4D/2D duality and representation theory

Informal Berkeley String Math meetings

Tomoyuki Arakawa
October 4, 2020
RIMS, Kyoto University

4D/2D Correspondence

Beem-Lemos-Liendo-Peelaers-Rastelli-van Rees '15 ([BL ${ }^{2}$ PRvR]):

4D/2D Correspondence

Beem-Lemos-Liendo-Peelaers-Rastelli-van Rees '15 ([BL ${ }^{2}$ PRvR]):

$$
\mathbb{V}:\{4 \mathrm{D} \mathcal{N}=2 \mathrm{SCFT}\} \longrightarrow\{2 \mathrm{D} \text { chiral CFTs }(\mathrm{VOAs})\}
$$

4D/2D Correspondence

Beem-Lemos-Liendo-Peelaers-Rastelli-van Rees '15 ([BL ${ }^{2}$ PRvR]):

$$
\mathbb{V}:\{4 \mathrm{D} \mathcal{N}=2 \mathrm{SCFT} s\} \longrightarrow\{2 \mathrm{D} \text { chiral CFTs (VOAs) }\}
$$

s.t.
the Schur index of $\mathcal{T}=\chi_{\mathbb{V}}(\mathcal{T}):=\operatorname{tr}_{\mathbb{V}(\mathcal{T})}\left(q^{L_{0}-c_{\chi(V)} / 24}\right)$.

4D/2D Correspondence

Beem-Lemos-Liendo-Peelaers-Rastelli-van Rees '15 ([BL ${ }^{2}$ PRvR]):

$$
\mathbb{V}:\{4 \mathrm{D} \mathcal{N}=2 \mathrm{SCFT} s\} \longrightarrow\{2 \mathrm{D} \text { chiral CFTs }(\text { VOAs })\}
$$

s.t.
the Schur index of $\mathcal{T}=\chi_{\mathbb{V}}(\mathcal{T}):=\operatorname{tr}_{\mathbb{V}(\mathcal{T})}\left(q^{L_{0}-c_{\chi(V)} / 24}\right)$.

- \mathbb{V} is injective in examples so far.

4D/2D Correspondence

Beem-Lemos-Liendo-Peelaers-Rastelli-van Rees '15 ([BL ${ }^{2}$ PRvR]):

$$
\mathbb{V}:\{4 \mathrm{D} \mathcal{N}=2 \mathrm{SCFT}\} \longrightarrow\{2 \mathrm{D} \text { chiral CFTs (VOAs) }\}
$$

s.t.
the Schur index of $\mathcal{T}=\chi_{\mathbb{V}}(\mathcal{T}):=\operatorname{tr}_{\mathbb{V}(\mathcal{T})}\left(q^{L_{0}-c_{\chi(V)} / 24}\right)$.

- \mathbb{V} is injective in examples so far.
- $\mathbb{V}(\mathcal{T})$ is never unitary

4D/2D Correspondence

Beem-Lemos-Liendo-Peelaers-Rastelli-van Rees '15 ([BL ${ }^{2}$ PRvR]):

$$
\mathbb{V}:\{4 \mathrm{D} \mathcal{N}=2 \mathrm{SCFT} s\} \longrightarrow\{2 \mathrm{D} \text { chiral CFTs }(\text { VOAs })\}
$$

s.t.
the Schur index of $\mathcal{T}=\chi_{\mathbb{V}}(\mathcal{T}):=\operatorname{tr}_{\mathbb{V}(\mathcal{T})}\left(q^{L_{0}-c_{\chi(V)} / 24}\right)$.

- \mathbb{V} is injective in examples so far.
- $\mathbb{V}(\mathcal{T})$ is never unitary (reason: $c_{2 D}=-12 c_{4 D}$).

4D/2D Correspondence

Beem-Lemos-Liendo-Peelaers-Rastelli-van Rees '15 ([BL ${ }^{2}$ PRvR]):

$$
\mathbb{V}:\{4 \mathrm{D} \mathcal{N}=2 \mathrm{SCFT} s\} \longrightarrow\{2 \mathrm{D} \text { chiral CFTs }(\text { VOAs })\}
$$

s.t.
the Schur index of $\mathcal{T}=\chi_{\mathbb{V}}(\mathcal{T}):=\operatorname{tr}_{\mathbb{V}(\mathcal{T})}\left(q^{L_{0}-c_{\chi(V)} / 24}\right)$.

- \mathbb{V} is injective in examples so far.
- $\mathbb{V}(\mathcal{T})$ is never unitary (reason: $c_{2 D}=-12 c_{4 D}$). In particular, \mathbb{V} is not surjective.

Beem-Rastelli Conjecture

Conjecture (Beem-Rastelli '18)

Beem-Rastelli Conjecture

Conjecture (Beem-Rastelli '18)

For any 4D $\mathcal{N}=2$ SCFT \mathcal{T},

Beem-Rastelli Conjecture

Conjecture (Beem-Rastelli '18)

For any 4D $\mathcal{N}=2$ SCFT \mathcal{T}, we have

$$
\operatorname{Higgs}(\mathcal{T}) \cong X_{\mathrm{V}(\mathcal{T})},
$$

where X_{V} is the associated variety of a VOA V.

Beem-Rastelli Conjecture

Conjecture (Beem-Rastelli '18)

For any 4D $\mathcal{N}=2$ SCFT \mathcal{T}, we have

$$
\operatorname{Higgs}(\mathcal{T}) \cong X_{\mathbb{V}(\mathcal{T})}
$$

where X_{V} is the associated variety of a VOA V.
The associated variety is defined as

$$
X_{V}=\operatorname{Specm} R_{V}
$$

where $R_{V}=V / C_{2}(V)$ is Zhu's C_{2} algebra of V defined as follows:

Beem-Rastelli Conjecture

Conjecture (Beem-Rastelli '18)

For any 4D $\mathcal{N}=2 \operatorname{SCFT} \mathcal{T}$, we have

$$
\operatorname{Higgs}(\mathcal{T}) \cong X_{\mathrm{V}(\mathcal{T})},
$$

where X_{V} is the associated variety of a VOA V.
The associated variety is defined as

$$
X_{V}=\operatorname{Specm} R_{V},
$$

where $R_{V}=V / C_{2}(V)$ is Zhu's C_{2} algebra of V defined as follows:
By the state-field correspondence we can write

$$
V=\operatorname{span}_{\mathbb{C}}\left\{\circ\left(\partial^{n_{1}} a_{1}(z)\right) \ldots\left(\partial^{n_{r}} a_{r}(z)\right) \stackrel{ }{\circ}\right\} .
$$

Beem-Rastelli Conjecture

Conjecture (Beem-Rastelli '18)

For any 4D $\mathcal{N}=2$ SCFT \mathcal{T}, we have

$$
\operatorname{Higgs}(\mathcal{T}) \cong X_{\mathrm{V}(\mathcal{T})},
$$

where X_{V} is the associated variety of a VOA V.
The associated variety is defined as

$$
X_{V}=\operatorname{Specm} R_{V},
$$

where $R_{V}=V / C_{2}(V)$ is Zhu's C_{2} algebra of V defined as follows:
By the state-field correspondence we can write

$$
V=\operatorname{span}_{\mathbb{C}}\left\{\circ\left(\partial^{n_{1}} a_{1}(z)\right) \ldots\left(\partial^{n_{r}} a_{r}(z)\right)_{\circ}^{\circ}\right\} .
$$

$C_{2}(V)$ is the subspace of V spanned by the elements of the above form with $n_{1}+\cdots+n_{r} \geq 1$.

Beem-Rastelli Conjecture

$$
\Rightarrow R_{V}=V / C_{2}(V)
$$

Beem-Rastelli Conjecture

$\Rightarrow R_{V}=V / C_{2}(V)$ is a Poisson algebra by

$$
\overline{f(z)} \cdot \overline{g(z)}=\overline{\circ f(z) g(z) \circ},
$$

Beem-Rastelli Conjecture

$\Rightarrow R_{V}=V / C_{2}(V)$ is a Poisson algebra by

$$
\begin{aligned}
\overline{f(z)} \cdot \overline{g(z)} & =\bar{\circ} f(z) g(z) \circ \\
\{\overline{f(z)}, \overline{g(z)}\} & =\overline{\operatorname{Res}_{w=z} f(w) g(z)}
\end{aligned}
$$

Beem-Rastelli Conjecture

$\Rightarrow R_{V}=V / C_{2}(V)$ is a Poisson algebra by

$$
\begin{gathered}
\overline{f(z)} \cdot \overline{g(z)}=\overline{\circ f(z) g(z)_{\circ}^{\circ},} \\
\{\overline{f(z)}, \overline{g(z)}\}=\overline{\operatorname{Res}_{w=z} f(w) g(z)} .
\end{gathered}
$$

Remark

The Higgs branch $\operatorname{Higgs}(\mathcal{T})$ is a hyperkähler cone,

Beem-Rastelli Conjecture

$\Rightarrow R_{V}=V / C_{2}(V)$ is a Poisson algebra by

$$
\begin{gathered}
\overline{f(z)} \cdot \overline{g(z)}=\bar{\circ} \frac{\circ f(z) g(z){ }_{\circ}^{\circ},}{} \\
\{\overline{f(z)}, \overline{g(z)}\}=\overline{\operatorname{Res}_{w=z} f(w) g(z)} .
\end{gathered}
$$

Remark

The Higgs branch $\operatorname{Higgs}(\mathcal{T})$ is a hyperkähler cone, while the associated variety X_{V} of a VOA V is only a Poisson variety in general.

Examples of associated varieties

$\widehat{\mathrm{g}}=\mathrm{g}\left[t, t^{-1}\right] \oplus \mathbb{C} K$ affine Kac-Moody algebra associated with g

Examples of associated varieties

$\widehat{\mathrm{g}}=\mathrm{g}\left[t, t^{-1}\right] \oplus \mathbb{C} K$ affine Kac-Moody algebra associated with g $V^{k}(\mathrm{~g})=U(\widehat{\mathrm{~g}}) \otimes U(\mathrm{~g}[t] \oplus \mathbb{C} K) \mathbb{C}_{k}$ the universal affine vertex algebra associated with g at level $k \in \mathbb{C}$.

