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Figure 7. The BPS crystal configuration for the Suspended Pinched Point singularity.

We have chosen the vertex 1 of Figure 1 as the origin o of the crystal, whose location is

shown by the blue dot in the center.

2.3 Crystal Melting and Molten Crystal

For a given BPS crystal, we can consider a configuration of the molten crystal.

A finite set K of atoms from the BPS crystal is a configuration of the molten

crystal if it satisfies the following melting rule:

melting rule:

⇤ 2 K whenever there exists an edge I 2 Q1 such that I ·⇤ 2 K .
(2.4)

This is equivalent to the condition that I · ⇤ /2 K whenever ⇤ /2 K, namely the

condition that the complement of K is an ideal of the path algebra A(Q,W ).

Since any path by definition starts at the origin o, it follows that the origin o is

always contained in K, unless K is empty.

The molten configuration K has a finite number of atoms. Denote the number

of atoms with color a as |K(a)|. The statistical partition function of BPS crystal

melting is then defined to be a formal power series5

Z(q1, . . . , q|Q0|) =
X

K

Y

a2Q0

q|K(a)|
a . (2.5)

5 More precisely we need to insert signs for this definition [5, 8].
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discussion seems to be more general than similar discussions of infinite-dimensional

algebra in the literature, e.g. the work of [21] where the Yangian associated with the

quiver acts on the cohomologies of quiver varieties. It would be interesting to fully

understand the relation with [21] and other works, e.g. [29], as we will discuss further

in section 10. Let us also mention that during the preparation of this manuscript we

have been notified of the ongoing work [30], who studies cohomological Hall algebras

[31] for some toric Calabi-Yau manifolds.3

The rest of this paper is organized as follows. We begin with a review of the BPS

crystal melting (section 2) and a�ne Yangian of gl1 (section 3). We introduce the

BPS quiver Yangian in section 4. In order to motivate this definition, in section 5 we

first go back to the plane partitions discussed in section 3 and bootstrap the a�ne

Yangian of gl1. Then in section 6 we repeat a similar analysis for a general quiver

corresponding to a toric Calabi-Yau threefold, to obtain our BPS quiver Yangian.

We discuss the truncation of the algebra and the relation with D4-branes in section 7.

We present many examples both for toric Calabi-Yau threefolds without compact 4-

cycles (section 8) and with compact 4-cycles (section 9). These examples will provide

useful illustrations of many of the general results of the previous sections. The final

section 10 is devoted to a summary and discussions.

2 Review: BPS Crystal Melting

2.1 Quiver Diagram and Superpotential

Let us first briefly summarize the BPS crystal melting for general toric Calabi-Yau

threefolds. For a more complete discussion, see [5, 18].

Let us consider type IIA string theory compactified on a non-compact toric

Calabi-Yau threefold X. Combinatorially, the choice of X is encoded in the so-called

toric diagram �, a lattice convex polytope in Z2, see Figure 1 for an example.

Figure 1. The toric diagram for a toric Calabi-Yau threefold, the so-called Suspended

Pinched Point geometry xy = z2w.

The BPS states of the theory are described by D-branes (D0/D2/D4-branes)

wrapping holomorphic cycles (0/2/4-cycles) inside the Calabi-Yau threefold X. The

3 The quiver Yangian is conjectured to be the Drinfeld double of CoHA; or inversely, the CoHA
captures the positive part of the quiver Yangian, i.e. the creation part instead of the annihilation
part.
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and contain infinitely many generators e(a)n , (a)
n , f (a)

n . As we will show later in sec-

tion 8, for Calabi-Yau threefolds without compact 4-cycles,  (a)
n<�1 = 0 and  (a)

�1 = 1.

We express the Z2-grading (i.e. the Bose/Fermi statistics) of the generators

e(a)n , f (a)
n of the generators) to be

grading rule: |a| =

(
0 (9I 2 Q1 such that s(I) = t(I) = a) ,

1 (otherwise) ,
(4.8)

with |a| = 0 (|a| = 1) for bosonic (fermionic) generators. The operators  (a)
n are

Cartan and hence are set to be even.

4.2.1 Relations in Terms of Fields

The generators satisfy the OPE relations

 (a)(z) (b)(w) =  (b)(w) (a)(z) ,

 (a)(z) e(b)(w) ' 'b)a(�) e(b)(w) (a)(z) ,

e(a)(z) e(b)(w) ⇠ (�1)|a||b|'b)a(�) e(b)(w) e(a)(z) ,

 (a)(z) f (b)(w) ' 'b)a(�)�1 f (b)(w) (a)(z) ,

f (a)(z) f (b)(w) ⇠ (�1)|a||b|'b)a(�)�1 f (b)(w) f (a)(z) ,

⇥
e(a)(z), f (b)(w)

 
⇠ ��a,b

 (a)(z)�  (b)(w)

z � w
,

(4.9)

where throughout this paper “'” means equality up to znwm�0 terms, “⇠” means

equality up to zn�0wm and znwm�0 terms, and finally

� ⌘ z � w . (4.10)

The bracket [e(a)(z), f (b)(w)} represents the commutator in the superalgebra sense.

Namely, it is an anti-commutator {e(a)(z), f (b)(w)} when both a and b are odd, and

is a commutator [e(a)(z), f (b)(w)] otherwise.

The function 'a)b(z), which we call the “bond factor” since roughly speaking it

describes the “bonding” between atoms of color a and atoms of color b, is defined to

be

'a)b(u) ⌘

Q
I2{b!a}(u+ hI)Q
I2{a!b}(u� hI)

, (4.11)

where {a! b} denotes the set of edges from vertex a to vertex b. When there is no

arrow between vertex a and vertex b in the quiver (denoted as a 6 ! b), the bond

factor is trivial:

a 6 ! b : 'a)b(u) = 'b)a(u) ⌘ 1 ; (4.12)
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Figure 4: This figure shows an example of three-dimensional version of Young
diagram (a). If you rotate (a) by 180 degrees, we have (b), which looks like
melting of a crystal. By projecting this figure onto two-dimensions, we have a
perfect matching of a bipartite graph defined on honeycomb bipartite graph
(c), or equivalently tiling of plane using three types of rhombi shown in (d)
(this is an analogue of “domino tiling” in Figure 2). This one-to-one corre-
spondence between three-dimensional Young diagram and perfect matching
in dimer model is a higher-dimensional generalization of more familiar cor-
respondence shown in Figure 3. The interesting fact is that this type of
three-dimensional Young diagram appears in string theory, in the “melting
crystal” picture of [21].
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1. The OPE relations (3.6) make manifest the S3 symmetry (permuting the triplet

{h1, h2, h3}) that is intrinsic to the algebra but is somewhat hidden in (3.2).

2. The action of the algebra on the representations in terms of plane partition

is much more transparent in terms of the OPE relations (3.6) than the mode

relations (3.2), see later.

It is convenient to use the following figure to summarize the OPE relations (3.6):

 fe
'3(�) '�1

3 (�)

'3(�) '�1
3 (�)

(3.12)

Finally, as already mentioned in Introduction, it is known that the a�ne Yangian of

gl1 is equivalent to the universal enveloping algebra of the W1+1 algebra, see [20–25].

3.2 Plane Partition

A partition � of an integer n can be characterized by a set of integers �i:

partition of n :

(
�i

��� �i 2 Z�0 ,�i � �i+1 ,
X

i

�i = n

)
. (3.13)

A plane partition ⇤ is a three-dimensional generalization of the integer partition

plane partition of n :

(
⇤i,j

���⇤i,j 2 Z�0 ,⇤i,j � ⇤i+1,j ,⇤i,j � ⇤i,j+1 ,
X

i,j

⇤i,j = n

)
,

(3.14)

and can be given by the stacking of three-dimensional boxes (denoted as ⇤ in this

paper), which are 3D generalization of 2D Young diagrams. The coordinates of these

⇤’s are chosen to be

(x1(⇤), x2(⇤), x3(⇤)) with x1,2,3(⇤) 2 Z�0 . (3.15)

The generating function of plane partition counting is the MacMahon function

[45]

M(q) ⌘
X

⇤2 plane partition

q|⇤| =
1Y

k=1

1

(1� qk)k

= 1 + q + 3q2 + 6q3 + 13q4 + 24q5 + 48q6 + . . . ,

(3.16)

where |⇤| denotes the number of boxes ⇤ in the plane partition ⇤. This partition

function is also the partition function of the topological A-model on C3 [3]; and it is

also identical to the vacuum character of W1+1 algebra (at general central charge c

and coupling �).
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Its associated quiver diagram is

1

(X3, h3)

(X1, h1)

(X2, h2)

(8.19)

where we have labelled the three adjoints X1,2,3, together with their three charges

h1,2,3. The super-potential is

W = Tr[�X1 X2 X3 +X1 X3 X2] . (8.20)

Since in the quiver the vertex 1 has a self-loop, it is bosonic: |1| = 0.

The periodic quiver is

1

1

1

1

h1 h1

h2

h2

h3 (8.21)

where the fundamental region of the torus is shown as a shaded region. The map

to the crystal configuration is easier to visualize from a bigger domain, shown in the

left of Figure 11. In the right of Figure 11, we have redrawn this period quiver in a

slightly di↵erent shape, for the later comparison with periodic quivers for (C2/Zn)⇥C
and generalized conifolds.

The loop constraint (??) gives

h1 + h2 + h3 = 0 . (8.22)

Therefore we have two coordinate parameters, corresponding to the two equivariant

parameters (✏1, ✏2). Note that the central condition (??) is guaranteed by the loop

constraint (8.22).

8.2.1.2 A�ne Yangian of gl1

Note that in this case the vertex constraint (??) also gives (8.22). Therefore the

minimal number of parameters we can have is two, corresponding to the U(1)2 toric

isometries.

There is only one bond factor:

'1)1(u) = '3(u) =
(u+ h1)(u+ h2)(u+ h3)

(u� h1)(u� h2)(u� h3)
. (8.23)
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We can now expand this charge function to obtain its charges  (a)
n using the expansion

(4.7). In particular, we are interested in the leading charge  (a)
0 , which satisfies

 (a)
0 = �a,1 C +

X

I2{1!a}

hI +
X

I2{a!1}

hI . (8.14)

Summing (8.14) over all atoms a, and recalling the definition of the generic central

term in (??) and that of ⌃a in (8.9), we have

 0 = C + ⌃1 . (8.15)

Now we can impose the central condition ⌃1 = 0 (??), which has two conse-

quences for (8.15). First,  0 is central, due to (8.11). Second,

C =  0 . (8.16)

It is also straightforward to check that one can obtain (8.16) if we start with an

arbitrary state |Ki. The analogue of (8.15) for an arbitrary crystal state |Ki is

 0 = C +
X

a 2K

⌃a , (8.17)

where each atom a in the crystal |Ki contributes a term ⌃a, where a is the color

of the atom a . Due to the the central condition (??), all ⌃a = 0, and we have

(8.16) for any |Ki. The identification (8.16) is a natural generalization of the gl1
case (3.20).

8.2 Quiver Yangians for (C2/Zn) ⇥ C and A�ne Yangian of gln

We start with the toric Calabi-Yau threefold (C2/Zn) ⇥ C. The quiver algebra has

n+ 1 parameters. If we impose the n� 1 vertex constraints (??), we can reduce the

number of parameters to 2, which are the two coordinate parameters. We find that

the reduced quiver Yangian in this sub-parameter space is the a�ne Yangian of gln
constructed in [60, 61], which are rational limits of quantum toroidal algebra of gln
constructed in [62] (see also [63]).

Let us study the cases of n = 1, n = 2, and n � 3 in turn.

8.2.1 C3
and A�ne Yangian of gl1

8.2.1.1 Quiver Yangian for C3

For C3, the toric diagram and its dual graph are

(0,0)

(0,1)

(1,0)

3

1

2

(8.18)
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Figure 11. Two ways to draw the periodic quiver for C3. The left one emphasizes

its connection to the projection of the plane partitions and the triality symmetry of the

three directions, whereas the right one is for later comparison with the periodic quiver for

(C2/Zn)⇥ C and generalized conifolds.

