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1. Introduction



1.1. Polynomial invariants

m We will be interested in a construction of various topological
invariants associated to links in R3, such as the Hopf link

@

that we are going to use for illustration purposes.

m There exists a large zoo of polynomial invariants such as the
famous Jones polynomial [Jones (1985)]

XJones(q) =q+ q_l-

m Its rescaled version is the gl(2) invariant
A . ~
Xe@)(@) = (0% + 0 ) Xones(q) = @/> + @2 + g7 V2 4+ g3,

m There also exist polynomial invariants associated to other Lie
(super) algebras, in particular the series gl(m|n).



1.2. Homological invariants

Polynomial invariants often admit categorification in terms of
homological invariants.

An example is the Khovanov homology [Khovanov (2000)]
KH = @; jKH'™,
that is the homology of a complex
o N o e

associated to a link.

The gl(2) invariant can be recovered as the Euler
characteristic of the complex:

X(q) = (~1)'dim(KH")¢/.
i

People have also constructed homological invariants associated
to gl(m) and gl(1|1) (aka Heegaard-Floer-knot homology).



m For example, the complex for the Hopf link reads
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m The homology is four-dimensional, concentrated at degrees

KHz’% = KH27% = KHO’i% = KHO’ig =C.
m We obviously recover the gl(2) invariant as
(@) = (1% +(-1q2 + (-1)°q 2 +(-1)°
= q% +q% +q_% —|—q_%_



1.3. Physical/geometric origin

Polynomial invariants are known to originate from gl(m|n)
Chern-Simons theory in terms of the expectation value of line
operators [Witten (1989)].

But what is the physics behind homological invariants? Can
one reproduce the success of the Chern-Simons theory and
learn something new about them?

An attempt to find such a physical story was presented by
[Witten (2011)] and later developed by multiple other people
but its complicated nature does not allow any non-trivial
calculations.

Utilising various string-theory dualities and building up on the
insights from the work of [Ozscath-Szabo (2008), Auroux (2010),
Rasmussen (2003), Seidel-Smith (2008), Gaiotto-Moore-Witten
(2015), Webster (2015), ...], Mina Aganagic proposed a new
framework to compute the gl(2) invariant of links [Aganagic
(2020), (2021), (2022)].



1.4. Plan for today:

m Review some aspects of the Aganagic’s proposal.

m Turn it into a calculational tool by making the problem
algebraic. [Aganagic-LePage-MR (very soon)]

m Sketch the proof of topological invariance.
[Aganagic-LePage-MR (very soon)]

m Comment on the generalization to gl(m|n) homological
invariants. For gl(1|1), see [Aganagic-LePage-MR (very soon)]
and for gl(m|n), see [Aganagic-LePage-MR (soonish)].



2. Aganagic’s proposal



2.1. Overview

m Aganagic proposes 4 physical pictures that lead to link
invariants. They are mutually related by mirror symmetry in a
combination with equivariant localization.

m Today, we are going to be interested in one of the
constructions based on the Landau-Ginsburg model living on
the strip R x [ with the target being an n'th symmetric power
of a punctured Riemann surface.

m KH can be then identified with the space of supersymmetric
groundstates of this model for a particular choice of boundary
conditions on the two sides of /.

m As promissed above, we are going to illustrate the whole
construction on the example of the Hopf link:
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2.2. Stretching the knot

m Let us start with a knot in R3, stretch it along one direction as
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and cut it into three pieces as show in the figure.




2.3. What target?

m The middle slice of

LAGRANGIAN (,
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has the geometry of C x [ with knot bits inserted along / and

placed at fixed positions zi,. ..z, € C. Let us denote the
resulting punctured plane by X.

m The desired target space is then X = Sym” ¥ and in our
Hopf-link example, the second symmetric power of a
four-punctured plane.