Examples of associated varieties

$\widehat{\mathrm{g}}=\mathrm{g}\left[t, t^{-1}\right] \oplus \mathbb{C} K$ affine Kac-Moody algebra associated with g $V^{k}(\mathrm{~g})=U(\widehat{\mathrm{~g}}) \otimes U(\mathrm{~g}[t] \oplus \mathbb{C} K) \mathbb{C}_{k}$ the universal affine vertex algebra associated with g at level $k \in \mathbb{C}$.
$V^{k}(\mathrm{~g})$ is generated by $x(z)(x \in \mathrm{~g})$ with OPEs

$$
x(z) y(w) \sim[x, y](w) /(z-w)+k(x \mid y) /(z-w)^{2}
$$

$\left(a V^{k}(\mathrm{~g})\right.$-module $=$ a smooth \hat{g}-module of level $\left.k\right)$

Examples of associated varieties

$\widehat{\mathrm{g}}=\mathrm{g}\left[t, t^{-1}\right] \oplus \mathbb{C} K$ affine Kac-Moody algebra associated with g $V^{k}(\mathrm{~g})=U(\mathrm{~g}) \otimes U\left(\mathrm{~g}[\mathrm{t} \oplus \oplus \mathrm{C} \kappa) \mathbb{C}_{k}\right.$ the universal affine vertex algebra associated with g at level $k \in \mathbb{C}$.
$V^{k}(\mathrm{~g})$ is generated by $x(z)(x \in \mathrm{~g})$ with OPEs

$$
x(z) y(w) \sim[x, y](w) /(z-w)+k(x \mid y) /(z-w)^{2} .
$$

(a $V^{k}(\mathrm{~g})$-module $=$ a smooth \widehat{g}-module of level k)
We have

$$
X_{V^{k}(\mathrm{~g})}=\mathrm{g}^{*} .
$$

Examples of associated varieties

$\widehat{\mathrm{g}}=\mathrm{g}\left[t, t^{-1}\right] \oplus \mathbb{C} K$ affine Kac-Moody algebra associated with g $V^{k}(\mathrm{~g})=U(\mathrm{~g}) \otimes U\left(\mathrm{~g}[\mathrm{t} \oplus \oplus \mathrm{C} \kappa) \mathbb{C}_{k}\right.$ the universal affine vertex algebra associated with g at level $k \in \mathbb{C}$.
$V^{k}(\mathrm{~g})$ is generated by $x(z)(x \in \mathrm{~g})$ with OPEs

$$
x(z) y(w) \sim[x, y](w) /(z-w)+k(x \mid y) /(z-w)^{2} .
$$

(a $V^{k}(\mathrm{~g})$-module $=$ a smooth $\widehat{\mathrm{g}}$-module of level k)
We have

$$
X_{V^{k}(g)}=g^{*} .
$$

$L_{k}(\mathrm{~g})$ the simple quotient of $V^{k}(\mathrm{~g})$

Examples of associated varieties

$\widehat{\mathrm{g}}=\mathrm{g}\left[t, t^{-1}\right] \oplus \mathbb{C} K$ affine Kac-Moody algebra associated with g $V^{k}(\mathrm{~g})=U(\mathrm{~g}) \otimes U\left(\mathrm{~g}[\mathrm{t} \oplus \oplus \mathrm{C} \kappa) \mathbb{C}_{k}\right.$ the universal affine vertex algebra associated with g at level $k \in \mathbb{C}$.
$V^{k}(\mathrm{~g})$ is generated by $x(z)(x \in \mathrm{~g})$ with OPEs

$$
x(z) y(w) \sim[x, y](w) /(z-w)+k(x \mid y) /(z-w)^{2} .
$$

(a $V^{k}(\mathrm{~g})$-module $=$ a smooth \widehat{g}-module of level k)
We have

$$
X_{V^{k}(g)}=g^{*} .
$$

$L_{k}(\mathrm{~g})$ the simple quotient of $V^{k}(\mathrm{~g})$

$$
X_{L_{k}(\mathrm{~g})} \subset \mathrm{g}^{*}, \quad G \text {-invariant and conic. }
$$

Example of VOA coming from 4D $\mathcal{N}=2$ SCFT

- $L_{k}(\mathrm{~g})$ is integrable $\left(k \in \mathbb{Z}_{\geq 0}\right) \Rightarrow X_{L_{k}(\mathrm{~g})}=\{0\}$ (a fat point).

Example of VOA coming from 4D $\mathcal{N}=2$ SCFT

- $L_{k}(\mathrm{~g})$ is integrable $\left(k \in \mathbb{Z}_{\geq 0}\right) \Rightarrow X_{L_{k}(\mathrm{~g})}=\{0\}$ (a fat point). In fact, the converse is true.

Example of VOA coming from 4D $\mathcal{N}=2$ SCFT

- $L_{k}(\mathrm{~g})$ is integrable $\left(k \in \mathbb{Z}_{\geq 0}\right) \Rightarrow X_{L_{k}(\mathrm{~g})}=\{0\}$ (a fat point). In fact, the converse is true.
- In general, a VOA V is called lisse (or C_{2}-cofinite) if $\operatorname{dim} X_{V}=0$.

Example of VOA coming from 4D $\mathcal{N}=2$ SCFT

- $L_{k}(\mathrm{~g})$ is integrable $\left(k \in \mathbb{Z}_{\geq 0}\right) \Rightarrow X_{L_{k}(\mathrm{~g})}=\{0\}$ (a fat point). In fact, the converse is true.
- In general, a VOA V is called lisse (or C_{2}-cofinite) if $\operatorname{dim} X_{V}=0$. A lisse VOA has very nice properties such as finiteness of simple modules, the modularity of characters, and the existence of the vertex tensor categories ([Yongchang Zhu, Gaberdiel-Neitzke, Miyamoto, Yi-Zhi Huang])

Example of VOA coming from 4D $\mathcal{N}=2$ SCFT

- $L_{k}(\mathrm{~g})$ is integrable $\left(k \in \mathbb{Z}_{\geq 0}\right) \Rightarrow X_{L_{k}(\mathrm{~g})}=\{0\}$ (a fat point). In fact, the converse is true.
- In general, a VOA V is called lisse (or C_{2}-cofinite) if $\operatorname{dim} X_{V}=0$. A lisse VOA has very nice properties such as finiteness of simple modules, the modularity of characters, and the existence of the vertex tensor categories ([Yongchang Zhu, Gaberdiel-Neitzke, Miyamoto, Yi-Zhi Huang])
- $L_{k}(\mathrm{~g})$ is admissible

Example of VOA coming from 4D $\mathcal{N}=2$ SCFT

- $L_{k}(\mathrm{~g})$ is integrable $\left(k \in \mathbb{Z}_{\geq 0}\right) \Rightarrow X_{L_{k}(\mathrm{~g})}=\{0\}$ (a fat point). In fact, the converse is true.
- In general, a VOA V is called lisse (or C_{2}-cofinite) if $\operatorname{dim} X_{V}=0$. A lisse VOA has very nice properties such as finiteness of simple modules, the modularity of characters, and the existence of the vertex tensor categories ([Yongchang Zhu, Gaberdiel-Neitzke, Miyamoto, Yi-Zhi Huang])
- $L_{k}(\mathrm{~g})$ is admissible $\Rightarrow X_{L_{k}(\mathrm{~g})}=\overline{\mathbb{O}}_{k}, \exists$ nilpotent orbit $\mathbb{O}_{k} \subset \mathrm{~g}^{*}$ ([A'15]).

Example of VOA coming from 4D $\mathcal{N}=2$ SCFT

- $L_{k}(\mathrm{~g})$ is integrable $\left(k \in \mathbb{Z}_{\geq 0}\right) \Rightarrow X_{L_{k}(\mathrm{~g})}=\{0\}$ (a fat point). In fact, the converse is true.
- In general, a VOA V is called lisse (or C_{2}-cofinite) if $\operatorname{dim} X_{V}=0$. A lisse VOA has very nice properties such as finiteness of simple modules, the modularity of characters, and the existence of the vertex tensor categories ([Yongchang Zhu, Gaberdiel-Neitzke, Miyamoto, Yi-Zhi Huang])
- $L_{k}(\mathrm{~g})$ is admissible $\Rightarrow X_{L_{k}(\mathrm{~g})}=\overline{\mathbb{O}}_{k}, \exists$ nilpotent orbit $\mathbb{O}_{k} \subset \mathrm{~g}^{*}$ ([A'15]).

Xie-Yan-Yau'16, Song-Xie-Yan'17

$L_{k}(\mathrm{~g})$ appears as $\mathbb{V}(\mathcal{T})$ for some Argyres-Douglas theory \mathcal{T} if k is boundary admissible.

Quasi-lisse VOAs

Definition (A.-Kawasetsu'18)

A VOA V is called quasi-lisse if X_{V} has finitely many symplectic leaves.

Quasi-lisse VOAs

Definition (A.-Kawasetsu'18)

A VOA V is called quasi-lisse if X_{V} has finitely many symplectic leaves.
$\mathbb{V}(\mathcal{T})$ is expected to be quasi-lisse.

Quasi-lisse VOAs

Definition (A.-Kawasetsu'18)

A VOA V is called quasi-lisse if X_{V} has finitely many symplectic leaves.
$\mathbb{V}(\mathcal{T})$ is expected to be quasi-lisse.

Remark

- $L_{k}(\mathrm{~g})$ is quasi-lisse $\Longleftrightarrow X_{L_{k}(\mathrm{~g})} \subset \mathcal{N}$, the nilpotent cone of g .

Quasi-lisse VOAs

Definition (A.-Kawasetsu'18)

A VOA V is called quasi-lisse if X_{V} has finitely many symplectic leaves.
$\mathbb{V}(\mathcal{T})$ is expected to be quasi-lisse.

Remark

- $L_{k}(\mathrm{~g})$ is quasi-lisse $\Longleftrightarrow X_{L_{k}(\mathrm{~g})} \subset \mathcal{N}$, the nilpotent cone of g .
- In particular, an admissible affine vertex algebras $L_{k}(\mathrm{~g})$ is quasi-lisse.

Quasi-lisse VOAs

Definition (A.-Kawasetsu'18)

A VOA V is called quasi-lisse if X_{V} has finitely many symplectic leaves.
$\mathbb{V}(\mathcal{T})$ is expected to be quasi-lisse.

Remark

- $L_{k}(\mathrm{~g})$ is quasi-lisse $\Longleftrightarrow X_{L_{k}(\mathrm{~g})} \subset \mathcal{N}$, the nilpotent cone of g .
- In particular, an admissible affine vertex algebras $L_{k}(\mathrm{~g})$ is quasi-lisse.
- Let $\mathrm{g} \in \mathrm{DES}: A_{1} \subset A_{2} \subset G_{2} \subset D_{4} \subset F_{4} \subset E_{6} \subset E_{7} \subset E_{8}$ and $k=-h^{\vee} / 6-1$.