Plugging this into the general formulae for the OPE relations (??) and the initial

conditions (8.5) and (8.6), and supplementing them with Serre relations, we have the

full list of algebra relations of the a�ne Yangian of gl1:

OPE:

8
>>>><

>>>>:

 (z) (w) ⇠  (w) (z) ,

 (z) e(w) ⇠ '3(�) e(w) (z) ,

 (z) f(w) ⇠ '�1
3 (�) f(w) (z) ,

e(z) e(w) ⇠ '3(�) e(w) e(z) ,

f(z) f(w) ⇠ '�1
3 (�) f(w) f(z) ,

[e(z) , f(w)] ⇠ �
 (z)�  (w)

z � w
,

(8.24)

Initial:

⇢
[ 0, em] = 0 ,

[ 0, fm] = 0 ,

[ 1, em] = 0 ,

[ 1, fm] = 0 ,

[ 2, em] = 2 �3 em ,

[ 2, fm] = �2 �3 fm ,

(8.25)

Serre :

⇢
Symz1,z2,z3 (z2 � z3) [e(z1) , [e(z2) , e(z3)]] ⇠ 0 ,

Symz1,z2,z3 (z2 � z3) [f(z1) , [f(z2) , f(z3)]] ⇠ 0 .
(8.26)

where �3 ⌘ h1h2h3. It is straightforward to write down the relation in terms of

modes, following (??).

In the ef relation in (8.24), note its di↵erence from (5.50) in the factor of 1
�3
.

This is due to the di↵erent convention in our mode expansion of  (u) in (8.3) —

which is the universal for all quiver Yangian of Calabi-Yau threefolds without 4-cycle

— from the one (3.5) in the literature. (This di↵erence also manifests itself in the

two initial conditions involving  2.)

In the derivation of the initial conditions (8.25), we have used |a ! a| = 3, and

setting ` = 3, 2, 1 in the general formulae (8.5) and (8.6) gives the initial conditions

involving  0,1,2, respectively, and we have also used �1 ⌘ h1 + h2 + h3 = 0. We see

that there are two central terms,  0 and  1.
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Figure 7. The BPS crystal configuration for the Suspended Pinched Point singularity.

We have chosen the vertex 1 of Figure 1 as the origin o of the crystal, whose location is

shown by the blue dot in the center.

2.3 Crystal Melting and Molten Crystal

For a given BPS crystal, we can consider a configuration of the molten crystal.

A finite set K of atoms from the BPS crystal is a configuration of the molten

crystal if it satisfies the following melting rule:

melting rule:

⇤ 2 K whenever there exists an edge I 2 Q1 such that I ·⇤ 2 K .
(2.4)

This is equivalent to the condition that I · ⇤ /2 K whenever ⇤ /2 K, namely the

condition that the complement of K is an ideal of the path algebra A(Q,W ).

Since any path by definition starts at the origin o, it follows that the origin o is

always contained in K, unless K is empty.

The molten configuration K has a finite number of atoms. Denote the number

of atoms with color a as |K(a)|. The statistical partition function of BPS crystal

melting is then defined to be a formal power series5

Z(q1, . . . , q|Q0|) =
X

K

Y

a2Q0

q|K(a)|
a . (2.5)

5 More precisely we need to insert signs for this definition [5, 8].
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Let us consider type IIA string theory compactified on a non-compact toric
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reproduces the crystal for C3 discussed in [2,5], and the one for conifold in [9]. See Figure 5 for the

crystalline structure corresponding to the Suspended Pinched Point singularity. In this example,

the ridge of the crystal (shown as blue lines in Figure 5) coincides with the (p, q)-web of the toric

geometry. As we will discuss later, this is a general property of our crystal.

Figure 5: Starting from the universal cover Q̃ of quiver Q shown on the left, we can construct a
crystal on the right. Each atom carries a color corresponding to a node in Q, and they are connected
by arrows in Q̃1. The green arrows represent arrows on the surfaces of the crystal, whereas the red
ones are not. In the case of the Suspended Pinched Point singularity, the atoms come with 3 colors
(white, black and gray), corresponding to the 3 nodes of the original quiver diagram Q on T2 shown
in Figure 1.

4.2 BPS State and Molten Crystal

In the forthcoming discussions, the crystal defined above will be identified with a single D6 brane

with no D0 and D2 charges. Bound states with non-zero D0 and D2 charges are obtained by

removing atoms following the rule specified below.

In [9, 10], the Donaldson-Thomas invariants χ(M̂N
i0
(A)) are computed by using the U(1)⊗2

symmetry of the moduli space M̂N
i0
corresponding to translational invariance of T2. By the standard

localization techniques, the Euler number can be evaluated at the fixed point set of the moduli space

under the symmetry. Correspondingly, in the gauge theory side, BPS states counted by the index

are those that are invariant under the global U(1)⊗2 symmetry acting on bifundamental fields

preserving the F-term constraints since those do not have extra zero modes and do not contribute

to the index. We are interested in counting such BPS states.

In order for a molten crystal to correspond to U(1)⊗2 invariant θ̂-stable A-modules, we need to
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superpotential W is recovered as a sum of such monomial contributions

W =
X

F :face of the periodic quiver

±Tr

 
Y

e2F

�e

!
, (2.2)

where the product over e 2 F is taken along the edges of the face F and the sign

± is determined by the orientations (counter-clockwise or clockwise, respectively) of

the arrows. For the example in Figure 2, the periodic quiver gives the superpotential

W = Tr (�11�13�31 � �11�12�21 + �21�12�23�32 � �32�23�31�13) , (2.3)

where we have denoted the bifundamental chiral multiplet associated to an arrow

from vertex a to b by �ab (in this example there are at most one arrow for any

vertices a, b).

Figure 2. The periodic quiver for the Suspended Pinched Point geometry of Figure 1. The

green region is the fundamental region of the two-dimensional torus. The periodic quiver

compactly encodes both the quiver diagram Q as an abstract graph and the superpotential

W .

In the periodic quiver description, monomial terms of the superpotential W are

associated with the faces of the periodic quiver, the set of which we denote by Q2.

In this notation, the quiver Q = (Q0, Q1) and the superpotential W combines nicely

into the data Q̃ = (Q0, Q1, Q2) of the periodic quiver.

The dual of the periodic quiver is often represented as a bipartite graph, i.e. a

graph where vertices are colored with two colors (black and white) and every black

vertex is connected to one single white vertex and vice versa. The orientation of

the quiver diagram canonically determines the colors of the vertices of the bipartite

graph: the rule is that quiver arrows are oriented clockwise (counterclockwise) around

white (black) vertices of the bipartite graph, see Figure 3 for an example. Such a

bipartite graph in high energy theory is often called a brane tiling [37–39] (see e.g.

[40, 41] for reviews), and has been heavily utilized in the study of supersymmetric

quiver gauge theories. We will later show in section 7 that the concept of the perfect

matching of the bipartite graph will help us relate the truncation of the algebra to

the charges of the D4-branes.

– 5 –

Figure 3. The bipartite graph for the Suspended Pinched Point geometry of Figure 1

(shown on the left), which is a dual graph to the periodic quiver of Figure 2 (as shown on

the right). The color of a vertex of the bipartite graph is determined from the orientations

of the quiver arrows surrounding it (black for counterclockwise, and white for clockwise).

The periodic-quiver representation of the superpotential makes it easy to read

o↵ the F-term relations (see Figure 4): two paths on the periodic quiver with the

same starting point and endpoint are F-term equivalent. This will be useful when

we discuss global symmetries of the quiver quantum mechanics.

Figure 4. This figure represents a part of the periodic quiver diagram. In this example,

the superpotential W contains two monomial terms W = Tr(�ba�ac�cb � �ba�ad�de�eb).

The F-term relation @W/@�ba = �ac�cb � �ad�de�eb = 0 for the field �ba is represented

by the fact that the two di↵erent paths a ! c ! b and a ! d ! e ! b starting from a

ending at b represents two F-term equivalent fields (i.e. same element in the chiral ring).

2.2 Crystal as a Lift of Periodic Quiver

Let us next construct the BPS crystal. For this purpose, consider a new quiver

diagram Q obtained by uplifting the periodic quiver diagram to the universal cover

of the two-dimensional torus (namely the two-dimensional plane). Each vertex a on

the resulting quiver is still labelled (colored) by a 2 Q0. Note that as before we will

use the symbols a, b, . . . for the vertices of the original quiver diagram Q (and hence

of the periodic quiver diagram), while we use the symbols a, b, . . . for vertices of the

quiver Q on the universal cover.

– 6 –

Figure 3. The bipartite graph for the Suspended Pinched Point geometry of Figure 1

(shown on the left), which is a dual graph to the periodic quiver of Figure 2 (as shown on

the right). The color of a vertex of the bipartite graph is determined from the orientations

of the quiver arrows surrounding it (black for counterclockwise, and white for clockwise).

The periodic-quiver representation of the superpotential makes it easy to read

o↵ the F-term relations (see Figure 4): two paths on the periodic quiver with the

same starting point and endpoint are F-term equivalent. This will be useful when

we discuss global symmetries of the quiver quantum mechanics.

Figure 4. This figure represents a part of the periodic quiver diagram. In this example,

the superpotential W contains two monomial terms W = Tr(�ba�ac�cb � �ba�ad�de�eb).

The F-term relation @W/@�ba = �ac�cb � �ad�de�eb = 0 for the field �ba is represented

by the fact that the two di↵erent paths a ! c ! b and a ! d ! e ! b starting from a

ending at b represents two F-term equivalent fields (i.e. same element in the chiral ring).

2.2 Crystal as a Lift of Periodic Quiver

Let us next construct the BPS crystal. For this purpose, consider a new quiver

diagram Q obtained by uplifting the periodic quiver diagram to the universal cover

of the two-dimensional torus (namely the two-dimensional plane). Each vertex a on

the resulting quiver is still labelled (colored) by a 2 Q0. Note that as before we will

use the symbols a, b, . . . for the vertices of the original quiver diagram Q (and hence

of the periodic quiver diagram), while we use the symbols a, b, . . . for vertices of the

quiver Q on the universal cover.

– 6 –

Figure 3. The bipartite graph for the Suspended Pinched Point geometry of Figure 1

(shown on the left), which is a dual graph to the periodic quiver of Figure 2 (as shown on

the right). The color of a vertex of the bipartite graph is determined from the orientations

of the quiver arrows surrounding it (black for counterclockwise, and white for clockwise).

The periodic-quiver representation of the superpotential makes it easy to read

o↵ the F-term relations (see Figure 4): two paths on the periodic quiver with the

same starting point and endpoint are F-term equivalent. This will be useful when

we discuss global symmetries of the quiver quantum mechanics.

Figure 4. This figure represents a part of the periodic quiver diagram. In this example,

the superpotential W contains two monomial terms W = Tr(�ba�ac�cb � �ba�ad�de�eb).

The F-term relation @W/@�ba = �ac�cb � �ad�de�eb = 0 for the field �ba is represented

by the fact that the two di↵erent paths a ! c ! b and a ! d ! e ! b starting from a

ending at b represents two F-term equivalent fields (i.e. same element in the chiral ring).

2.2 Crystal as a Lift of Periodic Quiver

Let us next construct the BPS crystal. For this purpose, consider a new quiver

diagram Q obtained by uplifting the periodic quiver diagram to the universal cover

of the two-dimensional torus (namely the two-dimensional plane). Each vertex a on

the resulting quiver is still labelled (colored) by a 2 Q0. Note that as before we will

use the symbols a, b, . . . for the vertices of the original quiver diagram Q (and hence

of the periodic quiver diagram), while we use the symbols a, b, . . . for vertices of the

quiver Q on the universal cover.

– 6 –

2D projection of the crystal is a tesselation of the periodic quiver 
 studied by [Hanany et al.]