2.3. What potential?

m The potential W(xi,...,xy,) is a function on Sym” ¥ and a
natural source of such functions associated to Lie algebras are
conformal blocks.

m For example, conformal blocks of the Virasoro algebra W, on
a plane with an insertion of 2n vertex operators in the
fundamental representation at z; can be written as

7{ dxy ... dx, H(Z,' -zj) € H(X; —x)" H(Xi - z)
¢ i<j i#j ij

where different choices of the contour C parametrize different
conformal blocks. [Dotsenko-Fateev (1984), Felder (1989)]



m The desired potential W encoding the equivariant grading
together with the holomorphic form Q encoding the Maslov
grading can be read off from the integrand of the above
expression by

QeeW = dX]_ e an H(Xi - Xj)_E H(Xi - ZJ)6

i# i.j
where zy, ..., z2, are positions of our knot strands and
X1,...,Xn are coordinates on Sym"Y. We have also dropped

xj-independent terms since they only contribute by a constant
shift to the potential.

m Concretely, we have

Q=dx...dxy, W=-) log(x—x +Zlog X; — zj)
i#j
m The choice of the contour C is going to be related to the

choice of boundary conditions for our model as we are going
to see next.



2.4. Caps

m We have associated the Landau-Ginsburg model on / x R to
the middle slice. From the perspective of this middle part, the
other two slices specify a boundary condition on the two sides
of the interval /.

m To a collection of caps, we associate a Lagrangian that is a
symmetric product of lines in ¥ stretched between two
punctures joined by an arch.

m In our example

N N\




2.4. Cups

m If the knot strands on the other side had been simple cups,
the Lagrangians would have been symmetric products of
figure eights:

VAW, __>E>@@®

m But since they are more complicated, we need to braid them

T A




2.5. Intersection points

m Desired homological invariants arise from counting
intersection points between the cap Lagrangian L; and the
braided cup Lagrangian L in our Landau-Ginsburg model.

m The analogue of the Khovanov's homological degree is the
standard Maslov degree encoded by Q2. The analogue of the €
degree is the equivariant degree encoded by W. These come
from the lift of the phase of Qe W into a single-valued
function on L1 and L.

m Can we find an algorithm to find these intersection points in
possibly complicated configurations?

m We are going to find a solution to this problem by making the
problem algebraic.



3. Single strand n=1



3.1. The boring unknot

m At first sight, the configuration containing a single pair of
punctures seems boring since

- &

corresponding to the unknot would be the only configuration
one can engineer.



3.2. Reduced homology

m Luckily, it turns out that cutting one of the strands such as in

leads to the reduced-homology invariant categorifying

Xg[(2)(q)

XJones(q) = m

m Using this proposal, finding reduced homology for any rational
knot (those coming from capping a braid of four strands)
becomes almost trivial.



3.3. Intersection points

m In this simple example, we can immediately see that there are
two intersection points and there is no disk not intersecting
with a puncture that could possibly lead to a non-trivial
differential:

m ldentifying degrees of the punctured disk allows us to identify
their relative Maslov and equivariant degrees and then recover

the Jones polynomial g + g~ 1.

m Counting disks in more complicated setups (more involved
braiding and multiple strands) becomes a rather involved
problem, so we will now develop an algebraic approach.



3.4. Thimbles

m Each brane in our category of branes can be represented in
terms of a complex of a special set of (thimble) branes T;
generating our brane category (projective generators).

m Thimbles T; are branes supported along straight lines in
between punctures such as the five thimbles in




3.5. Morphisms between thimbles

m Morphisms between branes are in correspondence with their
intersection points.

m Naively, thimbles do not intersect but deforming one of the
branes (tilting in our picture), one can identify non-trivial
morphisms. In particular, we find one morphism T; — T; for
each pair T;, T;:

o S Y

Ty —T x gr | = )7\' ’

m We are going to use a strand notation for the morphisms.



3.6. Adding dots and the KLRW algebra

m Branes in Landau-Ginsburg models can generally carry more
structure since they can support a nontrivial flat vector
bundle. To get the desired invariant, we need to introduce
such a modification resulting into the algebra of strands
decorated by dots

=110

m This algebra is known as the KLRW algebra [Webster (2019),
Aganagic-Danilenko-Li-Zhou (in progress)] and was previously
studied from a dual B-model perspective.



3.7. Composing morphisms

m The algebra structure can be determined by identifying disks.
m For example, let us start with T, — T3:



m The existence of the Maslov-degree-zero disk

tells us that the composition is non-trivial and allows us to
identify the product in terms of the morphism associated with
the blue intersection point.

m The resulting algebra is given by composition of strands
together with relation

—7

when the two strands go in opposite directions [Webster
(2022), Aganagic-Danilenko-Peng (in progress)].