Quasi-lisse VOAs

Definition (A.-Kawasetsu'18)

A VOA V is called quasi-lisse if X_{V} has finitely many symplectic leaves.
$\mathbb{V}(\mathcal{T})$ is expected to be quasi-lisse.

Remark

- $L_{k}(\mathrm{~g})$ is quasi-lisse $\Longleftrightarrow X_{L_{k}(\mathrm{~g})} \subset \mathcal{N}$, the nilpotent cone of g .
- In particular, an admissible affine vertex algebras $L_{k}(\mathrm{~g})$ is quasi-lisse.
- Let $\mathrm{g} \in \mathrm{DES}: A_{1} \subset A_{2} \subset G_{2} \subset D_{4} \subset F_{4} \subset E_{6} \subset E_{7} \subset E_{8}$ and $k=-h^{\vee} / 6-1$. Then $X_{L_{k}(g)}=\overline{\mathbb{O}}_{\text {min }}$ the minimal nilpotent orbit closure in g and so $L_{k}(\mathrm{~g})$ is quasi-lisse ([A.-Moreau'16]).

Quasi-lisse VOAs

Definition (A.-Kawasetsu'18)

A VOA V is called quasi-lisse if X_{V} has finitely many symplectic leaves.
$\mathbb{V}(\mathcal{T})$ is expected to be quasi-lisse.

Remark

- $L_{k}(\mathrm{~g})$ is quasi-lisse $\Longleftrightarrow X_{L_{k}(\mathrm{~g})} \subset \mathcal{N}$, the nilpotent cone of g .
- In particular, an admissible affine vertex algebras $L_{k}(\mathrm{~g})$ is quasi-lisse.
- Let $\mathrm{g} \in \mathrm{DES}: A_{1} \subset A_{2} \subset G_{2} \subset D_{4} \subset F_{4} \subset E_{6} \subset E_{7} \subset E_{8}$ and $k=-h^{\vee} / 6-1$. Then $X_{L_{k}(g)}=\overline{\mathbb{O}}_{\text {min }}$ the minimal nilpotent orbit closure in g and so $L_{k}(\mathrm{~g})$ is quasi-lisse ([A.-Moreau'16]). These are VOAs that appeared in $\left[B L^{2} P R v R\right]$ as examples of $\mathbb{V}(\mathcal{T})$.

Modularity of Schur index

Theorem (A.-Kawasetsu'18)

Let V be a quasi-lisse VOA.

Modularity of Schur index

Theorem (A.-Kawasetsu'18)

Let V be a quasi-lisse VOA.

1) There exists only finitely many simple ordinary representations of V;

Modularity of Schur index

Theorem (A.-Kawasetsu'18)

Let V be a quasi-lisse VOA.

1) There exists only finitely many simple ordinary representations of V;
2) For an ordinary representation $M, \operatorname{tr}_{M}\left(q^{L_{0}-c_{\chi}(v) / 24}\right)$ converges to a holomorphic function on the upper half place.

Modularity of Schur index

Theorem (A.-Kawasetsu'18)

Let V be a quasi-lisse VOA.

1) There exists only finitely many simple ordinary representations of V;
2) For an ordinary representation $M, \operatorname{tr}_{M}\left(q^{L_{0}-c_{\chi}(v) / 24}\right)$ converges to a holomorphic function on the upper half place. Moreover, $\left\{\operatorname{tr}_{M}\left(q^{L_{0}-c_{\chi(V)} / 24}\right) \mid M\right.$ ordinary $\}$ is a subspace of the space of the solutions of a modular linear differential equation (MLDE).

Modularity of Schur index

Theorem (A.-Kawasetsu'18)

Let V be a quasi-lisse VOA.

1) There exists only finitely many simple ordinary representations of V;
2) For an ordinary representation $M, \operatorname{tr}_{M}\left(q^{L_{0}-c_{\chi}(v) / 24}\right)$ converges to a holomorphic function on the upper half place. Moreover, $\left\{\operatorname{tr}_{M}\left(q^{L_{0}-c_{\chi(V)} / 24}\right) \mid M\right.$ ordinary $\}$ is a subspace of the space of the solutions of a modular linear differential equation (MLDE).

Together with Beem-Rastelli conjecture,

Modularity of Schur index

Theorem (A.-Kawasetsu'18)

Let V be a quasi-lisse VOA.

1) There exists only finitely many simple ordinary representations of V;
2) For an ordinary representation $M, \operatorname{tr}_{M}\left(q^{L_{0}-c_{\chi}(v) / 24}\right)$ converges to a holomorphic function on the upper half place. Moreover, $\left\{\operatorname{tr}_{M}\left(q^{L_{0}-c_{\chi(V)} / 24}\right) \mid M\right.$ ordinary $\}$ is a subspace of the space of the solutions of a modular linear differential equation (MLDE).

Together with Beem-Rastelli conjecture, the above theorem implies the modularity of the Schur index of a $4 \mathrm{D} \mathcal{N}=2$ SCFT.

Beem-Rastelli Conjecture for Class \mathcal{S} theory

The theory of class \mathcal{S} ([Gaiotto'12])

Beem-Rastelli Conjecture for Class \mathcal{S} theory

The theory of class \mathcal{S} ([Gaiotto'12])

$$
\left\{\left.S_{G}(\Sigma)\right|^{\Sigma: \text { a punctured Riemann surface, }}\right.
$$

Beem-Rastelli Conjecture for Class \mathcal{S} theory

The theory of class \mathcal{S} ([Gaiotto'12])

Beem-Rastelli Conjecture for Class \mathcal{S} theory

The theory of class \mathcal{S} ([Gaiotto'12])

- Moore-Tachikawa'12 gave a mathematical description of the Higgs branch of $S_{G}(\Sigma)$ in terms of 2D TQFT,

Beem-Rastelli Conjecture for Class \mathcal{S} theory

The theory of class \mathcal{S} ([Gaiotto'12])

- Moore-Tachikawa'12 gave a mathematical description of the Higgs branch of $S_{G}(\Sigma)$ in terms of 2D TQFT, up to a conjecture.

Beem-Rastelli Conjecture for Class \mathcal{S} theory

The theory of class \mathcal{S} ([Gaiotto'12])

$$
\left\{\begin{array}{cc}
S_{G}(\Sigma) \mid & \Sigma: \text { a punctured Riemann surface, } \\
G: \text { complex semisimple group }
\end{array}\right\}
$$

- Moore-Tachikawa'12 gave a mathematical description of the Higgs branch of $S_{G}(\Sigma)$ in terms of 2D TQFT, up to a conjecture.
- This Moore-Tachikawa conjecture was proved by Braverman-Finkelberg-Nakajima'19.

Beem-Rastelli Conjecture for Class \mathcal{S} theory

The theory of class \mathcal{S} ([Gaiotto'12])

- Moore-Tachikawa'12 gave a mathematical description of the Higgs branch of $S_{G}(\Sigma)$ in terms of 2D TQFT, up to a conjecture.
- This Moore-Tachikawa conjecture was proved by Braverman-Finkelberg-Nakajima'19.

According to Moore-Tachikawa, it is sufficient to describe $\operatorname{Higgs}\left(S_{G}(\Sigma)\right)$ for genus zero Σ.

Braverman-Finkelberg-Nakajima construction

Braverman-Finkelberg-Nakajima construction

Theorem (BFN'19)
 For $r \geq 1$, define MT_{r}

Braverman-Finkelberg-Nakajima construction

Theorem (BFN'19)

For $r \geq 1$, define $\mathrm{MT}_{r}:=\operatorname{Spec}\left(H_{\stackrel{G}{*}[t]]]}^{*}\left(\operatorname{Gr}_{\breve{G}}, i_{\Delta}^{!}\left(\mathcal{A}_{R}^{\boxtimes r}\right)\right)\right)$, where \check{G} is the Langlands dual of $G, \operatorname{Gr}_{\check{G}}=\breve{G}((t)) / \check{G}[[t]], i_{\Delta}: \operatorname{Gr}_{\check{G}} \rightarrow$
$\overbrace{\mathrm{Gr}_{\check{G}} \times \cdots \times \mathrm{Gr}_{\check{G}}}$ is the diagonal embedding, and \mathcal{A}_{R} is the perverse sheaf corresponding to the regular representation of \bar{G} via the geometric Satake correspondence.

Braverman-Finkelberg-Nakajima construction

Theorem (BFN'19)

For $r \geq 1$, define $\mathrm{MT}_{r}:=\operatorname{Spec}\left(H_{\stackrel{G}{[}[t]]}^{*}\left(\operatorname{Gr}_{\check{G}}, i_{\Delta}^{!}\left(\mathcal{A}_{R}^{\boxtimes r}\right)\right)\right)$, where Ǧ is the Langlands dual of $G, \operatorname{Gr}_{\check{G}}=\breve{G}((t)) / \check{G}[[t]], i_{\Delta}: \operatorname{Gr}_{\check{G}} \rightarrow$ $\overbrace{\operatorname{Gr}_{\check{G}} \times \cdots \times \mathrm{Gr}_{\check{G}}}^{r}$ is the diagonal embedding, and \mathcal{A}_{R} is the perverse sheaf corresponding to the regular representation of \bar{G} via the geometric Satake correspondence. Then

1) MT_{r} is a (possibly singular) symplectic variety equipped with a Hamiltonian action of \breve{G}^{r};

Braverman-Finkelberg-Nakajima construction

Theorem (BFN'19)

For $r \geq 1$, define $\mathrm{MT}_{r}:=\operatorname{Spec}\left(H_{\stackrel{G}{[}[t]]}^{*}\left(\operatorname{Gr}_{\check{G}}, i_{\Delta}^{!}\left(\mathcal{A}_{R}^{\boxtimes r}\right)\right)\right)$, where Ǧ is the Langlands dual of $G, \operatorname{Gr}_{\check{G}}=\breve{G}((t)) / \check{G}[[t]], i_{\Delta}: \operatorname{Gr}_{\check{G}} \rightarrow$ $\overbrace{\operatorname{Gr}_{\check{G}} \times \cdots \times \mathrm{Gr}_{\check{G}}}^{r}$ is the diagonal embedding, and \mathcal{A}_{R} is the perverse sheaf corresponding to the regular representation of \bar{G} via the geometric Satake correspondence. Then