Superpotential / F-term relations
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Figure 1: The 3d crystal and its 2d projection.

where the integer n specifies the coordinate along the third direction, i.e. the “depth”
from the surface of the crystal. We will present some examples of crystal lattices for
some choices of pairs (Q,W ) in Section 3.

Considering all the possible paths starting at the framed node we will get a basic
crystal ⇤0 growing from the root atom.

The crystal admits a coloring. We identify a set of colors with that of the quiver
vertices V. For an atom ⇤ we denote its color as ⇤̂. For an atom ⇤ identified with a
monomial

(an : vn�1 ! vn) · (an : vn�2 ! vn�1) · . . . · (a1 : v0 ! v1) · ◆ ,

we define the color ⇤̂ of the atom ⇤ by the endpoint vn 2 V:

⇤̂ = vn .

2.2 Quiver Quantum Mechanics and BPS States

We will consider an e↵ective theory emerging in the system of D-branes probing Calabi-
Yau three-fold from the point of view of D-brane worldvolume. The e↵ective field theory
is a quiver SQM with four supercharges [30].

In principle, the SQM setup is well defined for an arbitrary pair (Q,W ). To specify
it completely one needs some extra information which we call the quiver data.

6

Let us choose a particular vertex a0 2 Q0 as the “initial color”, and choose

a vertex in Q on the universal cover that has this color to be the origin o 2 Q.4

Let us then consider a set of paths starting with the origin o modulo the F-term

relation. Any such path in Q, modulo the F-term relations (as described in Figure

4), defines an atom in the crystal. This atom is placed at the location a of the

two-dimensional plane, where a is the endpoint of the path. This defines the two-

dimensional projection of the BPS crystal.

To fully describe the three-dimensional structure of the crystal, note that any

path starting at the origin o and ending at a can be expressed in the form po,a !n,

modulo the F-term relations, where po,a is one of the shortest paths connecting the

two points o and a, and ! represents a loop in the quiver diagram along any of the

face of the periodic diagram (see Figure 5). The corresponding atom is then placed

at depth n in the crystal (see Figure 6).

Figure 5. Module F-term relations, any path starting at the origin o and ending at the

position a (e.g. the green path in the left figure) is equivalent to the shortest path po,a (e.g.

the blue arrow in both figures) times a power of the closed loop ! (e.g. the green loop in

the right figure) along the faces of the periodic diagram.

As an example, we show in Figure 7 the example of the BPS crystal for the

Suspended Pinched Point geometry discussed in Figure 2.

It follows from the definition that for an atom ⇤ and an arrow I 2 Q1, there is

a canonically-defined atom I · ⇤ in the crystal — I · ⇤ is defined by concatenation

of a path representing ⇤ and an arrow I, and this definition is consistent with the

identification modulo F-term relations. In other words, the BPS crystal naturally

gives a representation of the path algebra of the quiver.

4 This choice corresponds to the choice of framing, and represents the e↵ect of the non-compact
D6-brane filling the whole Calabi-Yau threefold.

– 7 –

We can lift the 2D projection of the crystal into 3D by keeping track of “depth”



Figure 8. An example of a configuration of the molten crystal (left) and the complement

(right) for the crystal of Figure 7. This contributes a term q41q
3
2q

2
3 to the BPS partition

function.

The statement is that this coincides with the BPS configuration of the crystal.

The partition function has an infinite product form for the resolved conifold

and more generally for toric Calabi-Yau geometries without compact 4-cycles, as

explained by M-theory [42–44]. This suggests an identification of the BPS partition

function as a character of some infinite-dimensional algebra. We will see that this is

indeed the case.

3 Review: Plane Partition and A�ne Yangian of gl1

As explained in Introduction, the current work is inspired by the relation between

the a�ne Yangian of gl1 and the set of plane partitions. We will now review the

a�ne Yangian of gl1, its relation to the W1+1 algebra, and its action on the set of

plane partitions.

3.1 A�ne Yangian of gl1

The a�ne Yangian of gl1, which we denote by Y (cgl1), is an infinite-dimensional

associative algebra generated by the following three families of operators:

en ,  n , fn , with n 2 Z�0 , (3.1)
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Figure 7. The BPS crystal configuration for the Suspended Pinched Point singularity.

We have chosen the vertex 1 of Figure 1 as the origin o of the crystal, whose location is

shown by the blue dot in the center.

2.3 Crystal Melting and Molten Crystal

For a given BPS crystal, we can consider a configuration of the molten crystal.

A finite set K of atoms from the BPS crystal is a configuration of the molten

crystal if it satisfies the following melting rule:

melting rule:

⇤ 2 K whenever there exists an edge I 2 Q1 such that I ·⇤ 2 K .
(2.4)

This is equivalent to the condition that I · ⇤ /2 K whenever ⇤ /2 K, namely the

condition that the complement of K is an ideal of the path algebra A(Q,W ).

Since any path by definition starts at the origin o, it follows that the origin o is

always contained in K, unless K is empty.

The molten configuration K has a finite number of atoms. Denote the number

of atoms with color a as |K(a)|. The statistical partition function of BPS crystal

melting is then defined to be a formal power series5

Z(q1, . . . , q|Q0|) =
X

K

Y

a2Q0

q|K(a)|
a . (2.5)

5More precisely we need to insert signs for this definition [5, 8].
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Figure 7. The BPS crystal configuration for the Suspended Pinched Point singularity.

We have chosen the vertex 1 of Figure 1 as the origin o of the crystal, whose location is

shown by the blue dot in the center.
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where the integer n specifies the coordinate along the third direction, i.e. the “depth”
from the surface of the crystal. We will present some examples of crystal lattices for
some choices of pairs (Q,W ) in Section 3.

Considering all the possible paths starting at the framed node we will get a basic
crystal ⇤0 growing from the root atom.

The crystal admits a coloring. We identify a set of colors with that of the quiver
vertices V. For an atom ⇤ we denote its color as ⇤̂. For an atom ⇤ identified with a
monomial

(an : vn�1 ! vn) · (an : vn�2 ! vn�1) · . . . · (a1 : v0 ! v1) · ◆ ,

we define the color ⇤̂ of the atom ⇤ by the endpoint vn 2 V:

⇤̂ = vn .

2.2 Quiver Quantum Mechanics and BPS States

We will consider an e↵ective theory emerging in the system of D-branes probing Calabi-
Yau three-fold from the point of view of D-brane worldvolume. The e↵ective field theory
is a quiver SQM with four supercharges [30].

In principle, the SQM setup is well defined for an arbitrary pair (Q,W ). To specify
it completely one needs some extra information which we call the quiver data.

6

4 BPS Quiver Yangian for General Quivers

In this section let us define the BPS quiver Yangian Y(Q,W ) from a pair (Q,W ).8 Since

the pair (Q,W ) is obtained from a toric Calabi-Yau geometry X (as we discussed in

section 2), the algebra Y(Q,W ) in itself can be associated with the geometry X.

In general, for the same Calabi-Yau manifold X, there exist multiple quiver

gauge theories (Q,W ) which are dual to one another. In these situations the quiver

gauge theories are believed to be related by a sequence of Seiberg dualities (quiver

mutations) [46], and we conjecture that the resulting algebras Y(Q,W ) are all isomor-

phic. We will see concrete examples of this phenomenon in sections 8.3 and 9.2:

the relevant isomorphisms are already known in the mathematical literature for the

examples in 8.3, but not for those in 9.2. It would be interesting to explore this point

further.

In this section we provide a top-down definition of the algebra. Let us mention,

however, that later in section 6 we will provide bottom-up justifications of the algebra.

Indeed, as we will see in section 6, under some reasonable ansatz, the condition

that this algebra acts on the configurations of molten crystal can completely fix the

algebra. In this sense our algebra and its representation on the BPS crystal are

intimately connected.

4.1 Parameters

To define the BPS quiver Yangian Y(Q,W ), we first consider a set of charge assignments

hI for each arrow I 2 Q1. We impose the condition that this charge assignment

is compatible with the superpotential W . In other words, the charges hI can be

regarded as charges under a global symmetry of the quiver quantum mechanics. The

superpotential W will enter into the definition of the algebra Y(Q,W ) through this

charge-assignment constraint only.

In the periodic quiver diagram, a monomial term in the superpotential is repre-

sented by a closed loop. This means that the constraint on the parameters hI can

be written as9

loop constraint:

X

I2L

hI = 0 , (4.1)

where L is an arbitrary loop in the periodic quiver. We will hereafter call this condi-

tion the loop constraint, and the parameters satisfying these conditions as coordinate

parameters. In section 6.4 we will see that this constraint is instrumental in ensuring

the consistency of the crystal-melting representation of the algebra.

8While our interest in this paper is to those pair (Q,W ) originating from toric Calabi-Yau
threefolds, our definition in itself applies to more general choices of (Q,W ). It is not clear, however,
if the algebra acts on BPS states of some gauge/string theory in these more general situations.

9Note that all arrows are in the same direction in the smallest loops.
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Note that there are infinitely many such paths for each a , due to the presence of

loops in the periodic quiver.

For each color a, we would like to define a coordinate function that is adapted

to the coordinate system (6.7), generalizing the coordinate function (5.6). The most

natural way would be to associate a charge hI to each edge I in the quiver diagram,

where I 2 {a ! b} for two vertices a and b (which are possibly identical). We then

define the coordinate function for a to be the sum of all the charges along the path

[o ! a ]:

h( a ) ⌘
X

I 2 path[o! a ]

hI . (6.8)

Recall that in the case of plane partitions, the coordinate function for an atom

⇤ is the way to translate the position of the ⇤ to the pole of the charge function

 ⇤(z). We need the same for the colored crystal. Therefore, although for a given

a , the path [o ! a ] is not unique, we need its coordinate function to be uniquely

defined, in order to associate it to the poles of  (a)
K (z). This requires that the sum

over charges on the edges around any loop has to vanish, which is precisely the loop

constraint (??). This condition is the generalization of (5.33) for plane partitions.

6.3 Fixing Charge Function

We are now ready to fix the charge function  (a)
K (z) for an arbitrary colored crystal

K and any color a.

6.3.1 Ansatz

Generically, the charge function of  (a)
K (z) can receive contributions from all the

atoms in the crystal configuration K. Generalizing the result for C3 in (3.19), we

write down the ansatz for the charge function  (a)
K (z)

 (a)
K (u) =  (a)

0 (z)
Y

b2Q0

Y

b 2K

'b)a(u� h( b )) , (6.9)

where  (a)
0 (z) is the vacuum contribution, and we have grouped the atoms in K by

their colors, with the color label b running over all vertices in the quiver diagram,

including the color a itself. For each color a, each atom of color b contributes a

factor of 'b)a function, with argument shifted by the coordinate function of that

atom h( b ), given by (??) with the charges subject to the loop constraint (??).

Given the ansatz for the charge function (??), the goal is to determine the bond

factor 'b)a(z) (so called because it describes the “bonding” between atoms of color

a and those of color b). We use the ansatz for the algebra’s action (6.2) on crystals

|Ki, following the procedure outline in section 6.1. As in the case of C3, we first

– 42 –
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4.3.3 Gauge-symmetry Shift

As we discussed above, the parameters {hI} can be regarded as global-symmetry

assignments of the algebra. We have therefore imposed the loop constraints (??).

One notices, however, that some of these symmetries are actually gauge symme-

tries. Indeed, if we mix the global symmetry with a gauge symmetry associated with

a particular vertex a, then the parameters hI are shifted as

hI ! h0
I = hI + "a signa(I) , (4.28)

where

signa(I) ⌘

8
>><

>>:

+1 (s(I) = a , t(I) 6= a) ,

�1 (s(I) 6= a , t(I) = a) ,

0 (otherwise) ,

(4.29)

and "a parametrizes the mixing between global symmetries and the ath gauge sym-

metry. This shift is consistent with the loop constraint (??), which is expected since

the superpotential is gauge-invariant.

