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This talk is concerned with non-abelian mirrors. For abelian
theories, many things are known. For example:

I Abelian GLSMs are well understood,

I there exists the Batyrev-Borisov construction of mirrors to
complete intersections in projective spaces,

I there exists Hori-Vafa construction of mirrors.

For non-abelian theories, much work remains:

I Non-abelian GLSMs are still under active development,

I No known nonabelian mirror construction in physics until ’18.

This talk is concerned with the last point.



In this talk, we propose an extension of the Hori-Vafa mirror
construction of mirrors of 2d abelian gauge theories, to non-abelian
GLSMs

I We will quickly review GLSMs and the Hori-Vafa mirror
construction for abelian GLSMs

I We will propose mirrors for nonabelian GLSMs.

I We compute numerous examples to check the ansatz.



Mathematical and physical language for mirror symmetry

I For mirror Calabi-Yau n-folds, Hp,q(X ) = Hn−p,q(X̌ ). For
3-folds, we have χ(X ) = −χ(X̌ ).

I Two Calabi-Yau manifolds are said to be mirror, if the SCFTs
are isomorphic, related ultimately by flipping a left U(1)R sign
convention.

I On the worldsheet, mirror symmetry exchanges chiral
multiplets and twisted chiral multiplets.
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(2,2) GLSMs

Abelian GLSMs have been studied extensively in the literature
(Witten ’93), we define a GLSM by specifying the following data.

I Gauge group: a compact Lie group G with associated Lie
algebra g.

I Chiral matter fields: Φi=1,··· ,N are irreducible representations
Ri of G , this vector space is denoted by V ∼= CN .

I Adjoint fields: V is the adjoint representation of G called the
gauge field, the field strength is the twisted chiral superfield
denoted as Σ.

I Superpotential: a holomorphic, G -invariant polynomial
W : V → C, namely W ∈ Sym(V ∗)G .
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(2,2) GLSMs

I Fayet-Iliopoulos (FI) parameters and theta angles: a set
of FI-parameters ra and periodic theta angles θa ∈ R/2πZ
where the index a runs over the number of U(1) sector in G .
One can combine them to define qa = exp (−ta) ∈ C∗, where
ta = ra − iθa.

I R-symmetry: a vector U(1)V and axial U(1)A R-symmetries
that commute with the action of G on V . To (classically)
preserve the U(1)V symmetry the superpotential must have
weight 2 under it in our convention:

W (λqφ) = λ2W (φ)

where φ denotes the coordinates in V .

For abelian group G , many results are known. While nonabelian
gauged linear sigma models are still under active development for
example, WG w/ Sharpe and Zou ’20



(2,2) GLSMs

I The classical potential energy of a GLSM for a degree d
hypersurface in Pn is

U =
∑

i

| σ |2| φi |2 +d2 | σ |2| p |2

+
e2

2
|
∑

i

| φi |2 −d | P |2 −t |2 + | G (φ) |2 + | p∂iG |2 .

I GLSMs can RG flow to NLSMs on spaces such as CPN and
quintic. The Kähler parameter is renormalized under RG-flow:
r=r+

∑
Qi log µ

Λ .

I The twisted chiral rings of these target space can be
represented by the gauge invariant functions of σs (Witten
’93). For example, for projective space CPn, we only have one
σ, which corresponds to the generator of H1,1 of the
projective space, similar for σ2 ∼H2,2



(2,2) GLSMs

I For Fano spaces with a trivial Landau Ginzburg model at the
LG point (r << 0), quantum ring relations of the target can
be obtained from twisted effective superpotential, which are

I

W̃eff =
∑

a

Σa

[
−ta −

∑
i

Qa
i

(
log

(
a∑

Qa
i Σa

)
− 1

)]
.

∂W̃eff

∂σa
= 0.

I Notice the quantum potential energy U ∼
∑

a |
∂W̃eff
∂σa
|2.



Review of (2,2) abelian mirrors

For (2,2) abelian GLSMs, the mirrors are Landau-Ginzburg models
with fields (Hori, Vafa ’00):

• Yi neutral fields mirror to each of the matter fields, with 2πi
periodicity, so observables are exp(−Y ).