3.8. Grading

m Looking at the potential and identifying the € degree of
various disks, one can show that assigning degrees

HEE W T

gives a consistent grading on the strand algebra.




3.9. Resolving brane

m We have found that the algebra of Hom(T, T) for T =, T;
admits a nice description in terms of the above strand algebra.
We are now going to use T to describe a Lagrangian L in
terms of a complex of thimbles T;.

m First, one can construct a module for the strand algebra
Hom(T, T) by intersecting the Lagrangian L with T, i.e.
identifying Hom(T, L).

m Secondly, finding a projective resolution of such a module
yields the desired complex of thimbles.

m This is a rather non-trivial construction and we are going to
find an alternative proposal.



3.10. Resolving brane - an alternative proposal

m We would like to represent the brane of interest as a complex
of thimbles T; with the differential given by a collection of
strand-algebra elements.

m It turns out that in the simple example of a single strand, we
can read off the complex almost completely directly from the
geometry!

m This is rather surprising since finding a projective resolution
explicitly is usually a rather challenging task.

m In the first step, let us stretch our cycle into vertical bits
resembling thimbles and horisontal bits corresponding to maps
between them:

AED- -~

PER——
R ®




m Using the stretched representation of the cycle

[l

one can read off directly:

- - . -4l
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m Colapsing the above into a standard complex produces
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m This complex closes only up to dotted generators.

m One can easily find the full complex by writing an ansatz for
all possible dotted corrections consistent with the equivariant
and the Maslov degree and solve for 62 = 0. One gets
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m More importantly, one can assign the e degree to all thimbles
by knowing the degree of our strand-algebra generators.



3.11. Reduced homology

m To find the reduced homology, we need to intersect with the
cap brane.

m One can see that the /; brane stretched between the (i — 1)'th
and i'th puncture has a one-dimensional intersection only with
T,', i.e. Hom(T,-, /J) = CcS,-,J-:

m Intersecting with /, thus picks all the T, factors in our
complex.



m In our example

[T

S
T—27, -HT a—— T« I, 7
\/
and we indeed get a two-dimensional homology
=C{1}, H*=C{-1}
with the Euler characteristic recovering the Jones polynomial

x=(1*"+(-1)°¢=qg+q"’



4. Multiple strands n > 1



4.1. General stategy

m Working on symmetric products is much more challenging.

m Intersection points become n-touples of points on the
punctured surface and one has nontrivial disks such as

These are hard to count.
m We are going to solve the problem by
1 Taking a naive symmetric product of the individual complexes
we found above.
2 Writing an ansatz for correction terms in the differential § and
solving for 62 = 0. This step makes counting disks algebraic!



4.2. Strand algebra

m Thimbles are now symmetric products of thimbles T; from
before. For example, for n = 2, we have a thimble

Ly



m Morphisms are going to be represented by n strands. Note
that we have multiple intersection points between each pair of
thimbles and correspondingly, we have strands that do or do
not cross. For example

i Al



Analogously to the single-strand case, one can analyze
Maslov-degree-zero disks and derive all the relations in the
strand algebra.

Disks now look more complicated such as the one in



m The full set f in the upstairs algebra consists of the

Hi?\
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m This defines the full KLRW algebra. [Webster (2015)]



4.3. Resolving individual cycles

m Recall that we can resolve individual cycles of

(up to dotted corrections) as

M- -lH) VY
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4.4. Taking naive product

m The naive symmetric product produces a grid of thimbles

[T.— T T, e~ e T,—7T —




m The crossing/straight strands can be identified directly from
the picture

T Tg
by identifying if the given morphism line crosses the second
thimble as in




m One can collapse the above grid of maps into a standard
complex of the form
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and assign the € grading to each of the thimble.



m The first two differentials are explicitly
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and analogously for ds, ds, ds, ds.



4.5. Adding dots
m One can decorate the complex by adding dotted corrections:
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4.6. Ansatz for corrected differential

m To "count disks algebraically”, let us write an asatz for
correction terms in the differential by including all maps
consistent with the Maslov and the € grading and that do not
contain any dots:
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4.7.