What happens to the algebra under this shift? The parameters hI enter into the

algebra only through the function (??), which transforms as

'a)b(u) ! 'a)b0(u) =

Q
I2{b!a} (u+ hI + "a signa(I))Q
I2{a!b} (u� hI � "a signa(I))

. (4.30)

In other words, this amounts to constant shifts of the spectral parameter for various

locations, i.e. u ! u + "a for (e(a)(u), (a)(u), f (a)(u)) at vertex a. From (4.27), one

concludes that the shift (4.28) mixes the generators  (a)
n only with  (a)

m with m < n,

and similarly for e(a)n and f (a)
n . Since automorphism merely reshu✏es the generators

by linear combinations, one can regard the shift (4.28) as a gauge symmetry.

Instead of modding out by the gauge shift (4.28), we can impose gauge-fixing

conditions. One possible choice, which we adopt in this paper, is to impose the vertex

constraint

vertex constraint:

X

I2a

signa(I)hI = 0 (4.31)

for each vertex a. Note that the number of independent constraints is given by the

number of vertices minus one, since the quiver quantum mechanics has only bifun-

damental/adjoint matters and hence the overall U(1) gauge symmetry decouples.

How many parameters are there once we impose both the loop and the vertex

constraints? Since the number of parameters with the loop constraints is given as

|Q0|+1 (4.4), and since we have |Q0|� 1 vertex constraints, there are two remaining

parameters. We can identify these two parameters as the coordinate parameters of the
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We can count the number of coordinate parameters to be

Nh = # (edges of the quiver)� (# (monomial terms in the superpotential)� 1) .

(4.2)

Here we have subtracted one from the superpotential constraints, since any bifunda-

mental field appears exactly twice in the superpotential (this follows since each edge

belongs to two neighboring faces in the periodic quiver) and thus one of the con-

straints is redundant. Since each monomial term in the superpotential corresponds

to a polygonal region of the periodic quiver, one can also write this as

Nh = # (edges of the periodic quiver)� (# (faces of the periodic quiver)� 1) .

(4.3)

Since the periodic quiver is written on the two-dimensional torus and has Euler

character zero, one can rewrite this as

Nh = # (vertices of the periodic quiver) + 1

= # (gauge groups of the quiver) + 1 . (4.4)

For a toric Calabi-Yau threefold this number (i.e. # = Nh � 1) is known to be the

same as the area of the toric diagram �, where the normalization of the area is

chosen such that the minimal lattice triangle spanned by the three lattice points

(0, 0), (1, 0), and (0, 1) has area 1. One can then use Pick’s theorem to rewrite this

as

Nh = E + 2I � 1 , (4.5)

where E (resp. I) is the numbers of external (resp. internal) lattice points of the

toric diagram �. We will use {hI}, with I = 1, · · · , |Q1|, to denote the set of charges

associated to the edges of the quiver; and we use {hA}, with A = 1, · · · , Nh, to denote

these Nh independent parameters that characterize the algebra.

4.2 Generators and Relations

The algebra is generated by a triplet of fields (e(a)(u), (a)(u), f (a)(u)) for each quiver

vertex a 2 Q0:

a : e(a)(u) : creation ,  (a)(u) : charge , f (a)(u) : annihilation . (4.6)

Generically, they have the mode expansion:10

e(a)(z) ⌘
+1X

n=0

e(a)n

zn+1
,  (a)(z) ⌘

+1X

n=�1

 (a)
n

zn+1
, f (a)(z) ⌘

+1X

n=0

f (a)
n

zn+1
, (4.7)

10For the fermionic generators in the NS sector, it might be more natural to expand the e(a)(z)
and f (a)(z) generators in terms of half-integer modes. This will not by relevant within the current
paper, but can be determined once we know the map between the quiver Yangians and the W

algebras.
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since there is a self-loop for each of them in the quiver.

The periodic quiver for (8.47) is given in Figure 17, where we have shown only

the part of the graph around the vertex 1; the full graph is obtained by periodically

extending the graph. Comparing the left drawing in Figure 17 with the left one in

Figure 11 (i.e. the periodic quiver that gives the a�ne Yangian of gl1), we see the

representation of the algebra for (C2/Zn)⇥C can be obtained by coloring the plane

partitions by the following rules: the box at the origin has color 1; the color increases

by 1 as one moves by one step along the positive x1 direction, decreases by 1 by each

step along the positive x2 direction, and remains the same along the x3 direction.

1
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Figure 17. Two ways to draw the periodic quiver (C2/Zn)⇥ C. The left one shows that

the representation can be realized by coloring the plane partitions, whereas the right one

is for later comparison with the periodic quiver for the generalized conifolds. Note that

this shows only part of the periodic quiver diagram around the vertex 1.

Again, the loop constraint (??) gives

↵a + �a + �a = 0 and ↵a + �a + �a�1 = 0 , for a = 1, 2, . . . , n , (8.51)

which gives

�1 = �2 = · · · = �n ⌘ � and ↵a + �a = ↵a+1 + �a+1 , for a = 1, 2, . . . , n ,

(8.52)

which are in total 2n�1 independent constraints on the 3n variables (↵a, �a, �a) with

a = 1, 2, . . . , n. Namely, the algebra for C2/Zn⇥C has n+ 1 parameters. Again, the

central condition (??) is guaranteed by the loop constraint (8.52).

One can immediately read o↵ the bond factors from the periodic quiver in Fig-

ure 17 by the definition (??)

'a)a(u) =
u+ �

u� �
, 'a)a+1(u) =

u+ �a

u� ↵a
, 'a)a�1(u) =

u+ ↵a�1

u� �a�1
,

'a)b(u) = 1 , (b 6= a , a± 1) ,
(8.53)

where the indices are understood as mod n.
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Figure 11. Two ways to draw the periodic quiver for C3. The left one emphasizes

its connection to the projection of the plane partitions and the triality symmetry of the

three directions, whereas the right one is for later comparison with the periodic quiver for

(C2/Zn)⇥ C and generalized conifolds.

Plugging this into the general formulae for the OPE relations (??) and the initial

conditions (8.5) and (8.6), and supplementing them with Serre relations, we have the

full list of algebra relations of the a�ne Yangian of gl1:

OPE:

8
>>>><

>>>>:

 (z) (w) ⇠  (w) (z) ,

 (z) e(w) ⇠ '3(�) e(w) (z) ,

 (z) f(w) ⇠ '�1
3 (�) f(w) (z) ,

e(z) e(w) ⇠ '3(�) e(w) e(z) ,

f(z) f(w) ⇠ '�1
3 (�) f(w) f(z) ,

[e(z) , f(w)] ⇠ �
 (z)�  (w)

z � w
,

(8.24)

Initial:

⇢
[ 0, em] = 0 ,

[ 0, fm] = 0 ,

[ 1, em] = 0 ,

[ 1, fm] = 0 ,

[ 2, em] = 2 �3 em ,

[ 2, fm] = �2 �3 fm ,

(8.25)

Serre :

⇢
Symz1,z2,z3 (z2 � z3) [e(z1) , [e(z2) , e(z3)]] ⇠ 0 ,

Symz1,z2,z3 (z2 � z3) [f(z1) , [f(z2) , f(z3)]] ⇠ 0 .
(8.26)

where �3 ⌘ h1h2h3. It is straightforward to write down the relation in terms of

modes, following (??).

In the ef relation in (8.24), note its di↵erence from (5.50) in the factor of 1
�3
.

This is due to the di↵erent convention in our mode expansion of  (u) in (8.3) —

which is the universal for all quiver Yangian of Calabi-Yau threefolds without 4-cycle

— from the one (3.5) in the literature. (This di↵erence also manifests itself in the

two initial conditions involving  2.)

In the derivation of the initial conditions (8.25), we have used |a ! a| = 3, and

setting ` = 3, 2, 1 in the general formulae (8.5) and (8.6) gives the initial conditions

involving  0,1,2, respectively, and we have also used �1 ⌘ h1 + h2 + h3 = 0. We see

that there are two central terms,  0 and  1.
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The periodic quiver is shown in Figure 14, drawn in two slightly di↵erent ways.

Comparing the left one to the left drawing in Figure 11, one can see the representation

of the algebra for (C2/Z2)⇥C can be realized by coloring plane partitions accordingly

— the color alternates between 1 and 2 as one moves along the x1 or x2 directions,

but remains unchanged along the x3 direction. The right drawing in Figure 11 is for

later comparison with the conifold and (C2/Zn)⇥ C.
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Figure 14. Two ways to draw the periodic quiver (C2/Z2)⇥ C. The left one shows that

the representation can be realized by coloring the plane partitions, whereas the right one is

for later comparison with the periodic quiver for the conifold and (C2/Zn)⇥C. For clarity
we have shown several copies of the fundamental region of the two-dimensional torus; one

choice of the fundamental region is shown as a shaded region.

Applying the loop constraint (??) gives the constraints on the charges:

�1 = �2 ⌘ � , ↵1 + �1 + � = 0 , ↵2 + �2 + � = 0 . (8.33)

Namely, there are only three independent parameters for the algebra for C2/Z2⇥C.
The central condition (??) is guaranteed by the loop constraint (8.33).

One can immediately read o↵ the bond factors from the periodic quiver shown

in Figure 14 by the definition (??)

'a)a(u) =
u+ �

u� �
and 'a)a+1(u) =

(u+ ↵a+1)(u+ �a)

(u� ↵a)(u� �a+1)
, (8.34)
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We can count the number of coordinate parameters to be

Nh = # (edges of the quiver)� (# (monomial terms in the superpotential)� 1) .

(4.2)

Here we have subtracted one from the superpotential constraints, since any bifunda-

mental field appears exactly twice in the superpotential (this follows since each edge

belongs to two neighboring faces in the periodic quiver) and thus one of the con-

straints is redundant. Since each monomial term in the superpotential corresponds

to a polygonal region of the periodic quiver, one can also write this as

Nh = # (edges of the periodic quiver)� (# (faces of the periodic quiver)� 1) .

(4.3)

Since the periodic quiver is written on the two-dimensional torus and has Euler

character zero, one can rewrite this as

Nh = # (vertices of the periodic quiver) + 1

= # (gauge groups of the quiver) + 1 . (4.4)

For a toric Calabi-Yau threefold this number (i.e. # = Nh � 1) is known to be the

same as the area of the toric diagram �, where the normalization of the area is

chosen such that the minimal lattice triangle spanned by the three lattice points

(0, 0), (1, 0), and (0, 1) has area 1. One can then use Pick’s theorem to rewrite this

as

Nh = E + 2I � 1 , (4.5)

where E (resp. I) is the numbers of external (resp. internal) lattice points of the

toric diagram �. We will use {hI}, with I = 1, · · · , |Q1|, to denote the set of charges

associated to the edges of the quiver; and we use {hA}, with A = 1, · · · , Nh, to denote

these Nh independent parameters that characterize the algebra.

4.2 Generators and Relations

The algebra is generated by a triplet of fields (e(a)(u), (a)(u), f (a)(u)) for each quiver

vertex a 2 Q0:

a : e(a)(u) : creation ,  (a)(u) : charge , f (a)(u) : annihilation . (4.6)

Generically, they have the mode expansion:10

e(a)(z) ⌘
+1X

n=0

e(a)n

zn+1
,  (a)(z) ⌘

+1X

n=�1

 (a)
n

zn+1
, f (a)(z) ⌘

+1X

n=0

f (a)
n

zn+1
, (4.7)

10 For the fermionic generators in the NS sector, it might be more natural to expand the e(a)(z)
and f (a)(z) generators in terms of half-integer modes. This will not by relevant within the current
paper, but can be determined once we know the map between the quiver Yangians and the W

algebras.
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and contain infinitely many generators e(a)n , (a)
n , f (a)

n . As we will show later in sec-

tion 8, for Calabi-Yau threefolds without compact 4-cycles,  (a)
n<�1 = 0 and  (a)

�1 = 1.

We express the Z2-grading (i.e. the Bose/Fermi statistics) of the generators

e(a)n , f (a)
n of the generators) to be

grading rule: |a| =

(
0 (9I 2 Q1 such that s(I) = t(I) = a) ,

1 (otherwise) ,
(4.8)

with |a| = 0 (|a| = 1) for bosonic (fermionic) generators. The operators  (a)
n are

Cartan and hence are set to be even.

