examples: SL(2)

$$
\begin{aligned}
& \mathscr{W}(q z) \nu_{\omega}^{+}=Z \mathscr{W}(z) s^{-1}(z) \nu_{\omega}^{+} \\
& s^{-1}(z)=\tilde{s}^{-1} \Lambda(z)^{\check{\alpha}}=\left(\begin{array}{cc}
0 & \Lambda(z)^{-1} \\
\Lambda(z) & 0
\end{array}\right), \quad \nu_{\omega}^{+}=\binom{1}{0}, \quad Z=\left(\begin{array}{cc}
\zeta & 0 \\
0 & \zeta^{-1}
\end{array}\right)
\end{aligned}
$$

In terms of Q-polynomials

$$
\begin{gathered}
\mathscr{W}(z)=\left(\begin{array}{cc}
Q^{+}(z) & \zeta^{-1} \Lambda(z)^{-1} Q_{+}(q z) \\
Q^{-}(z) & \zeta \Lambda(z)^{-1} Q^{-}(q z)
\end{array}\right) \\
\zeta Q^{+}(z) Q^{-}(q z)-\zeta^{-1} Q^{+}(q z) Q^{-}(z)=\Lambda(z)
\end{gathered}
$$

is equivalent to $\operatorname{det} \mathscr{W}(z)=1$.

Examples SL(N)

$$
\mathscr{W}(z)=\left(\Delta_{\mathbf{w} \omega, \omega}\left|\Delta_{\mathbf{w} \omega, s^{-1} \omega}\right| \ldots \mid \Delta_{\mathbf{w} \omega, s^{r+1} \omega}\right)(\mathscr{G}(z))
$$

Lift for standard ordering along the Dynkin diagram

$$
s_{\Lambda}^{-1}(z)=\tilde{s}^{-1} \prod_{i} \Lambda_{i}^{d_{i}}
$$

$$
d_{i}=\sum_{j=1}^{i} \check{\alpha}_{j}
$$

$$
\tilde{s}^{-1}=\left(\begin{array}{ccccc}
0 & 0 & \ldots & 0 & 1 \\
1 & 0 & \ldots & 0 & 0 \\
0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \ldots & \vdots \\
0 & 0 & \ldots & 1 & 0
\end{array}\right)
$$

$$
\mathscr{W}(z)=\left(Q^{\mathbf{w} \cdot \omega}(z)\left|Z F_{1}(z) Q^{\mathbf{w} \cdot \omega}(q z)\right| \ldots \mid Z^{r-1} F_{r-1}\left(q^{r-1} z\right) Q^{\mathbf{w} \cdot \omega}\left(q^{r-1} z\right)\right)
$$

where $F_{i}(z)=\prod_{j=1}^{i} \Lambda_{j}(z)^{-1}$.

Lewis Carroll Identity

In Type A FZ relation reduces to

$$
\Delta_{u \omega_{i}, v \omega_{i}} \Delta_{u s_{i} \omega_{i}, v s_{i} \omega_{i}}-\Delta_{u s_{i} \omega_{i}, v \omega_{i}} \Delta_{u \omega_{i}, v s_{i} \omega_{i}}=\Delta_{u \omega_{i-1}, v \omega_{i-1}} \Delta_{u \omega_{i+1}, v \omega_{i+1}}
$$

$$
M_{1}^{1} M_{i}^{2}-M_{i}^{1} M_{1}^{2}=M_{1 i}^{12} M
$$