Solving for §°=0
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m The full solution reads
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4.9. Intersecting with caps

m Intersecting with the cap brane 4 selects
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m The resulting complex reads

{1 (-o o) 6 [2) (-’, 1') G:,f
T B ) et = ¢ — €L+)
¢ L)

m The homology is given by
=C{-1}, H*=C{-3}@C{-2}, H'=C{-4

m One recovers the gl(2) invariant (up to the overall factor) as
the Euler characteristic

X = (1% *+(-1)*(¢ 3 +qg )+ (-1)q "
G52(q¥2 + g2 4 V2 4 g2

m We have checked the construction for all knots up to seven
crossings! ...Using computer. ..



6. Topological invariance



6.1. Topological invariance

m To show topological invariance, one needs to check multiple

moves [Bigelow (2002)].

m The following three

[DJ{-Ci}

------ N Qu
B >~ B =~ B
U ...... UU U ...... UU ...... UU

are obviously satisfied by construction.



m On the other hand, the other two moves are

&
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and
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m They translate into the equivalence of

= = O

m Both transitions are implied by a simpler move

and
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6.2. Sketch of the proof

m To prove the equivalence, we can first resolve the branes L;
and L on each side in terms of complexes of thimbles.

m Identify chain maps f; : L1 — Ly and f> : L — Ly so that
both f; o f, and f; o f; are homotopic to the identity morphism.

m This can be shown by an explicit calculation.



6. Generalization to gl(k|/)



6.1. Target space

m For general gl(k|/), the target space consists of k +/—1
copies of the above symmetric power

X = (Symnz)k+lfl

(one for each simple root).

m We are going to call each factor corresponding to the
fermionic root fermionic.



6.2. Potential

m To find the potential, realize an existence of a two-parametric
generalization of the Virasoro algebra Wy, [Gaiotto-MR
(2017)] that generalizes further the well-known W algebra
known e.g. from the AGT correspondence.

m Analogously to the Virasoro algebra W, above, one can write
down conformal blocks with the insertion of fundamental and
anti-fundamental vertex operators in the free-field realization
[Prochazka-MR (2018)].

m The integrand can be again identified with Qe" of our
Landau-Ginsburg model that allows us to identify the Maslov
and the equivariant degree. Note that in the free-field
realization, we are required to introduce k 4+ / — 1 screening
currents for each simple root.



6.2. Potential

m Compared to the gl(2) case, we need to distinguish the
fundamental and the anti-fundamental representation
(decoupling the diagonal gl(1) factor, they were
indistinguishable). We need n insertions of the fundamental
and n insertions of the anti-fundamental field.

m Note that  can generally receive further contributions
compared to the above if the integrand contains
e-independent factors.

m Note also the non-trivial duality
k<1 e+ —1—c¢

This gives an alternative grading even in the gl(2) story above.



6.3. Branes

m We are going exchange a single figure-eight by a bundle of
figure-eights for each bosonic root and ovals for each
fermionic root.

m For example, a cup in the gl(2|1) invariant is going to be
represented by



6.4. Strand algebra

m The strand algebra consists of strands of different colors.

m First, we need to distinguish fundamental and
anti-fundamental punctures.

m Secondly, each strand is labelled by the corresponding simple
root.

m Fermionic roots do not support any dots.

m Counting disks, one can easily derive relations in the strand
algebra. They are analogous but more complicated to write
down.

m From the potential, one can easily derive the Maslov and the
equivariant degree.

m One substantial difference is that for m # 0 # n, there is a
non-trivial differential @ turning the strand-algebra into a
differential-graded-algebra.



6.5. Counting disks

m To count disks algebraicaly, one needs to first write the
approximate differential g analogously to the above. (There
is one technical complication requiring us to remove some of
the geometric maps.)

m For super-algebras, some of the geometric maps do not have
Maslov degree one and we need to introduce twisted
complexes with an approximate differential dp.

m To find the deformation § = dg + 01, we need to solve the
Maurer-Cartan equation

Q5+462=0



7. Summary



m We have developed a new algorithm for computing the
Khovanov homology and the gl(1|1) homology (aka
Heegaard-Floer-knot homology).

m We have a proposal for invariants associated to any gl(k|/)
and more. More checks are being done.