4.2.1 Relations in Terms of Fields

The generators satisfy the OPE relations

 (a)(z) (b)(w) =  (b)(w) (a)(z) ,

 (a)(z) e(b)(w) ' 'b)a(�) e(b)(w) (a)(z) ,

e(a)(z) e(b)(w) ⇠ (�1)|a||b|'b)a(�) e(b)(w) e(a)(z) ,

 (a)(z) f (b)(w) ' 'b)a(�)�1 f (b)(w) (a)(z) ,

f (a)(z) f (b)(w) ⇠ (�1)|a||b|'b)a(�)�1 f (b)(w) f (a)(z) ,

⇥
e(a)(z), f (b)(w)

 
⇠ ��a,b

 (a)(z)�  (b)(w)

z � w
,

(4.9)

where throughout this paper “'” means equality up to znwm�0 terms, “⇠” means

equality up to zn�0wm and znwm�0 terms, and finally

� ⌘ z � w . (4.10)

The bracket [e(a)(z), f (b)(w)} represents the commutator in the superalgebra sense.

Namely, it is an anti-commutator {e(a)(z), f (b)(w)} when both a and b are odd, and

is a commutator [e(a)(z), f (b)(w)] otherwise.

The function 'a)b(z), which we call the “bond factor” since roughly speaking it

describes the “bonding” between atoms of color a and atoms of color b, is defined to

be

'a)b(u) ⌘

Q
I2{b!a}(u+ hI)Q
I2{a!b}(u� hI)

, (4.11)

where {a! b} denotes the set of edges from vertex a to vertex b. When there is no

arrow between vertex a and vertex b in the quiver (denoted as a 6 ! b), the bond

factor is trivial:

a 6 ! b : 'a)b(u) = 'b)a(u) ⌘ 1 ; (4.12)
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z � w
,

(4.9)

where throughout this paper “'” means equality up to znwm�0 terms, “⇠” means

equality up to zn�0wm and znwm�0 terms, and finally

� ⌘ z � w . (4.10)

The bracket [e(a)(z), f (b)(w)} represents the commutator in the superalgebra sense.

Namely, it is an anti-commutator {e(a)(z), f (b)(w)} when both a and b are odd, and

is a commutator [e(a)(z), f (b)(w)] otherwise.

The function 'a)b(z), which we call the “bond factor” since roughly speaking it

describes the “bonding” between atoms of color a and atoms of color b, is defined to

be

'a)b(u) ⌘

Q
I2{b!a}(u+ hI)Q
I2{a!b}(u� hI)

, (4.11)

where {a! b} denotes the set of edges from vertex a to vertex b. When there is no

arrow between vertex a and vertex b in the quiver (denoted as a 6 ! b), the bond

factor is trivial:

a 6 ! b : 'a)b(u) = 'b)a(u) ⌘ 1 ; (4.12)
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C. “OPE relations”
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(4.8)
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and the corresponding operators from (e(a)(z), (a)(z), f (a)(z)) commute — or anti-

commute when the relevant sign (�1)|a||b| is�1— with those from (e(b)(w), (b)(w), f (b)(w)).

The bond factor satisfies the reflection property

'a)b(u)'b)a(�u) = 1 , (4.13)

which is needed for the consistency of the OPE relations. The relations (??) (except

for the relation between e and f) are summarized in the following graph:11

 (a) f (a)e(a)

 (b) f (b)e(b)

'a)a 1/'a)a

'a)a 1/'a)a

'b)b 1/'b)b

'b)b
1/'b)b

'a)b

'b)a 1/'a)b 1/'b)a
'b)a 1/'b)a

(4.14)

We emphasize that the bond factor 'a)b(u) (??) should be treated as a “formal”

rational function. Namely, all the factors in its numerator and denominator, one pair

(i.e. one in the numerator and one in the denominator) from each arrow in the quiver,

need to be kept even when the charges hI take some special values such that some

factors of the numerator and the denominator cancel each other. The reason is that

the algebra can also be expressed in terms of modes (e(a)n , (a)
n , f (a)

n ), using the mode

expansions (4.7), and it is important that we keep all factors in 'a)b(u), in order to

reproduce the correct algebraic relations in terms of modes.

4.2.2 Relations in Terms of Modes

With the mode expansions of the fields in (4.7), it is straightforward to expand the

OPE relations (??) and write down the corresponding relations in terms of modes.

The first and the last equations in (4.7) do not involve the bond factor 'b)a(z�w)

and are easy to translate into the mode relations:
⇥
 (a)
n ,  (b)

m

⇤
= 0 and

⇥
e(a)n , f (b)

m

 
= �a,b  (a)

n+m . (4.15)

11Note that to reduce clutter, in the graph (4.14) we have omitted the additional statistics factors
in (??), i.e. (�1)|a| for the e(a)(z)e(a)(w) and f (a)(z)f (a)(w) relations, (�1)|b| for the e(b)(z)e(b)(w)
and f (b)(z)f (b)(w) relations, and (�1)|a||b| for the e(a)(z)e(b)(w) and f (a)(z)f (b)(w) relations.
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All the remaining ones involve the bond factor 'b)a(z�w) (see definition (??)),

whose numerator and denominator can be rewritten as

Y

I2{a!b}

(z � w + hI) =
|a!b|X

k=0

�a!b
|a!b|�k (z � w)k ,

Y

I2{b!a}

(z � w � hI) =
|b!a|X

k=0

(�1)|b!a|�k �b!a
|b!a|�k (z � w)k ,

(4.16)

where |a ! b| denotes the number of arrows from a to b in the quiver diagram, and

�a!b
k denotes the kth elementary symmetric sum of the set {hI} with I 2 {a ! b}.

Now take the  (a) e(b) OPE for example. Moving the denominator of 'b)a(z�w)

to the l.h.s. of the equation, and using the expansion (4.16), one can rewrite the

 (a) e(b) OPE relation in terms of quiver data {hI}:

|b!a|X

k=0

(�1)|b!a|�k �b!a
|b!a|�k (z � w)k  (a)(z) e(b)(w) '

|a!b|X

k=0

�a!b
|a!b|�k (z � w)k e(b)(w) (a)(z) .

(4.17)

Plugging in the mode expansions of  (a)(z) and e(b)(w) from (4.7), expanding the

(z � w)k in (4.17), and extracting the terms of order z�n�1w�m�1 with n 2 Z and

m 2 Z�0, we have the mode relation:

|b!a|X

k=0

(�1)|b!a|�k �b!a
|b!a|�k [ 

(a)
n e(b)m ]k =

|a!b|X

k=0

�a!b
|a!b|�k [e

(b)
m  (a)

n ]k , (4.18)

for n 2 Z and m 2 Z�0, where we have defined the shorthand

[An Bm]k ⌘
kX

j=0

(�1)j
�
k
j

�
An+k�j Bm+j ,

[Bm An]
k
⌘

kX

j=0

(�1)j
�
k
j

�
Bm+j An+k�j .

(4.19)

Here we can see that it is important to keep all factors in 'b)a(z � w), even

when the charges hI take special values such that some factors in the numerator

and denominator cancel each other. Ultimately what is important is the expansions

(4.16) of the numerator and the denominator separately, which in particular control

the mode shifting in the mode relation (4.18).

Repeating this exercise for the remaining equations in (??), we have their corre-
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sponding relations in terms of the modes:

⇥
 (a)
n ,  (b)

m

⇤
= 0 ,

|b!a|X

k=0

(�1)|b!a|�k �b!a
|b!a|�k [ 

(a)
n e(b)m ]k =

|a!b|X

k=0

�a!b
|a!b|�k [e

(b)
m  (a)

n ]k ,

|b!a|X

k=0

(�1)|b!a|�k �b!a
|b!a|�k [e

(a)
n e(b)m ]k = (�1)|a||b|

|a!b|X

k=0

�a!b
|a!b|�k [e

(b)
m e(a)n ]k ,

|a!b|X

k=0

�a!b
|a!b|�k [ 

(a)
n f (b)

m ]k =
|b!a|X

k=0

(�1)|b!a|�k �b!a
|b!a|�k [f

(b)
m  (a)

n ]k ,

|a!b|X

k=0

�a!b
|a!b|�k [f

(a)
n f (b)

m ]k = (�1)|a||b|
|b!a|X

k=0

(�1)|b!a|�k �b!a
|b!a|�k [f

(b)
m f (a)

n ]k,

⇥
e(a)n , f (b)

m

 
= �a,b  (a)

n+m ,

(4.20)

where for  (a)
n modes, n 2 Z, and for e(a)n and f (a)

n modes, n 2 Z�0. When the set of

charges hI with I 2 {a ! b} is identical to the set hI with I 2 {b ! a}, we have

�a!b
k = �b!a

k for all k. In this case, the equations in (??) can all be expressed in

terms of commutators and anti-commutators.

4.3 Some Properties of the Algebra

4.3.1 Grading and Filtration

As a vector space, the algebra Y(Q,W ) has a triangular decomposition

Y(Q,W ) = Y+
(Q,W ) � B(Q,W ) � Y�

(Q,W ) , (4.21)

where Y+
(Q,W ) (Y

�
(Q,W )) are generated by the e(a)n ’s (f (a)

n ’s), and B(Q,W ), which we call

the Bethe subalgebra, is generated by the  (a)
n ’s.

First of all, we have an Z2 transformation

e(a)(z) $ f (a)(z) ,  (a)(z) $  (a)(z)�1 , (4.22)

which exchanges Y+
(Q,W ) and Y�

(Q,W ) while preserving B(Q,W ).

The algebra has some more structures in addition to the Z2 grading just intro-

duced. First, for each vertex a 2 Q0 we can define an associated Z grading dega
(termed “grading by color a” or “mode grading”) by

dega(e
(b)
n ) = �a,b , dega( 

(b)
n ) = 0 , dega(f

(b)
n ) = ��a,b . (4.23)
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whose numerator and denominator can be rewritten as

Y

I2{a!b}

(z � w + hI) =
|a!b|X

k=0

�a!b
|a!b|�k (z � w)k ,

Y

I2{b!a}

(z � w � hI) =
|b!a|X

k=0

(�1)|b!a|�k �b!a
|b!a|�k (z � w)k ,

(4.16)

where |a ! b| denotes the number of arrows from a to b in the quiver diagram, and

�a!b
k denotes the kth elementary symmetric sum of the set {hI} with I 2 {a ! b}.

Now take the  (a) e(b) OPE for example. Moving the denominator of 'b)a(z�w)

to the l.h.s. of the equation, and using the expansion (4.16), one can rewrite the

 (a) e(b) OPE relation in terms of quiver data {hI}:

|b!a|X

k=0

(�1)|b!a|�k �b!a
|b!a|�k (z � w)k  (a)(z) e(b)(w) '

|a!b|X

k=0

�a!b
|a!b|�k (z � w)k e(b)(w) (a)(z) .

(4.17)

Plugging in the mode expansions of  (a)(z) and e(b)(w) from (4.7), expanding the
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|b!a|X

k=0

(�1)|b!a|�k �b!a
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(a)
n e(b)m ]k =

|a!b|X

k=0

�a!b
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(b)
m  (a)

n ]k , (4.18)
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kX
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(�1)j
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k
j
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An+k�j Bm+j ,

[Bm An]
k
⌘

kX
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(�1)j
�
k
j

�
Bm+j An+k�j .

(4.19)

Here we can see that it is important to keep all factors in 'b)a(z � w), even

when the charges hI take special values such that some factors in the numerator

and denominator cancel each other. Ultimately what is important is the expansions

(4.16) of the numerator and the denominator separately, which in particular control

the mode shifting in the mode relation (4.18).

Repeating this exercise for the remaining equations in (??), we have their corre-
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when expanded in terms of modes,  



Its associated quiver diagram is

1

(X3, h3)

(X1, h1)

(X2, h2)

(8.19)

where we have labelled the three adjoints X1,2,3, together with their three charges

h1,2,3. The super-potential is

W = Tr[�X1 X2 X3 +X1 X3 X2] . (8.20)

Since in the quiver the vertex 1 has a self-loop, it is bosonic: |1| = 0.