• Σa auxiliary fields mirror to the gauge strength fields of the
original GLSM,

and superpotential

W =
∑

a

(∑
i

Qa
i Yi − ta

)
Σa +

∑
i

e−Yi .
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The mirror Landau Ginzburg superpotential

I Non-renormalization theorem: the superpotential in LG is
classical.

I The quantum chiral ring relations are obtained by

∂W

∂Yi
= 0.

Reason is that the bosonic potential=| dW |2, vacua
correspond to the vanishing of the bosonic potential energy.

From the mirror Landau Ginzburg superpotential

W =
∑

a

(∑
i

Qa
i Yi − ta

)
Σa +

∑
i

e−Yi ,

taking the Yi derivative gives the map between observables

Qa
i Σa = exp (−Yi ) .

We will use this map later on for concrete examples.
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A quick example: CP4

GLSM: U(1) gauge theory, five chiral superfields of gauge charge 1.
The A-model twisted superpotential

W̃eff = −tΣ− 5Σ (log Σ− 1) .

The effective GLSM twisted superpotential is defined from
quantum correction of matter fields, there are five vacua. The
twisted chiral ring relations

σ5 = q.

One can also compute the correlation functions are

〈σ5k+4〉 = qk , for k ≥ 0.
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The mirror Landau Ginzburg model for CP4

The mirror LG model superpotential is

W = Σ

(∑
i

Yi − t

)
+

5∑
i=1

e−Yi .

Integrate out Σ and solve the constraint to get

Weff =
4∑

i=1

e−Yi + q
4∏

i=1

e+Yi .

The LG-model superpotential is defined classically.
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The mirror Landau Ginzburg model for CP4

One can evaluate
∂Weff

∂Yi
= 0

to obtain the chiral ring relations, which are

exp(−Y1) = . . . = exp(−Y5) = X , X 5 = q.

One can also compute the correlation functions are

〈X 5k+4〉 = qk , for k ≥ 0.

Recall the map for observables is σ ⇔ X = e−Y . All match the
GLSM result! One can also study mirrors to hypersurfaces in
projective spaces similarly (details can be found elsewhere).
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Non-abelian mirror proposal

In Gu, Sharpe ’18, we propose that the mirror of a non-abelian
GLSM with connected gauge group G is defined by a
Landau-Ginzburg orbifold, which is a Weyl group orbifold of Yi , Xµ
and Σa fields with superpotential

W =
∑

a

Σa

(∑
i

ρa
i Yi −

∑
µ

αa
µ logXµ − ta

)
+
∑
µ

Xµ+
∑

i

exp(−Yi ),

where ρa
i are weights of matter representation, αa

µ are roots of
gauge group G, and the index a∈ {1, . . . , r}, and r is the rank of
Cartan torus of the non-abelian group.

I Σa mirror to each U(1) gauge field strength multiplets in
Cartan torus which we denote the same notation.

I Yi mirror to matter fields.

I Xµ mirror to W-bosons (∼ roots of the Lie algebra) .
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Weyl group orbifold

The Weyl orbifold maps weights to weights

Yi 7→ Yj

∑
a

Σaρ
a
i 7→

∑
a

Σaρ
a
i .

and roots to roots

Xµ 7→ Xν
∑

a

Σaα
a
µ 7→

∑
a

Σaα
a
ν .

One can check that the superpotential is invariant under the Weyl
group orbifold transformation.



Idea of the proposal
At a generic point on the Coulomb branch, the nonabelian theory
becomes an abelian theory with W bosons (lowest component of
chiral superfields with vector R-charge 2), it is an effective theory.
Our intuition is that the nonabelian proposal is a result of applying
abelian (Hori-Vafa) duality at such a point, to both matter fields
as well as W bosons, which is why our proposal looks so closely
related to abelian duality.
So the logic is that we start from a UV nonabelian GLSM, but we
take T-dual of an effective theory that looks pretty like an abelian
theory. The effective theory is conjectured to follow to the same
NLSM as the original nonabelian GLSM.
If we know the details of the Kahler potential under the RG-flow,
one can argue that we have a physical proof of nonabelian mirrors.
However, it is still an interesting question to ask whether we can
have a framework for nonabelian T-dual, and nonabelian mirrors
are expected to be UV fundamental theories. These fundamental
theories follow to the same low energy theory as our nonabelin
mirrors.