1) MT_{r} is a (possibly singular) symplectic variety equipped with a Hamiltonian action of \breve{G}^{r};
2) $M T_{2}$

Braverman-Finkelberg-Nakajima construction

Theorem (BFN'19)

For $r \geq 1$, define $\mathrm{MT}_{r}:=\operatorname{Spec}\left(H_{\stackrel{G}{[}[t]]}^{*}\left(\operatorname{Gr}_{\check{G}}, i_{\Delta}^{!}\left(\mathcal{A}_{R}^{\boxtimes r}\right)\right)\right)$, where Ǧ is the Langlands dual of $G, \operatorname{Gr}_{\check{G}}=\breve{G}((t)) / \check{G}[[t]], i_{\Delta}: \operatorname{Gr}_{\check{G}} \rightarrow$ $\overbrace{\operatorname{Gr}_{\check{G}} \times \cdots \times \mathrm{Gr}_{\check{G}}}^{r}$ is the diagonal embedding, and \mathcal{A}_{R} is the perverse sheaf corresponding to the regular representation of \check{G} via the geometric Satake correspondence. Then

1) MT_{r} is a (possibly singular) symplectic variety equipped with a Hamiltonian action of \breve{G}^{r};
2) $\mathrm{MT}_{2}=T^{*} G$,

Braverman-Finkelberg-Nakajima construction

Theorem (BFN'19)

For $r \geq 1$, define $\mathrm{MT}_{r}:=\operatorname{Spec}\left(H_{\stackrel{G}{G}[t]]}^{*}\left(\operatorname{Gr}_{\breve{G}}, i_{\Delta}^{!}\left(\mathcal{A}_{R}^{\boxtimes r}\right)\right)\right)$, where Ǧ is the Langlands dual of $G, \operatorname{Gr}_{\check{G}}=\breve{G}((t)) / \check{G}[[t]], i_{\Delta}: \operatorname{Gr}_{\check{G}} \rightarrow$ $\overbrace{\operatorname{Gr}_{\check{G}} \times \cdots \times \mathrm{Gr}_{\check{G}}}^{r}$ is the diagonal embedding, and \mathcal{A}_{R} is the perverse sheaf corresponding to the regular representation of \bar{G} via the geometric Satake correspondence. Then

1) MT_{r} is a (possibly singular) symplectic variety equipped with a Hamiltonian action of \breve{G}^{r};
2) $\mathrm{MT}_{2}=T^{*} G, \mathrm{MT}_{1}=G \times \mathcal{S}$, where $\mathcal{S} \subset \mathrm{g}^{*}$ is the

Kostant-Slodowy slice ;

Braverman-Finkelberg-Nakajima construction

Theorem (BFN'19)

For $r \geq 1$, define $\mathrm{MT}_{r}:=\operatorname{Spec}\left(H_{\breve{G}[[t]]}^{*}\left(\operatorname{Gr}_{\check{G}}, i_{\Delta}^{!}\left(\mathcal{A}_{R}^{\boxtimes r}\right)\right)\right)$, where \check{G} is the Langlands dual of $G, \operatorname{Gr}_{\check{G}}=\breve{G}((t)) / \check{G}[[t]], i_{\Delta}: \operatorname{Gr}_{\check{G}} \rightarrow$ $\overbrace{\operatorname{Gr}_{\check{G}} \times \cdots \times \mathrm{Gr}_{\check{G}}}^{r}$ is the diagonal embedding, and \mathcal{A}_{R} is the perverse sheaf corresponding to the regular representation of \bar{G} via the geometric Satake correspondence. Then

1) MT_{r} is a (possibly singular) symplectic variety equipped with a Hamiltonian action of \breve{G}^{r};
2) $\mathrm{MT}_{2}=T^{*} G, \mathrm{MT}_{1}=G \times \mathcal{S}$, where $\mathcal{S} \subset \mathrm{g}^{*}$ is the Kostant-Slodowy slice ;
3) $\mathrm{MT}_{r+s-2} \cong\left(\mathrm{MT}_{r} \times \mathrm{MT}_{s}\right) / / / \Delta(G)$ (the associativity).

Braverman-Finkelberg-Nakajima construction

Theorem (BFN'19)

For $r \geq 1$, define $\mathrm{MT}_{r}:=\operatorname{Spec}\left(H_{\breve{G}[[t]]}^{*}\left(\operatorname{Gr}_{\check{G}}, i_{\Delta}^{!}\left(\mathcal{A}_{R}^{\boxtimes r}\right)\right)\right)$, where \check{G} is the Langlands dual of $G, \operatorname{Gr}_{\check{G}}=\breve{G}((t)) / \check{G}[[t]], i_{\Delta}: \operatorname{Gr}_{\check{G}} \rightarrow$ $\overbrace{\operatorname{Gr}_{\check{G}} \times \cdots \times \mathrm{Gr}_{\check{G}}}^{r}$ is the diagonal embedding, and \mathcal{A}_{R} is the perverse sheaf corresponding to the regular representation of \bar{G} via the geometric Satake correspondence. Then

1) MT_{r} is a (possibly singular) symplectic variety equipped with a Hamiltonian action of \breve{G}^{r};
2) $\mathrm{MT}_{2}=T^{*} G, \mathrm{MT}_{1}=G \times \mathcal{S}$, where $\mathcal{S} \subset \mathrm{g}^{*}$ is the Kostant-Slodowy slice ;
3) $\mathrm{MT}_{r+s-2} \cong\left(\mathrm{MT}_{r} \times \mathrm{MT}_{s}\right) / / / \Delta(G)$ (the associativity).

Relation to Coulomb branches

We get:

$$
\mathrm{MT}_{r}=\operatorname{Higgs}\left(S_{G}\left(\mathbb{P}^{1} \text { with } r \text { puctures }\right)\right)
$$

Relation to Coulomb branches

We get:

$$
\mathrm{MT}_{r}=\operatorname{Higgs}\left(S_{G}\left(\mathbb{P}^{1} \text { with } r \text { puctures }\right)\right)
$$

For type A,

Relation to Coulomb branches

We get:

$$
\mathrm{MT}_{r}=\operatorname{Higgs}\left(S_{G}\left(\mathbb{P}^{1} \text { with } r \text { puctures }\right)\right)
$$

For type A, Moore-Tachikawa variety MT_{r} is isomorphic to the Coulomb branch of the 3D gauge theory associated with the star shaped quiver with r-legs ([BFN]).

Relation to Coulomb branches

We get:

$$
\mathrm{MT}_{r}=\operatorname{Higgs}\left(S_{G}\left(\mathbb{P}^{1} \text { with } r \text { puctures }\right)\right)
$$

For type A, Moore-Tachikawa variety MT_{r} is isomorphic to the
Coulomb branch of the 3D gauge theory associated with the star shaped quiver with r-legs ([BFN]).
$\Rightarrow M T_{r}$ has a finitely many symplectic leaves ([Weekes]).

Beem-Peelaers-Rastelli-van Rees Conjecture

VOAs $\mathbb{V}\left(S_{G}(\Sigma)\right)$

Beem-Peelaers-Rastelli-van Rees Conjecture

VOAs $\mathbb{V}\left(S_{G}(\Sigma)\right)$ is called chiral algebras of class \mathcal{S} [Beem-Peelaers-Rastellib-van Rees'15]

Beem-Peelaers-Rastelli-van Rees Conjecture

VOAs $\mathbb{V}\left(S_{G}(\Sigma)\right)$ is called chiral algebras of class \mathcal{S} [Beem-Peelaers-Rastellib-van Rees'15]
[BPRvR] conjectured that chiral algebras of class \mathcal{S} should be also described in terms of 2D TQFT:

Beem-Peelaers-Rastelli-van Rees Conjecture

VOAs $\mathbb{V}\left(S_{G}(\Sigma)\right)$ is called chiral algebras of class \mathcal{S} [Beem-Peelaers-Rastellib-van Rees'15]
[BPRvR] conjectured that chiral algebras of class \mathcal{S} should be also described in terms of 2D TQFT:

Want to:

- $G \rightsquigarrow \widehat{\mathrm{~g}}=\mathrm{g}\left[t, t^{-1}\right] \oplus \mathbb{C} K(\mathrm{~g}=\operatorname{Lie}(G)) ;$

Beem-Peelaers-Rastelli-van Rees Conjecture

VOAs $\mathbb{V}\left(S_{G}(\Sigma)\right)$ is called chiral algebras of class \mathcal{S} [Beem-Peelaers-Rastellib-van Rees'15]
[BPRvR] conjectured that chiral algebras of class \mathcal{S} should be also described in terms of 2D TQFT:

Want to:

- $G \rightsquigarrow \widehat{\mathrm{~g}}=\mathrm{g}\left[t, t^{-1}\right] \oplus \mathbb{C} K(\mathrm{~g}=\operatorname{Lie}(G))$;
- symplectic variety $X \rightsquigarrow$ a VOA V such that $X_{V}=X$;

Beem-Peelaers-Rastelli-van Rees Conjecture

VOAs $\mathbb{V}\left(S_{G}(\Sigma)\right)$ is called chiral algebras of class \mathcal{S} [Beem-Peelaers-Rastellib-van Rees'15]
[BPRvR] conjectured that chiral algebras of class \mathcal{S} should be also described in terms of 2D TQFT:

Want to:

- $G \rightsquigarrow \widehat{\mathrm{~g}}=\mathrm{g}\left[t, t^{-1}\right] \oplus \mathbb{C} K(\mathrm{~g}=\operatorname{Lie}(G))$;
- symplectic variety $X \rightsquigarrow$ a VOA V such that $X_{V}=X$;
- moment map $\mu: X \rightarrow \mathrm{~g}^{*} \rightsquigarrow$ homomorphism $V^{k}(\mathrm{~g}) \rightarrow V$ such that the induced morphism $X_{V} \rightarrow X_{V^{k}(\mathrm{~g})}=\mathrm{g}^{*}$ coincides with μ;

Beem-Peelaers-Rastelli-van Rees Conjecture

VOAs $\mathbb{V}\left(S_{G}(\Sigma)\right)$ is called chiral algebras of class \mathcal{S} [Beem-Peelaers-Rastellib-van Rees'15]
[BPRvR] conjectured that chiral algebras of class \mathcal{S} should be also described in terms of 2D TQFT:

Want to:

- $G \rightsquigarrow \widehat{\mathrm{~g}}=\mathrm{g}\left[t, t^{-1}\right] \oplus \mathbb{C} K(\mathrm{~g}=\operatorname{Lie}(G))$;
- symplectic variety $X \rightsquigarrow$ a VOA V such that $X_{V}=X$;
- moment map $\mu: X \rightarrow \mathrm{~g}^{*} \rightsquigarrow$ homomorphism $V^{k}(\mathrm{~g}) \rightarrow V$ such that the induced morphism $X_{V} \rightarrow X_{V^{k}(\mathrm{~g})}=\mathrm{g}^{*}$ coincides with μ;
- $(X \times Y) / / / \Delta(G) \rightsquigarrow H^{\infty / 2+\bullet}\left(\widehat{\mathrm{g}}, \mathrm{g}, V_{1} \otimes V_{2}\right)$

Beem-Peelaers-Rastelli-van Rees Conjecture

VOAs $\mathbb{V}\left(S_{G}(\Sigma)\right)$ is called chiral algebras of class \mathcal{S} [Beem-Peelaers-Rastellib-van Rees'15]
[BPRvR] conjectured that chiral algebras of class \mathcal{S} should be also described in terms of 2D TQFT:

Want to:

- $G \rightsquigarrow \widehat{\mathrm{~g}}=\mathrm{g}\left[t, t^{-1}\right] \oplus \mathbb{C} K(\mathrm{~g}=\operatorname{Lie}(G))$;
- symplectic variety $X \rightsquigarrow$ a VOA V such that $X_{V}=X$;
- moment map $\mu: X \rightarrow \mathrm{~g}^{*} \rightsquigarrow$ homomorphism $V^{k}(\mathrm{~g}) \rightarrow V$ such that the induced morphism $X_{V} \rightarrow X_{V^{k}(\mathrm{~g})}=\mathrm{g}^{*}$ coincides with μ;
- $(X \times Y) / / / \Delta(G) \rightsquigarrow H^{\infty / 2+\bullet}\left(\hat{\mathrm{g}}, \mathrm{g}, V_{1} \otimes V_{2}\right)$
$\left(X_{H \infty / 2+\bullet\left(\hat{g}, g, V_{1} \otimes V_{2}\right)}^{\cong}\left(X_{V_{1}} \times X_{V_{2}}\right) / / / \Delta(G)\right.$ in "nice" cases. $)$

Beem-Peelaers-Rastelli-van Rees Conjecture

VOAs $\mathbb{V}\left(S_{G}(\Sigma)\right)$ is called chiral algebras of class \mathcal{S} [Beem-Peelaers-Rastellib-van Rees'15]
[BPRvR] conjectured that chiral algebras of class \mathcal{S} should be also described in terms of 2D TQFT:

Want to:

- $G \rightsquigarrow \widehat{\mathrm{~g}}=\mathrm{g}\left[t, t^{-1}\right] \oplus \mathbb{C} K(\mathrm{~g}=\operatorname{Lie}(G))$;
- symplectic variety $X \rightsquigarrow$ a VOA V such that $X_{V}=X$;
- moment map $\mu: X \rightarrow \mathrm{~g}^{*} \rightsquigarrow$ homomorphism $V^{k}(\mathrm{~g}) \rightarrow V$ such that the induced morphism $X_{V} \rightarrow X_{V^{k}(\mathrm{~g})}=\mathrm{g}^{*}$ coincides with μ;
- $(X \times Y) / / / \Delta(G) \rightsquigarrow H^{\infty / 2+\bullet}\left(\hat{\mathrm{g}}, \mathrm{g}, V_{1} \otimes V_{2}\right)$ $\left(X_{H \infty / 2+\bullet}\left(\hat{g}, \mathrm{~g}, V_{1} \otimes V_{2}\right) \cong\left(X_{V_{1}} \times X_{V_{2}}\right) / / / \Delta(G)\right.$ in "nice" cases. $)$ The level of $V_{1} \otimes V_{2}$ must be $-2 h^{V}$,

Beem-Peelaers-Rastelli-van Rees Conjecture

VOAs $\mathbb{V}\left(S_{G}(\Sigma)\right)$ is called chiral algebras of class \mathcal{S} [Beem-Peelaers-Rastellib-van Rees'15]
[BPRvR] conjectured that chiral algebras of class \mathcal{S} should be also described in terms of 2D TQFT:

Want to:

- $G \rightsquigarrow \widehat{\mathrm{~g}}=\mathrm{g}\left[t, t^{-1}\right] \oplus \mathbb{C} K(\mathrm{~g}=\operatorname{Lie}(G))$;
- symplectic variety $X \rightsquigarrow$ a VOA V such that $X_{V}=X$;
- moment map $\mu: X \rightarrow \mathrm{~g}^{*} \rightsquigarrow$ homomorphism $V^{k}(\mathrm{~g}) \rightarrow V$ such that the induced morphism $X_{V} \rightarrow X_{V^{k}(\mathrm{~g})}=\mathrm{g}^{*}$ coincides with μ;
- $(X \times Y) / / / \Delta(G) \rightsquigarrow H^{\infty / 2+\bullet}\left(\hat{\mathrm{g}}, \mathrm{g}, V_{1} \otimes V_{2}\right)$ $\left(X_{H \infty / 2+\bullet}\left(\hat{g}, \mathrm{~g}, V_{1} \otimes V_{2}\right) \cong\left(X_{V_{1}} \times X_{V_{2}}\right) / / / \Delta(G)\right.$ in "nice" cases. $)$ The level of $V_{1} \otimes V_{2}$ must be $-2 h^{\vee}$, i.e., $k=-h^{V}$.

Beem-Peelaers-Rastelli-van Rees Conjecture

- $\mathrm{MT}_{2}=T^{*} G \rightsquigarrow$

Beem-Peelaers-Rastelli-van Rees Conjecture

- $\mathrm{MT}_{2}=T^{*} G \rightsquigarrow \mathcal{D}_{G,-h^{\vee}}^{c h}$, (global) cdo on G
[Malikov-Schechtman-Vaintrob, Beilinson-Drinfeld] at the critical level $k=-h^{\vee}$

Beem-Peelaers-Rastelli-van Rees Conjecture

- $\mathrm{MT}_{2}=T^{*} G \rightsquigarrow \mathcal{D}_{G,-h^{\vee}}^{c h}$, (global) cdo on G
[Malikov-Schechtman-Vaintrob, Beilinson-Drinfeld] at the critical level $k=-h^{\vee}\left(X_{\mathcal{D}_{G, k}^{c h}} \cong T^{*} G\right)$;

Beem-Peelaers-Rastelli-van Rees Conjecture

- $\mathrm{MT}_{2}=T^{*} G \rightsquigarrow \mathcal{D}_{G,-h^{\vee}}^{c h}$, (global) cdo on G
[Malikov-Schechtman-Vaintrob, Beilinson-Drinfeld] at the critical level $k=-h^{\vee}\left(X_{\mathcal{D}}^{c h, k}, ~ \cong T^{*} G\right)$;
- $\mathrm{MT}_{1}=G \times \mathcal{S}$ is obtained from $\mathrm{MT}_{2}=T^{*} G$ by Kostant reduction $X \mapsto X \times{ }_{\mathrm{g}^{*}} \mathcal{S}$.

Beem-Peelaers-Rastelli-van Rees Conjecture

- $\mathrm{MT}_{2}=T^{*} G \rightsquigarrow \mathcal{D}_{G,-h^{\vee}}^{c h}$, (global) cdo on G
[Malikov-Schechtman-Vaintrob, Beilinson-Drinfeld] at the critical level $k=-h^{\vee}\left(X_{\mathcal{D}_{G, k}^{c h}} \cong T^{*} G\right)$;
- $\mathrm{MT}_{1}=G \times \mathcal{S}$ is obtained from $\mathrm{MT}_{2}=T^{*} G$ by Kostant reduction $X \mapsto X \times{ }_{\mathrm{g}^{*}} \mathcal{S}$.
$\mathrm{MT}_{1} \rightsquigarrow H_{D S}^{0}\left(\mathcal{D}_{G,-h^{\vee}}^{c h}\right)$
$\left(X_{H_{D S}^{0}\left(\mathcal{D}_{G,-h^{c}}^{c h}\right)}=T^{*} G \times{ }_{g^{*}} \mathcal{S}=G \times \mathcal{S}\right)$

Chiral algebras of class \mathcal{S}

Theorem (A., arXiv:1811.01577)
For each semisimple group G, there exists a unique family of VAs $\left\{\mathbf{V}_{r} \mid r \geq 1\right\}$ such that

Chiral algebras of class \mathcal{S}

Theorem (A., arXiv:1811.01577)
For each semisimple group G, there exists a unique family of VAs $\left\{\mathbf{V}_{r} \mid r \geq 1\right\}$ such that

1) \exists a vertex algebra homomorphism $V^{-h^{\vee}}(\mathrm{g})^{\otimes r} \rightarrow \mathbf{V}_{r}$ and the $\mathrm{g}[t]^{\oplus r}$-action on \mathbf{V}_{r} integrates to the action of

$$
\overbrace{G[[t]] \times \cdots \times G[[t]]} ;
$$

Chiral algebras of class \mathcal{S}

Theorem (A., arXiv:1811.01577)
For each semisimple group G, there exists a unique family of VAs $\left\{\mathbf{V}_{r} \mid r \geq 1\right\}$ such that

1) \exists a vertex algebra homomorphism $V^{-h^{\vee}}(\mathrm{g})^{\otimes r} \rightarrow \mathbf{V}_{r}$ and the $\mathrm{g}[t]^{\oplus r}$-action on \mathbf{V}_{r} integrates to the action of $\overbrace{G[[t]] \times \cdots \times G[[t]] ;}$
2) $\mathbf{V}_{2}=\mathcal{D}_{G,-h^{\vee}}^{c h}$ and $\mathbf{V}_{1}=H_{D S}^{0}\left(\mathcal{D}_{G,-h^{\vee}}^{c h}\right)$;

Chiral algebras of class \mathcal{S}

Theorem (A., arXiv:1811.01577)
For each semisimple group G, there exists a unique family of VAs $\left\{\mathbf{V}_{r} \mid r \geq 1\right\}$ such that

1) \exists a vertex algebra homomorphism $V^{-h^{\vee}}(\mathrm{g})^{\otimes r} \rightarrow \mathbf{V}_{r}$ and the $\mathrm{g}[t]^{\oplus r}$-action on \mathbf{V}_{r} integrates to the action of $\overbrace{G[[t]] \times \cdots \times G[[t]] ;}$
2) $\mathbf{V}_{2}=\mathcal{D}_{G,-h^{\vee}}^{c h}$ and $\mathbf{V}_{1}=H_{D S}^{0}\left(\mathcal{D}_{G,-h^{\vee}}^{c h}\right)$;
3) $H^{\infty / 2+i}\left(\widehat{\mathrm{~g}}, \mathrm{~g}, \mathbf{V}_{r} \otimes \mathbf{V}_{s}\right) \cong \delta_{i, 0} \mathbf{V}_{r+s-2}$.