The periodic quiver is

1

1

1

1

h1 h1

h2

h2

h3 (8.21)

where the fundamental region of the torus is shown as a shaded region. The map

to the crystal configuration is easier to visualize from a bigger domain, shown in the

left of Figure 11. In the right of Figure 11, we have redrawn this period quiver in a

slightly di↵erent shape, for the later comparison with periodic quivers for (C2/Zn)⇥C
and generalized conifolds.

The loop constraint (??) gives

h1 + h2 + h3 = 0 . (8.22)

Therefore we have two coordinate parameters, corresponding to the two equivariant

parameters (✏1, ✏2). Note that the central condition (??) is guaranteed by the loop

constraint (8.22).

8.2.1.2 A�ne Yangian of gl1

Note that in this case the vertex constraint (??) also gives (8.22). Therefore the

minimal number of parameters we can have is two, corresponding to the U(1)2 toric

isometries.

There is only one bond factor:

'1)1(u) = '3(u) =
(u+ h1)(u+ h2)(u+ h3)

(u� h1)(u� h2)(u� h3)
. (8.23)
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h2h2

h1
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h1
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h2 h2
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h3

h3

h3

h3

Figure 11. Two ways to draw the periodic quiver for C3. The left one emphasizes

its connection to the projection of the plane partitions and the triality symmetry of the

three directions, whereas the right one is for later comparison with the periodic quiver for

(C2/Zn)⇥ C and generalized conifolds.

Plugging this into the general formulae for the OPE relations (??) and the initial

conditions (8.5) and (8.6), and supplementing them with Serre relations, we have the

full list of algebra relations of the a�ne Yangian of gl1:

OPE:

8
>>>><

>>>>:

 (z) (w) ⇠  (w) (z) ,

 (z) e(w) ⇠ '3(�) e(w) (z) ,

 (z) f(w) ⇠ '�1
3 (�) f(w) (z) ,

e(z) e(w) ⇠ '3(�) e(w) e(z) ,

f(z) f(w) ⇠ '�1
3 (�) f(w) f(z) ,

[e(z) , f(w)] ⇠ �
 (z)�  (w)

z � w
,

(8.24)

Initial:

⇢
[ 0, em] = 0 ,

[ 0, fm] = 0 ,

[ 1, em] = 0 ,

[ 1, fm] = 0 ,

[ 2, em] = 2 �3 em ,

[ 2, fm] = �2 �3 fm ,

(8.25)

Serre :

⇢
Symz1,z2,z3 (z2 � z3) [e(z1) , [e(z2) , e(z3)]] ⇠ 0 ,

Symz1,z2,z3 (z2 � z3) [f(z1) , [f(z2) , f(z3)]] ⇠ 0 .
(8.26)

where �3 ⌘ h1h2h3. It is straightforward to write down the relation in terms of

modes, following (??).

In the ef relation in (8.24), note its di↵erence from (5.50) in the factor of 1
�3
.

This is due to the di↵erent convention in our mode expansion of  (u) in (8.3) —

which is the universal for all quiver Yangian of Calabi-Yau threefolds without 4-cycle

— from the one (3.5) in the literature. (This di↵erence also manifests itself in the

two initial conditions involving  2.)

In the derivation of the initial conditions (8.25), we have used |a ! a| = 3, and

setting ` = 3, 2, 1 in the general formulae (8.5) and (8.6) gives the initial conditions

involving  0,1,2, respectively, and we have also used �1 ⌘ h1 + h2 + h3 = 0. We see

that there are two central terms,  0 and  1.
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Example

where here and throughout this paper � is defined as

� ⌘ z � w , (3.7)

and the '3 function is a cubic rational function defined as

'3(z) ⌘
(z + h1)(z + h2)(z + h3)

(z � h1)(z � h2)(z � h3)
. (3.8)

Here the triplet parameters (h1, h2, h3) satisfy

h1 + h2 + h3 = 0 , (3.9)

and are related to the two parameters �2 and �3 introduced earlier by

�2 ⌘ h1 h2 + h2 h3 + h3 h1 and �3 ⌘ h1 h2 h3 . (3.10)

(Note that the function '3(z) and hence the full algebra of a�ne Yangian of gl1 are

invariant under permutation of {h1, h2, h3}.) Unless stated explicitly otherwise, the

⇠ sign in this paper denotes equality up to zn�0wm terms and znwm�0 terms. One

can easily reproduce the relations in terms of modes (3.2) by expanding (3.6) using

(3.5) (after first moving the denominator of the coe�cient '(�) or '�1(�) to the

l.h.s.) and taking the z�n�1w�m�1 term.

Although the (e(z), (z), f(z)) are not fields in a two-dimensional CFT, the

relations (3.8) bear some resemblance to OPE (Operator Product Expansion) re-

lations in a two-dimensional CFT in that (1) they are written in terms of fields

(e(z), (z), f(z)) and when expanded using (3.5) reproduce the algebraic relations

in terms of modes; and (2) the relations in (3.8) are defined up to regular terms.

Therefore throughout this paper, we will abuse the terminology and call this type of

relation “OPE relations”, to distinguish them from the corresponding mode relation

such as (3.2).

Similarly, the Serre relations (3.4) can be rewritten in terms of (e(z), f(z)) col-

lectively:
Symz1,z2,z3(z2 � z3)[ e(z1) , [ e(z2) , e(z3)]] = 0 ;

Symz1,z2,z3(z2 � z3)[f(z1) , [f(z2) , f(z3)]] = 0 .
(3.11)

Finally, the initial conditions (3.3) can be derived from the  (z) e(w) and  (z) f(w)

OPEs in (3.6), respectively, by taking the z�n�1w�m�1 with n = �3,�2,�1 terms

of these two equations (after first moving the denominator of the coe�cient '(�) or

'�1(�) to the l.h.s.), namely, these two equations are true up to zn�3wm terms and

znwm�0 terms.

For the purpose of this paper, the relations in terms of fields are much more

useful than those written in terms of the modes,6 for the following two reasons:

6Except in the discussion of the initial condition, which is necessary to define the finite part
of the a�ne Yangian algebra, and in the computation of the vacuum module directly in terms
of algebra (i.e. without invoking the colored crystal representations). The latter is important in
deriving/checking Serre relations.
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OPE relation

Serre relation

This gives

[Schiffmann-Vasserot; Tsymbaulik; Prochazka;  
Gaberdiel-Gopakumar-Li-Peng,...]



Figure 13. The three perfect matchings for the C3 geometry. Each of these perfect

matchings corresponds to one of the non-compact regions of the (p, q)-web, and to one of

the parameters h1, h2, h3.

8.2.2 (C2/Z2) ⇥ C and A�ne Yangian of gl2

8.2.2.1 Quiver Yangian for (C2/Z2) ⇥ C

For C2/Z2⇥C, the toric diagram and its dual graph are

(0,0)

(0,1)

(0,2)

(1,0)

3

3̂

1

1̂

(8.29)

Its associated quiver diagram is the A2-quiver

1 2(C1, �1) (C2, �2)

(A1,↵1), (B2, �2)

(B1, �1), (A2,↵2) (8.30)

with super-potential

W = Tr[�C1 A1 B1 + C1 B2 A2 � C2 A2 B2 + C2 B1 A1] . (8.31)

Both vertices are bosonic:

|a| = 0 , a = 1, 2 , (8.32)

since there is a self-loop for each of them in the quiver (8.30).
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relation will likely require a non-trivial change of the generators of the algebra (see

[69] for a related discussion). It is also the case that the BPS state counting in [52]

is in a particular chamber of the Kähler moduli space. Our discussion by contrast

applies to general chambers, which are known to have crystal-melting description.

8.3.6 Conifold and A�ne Yangian of gl1|1

8.3.6.1 Conifold

The toric diagram and its dual graph for the conifold O(�1)⇥O(�1) ! P1 are

(0,0)

(0,1) (1,1)

(1,0)

3
3̂

1

1̂

(8.111)

Its associated quiver diagram is similar to the one for the orbifold (C2/Z2)⇥C:

1 2

(A1,↵1), (B2, �2)

(B1, �1), (A2,↵2) (8.112)

with super-potential

W = Tr[A1B1B2A2 � A1A2B2B1] . (8.113)

Since there is no self-loop for either vertex 1 or 2, both vertices are fermionic:

|a| = 1 , a = 1, 2 , (8.114)

to be compared with the case of (C2/Zn)⇥C shown in (8.30), where both vertices

are bosonic, i.e. |a| = 0.
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sponding relations in terms of the modes:
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 (a)
n ,  (b)

m

⇤
= 0 ,

|b!a|X

k=0

(�1)|b!a|�k �b!a
|b!a|�k [ 

(a)
n e(b)m ]k =

|a!b|X

k=0

�a!b
|a!b|�k [e

(b)
m  (a)

n ]k ,

|b!a|X

k=0

(�1)|b!a|�k �b!a
|b!a|�k [e

(a)
n e(b)m ]k = (�1)|a||b|

|a!b|X

k=0

�a!b
|a!b|�k [e

(b)
m e(a)n ]k ,

|a!b|X

k=0

�a!b
|a!b|�k [ 

(a)
n f (b)

m ]k =
|b!a|X

k=0

(�1)|b!a|�k �b!a
|b!a|�k [f

(b)
m  (a)

n ]k ,

|a!b|X

k=0

�a!b
|a!b|�k [f

(a)
n f (b)

m ]k = (�1)|a||b|
|b!a|X

k=0

(�1)|b!a|�k �b!a
|b!a|�k [f

(b)
m f (a)

n ]k,

⇥
e(a)n , f (b)

m

 
= �a,b  (a)

n+m ,

(4.20)

where for  (a)
n modes, n 2 Z, and for e(a)n and f (a)

n modes, n 2 Z�0. When the set of

charges hI with I 2 {a ! b} is identical to the set hI with I 2 {b ! a}, we have

�a!b
k = �b!a

k for all k. In this case, the equations in (??) can all be expressed in

terms of commutators and anti-commutators.

4.3 Some Properties of the Algebra

4.3.1 Grading and Filtration

As a vector space, the algebra Y(Q,W ) has a triangular decomposition

Y(Q,W ) = Y+
(Q,W ) � B(Q,W ) � Y�

(Q,W ) , (4.21)

where Y+
(Q,W ) (Y

�
(Q,W )) are generated by the e(a)n ’s (f (a)

n ’s), and B(Q,W ), which we call

the Bethe subalgebra, is generated by the  (a)
n ’s.

First of all, we have an Z2 transformation

e(a)(z) $ f (a)(z) ,  (a)(z) $  (a)(z)�1 , (4.22)

which exchanges Y+
(Q,W ) and Y�

(Q,W ) while preserving B(Q,W ).

The algebra has some more structures in addition to the Z2 grading just intro-

duced. First, for each vertex a 2 Q0 we can define an associated Z grading dega
(termed “grading by color a” or “mode grading”) by

dega(e
(b)
n ) = �a,b , dega( 

(b)
n ) = 0 , dega(f

(b)
n ) = ��a,b . (4.23)
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Second, the algebraic relations (??) with (??) have a rescaling symmetry for the

parameters hI , the spectral parameter u, and the generators:12

hI ! ↵ hI , u ! ↵ u ,

e(a)(u) ! ↵� 1
2 e(a)(u) , f (a)(u) ! ↵� 1

2 f (a)(u) ,  (a)(u) !  (a)(u) .
(4.24)

In terms of the mode generators, (4.24) is

hI ! ↵ hI , e(a)n ! ↵n+ 1
2 e(a)n , f (a)

n ! ↵n+ 1
2 f (a)

n ,  (a)
n ! ↵n+1  (a)

n , (4.25)

due to the mode expansion (4.7). The rescaling symmetry (4.25) defines the grading

deglevel(e
(b)
n ) = deglevel(f

(b)
n ) = n+ 1

2 , deglevel( 
(b)
n ) = n+ 1 , (4.26)

together with deglevel(hI) = 1. We can also regard this as a filtration (termed “level

filtration” or “spin filtration”) on the algebra when we assign zero degree to hI , while

keeping the assignments on mode generators (4.26).