Associated Cartan

I Gauge group: gauge group T = U(1)rank(G) o S ,
U(1)rank(G) is the maximal torus of the gauge group G and S
is the Weyl group of G .

I Chiral matter fields: Φi=1,··· ,N are charged by weights ρa
i

under the gauge group T , the field space Φ is a Weyl-orbifold
free subset of CN·rank(G) denoted as V o . Additional Weyl
orbifold free dim (g)− rank (g) vector R-charge 2 with gauge
charges given by the roots αa

µ of G .

I Adjoint fields: V is the adjoint representation of
U(1)rank(G) o S , the field strength is the twisted chiral
superfield also denoted as Σ.

I with other data



Consistency checks

This proposal satisfies a number of consistency checks, including
(but not limited to):

I Matching Witten index

I Matching quantum cohomology rings,

I Matching (topological) correlation functions,

We will see this explicitly in various examples in the rest of this
talk.



An example

Let us consider a (2,2) supersymmetric pure SU(2) group as an
example. Our general ansatz for the mirror superpotential is

W =
∑

a

Σa

(∑
i

ρa
i Yi −

∑
µ

αa
µ logXµ − ta

)
+
∑
µ

Xµ+
∑

i

exp(−Yi ).

For pure SU(2), the mirror has fields Σ, X1, X2, and the
superpotential reduces to

W = 2Σ (logX1 − logX2) + X1 + X2.

The Weyl group, Z2, acts on the fields as

Σ→ −Σ, X1 ⇔ X2,

and the superpotential is invariant under this Weyl group action.
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Example: Grassmannian G (k , n)

The GLSM for Grassmannian G (k , n) is a U(k) gauge theory with
n fundamental matter fields.

The mirror is predicted to be an
Sk -orbifold of a Landau-Ginzburg model with matter fields Yia

(i ∈ {1, . . . , n} , a ∈ {1, . . . , k}), Xµν = exp (−Zµν),
µ, ν ∈ {1, . . . , }, and superpotential

W =
∑

a

Σa

(∑
ib

ρa
ibYib +

∑
µν

αa
µνZµν − t

)
+
∑

ia

exp(−Yia)+
∑
µ 6=ν

Xµν ,

where ρa
ib = δa

b, αa
µν = −δa

µ + δa
ν .
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Example: Grassmannian G (k , n)
Integrating out the Σa, we get constraints∑

i

Yia −
∑
ν 6=a

(Zaν − Zνa)− t = 0,

which we use to eliminate Yna:

Yna = −
n−1∑
i=1

Yia +
∑
ν 6=a

(Zaν − Zνa) + t.

Define

Πa = exp (−Yna) = q

(
n−1∏
i=1

exp (+Yia)

)∏
µ 6=a

X aµ

Xµa

 ,

for q = exp(−t), then the superpotential for the remaining fields,
after applying the constraint, reduces to

W =
n−1∑
i=1

k∑
a=1

exp (−Yia) +
∑
µ 6=ν

Xµν +
k∑

a=1

Πa.
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Critical locus for mirror to Grassmannian
The critical locus which corresponding B-model vacuum can be
gotten by calculating the following vacuum equations.

∂W

∂Yia
= 0,

∂W

∂Xµν
= 0.

These imply

exp (−Yia) = Πa, Xµν = −Πµ + Πν .

By using the definition of Πa, we find

Πa = q

(
1

Πa

)n−1
∏
µ6=a

−Πa + Πµ

−Πµ + Πa

 = q(−)k−1 (Πa)1−n ,

hence
(Πa)n = (−)k−1q.