Chiral algebras of class \mathcal{S}

Theorem (Continued)
Moreover,
a) each \mathbf{V}_{r} is simple

Chiral algebras of class \mathcal{S}

Theorem (Continued)

Moreover,
a) each \mathbf{V}_{r} is simple and conformal with central charge $\operatorname{dim}\left(\mathrm{MT}_{r}\right)-24(r-2)\left(\rho \mid \rho^{\vee}\right)=$ $r \operatorname{dim} g-(r-2) r k g-24(r-2)\left(\rho \mid \rho^{\vee}\right)$;

Chiral algebras of class \mathcal{S}

Theorem (Continued)

Moreover,
a) each \mathbf{V}_{r} is simple and conformal with central charge $\operatorname{dim}\left(\mathrm{MT}_{r}\right)-24(r-2)\left(\rho \mid \rho^{\vee}\right)=$
$r \operatorname{dim} g-(r-2) r k g-24(r-2)\left(\rho \mid \rho^{\vee}\right)$;
b) For $z_{1} \ldots z_{r} \in T^{r}$, $\operatorname{tr}_{r}\left(q^{L_{0}} z_{1} \ldots z_{r}\right)=$
$\sum_{\lambda \in P_{+}}\left(\frac{q^{\left(\lambda, \rho^{\vee}\right)} \prod_{j=1}^{\infty}\left(1-q^{j}\right)^{r k g}}{\prod_{\alpha \in \Delta_{+}}\left(1-q^{\left(\lambda+\rho, \alpha^{\vee}\right)}\right)}\right)^{r-2} \prod_{i=1}^{r} \operatorname{tr}_{\lambda}\left(q^{-D} z_{i}\right)$, where $V_{\lambda}=U(\widehat{\mathrm{~g}}) \otimes U(\mathrm{~g}[t] \oplus \mathbb{C} K) E_{\lambda}$ is the Weyl module at the critical level;

Chiral algebras of class \mathcal{S}

Theorem (Continued)

Moreover,
a) each \mathbf{V}_{r} is simple and conformal with central charge $\operatorname{dim}\left(\mathrm{MT}_{r}\right)-24(r-2)\left(\rho \mid \rho^{\vee}\right)=$
$r \operatorname{dim} g-(r-2) r k g-24(r-2)\left(\rho \mid \rho^{\vee}\right)$;
b) For $z_{1} \ldots z_{r} \in T^{r}$, $\operatorname{tr}_{r}\left(q^{L_{0}} z_{1} \ldots z_{r}\right)=$
$\sum_{\lambda \in P_{+}}\left(\frac{q^{\left\langle\lambda, \rho^{\vee}\right\rangle} \prod_{j=1}^{\infty}\left(1-q^{j}\right)^{r k g}}{\prod_{\alpha \in \Delta_{+}}\left(1-q^{\left(\lambda+\rho, \alpha^{\vee}\right\rangle}\right)}\right)^{r-2} \prod_{i=1}^{r} \operatorname{tr}_{\lambda}\left(q^{-D} z_{i}\right)$, where $V_{\lambda}=U(\widehat{\mathrm{~g}}) \otimes_{U(\mathrm{~g}[t] \oplus \mathbb{C} K)} E_{\lambda}$ is the Weyl module at the critical level;
c) $\mathrm{X}_{\mathbf{v}_{r}} \cong \mathrm{MT}_{r}$.

Beem-Rastelli conjecture for class \mathcal{S} theory

According to [BPRvR], Theorem (1)-(3) and (a)-(b) are the properties that $\mathbb{V}\left(S_{G}\left(\mathbb{P}^{1}\right.\right.$ with r punctures $\left.)\right)$ should have

Beem-Rastelli conjecture for class \mathcal{S} theory

According to [BPRvR] , Theorem (1)-(3) and (a)-(b) are the properties that $\mathbb{V}\left(S_{G}\left(\mathbb{P}^{1}\right.\right.$ with r punctures $\left.)\right)$ should have $\Rightarrow \mathbf{V}_{r}=\mathbb{V}\left(S_{G}\left(\mathbb{P}^{1}\right.\right.$ with r punctures $\left.)\right)$.

Beem-Rastelli conjecture for class \mathcal{S} theory

According to [BPRvR], Theorem (1)-(3) and (a)-(b) are the properties that $\mathbb{V}\left(S_{G}\left(\mathbb{P}^{1}\right.\right.$ with r punctures $\left.)\right)$ should have $\Rightarrow \mathbf{V}_{r}=\mathbb{V}\left(S_{G}\left(\mathbb{P}^{1}\right.\right.$ with r punctures $\left.)\right)$.

Moreover, by Theorem (c), we conclude that Beem-Rastelli conjecture is true for the class \mathcal{S} theory.

Exmaples

We can in principle compute the chiral algebras of class \mathcal{S}.

Exmaples

We can in principle compute the chiral algebras of class \mathcal{S}.

$$
G=S L_{2}
$$

Exmaples

We can in principle compute the chiral algebras of class \mathcal{S}. $G=S L_{2}$
MT_{3}

Exmaples

We can in principle compute the chiral algebras of class \mathcal{S}.

$$
\begin{aligned}
& G=S L_{2} \\
& \mathrm{MT}_{3}=\mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes \mathbb{C}^{2}
\end{aligned}
$$

Exmaples

We can in principle compute the chiral algebras of class \mathcal{S}.

$$
\begin{aligned}
& G=S L_{2} \\
& \mathrm{MT}_{3}=\mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes \mathbb{C}^{2}, \quad \mathbb{C}^{2} \curvearrowleft S L_{2}
\end{aligned}
$$

Exmaples

We can in principle compute the chiral algebras of class \mathcal{S}. $G=S L_{2}$ $\mathrm{MT}_{3}=\mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes \mathbb{C}^{2}, \quad \mathbb{C}^{2} \curvearrowleft S L_{2}$
$\mathbf{V}_{3}=\beta \gamma$ system associated to the symplectic vector space $\left(\mathbb{C}^{2}\right)^{\otimes 3}$ (affinization of the Weyl algebra).

Exmaples

We can in principle compute the chiral algebras of class \mathcal{S}. $G=S L_{2}$ $\mathrm{MT}_{3}=\mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes \mathbb{C}^{2}, \quad \mathbb{C}^{2} \curvearrowleft S L_{2}$
$\mathbf{V}_{3}=\beta \gamma$ system associated to the symplectic vector space $\left(\mathbb{C}^{2}\right)^{\otimes 3}$ (affinization of the Weyl algebra).
MT_{4}

Exmaples

We can in principle compute the chiral algebras of class \mathcal{S}. $G=S L_{2}$ $\mathrm{MT}_{3}=\mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes \mathbb{C}^{2}, \quad \mathbb{C}^{2} \curvearrowleft S L_{2}$
$\mathbf{V}_{3}=\beta \gamma$ system associated to the symplectic vector space $\left(\mathbb{C}^{2}\right)^{\otimes 3}$ (affinization of the Weyl algebra).
$\mathrm{MT}_{4}=\overline{\mathbb{O}_{\text {min }}}$ in D_{4}

Exmaples

We can in principle compute the chiral algebras of class \mathcal{S}. $G=S L_{2}$ $\mathrm{MT}_{3}=\mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes \mathbb{C}^{2}, \quad \mathbb{C}^{2} \curvearrowleft S L_{2}$
$\mathbf{V}_{3}=\beta \gamma$ system associated to the symplectic vector space $\left(\mathbb{C}^{2}\right)^{\otimes 3}$ (affinization of the Weyl algebra).
$\mathrm{MT}_{4}=\overline{\mathbb{O}_{\text {min }}}$ in D_{4}

Exmaples

We can in principle compute the chiral algebras of class \mathcal{S}.
$G=S L_{2}$
$\mathrm{MT}_{3}=\mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes \mathbb{C}^{2}, \quad \mathbb{C}^{2} \curvearrowleft S L_{2}$
$\mathbf{V}_{3}=\beta \gamma$ system associated to the symplectic vector space $\left(\mathbb{C}^{2}\right)^{\otimes 3}$ (affinization of the Weyl algebra).
$\mathrm{MT}_{4}=\overline{\mathbb{O}_{\text {min }}}$ in D_{4}

$\mathbf{V}_{4}=L_{-2}\left(D_{4}\right)$, the simple affine vertex algebra associated with D_{4} at level -2 (conjectured by $\left.\left[\mathrm{BL}^{2} \mathrm{PRvR}\right]\right)$.

Examples (contined)

The isomorphism $X_{L_{-2}\left(D_{4}\right)} \cong \overline{\mathbb{O}_{\text {min }}}$ reproves a result in [A.-Moreau'16].

Examples (contined)

The isomorphism $X_{L_{-2}\left(D_{4}\right)} \cong \overline{\mathbb{O}_{\text {min }}}$ reproves a result in [A.-Moreau'16].

The associativities imply:

- $\left(\left(\mathbb{C}^{2}\right)^{\otimes 3} \times\left(\mathbb{C}^{2}\right)^{\otimes 3}\right) / \Delta\left(S L_{2}\right) \cong \overline{\mathbb{O}_{\min }}$,

Examples (contined)

The isomorphism $X_{L_{-2}\left(D_{4}\right)} \cong \overline{\mathbb{O}_{\text {min }}}$ reproves a result in [A.-Moreau'16].

The associativities imply:

- $\left(\left(\mathbb{C}^{2}\right)^{\otimes 3} \times\left(\mathbb{C}^{2}\right)^{\otimes 3}\right) / \Delta\left(S L_{2}\right) \cong \overline{\mathbb{O}_{\min }}$,
(ADHM construction of $\overline{\mathbb{O}_{\text {min }}}$)

Examples (contined)

The isomorphism $X_{L_{-2}\left(D_{4}\right)} \cong \overline{\mathbb{O}_{\text {min }}}$ reproves a result in [A.-Moreau'16].