4.3.2 Spectral Shift

One can shift the spectral parameter z by an overall constant. This linearly mixes the

generators, and generates an automorphism of the algebra. More explicitly, in terms

of the mode expansions introduced in (4.7), one obtains under the shift z ! z � " a

new set of modes e0l, 
0
l, f

0
l :

e0l =
lX

k=0

✓
l

k

◆
"kel�k , f 0

l =
lX

k=0

✓
l

k

◆
"kfl�k ,  0

l =
lX

k=0

✓
l

k

◆
"k l�k (l = 0, 1, . . . ) ,

 0
�l�1 =

1X

k=l

✓
k

l

◆
(�")k�l �k�1 (l = 0, 1, . . . , ) . (4.27)

Namely, since the mode expansion (4.7) is in powers of z�1, the shift z ! z�" mixes

the generators e(a)n only with e(a)m with m < n, and similarly for f (a)
n and  (a)

n . The

last equation involves an infinite sum and should be regarded as a formal sum. This

equation is trivialized to  0
�1 =  �1 for the toric Calabi-Yau threefold geometries

without compact 4-cycles, where we have  n<�1 = 0.

12The scaling behaviors of  (a)(u) is determined by the consideration that in some examples (i.e.
for Calabi-Yau threefolds without compact 4-cycles), we are allowed to fix  (a)

�1 = 1. (For other

cases, even if we do not fix any  (a)
n mode, we are still allowed to choose the same scaling behavior

for  (a)(u).) This then gives e(a)(u)f (b)(v) ! ↵�1e(a)(u)f (b)(v), following from the e � f relation
in (??). The most natural choice (and without loss of generality) is then the one given in (4.24).
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Second, the algebraic relations (??) with (??) have a rescaling symmetry for the

parameters hI , the spectral parameter u, and the generators:12

hI ! ↵ hI , u ! ↵ u ,

e(a)(u) ! ↵� 1
2 e(a)(u) , f (a)(u) ! ↵� 1

2 f (a)(u) ,  (a)(u) !  (a)(u) .
(4.24)

In terms of the mode generators, (4.24) is

hI ! ↵ hI , e(a)n ! ↵n+ 1
2 e(a)n , f (a)

n ! ↵n+ 1
2 f (a)

n ,  (a)
n ! ↵n+1  (a)

n , (4.25)

due to the mode expansion (4.7). The rescaling symmetry (4.25) defines the grading

deglevel(e
(b)
n ) = deglevel(f

(b)
n ) = n+ 1

2 , deglevel( 
(b)
n ) = n+ 1 , (4.26)

together with deglevel(hI) = 1. We can also regard this as a filtration (termed “level

filtration” or “spin filtration”) on the algebra when we assign zero degree to hI , while

keeping the assignments on mode generators (4.26).

4.3.2 Spectral Shift

One can shift the spectral parameter z by an overall constant. This linearly mixes the

generators, and generates an automorphism of the algebra. More explicitly, in terms

of the mode expansions introduced in (4.7), one obtains under the shift z ! z � " a

new set of modes e0l, 
0
l, f

0
l :

e0l =
lX

k=0

✓
l

k

◆
"kel�k , f 0

l =
lX

k=0

✓
l

k

◆
"kfl�k ,  0

l =
lX

k=0

✓
l

k

◆
"k l�k (l = 0, 1, . . . ) ,

 0
�l�1 =

1X

k=l

✓
k

l

◆
(�")k�l �k�1 (l = 0, 1, . . . , ) . (4.27)

Namely, since the mode expansion (4.7) is in powers of z�1, the shift z ! z�" mixes

the generators e(a)n only with e(a)m with m < n, and similarly for f (a)
n and  (a)

n . The

last equation involves an infinite sum and should be regarded as a formal sum. This

equation is trivialized to  0
�1 =  �1 for the toric Calabi-Yau threefold geometries

without compact 4-cycles, where we have  n<�1 = 0.

12The scaling behaviors of  (a)(u) is determined by the consideration that in some examples (i.e.
for Calabi-Yau threefolds without compact 4-cycles), we are allowed to fix  (a)

�1 = 1. (For other

cases, even if we do not fix any  (a)
n mode, we are still allowed to choose the same scaling behavior
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a. triangular decomposition

b. grading

c. spectral shift

We can count the number of coordinate parameters to be

Nh = # (edges of the quiver)� (# (monomial terms in the superpotential)� 1) .

(4.2)

Here we have subtracted one from the superpotential constraints, since any bifunda-

mental field appears exactly twice in the superpotential (this follows since each edge

belongs to two neighboring faces in the periodic quiver) and thus one of the con-

straints is redundant. Since each monomial term in the superpotential corresponds

to a polygonal region of the periodic quiver, one can also write this as

Nh = # (edges of the periodic quiver)� (# (faces of the periodic quiver)� 1) .

(4.3)

Since the periodic quiver is written on the two-dimensional torus and has Euler

character zero, one can rewrite this as

Nh = # (vertices of the periodic quiver) + 1

= # (gauge groups of the quiver) + 1 . (4.4)

For a toric Calabi-Yau threefold this number (i.e. # = Nh � 1) is known to be the

same as the area of the toric diagram �, where the normalization of the area is

chosen such that the minimal lattice triangle spanned by the three lattice points

(0, 0), (1, 0), and (0, 1) has area 1. One can then use Pick’s theorem to rewrite this

as

Nh = E + 2I � 1 , (4.5)

where E (resp. I) is the numbers of external (resp. internal) lattice points of the

toric diagram �. We will use {hI}, with I = 1, · · · , |Q1|, to denote the set of charges

associated to the edges of the quiver; and we use {hA}, with A = 1, · · · , Nh, to denote

these Nh independent parameters that characterize the algebra.

4.2 Generators and Relations

The algebra is generated by a triplet of fields (e(a)(u), (a)(u), f (a)(u)) for each quiver

vertex a 2 Q0:

a : e(a)(u) : creation ,  (a)(u) : charge , f (a)(u) : annihilation . (4.6)

Generically, they have the mode expansion:10

e(a)(z) ⌘
+1X

n=0

e(a)n

zn+1
,  (a)(z) ⌘

+1X

n=�1

 (a)
n

zn+1
, f (a)(z) ⌘

+1X

n=0

f (a)
n

zn+1
, (4.7)

10 For the fermionic generators in the NS sector, it might be more natural to expand the e(a)(z)
and f (a)(z) generators in terms of half-integer modes. This will not by relevant within the current
paper, but can be determined once we know the map between the quiver Yangians and the W

algebras.
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4.3.3 Gauge-symmetry Shift

As we discussed above, the parameters {hI} can be regarded as global-symmetry

assignments of the algebra. We have therefore imposed the loop constraints (??).

One notices, however, that some of these symmetries are actually gauge symme-

tries. Indeed, if we mix the global symmetry with a gauge symmetry associated with

a particular vertex a, then the parameters hI are shifted as

hI ! h0
I = hI + "a signa(I) , (4.28)

where

signa(I) ⌘

8
>><

>>:

+1 (s(I) = a , t(I) 6= a) ,

�1 (s(I) 6= a , t(I) = a) ,

0 (otherwise) ,

(4.29)

and "a parametrizes the mixing between global symmetries and the ath gauge sym-

metry. This shift is consistent with the loop constraint (??), which is expected since

the superpotential is gauge-invariant.

What happens to the algebra under this shift? The parameters hI enter into the

algebra only through the function (??), which transforms as

'a)b(u) ! 'a)b0(u) =

Q
I2{b!a} (u+ hI + "a signa(I))Q
I2{a!b} (u� hI � "a signa(I))

. (4.30)

In other words, this amounts to constant shifts of the spectral parameter for various

locations, i.e. u ! u + "a for (e(a)(u), (a)(u), f (a)(u)) at vertex a. From (4.27), one

concludes that the shift (4.28) mixes the generators  (a)
n only with  (a)

m with m < n,

and similarly for e(a)n and f (a)
n . Since automorphism merely reshu✏es the generators

by linear combinations, one can regard the shift (4.28) as a gauge symmetry.

Instead of modding out by the gauge shift (4.28), we can impose gauge-fixing

conditions. One possible choice, which we adopt in this paper, is to impose the vertex

constraint

vertex constraint:

X

I2a

signa(I)hI = 0 (4.31)

for each vertex a. Note that the number of independent constraints is given by the

number of vertices minus one, since the quiver quantum mechanics has only bifun-

damental/adjoint matters and hence the overall U(1) gauge symmetry decouples.

How many parameters are there once we impose both the loop and the vertex

constraints? Since the number of parameters with the loop constraints is given as

|Q0|+1 (4.4), and since we have |Q0|� 1 vertex constraints, there are two remaining

parameters. We can identify these two parameters as the coordinate parameters of the
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d. gauge shift

4 BPS Quiver Yangian for General Quivers

In this section let us define the BPS quiver Yangian Y(Q,W ) from a pair (Q,W ).8 Since

the pair (Q,W ) is obtained from a toric Calabi-Yau geometry X (as we discussed in

section 2), the algebra Y(Q,W ) in itself can be associated with the geometry X.

In general, for the same Calabi-Yau manifold X, there exist multiple quiver

gauge theories (Q,W ) which are dual to one another. In these situations the quiver

gauge theories are believed to be related by a sequence of Seiberg dualities (quiver

mutations) [46], and we conjecture that the resulting algebras Y(Q,W ) are all isomor-

phic. We will see concrete examples of this phenomenon in sections 8.3 and 9.2:

the relevant isomorphisms are already known in the mathematical literature for the

examples in 8.3, but not for those in 9.2. It would be interesting to explore this point

further.

In this section we provide a top-down definition of the algebra. Let us mention,

however, that later in section 6 we will provide bottom-up justifications of the algebra.

Indeed, as we will see in section 6, under some reasonable ansatz, the condition

that this algebra acts on the configurations of molten crystal can completely fix the

algebra. In this sense our algebra and its representation on the BPS crystal are

intimately connected.

4.1 Parameters

To define the BPS quiver Yangian Y(Q,W ), we first consider a set of charge assignments

hI for each arrow I 2 Q1. We impose the condition that this charge assignment

is compatible with the superpotential W . In other words, the charges hI can be

regarded as charges under a global symmetry of the quiver quantum mechanics. The

superpotential W will enter into the definition of the algebra Y(Q,W ) through this

charge-assignment constraint only.

In the periodic quiver diagram, a monomial term in the superpotential is repre-

sented by a closed loop. This means that the constraint on the parameters hI can

be written as9

loop constraint:

X

I2L

hI = 0 , (4.1)

where L is an arbitrary loop in the periodic quiver. We will hereafter call this condi-

tion the loop constraint, and the parameters satisfying these conditions as coordinate

parameters. In section 6.4 we will see that this constraint is instrumental in ensuring

the consistency of the crystal-melting representation of the algebra.

8While our interest in this paper is to those pair (Q,W ) originating from toric Calabi-Yau
threefolds, our definition in itself applies to more general choices of (Q,W ). It is not clear, however,
if the algebra acts on BPS states of some gauge/string theory in these more general situations.

9Note that all arrows are in the same direction in the smallest loops.
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consistent with 

which reshuffles generators

To eliminate this ambiguity,
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Quiver Yangian :

Representation



We use the letter K (in text mode) to label a colored crystal configuration. The

plane partition can be viewed as the simplest colored crystal, with only one color

and the most symmetric shape.

As reviewed earlier in section 2.2, for the construction of the colored crystal we

need to choose an atom as the origin of the crystal. Without loss of generality, we

will choose the atom at the origin to be of color a = 1.24 It corresponds to the level-1

box 1 in (5.8).