The finiteness of the potential requires Xµν 6= 0 . So it forces the
Πa 6= Πb, when a 6= b.
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Critical locus for mirror to Grassmannian

From
(Πa)n = (−)k−1q,

the number of solutions is

n(n − 1) · · · (n − k + 1)

This corresponds to k distinct solutions for each Π field from n
different solutions. Then taking into account the Weyl Sk orbifold,
we obtain the number of vacua is

n(n − 1) · · · (n − k + 1)

k!

equal to the Euler characteristic of the Grassmannian, which is the
number of vacua obtained from the GLSM.
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Correlation functions match
One can calculate B-model correlation functions for Grassmannians
following (Vafa ’90) and compare the results to the A-model
results. Correlation functions are computed in terms of the Hessian
H which is defined as the determinant of the matrix of second
derivatives of the superpotential W .

H = det

(
∂2W

∂Y ∂Ỹ

)
.

For example, the G (2, 4) case has Hessian

H ≡ det
(
∂2W

)
= −16

(Π1)3 (Π2)3

(Π1 − Π2)2
.

Then one can use the B-model correlation function formula

〈O(X )〉 =
∑

vacuum

O(X )

H
|vacuum,

to calculate concrete examples.
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Correlation functions match

For G (2, 4), the first nonzero correlation functions are

〈(Π1)2 (Π2)2〉 =
2

2!
, 〈(Π1) (Π2)3〉 = − 1

2!
= 〈(Π2) (Π1)3〉.

These match the classical correlation functions of the A-model.
Using the chiral ring relations, we can derive results for more
correlation functions, which also match A-model’s results. One can
also study more complicated cases following the same procedure as
for Grassmannians.
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Correlation functions match

One can prove the correlation functions match between A-model
gauge theory and its corresponding B-model LG in general. Several
different ways can be found in Gu, Sharpe ’17 and ’18.



B-twistable?

Mirror symmetry should map the original A-twisted gauge theory
to a B-twist of the Landau Ginzburg orbifold.

Let us now check B-twistability.
For the closed string B-model to exist, the orbifold must preserve
the holomorphic top form up to a sign (Sharpe ’06).
The Weyl orbifold satisfy this property: each Weyl reflection

interchanges Σs with Σs, Ys with Ys and Xs and Xs, so as a result,
we have∏

a

dΣa ∧
∏

i

dYi ∧
∏
µ

dXµ 7→
∏

a

dΣa ∧
∏

i

dYi ∧
∏
µ

dXµ.

Or if integrated out some fields like Σ, we could have

dX1 ∧ · · · ∧ dXn 7→ ±dX1 ∧ · · · ∧ dXn,

so the holomorphic top-form changes by at most a sign. Thus the
B-twist is consistent.
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Example: pure gauge SO(3)

One can discuss the mirror for more general connected gauge
groups. Recall that the mirror to the pure SU(2) gauge theory was
defined by the superpotential

W = 2Σ (logX1 − logX2) + X1 + X2,

The mirror to the pure SO(3) theory is a LG model with fields X1,
X2, Σ, and superpotential

W = Σ (logX1 − logX2 + iπn) + X1 + X2,

where iπn is the discrete theta angle for the group SO(3). The
Weyl group acts on the fields as follows

X1 ⇔ X2, Σ→ −Σ.



Example: pure gauge SO(3)

One can discuss the mirror for more general connected gauge
groups. Recall that the mirror to the pure SU(2) gauge theory was
defined by the superpotential

W = 2Σ (logX1 − logX2) + X1 + X2,

The mirror to the pure SO(3) theory is a LG model with fields X1,
X2, Σ, and superpotential

W = Σ (logX1 − logX2 + iπn) + X1 + X2,

where iπn is the discrete theta angle for the group SO(3). The
Weyl group acts on the fields as follows

X1 ⇔ X2, Σ→ −Σ.



Example: pure gauge SO(3)

One can discuss the mirror for more general connected gauge
groups. Recall that the mirror to the pure SU(2) gauge theory was
defined by the superpotential

W = 2Σ (logX1 − logX2) + X1 + X2,

The mirror to the pure SO(3) theory is a LG model with fields X1,
X2, Σ, and superpotential

W = Σ (logX1 − logX2 + iπn) + X1 + X2,

where iπn is the discrete theta angle for the group SO(3). The
Weyl group acts on the fields as follows

X1 ⇔ X2, Σ→ −Σ.