The associativities imply:

- $\left(\left(\mathbb{C}^{2}\right)^{\otimes 3} \times\left(\mathbb{C}^{2}\right)^{\otimes 3}\right) / \Delta\left(S L_{2}\right) \cong \overline{\mathbb{O}_{\min }}$,
(ADHM construction of $\overline{\mathbb{O}_{\text {min }}}$)
- $H^{\infty / 2+i}\left(\widehat{\mathrm{~s}}_{2}, \mathrm{sl}_{2}, \beta \gamma\left(\left(\mathbb{C}^{2}\right)^{\otimes 3}\right) \otimes \beta \gamma\left(\left(\mathbb{C}^{2}\right)^{\otimes 3}\right) \cong \delta_{i, 0} L_{-2}\left(D_{4}\right)\right.$

Examples (contined)

The isomorphism $X_{L_{-2}\left(D_{4}\right)} \cong \overline{\mathbb{O}_{\text {min }}}$ reproves a result in [A.-Moreau'16].

The associativities imply:

- $\left(\left(\mathbb{C}^{2}\right)^{\otimes 3} \times\left(\mathbb{C}^{2}\right)^{\otimes 3}\right) / \Delta\left(S L_{2}\right) \cong \overline{\mathbb{O}_{\text {min }}}$,
(ADHM construction of $\overline{\mathbb{O}_{\text {min }}}$)
- $H^{\infty / 2+i}\left(\widehat{s}_{2}, \mathrm{sl}_{2}, \beta \gamma\left(\left(\mathbb{C}^{2}\right)^{\otimes 3}\right) \otimes \beta \gamma\left(\left(\mathbb{C}^{2}\right)^{\otimes 3}\right) \cong \delta_{i, 0} L_{-2}\left(D_{4}\right)\right.$

Also, the MLDE method gives

$$
\operatorname{tr}_{L_{-2}\left(D_{4}\right)}\left(q^{L_{0}-c / 24}\right)=\frac{E_{4}^{\prime}(\tau)}{240 \eta(\tau)^{10}}
$$

([A.-Kawasetsu]).

Examples (continued)

$$
G=S L_{3}
$$

Examples (continued)

$$
\begin{aligned}
& G=S L_{3} \\
& \mathrm{MT}_{3}=\overline{\mathbb{O}_{\min }} \text { in } E_{6}
\end{aligned}
$$

Examples (continued)

$$
\begin{aligned}
& G=S L_{3} \\
& \mathrm{MT}_{3}=\overline{\mathrm{O}_{\min }} \text { in } E_{6} \\
& \mathbf{V}_{3}=L_{-3}\left(E_{6}\right) \text {. }
\end{aligned}
$$

Examples (continued)

$G=S L_{3}$
$\mathrm{MT}_{3}=\overline{\mathbb{O}_{\text {min }}}$ in E_{6}.

$\mathbf{V}_{3}=L_{-3}\left(E_{6}\right)$.

In general, neither MT_{r} nor \mathbf{V}_{r} has a simple description.

Some words on the proof

$$
\mathbf{V}_{2}=\mathcal{D}_{G,-h \vee}^{c h} \text { should satisfy }
$$

$$
H^{\infty / 2+i}\left(\widehat{\mathrm{~g}}, \mathrm{~g}, \mathcal{D}_{G,-h^{\vee}}^{c h} \otimes \mathbf{V}_{r}\right) \cong \mathbf{V}_{r} .
$$

Some words on the proof

$$
\begin{aligned}
& \mathbf{V}_{2}=\mathcal{D}_{G,-h^{\prime}}^{c h} \text { should satisfy } \\
& \qquad H^{\infty / 2+i}\left(\widehat{\mathrm{~g}}, \mathrm{~g}, \mathcal{D}_{G,-h \vee}^{c h} \otimes \mathbf{V}_{r}\right) \cong \mathbf{V}_{r} .
\end{aligned}
$$

Why?

Some words on the proof

$\mathbf{V}_{2}=\mathcal{D}_{G,-h^{c h}}^{c h}$ should satisfy

$$
H^{\infty / 2+i}\left(\widehat{\mathrm{~g}}, \mathrm{~g}, \mathcal{D}_{G,-h \vee}^{c h} \otimes \mathbf{V}_{r}\right) \cong \mathbf{V}_{r} .
$$

Why?
By definition,

$$
\mathcal{D}_{G,-h v}^{c h}-\operatorname{Mod}^{c h} \cong \mathcal{D}_{G((t))}-\operatorname{Mod}_{-h \vee}
$$

([Arkhipov-Gaitsgory]).

Some words on the proof

$\mathbf{V}_{2}=\mathcal{D}_{G,-h^{\vee}}^{c h}$ should satisfy

$$
H^{\infty / 2+i}\left(\widehat{\mathrm{~g}}, \mathrm{~g}, \mathcal{D}_{G,-h \vee}^{c h} \otimes \mathbf{V}_{r}\right) \cong \mathbf{V}_{r}
$$

Why?
By definition,

$$
\mathcal{D}_{G,-h \vee}^{c h}-\operatorname{Mod} \cong \mathcal{D}_{G((t))}-\operatorname{Mod}_{-h \vee}
$$

([Arkhipov-Gaitsgory]). Hence,

$$
\mathcal{D}_{G,-h \vee}^{c h}-\operatorname{Mod}^{G[[t]]} \cong \mathcal{D}_{\mathrm{Gr}_{G}}-\operatorname{Mod}_{-h \vee}
$$

Some words on the proof

$\mathbf{V}_{2}=\mathcal{D}_{G,-h^{\vee}}^{c h}$ should satisfy

$$
H^{\infty / 2+i}\left(\widehat{\mathrm{~g}}, \mathrm{~g}, \mathcal{D}_{G,-h \vee}^{c h} \otimes \mathbf{V}_{r}\right) \cong \mathbf{V}_{r}
$$

Why?
By definition,

$$
\mathcal{D}_{G,-h \vee}^{c h}-\operatorname{Mod} \cong \mathcal{D}_{G((t))}-\operatorname{Mod}_{-h \vee}
$$

([Arkhipov-Gaitsgory]). Hence,

$$
\mathcal{D}_{G,-h \vee}^{c h}-\operatorname{Mod}^{G[[t]]} \cong \mathcal{D}_{\mathrm{Gr}_{G}}-\operatorname{Mod}_{-h \vee}
$$

where $\mathcal{D}_{G,-h^{\vee}}^{c h}$ itself corresponds to the δ-function D-module δ_{e} at the identity.

Some words on the proof

By restricting this equivalence, we get

$$
\mathcal{D}_{G,-h}^{c h}-\operatorname{Mod}^{G[[t]] \times G[[t]]} \cong \mathcal{D}_{\mathrm{Gr}_{G}}-\operatorname{Mod}_{-h \vee}^{G[[t]]} \cong \operatorname{Rep}(\check{G}) .
$$

Some words on the proof

By restricting this equivalence, we get

$$
\mathcal{D}_{G,-h \vee}^{c h}-\operatorname{Mod}^{G[[t]] \times G[[t]]} \cong \mathcal{D}_{G r_{G}}-\operatorname{Mod}_{-h \vee}^{G[[t]]} \cong \operatorname{Rep}(\check{G}) .
$$

Via this equivalence the monodical structure of $\mathcal{D}_{G,-h^{\vee}}^{c h}-\operatorname{Mod}{ }^{G[[t]] \times G[[t]]}$ is given by

$$
M \otimes N \mapsto H^{\infty / 2+\bullet}(\widehat{\mathrm{g}}, \mathrm{~g}, M \otimes N)
$$

([Frenkel-Gaitsgory]).

Some words on the proof

By restricting this equivalence, we get

$$
\mathcal{D}_{G,-h h^{c h}}-\operatorname{Mod}^{G[[t]] \times G[[t]]} \cong \mathcal{D}_{G r_{G}}-\operatorname{Mod}_{-h \bigvee}^{G[[t]]} \cong \operatorname{Rep}(\check{G}) .
$$

Via this equivalence the monodical structure of $\mathcal{D}_{G,-h^{\vee}}^{c h}-\operatorname{Mod}{ }^{G[[t]] \times G[[t]]}$ is given by

$$
M \otimes N \mapsto H^{\infty / 2+\bullet}(\widehat{\mathrm{g}}, \mathrm{~g}, M \otimes N)
$$

([Frenkel-Gaitsgory]). Because $\mathcal{D}_{G,-h \vee}^{c h} \leftrightarrow \delta_{e} \leftrightarrow \mathbb{C}$,

Some words on the proof

By restricting this equivalence, we get

$$
\mathcal{D}_{G,-h^{\vee}}^{c h}-\operatorname{Mod}^{G[[t]] \times G[[t]]} \cong \mathcal{D}_{G r_{G}}-\operatorname{Mod}_{-h \vee}^{G[[t]]} \cong \operatorname{Rep}(\check{G})
$$

Via this equivalence the monodical structure of $\mathcal{D}_{G,-h^{\vee}}^{c h}-\operatorname{Mod}{ }^{G[[t]] \times G[[t]]}$ is given by

$$
M \otimes N \mapsto H^{\infty / 2+\bullet}(\widehat{\mathrm{g}}, \mathrm{~g}, M \otimes N)
$$

([Frenkel-Gaitsgory]). Because $\mathcal{D}_{G,-h^{\vee}}^{c h} \leftrightarrow \delta_{e} \leftrightarrow \mathbb{C}$,

$$
H^{\infty / 2+\bullet}\left(\widehat{\mathrm{g}}, \mathrm{~g}, \mathcal{D}_{G,-h \vee}^{c h} \otimes M\right) \cong M
$$

Some words on the proof

By restricting this equivalence, we get

$$
\mathcal{D}_{G,-h \vee}^{c h}-\operatorname{Mod}^{G[[t]] \times G[[t]]} \cong \mathcal{D}_{G r_{G}}-\operatorname{Mod}_{-h \vee}^{G[[t]]} \cong \operatorname{Rep}(\check{G}) .
$$

Via this equivalence the monodical structure of $\mathcal{D}_{G,-h^{\vee}}^{c h}-\operatorname{Mod}{ }^{G[[t]] \times G[[t]]}$ is given by

$$
M \otimes N \mapsto H^{\infty / 2+\bullet}(\widehat{\mathrm{g}}, \mathrm{~g}, M \otimes N)
$$

([Frenkel-Gaitsgory]). Because $\mathcal{D}_{G,-h \vee}^{c h} \leftrightarrow \delta_{e} \leftrightarrow \mathbb{C}$,

$$
H^{\infty / 2+\bullet}\left(\widehat{g}, \mathrm{~g}, \mathcal{D}_{G,-h^{\vee}}^{c h} \otimes M\right) \cong M
$$

and one can check this isomorphism holds for any \widehat{g}-module M at the critical level on which the $g[t]$-action integrates to the action of $G[[t]]$ ([Arkhipov-Gaitsgory]).