Example: pure gauge SO(3)

One can find the vacua for the mirror of pure SO(3) group, given
by

∂W

∂Σ
=
∂W

∂X1
=
∂W

∂X2
= 0.

It turns out that only for discrete theta angle iπ are there SUSY
vacua. The other case breaks SUSY.
One can find more general SO(k) group cases in Gu and Sharpe

’18.



Example: pure Sp(2k)

One can study other groups following the same ansatz. Recall the
general mirror ansatz is

W =
∑

a

Σa

(∑
i

ρa
i Yi −

∑
µ

αa
µ logXµ − ta

)
+
∑
µ

Xµ+
∑

i

exp(−Yi ).

For pure Sp(2k), the mirror superpotential is given by

W =
k∑

a=1

Σa

∑
µ≤ν

(δµ,2a − δµ,2a−1 + δν,2a − δν,2a−1)Zµν


+

∑
µ

Xµµ +
∑
a<b

(X2a,2b + X2a−1,2b−1 + X2a−1,2b + X2a,2b−1) .



Example: pure Sp(2k)

One can study other groups following the same ansatz. Recall the
general mirror ansatz is

W =
∑

a

Σa

(∑
i

ρa
i Yi −

∑
µ

αa
µ logXµ − ta

)
+
∑
µ

Xµ+
∑

i

exp(−Yi ).

For pure Sp(2k), the mirror superpotential is given by

W =
k∑

a=1

Σa

∑
µ≤ν

(δµ,2a − δµ,2a−1 + δν,2a − δν,2a−1)Zµν


+

∑
µ

Xµµ +
∑
a<b

(X2a,2b + X2a−1,2b−1 + X2a−1,2b + X2a,2b−1) .



Example: pure Sp(2k)

The critical locus is defined by

∂W

∂X2a,2a
= 0 : X2a,2a = 2σa,

∂W

∂X2a−1,2a−1
= 0 : X2a−1,2a−1 = −2σa,

∂W

∂X2a,2b
= 0 : X2a,2b = σa + σb for a < b,

∂W

∂X2a−1,2b−1
= 0 : X2a−1,2b−1 = −(σa + σb) for a < b,

∂W

∂X2a−1,2b
= 0 : X2a−1,2b = −σa + σb for a < b,

∂W

∂X2a,2b−1
= 0 : X2a,2b−1 = σa − σb for a < b,



Example: pure Sp(2k)

In addition, ∂W /∂σa = 0 implies(∏
2a−1≤ν X2a−1,ν∏

2a≤ν X2a,ν

)(∏
µ≤2a−1 Xµ,2a−1∏
µ≤2a Xµ,2a

)
= 1,

Along the critical locus, each of the ratios appearing in the product
above is -1. Since there are manifestly an even number of them,
this critical locus equation is trivially satisfied. This suggests the
IR limit is a set of k free fields. As a consistent check, note this is
consistent with earlier computations for the pure SU(2) = Sp(2)
theory.



Hypersurfaces in Grassmannian

Consider an GLSM for a hypersurface of degree d in G (k , n). This
is described by a U(k) gauge theory with matter

• n chiral multiplets φia in the fundamental representation,
i ∈ {1, · · · , n}, a ∈ {1, · · · , k},

• one field p of charge -d under detU(k), and a superpotential

W = pG (B),

where G is a polynomial of degree d in the baryons,

Bi1···ik ≡ ε
a1···akφi1a1 · · ·φik ak

.

We take the chiral superfields φia to have R-charge zero, and p to
have R-charge two.