Some words on the proof

$$
\begin{aligned}
& \mathbf{V}_{1}=H_{D S}^{0}\left(\mathcal{D}_{G,-h}^{c h}\right) \text { should satisfy } \\
& \qquad H^{\infty / 2+i}\left(\widehat{\mathrm{~g}}, \mathrm{~g}, \mathbf{V}_{1} \otimes \mathbf{V}_{r}\right) \cong \delta_{i, 0} \mathbf{V}_{r-1}
\end{aligned}
$$

Some words on the proof

$$
\begin{aligned}
& \mathbf{V}_{1}=H_{D S}^{0}\left(\mathcal{D}_{G,-h \vee}^{c h}\right) \text { should satisfy } \\
& \qquad H^{\infty / 2+i}\left(\widehat{\mathrm{~g}}, \mathrm{~g}, \mathbf{V}_{1} \otimes \mathbf{V}_{r}\right) \cong \delta_{i, 0} \mathbf{V}_{r-1}
\end{aligned}
$$

Proposition

$$
H^{\infty / 2+i}\left(\widehat{\mathrm{~g}}, \mathrm{~g}, \mathbf{V}_{1} \otimes M\right) \cong \delta_{i, 0} H_{D S}^{0}(M)
$$

Some words on the proof

$$
\begin{aligned}
& \mathbf{V}_{1}=H_{D S}^{0}\left(\mathcal{D}_{G,-h \vee}^{c h}\right) \text { should satisfy } \\
& \qquad H^{\infty / 2+i}\left(\widehat{\mathrm{~g}}, \mathrm{~g}, \mathbf{V}_{1} \otimes \mathbf{V}_{r}\right) \cong \delta_{i, 0} \mathbf{V}_{r-1}
\end{aligned}
$$

Proposition

$$
\begin{aligned}
& H^{\infty / 2+i}\left(\widehat{\mathrm{~g}}, \mathrm{~g}, \mathbf{V}_{1} \otimes M\right) \cong \delta_{i, 0} H_{D S}^{0}(M) \\
\Rightarrow & \mathbf{V}_{r-1}=H_{D S}^{0}\left(\mathbf{V}_{r}\right)
\end{aligned}
$$

Some words on the proof

$$
\begin{aligned}
& \mathbf{V}_{1}=H_{D S}^{0}\left(\mathcal{D}_{G,-h \vee}^{c h}\right) \text { should satisfy } \\
& \qquad H^{\infty / 2+i}\left(\widehat{\mathrm{~g}}, \mathrm{~g}, \mathbf{V}_{1} \otimes \mathbf{V}_{r}\right) \cong \delta_{i, 0} \mathbf{V}_{r-1}
\end{aligned}
$$

Proposition

$$
\begin{aligned}
& H^{\infty / 2+i}\left(\widehat{\mathrm{~g}}, \mathrm{~g}, \mathbf{V}_{1} \otimes M\right) \cong \delta_{i, 0} H_{D S}^{0}(M) \\
& \Rightarrow \mathbf{V}_{r-1}=H_{D S}^{0}\left(\mathbf{V}_{r}\right)
\end{aligned}
$$

So it is enough to construct an inverse functor to $H_{D S}^{0}($?).

Some words on the proof

$$
\begin{aligned}
& \mathbf{V}_{1}=H_{D S}^{0}\left(\mathcal{D}_{G,-h \vee}^{c h}\right) \text { should satisfy } \\
& \qquad H^{\infty / 2+i}\left(\widehat{\mathrm{~g}}, \mathrm{~g}, \mathbf{V}_{1} \otimes \mathbf{V}_{r}\right) \cong \delta_{i, 0} \mathbf{V}_{r-1}
\end{aligned}
$$

Proposition

$$
\begin{aligned}
& H^{\infty / 2+i}\left(\widehat{\mathrm{~g}}, \mathrm{~g}, \mathbf{V}_{1} \otimes M\right) \cong \delta_{i, 0} H_{D S}^{0}(M) \\
& \Rightarrow \mathbf{V}_{r-1}=H_{D S}^{0}\left(\mathbf{V}_{r}\right)
\end{aligned}
$$

So it is enough to construct an inverse functor to $H_{D S}^{0}($? $)$.
Equivalently, we want to recover everything from \mathbf{V}_{1}.

Construction of \mathbf{V}_{r}

Construction of \mathbf{V}_{r}

Example:
 $\mathbf{V}_{2}=\mathcal{D}_{G}^{c h}$

Construction of \mathbf{V}_{r}

Example:

$\mathbf{V}_{2}=\mathcal{D}_{G}^{c h}$ has two commuting action of \widehat{g} at the critical level

Construction of \mathbf{V}_{r}

Example:

$\mathbf{V}_{2}=\mathcal{D}_{G}^{c h}$ has two commuting action of \widehat{g} at the critical level
\mathbf{V}_{1} has one action of \widehat{g} at the critical level

Construction of \mathbf{V}_{r}

Example:

$\mathbf{V}_{2}=\mathcal{D}_{G}^{c h}$ has two commuting action of \widehat{g} at the critical level
\mathbf{V}_{1} has one action of \widehat{g} at the critical level
Easy guess:

Construction of \mathbf{V}_{r}

Example:

$\mathbf{V}_{2}=\mathcal{D}_{G}^{c h}$ has two commuting action of \widehat{g} at the critical level
\mathbf{V}_{1} has one action of \widehat{g} at the critical level
Easy guess: $\mathbf{V}_{2}=\mathbf{V}_{1} \otimes \mathbf{V}_{1}$?

Construction of \mathbf{V}_{r}

Example:

$\mathbf{V}_{2}=\mathcal{D}_{G}^{c h}$ has two commuting action of \widehat{g} at the critical level
\mathbf{V}_{1} has one action of \widehat{g} at the critical level
Easy guess: $\mathbf{V}_{2}=\mathbf{V}_{1} \otimes \mathbf{V}_{1}$?
No,

Construction of \mathbf{V}_{r}

Example:

$\mathbf{V}_{2}=\mathcal{D}_{G}^{c h}$ has two commuting action of \widehat{g} at the critical level
\mathbf{V}_{1} has one action of \widehat{g} at the critical level
Easy guess: $\mathbf{V}_{2}=\mathbf{V}_{1} \otimes \mathbf{V}_{1}$?
No, because the action of the two Feigin-Frenlel center on $\mathbf{V}_{2}=\mathcal{D}_{G,-h \vee}^{c h}$ is the same.

Construction of \mathbf{V}_{r}

Example:

$\mathbf{V}_{2}=\mathcal{D}_{G}^{c h}$ has two commuting action of \widehat{g} at the critical level
\mathbf{V}_{1} has one action of \widehat{g} at the critical level
Easy guess: $\mathbf{V}_{2}=\mathbf{V}_{1} \otimes \mathbf{V}_{1}$?
No, because the action of the two Feigin-Frenlel center on
$\mathbf{V}_{2}=\mathcal{D}_{G,-h^{\vee}}^{c h}$ is the same.
We can kill the difference of the two action of the center on
$\mathbf{V}_{1} \otimes \mathbf{V}_{1}$, or more generally,

Construction of \mathbf{V}_{r}

Example:

$\mathbf{V}_{2}=\mathcal{D}_{G}^{c h}$ has two commuting action of \widehat{g} at the critical level
\mathbf{V}_{1} has one action of \widehat{g} at the critical level
Easy guess: $\mathbf{V}_{2}=\mathbf{V}_{1} \otimes \mathbf{V}_{1}$?
No, because the action of the two Feigin-Frenlel center on
$\mathbf{V}_{2}=\mathcal{D}_{G,-h \vee}^{c h}$ is the same.
We can kill the difference of the two action of the center on
$\mathbf{V}_{1} \otimes \mathbf{V}_{1}$, or more generally, on $\mathbf{V}_{1}^{\otimes r}$, using a certain BRST cohomology.

Construction of \mathbf{V}_{r}

$z(\widehat{\mathrm{~g}})$: Feigin-Frenkel center of $\widehat{\mathrm{g}}$ at the critical level generated by $p_{1}(z), \ldots, p_{\text {rk (g) }}(z)$.

Construction of \mathbf{V}_{r}

$z(\widehat{g})$: Feigin-Frenkel center of \widehat{g} at the critical level generated by $p_{1}(z), \ldots, p_{\text {rk }(\mathrm{g})}(z)$.

$$
\mathbf{V}_{r}:=H_{B R S T}^{0}\left(\mathbf{V}_{1}^{\otimes r} \otimes\left(\otimes_{i=1}^{\mathrm{rk}(\mathrm{~g})}\left(b_{i}, c_{i}\right)\right)^{\otimes r-1}, Q_{(0)}\right)
$$

where

$$
\begin{aligned}
& Q(z)=\sum_{i=1}^{r-1} Q_{i, i+1}(z) \\
& Q_{i, i+1}(z)=\sum_{j=1}^{r k(\mathrm{~g})}\left(\pi_{i}\left(p_{j}(z)\right)-\pi_{i+1}\left(p_{j}(z)\right)\right) c_{j}^{(i)}(z)
\end{aligned}
$$

Construction of \mathbf{V}_{r}

$z(\widehat{g})$: Feigin-Frenkel center of \widehat{g} at the critical level generated by $p_{1}(z), \ldots, p_{\text {rk }(\mathrm{g})}(z)$.

$$
\mathbf{V}_{r}:=H_{B R S T}^{0}\left(\mathbf{V}_{1}^{\otimes r} \otimes\left(\otimes_{i=1}^{\mathrm{rk}(\mathrm{~g})}\left(b_{i}, c_{i}\right)\right)^{\otimes r-1}, Q_{(0)}\right)
$$

where

$$
\begin{aligned}
& Q(z)=\sum_{i=1}^{r-1} Q_{i, i+1}(z) \\
& Q_{i, i+1}(z)=\sum_{j=1}^{r k(\mathrm{~g})}\left(\pi_{i}\left(p_{j}(z)\right)-\pi_{i+1}\left(p_{j}(z)\right)\right) c_{j}^{(i)}(z)
\end{aligned}
$$

One can check that the above defined \mathbf{V}_{r} satisfies the required properties.

Thank you!