Hypersurfaces in Grassmannian

The mirror of this theory is an orbifold of the Landau-Ginzburg
model with fields

• kn chiral superfields Yia, mirror to φia,
• one chiral superfiel Xp = exp(−Yp), mirror to p,
• Xµν = exp(−Zµν), µ, ν ∈ {1, · · · , k},
• Σa, a ∈ {1, · · · , k} and superpotential

W =
∑

a

Σa

∑
ib

ρa
ibYib − dYp −

∑
µ6=ν

αa
µν logXµν − t

 (1)

+
∑

ia

exp (−Yia) + Xp +
∑
µ6=ν

Xµν ,

where
ρa

ib = δa
b, αa

µν = −δa
µ + δa

ν .
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Hypersurfaces in Grassmannian

Integrating out Σas gives constraints

n∑
i=1

Yia − dYp +
∑
ν 6=a

(logXaν − logXνa) = t,

which we can solve by eliminating Yna:

Yna = −
n−1∑
i=1

Yia + dYp −
∑
ν 6=a

(logXaν − logXνa) + t.

Then the superpotential becomes

W =
n−1∑
i=1

∑
a

exp(−Yia) +
∑

a

Πa + Xp +
∑
µ6=ν

Xµν ,

where Πa = exp(−Yna).
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Dimension
I One can compute the critical locus for the superpotential,

which I will not do here.

I Instead I will mention a hint for the mirror geometry.
I If the original CY has complex-dimension k(n − k)− 1, the

worldsheet theory flows to a SCFT which has the central
charge

c

3
= k(n − k)− 1

I The mirror model should flow to a SCFT with the the same
central charge. Indeed

c

3
=

∑
i

(1− qi ) (2)

= (1)(1− 2) + (k2 − k)(1− 2) + k(n − 1)(1− 0)

= k(n − k)− 1

where we assigned the R-charge 2 to fields Πa and Xµν , while
we assign R-charge zero to Y fields.
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Mirror geometry

Construction of mirror geometries to non-abelian Calabi-Yau’s is
left for future work.



O(2) case

I It is a non-connected gauge group, the gauge theory has a Z2

orbifoldand vacuum can intersect with the orbifold fixed
points where the twisted sector should be take into account.

I Based on two different projections, we can define two different
theories which we called O+(2) and O−(2) respectively.

I Consider the mirror to the O+(2) gauge theory with 3
doublets.

I The mirror Landau-Ginzburg orbifold has six fields Y i
a as well

as one Σ, with a superpotential

W = Σ

(
−

3∑
i=1

Y i
1 +

3∑
i=1

Y i
2

)

−
3∑

i=1

m̃i

(
Y i

1 + Y i
2

)
+

3∑
i=1

exp
(
−Y i

1

)
+

3∑
i=1

exp
(
−Y i

2

)
I Z2 orbifold acting as Σ 7→ −Σ, Y i

1 ↔ Y i
2



O(2) case
I One can compute the vacuum equation

3∏
i=1

(X − m̃i ) =
3∏

i=1

(−X − m̃i )

where

X =
1

2

(
exp(−Y i

1)− exp(−Y i
2)
)

I It is symmetric under X 7→ −X , it has roots: 0 and ±X0.
Because the Z2 orbifold, we should identify the ±X0 as one
single solution. The X = 0 solution intersects Z2 fixed point,
so we have to include the twisted sector. So the vacuum
number is 2+1=3.

I One can consider SO(2) gauge group with three doublets and
three singlets with a superpotential.

I This is a propotype in understanding the 2d Hori-Seiberg dual
of gauge theories in the mirror, one can see w/ Hadi and
Sharpe 1907.06647 for more details.



A brief summary of other relevant development in
nonabelian mirrors

I 2005.10845 w/Sharpe and Zou, studied the 2d nonabelian
pure gauge theory in mirrors and gave refined IR dynamics.

I 2001.10562 computed the massive orbifold Landau-Ginzburg
model’s correlation functions and checked the 2d Hori-Seiberg
duality in the mirror following 1907.06647.

I 1908.06036 w/Guo and Sharpe studied the 2d (0,2)
nonabelian mirrors of Fanos.



Conclusion

I Reviewed the Hori-Vafa construction of mirrors to abelian
GLSMs.

I Proposal for mirrors to non-abelian GLSMs.

I Discussed several examples, showing matching correlation
functions and twisted/chiral rings.

THANKS!