In the C3 case, where there is only one type of atom, the algebra has a triplet of

fields, i.e. family of generators, (e(z), (z), f(z)), see (5.3), acting on all the atoms

in the crystal (or equivalently, all the ⇤’s in the plane partition). For a generic toric

Calabi-Yau whose corresponding crystal has |Q0| colors, we need |Q0| triplets of fields

labelled by a 2 Q0, each acting on the atoms of the corresponding color as in (4.6);

they have the mode expansion as in (4.7).

Now we write down the ansatz for the action of the fields (4.6) on an arbitrary

crystal configuration |Ki, as a natural generalization of the ansatz (5.4) for the action

of the a�ne Yangian of gl1 on the set of plane partitions:

 (a)(z)|Ki =  (a)
K (z)|Ki ,

e(a)(z)|Ki =
X

a 2Add(K)

E(a)(K ! K+ a )

z � h( a )
|K+ a i ,

f (a)(z)|Ki =
X

a 2Rem(K)

F (a)(K ! K� a )

z � h( a )
|K� a i ,

(6.2)

for a = 1, . . . , |Q0|, where

E(a)(K ! K+ a ) ⌘ ✏(K ! K+ a )

r
p(a)Res

u=h( a )
 (a)

K (u)

F (a)(K ! K� a ) ⌘ ✏(K ! K� a )

r
q(a)Res

u=h( a )
 (a)

K (u) ,

(6.3)

with

✏(K ! K+ a ) = ± and ✏(K ! K� a ) = ± . (6.4)

Here a 2 Add(K) means that we consider an atom of color a which can be added

to the crystal K (a similar comment applies to a 2 Rem(K)).

24It is easy to generalize to representations with superpositions of colored crystals with the atom
at the origin o having colors other than a = 1, see section 6.3.2. However, the algebra obtained from
such more general representations (i.e. tensored representations of crystals starting with di↵erent
a ) via the bootstrap procedure would be the same as the one obtained using the crystal starting

with 1 .
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Note that there are infinitely many such paths for each a , due to the presence of

loops in the periodic quiver.

For each color a, we would like to define a coordinate function that is adapted

to the coordinate system (6.7), generalizing the coordinate function (5.6). The most

natural way would be to associate a charge hI to each edge I in the quiver diagram,

where I 2 {a ! b} for two vertices a and b (which are possibly identical). We then

define the coordinate function for a to be the sum of all the charges along the path

[o ! a ]:

h( a ) ⌘
X

I 2 path[o! a ]

hI . (6.8)

Recall that in the case of plane partitions, the coordinate function for an atom

⇤ is the way to translate the position of the ⇤ to the pole of the charge function

 ⇤(z). We need the same for the colored crystal. Therefore, although for a given

a , the path [o ! a ] is not unique, we need its coordinate function to be uniquely

defined, in order to associate it to the poles of  (a)
K (z). This requires that the sum

over charges on the edges around any loop has to vanish, which is precisely the loop

constraint (??). This condition is the generalization of (5.33) for plane partitions.

6.3 Fixing Charge Function

We are now ready to fix the charge function  (a)
K (z) for an arbitrary colored crystal

K and any color a.

6.3.1 Ansatz

Generically, the charge function of  (a)
K (z) can receive contributions from all the

atoms in the crystal configuration K. Generalizing the result for C3 in (3.19), we

write down the ansatz for the charge function  (a)
K (z)

 (a)
K (u) =  (a)

0 (z)
Y

b2Q0

Y

b 2K

'b)a(u� h( b )) , (6.9)

where  (a)
0 (z) is the vacuum contribution, and we have grouped the atoms in K by

their colors, with the color label b running over all vertices in the quiver diagram,

including the color a itself. For each color a, each atom of color b contributes a

factor of 'b)a function, with argument shifted by the coordinate function of that

atom h( b ), given by (??) with the charges subject to the loop constraint (??).

Given the ansatz for the charge function (??), the goal is to determine the bond

factor 'b)a(z) (so called because it describes the “bonding” between atoms of color

a and those of color b). We use the ansatz for the algebra’s action (6.2) on crystals

|Ki, following the procedure outline in section 6.1. As in the case of C3, we first
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 ⇤(z). We need the same for the colored crystal. Therefore, although for a given

a , the path [o ! a ] is not unique, we need its coordinate function to be uniquely

defined, in order to associate it to the poles of  (a)
K (z). This requires that the sum

over charges on the edges around any loop has to vanish, which is precisely the loop

constraint (??). This condition is the generalization of (5.33) for plane partitions.

6.3 Fixing Charge Function

We are now ready to fix the charge function  (a)
K (z) for an arbitrary colored crystal

K and any color a.

6.3.1 Ansatz

Generically, the charge function of  (a)
K (z) can receive contributions from all the

atoms in the crystal configuration K. Generalizing the result for C3 in (3.19), we

write down the ansatz for the charge function  (a)
K (z)

 (a)
K (u) =  (a)

0 (z)
Y

b2Q0

Y

b 2K

'b)a(u� h( b )) , (6.9)

where  (a)
0 (z) is the vacuum contribution, and we have grouped the atoms in K by

their colors, with the color label b running over all vertices in the quiver diagram,

including the color a itself. For each color a, each atom of color b contributes a

factor of 'b)a function, with argument shifted by the coordinate function of that

atom h( b ), given by (??) with the charges subject to the loop constraint (??).

Given the ansatz for the charge function (??), the goal is to determine the bond

factor 'b)a(z) (so called because it describes the “bonding” between atoms of color

a and those of color b). We use the ansatz for the algebra’s action (6.2) on crystals

|Ki, following the procedure outline in section 6.1. As in the case of C3, we first
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[Li-MY ’20], inspired by [FFJMM] and [Prochazka]Representation by crystal melting

and contain infinitely many generators e(a)n , (a)
n , f (a)

n . As we will show later in sec-

tion 8, for Calabi-Yau threefolds without compact 4-cycles,  (a)
n<�1 = 0 and  (a)

�1 = 1.

We express the Z2-grading (i.e. the Bose/Fermi statistics) of the generators

e(a)n , f (a)
n of the generators) to be

grading rule: |a| =

(
0 (9I 2 Q1 such that s(I) = t(I) = a) ,

1 (otherwise) ,
(4.8)

with |a| = 0 (|a| = 1) for bosonic (fermionic) generators. The operators  (a)
n are

Cartan and hence are set to be even.

4.2.1 Relations in Terms of Fields

The generators satisfy the OPE relations

 (a)(z) (b)(w) =  (b)(w) (a)(z) ,

 (a)(z) e(b)(w) ' 'b)a(�) e(b)(w) (a)(z) ,

e(a)(z) e(b)(w) ⇠ (�1)|a||b|'b)a(�) e(b)(w) e(a)(z) ,

 (a)(z) f (b)(w) ' 'b)a(�)�1 f (b)(w) (a)(z) ,

f (a)(z) f (b)(w) ⇠ (�1)|a||b|'b)a(�)�1 f (b)(w) f (a)(z) ,

⇥
e(a)(z), f (b)(w)

 
⇠ ��a,b

 (a)(z)�  (b)(w)

z � w
,

(4.9)

where throughout this paper “'” means equality up to znwm�0 terms, “⇠” means

equality up to zn�0wm and znwm�0 terms, and finally

� ⌘ z � w . (4.10)

The bracket [e(a)(z), f (b)(w)} represents the commutator in the superalgebra sense.

Namely, it is an anti-commutator {e(a)(z), f (b)(w)} when both a and b are odd, and

is a commutator [e(a)(z), f (b)(w)] otherwise.

The function 'a)b(z), which we call the “bond factor” since roughly speaking it

describes the “bonding” between atoms of color a and atoms of color b, is defined to

be

'a)b(u) ⌘

Q
I2{b!a}(u+ hI)Q
I2{a!b}(u� hI)

, (4.11)

where {a! b} denotes the set of edges from vertex a to vertex b. When there is no

arrow between vertex a and vertex b in the quiver (denoted as a 6 ! b), the bond

factor is trivial:

a 6 ! b : 'a)b(u) = 'b)a(u) ⌘ 1 ; (4.12)
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In fact, we can “bootstrap” the algebra from this Ansatz



therefore the vacuum contribution to the charge function is

 (a)
0 (z) = ( 0(z))

�a,1 =

(
 0(z) (a = 1)

1 (otherwise)
with  0(z) = 1 +

C

z
, (6.13)

with C 6= 0 a constant to be fixed later. Therefore, the charge function for the

vacuum |Ki = |;i, for any color a, is

 (a)
K (z) = ( 0(z))

�a,1 =

✓
1 +

C

z

◆�a,1

, (6.14)

whose pole corresponds to the adding pole for e(a)(z) at level-1:

level� 1 : adding-pole z⇤ = h( 1 ) = 0 . (6.15)

The resulting state at the level-1 is denoted by

1
(6.16)

In summary, the action of (e(a)(z), (a)(z), f (a)(z)) on the vacuum is

e(a)(z)|;i = �a,1
±

p
p(a) C

z
| 1 i ,  (a)(z)|;i =

✓
1 +

C

z

◆�a,1

|;i , f (a)(z)|;i = 0 .

(6.17)

6.3.3 Level-1 �! Level-2

The level-1 atom is unique, and has coordinate function

h( 1 ) = 0 (6.18)

(see (6.15)) and its color a charge function, for any a 2 Q0, is

 (a)

1
(z) = ( 0(z))

�a,1 '1)a(z) . (6.19)

We need to fix '1)a(z).

As in the case of C3, the poles of the charge function at level-1 is fixed by

considering adding the level-2 atoms. In the quiver diagram, consider the arrows

that emit from the vertex b = 1, the vertices these arrows end at correspond to the

atoms to be added at the level-2. In order for the creation operators e(a)(z) for these

colors to be able to create these atoms, the factors '1)a(z) in the charge function

(6.19) has to contain the pole 1
z�hI

, where hI is the charge associated to the arrow

1 ! a. (Note that there can be multiple arrows going from 1 to a, then for each

arrow there is an independent hI .) If a vertex a is not connected by any arrow
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must contain a factor of z for any i = 1, 2, 3. This constraint fixes the minimal N(z)

to be

N(z) = (z + h1)(z + h2)(z + h3) . (5.28)

We now have the most important function in the construction of the algebra

acting on the set of plane partitions:

'3(z) ⌘
(z + h1)(z + h2)(z + h3)

(z � h1)(z � h2)(z � h3)
=  ⇤(z) for h(⇤) = 0 . (5.29)

By (5.27), we see that the each of the level-2 ⇤’s contribute a factor of '3 function,

with argument shifted by h(⇤).

Before we move on, we need to check whether the three parameters h1,2,3 are

mutually independent. Compare the minimal initial state (5.22) (in order to add one

of the first three ⇤’s in (5.20)) and the minimal initial state (5.24) (in order to add

one of the last three ⇤’s in (5.20)). For example, if one starts with the initial state

(5.22), one can only add a ⇤ at h(⇤) = 2hi, but not the ⇤ at h(⇤) = hi + hj with

j 6= i.

But this fact has to be implemented automatically by the pole structure of the

charge function (5.22). Without loss of generality, consider i = 1, for which the

charge function (5.22) is explicitly

 ⇤(z) =  0(z) ⇤0(z) ⇤1(z)

=
z + C

z
·
(z + h1)(z + h2)(z + h3)

(z � h1)(z � h2)(z � h3)
·

z(z + h2 � h1)(z + h3 � h1)

(z � 2h1)(z � h2 � h1)(z � h3 � h1)
.

(5.30)

Before we proceed to consider the adding poles, first note that the factor of z in the

numerator of  ⇤1(z) cancels the factor of z in the denominator of  0(z), which used

to be the removing pole of the first ⇤. This guarantees that in the presence of the

second ⇤, the first one cannot be removed anymore.

Now we resume the consideration of the adding poles. Note the three poles in

the  ⇤1(z). The first one allows e(z) to add a level-3 ⇤ at (x1, x2, x3) = (2, 0, 0),

with h(⇤) = 2h1, shown by the red box below

1

1

1

h1

h1

(5.31)
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Before we proceed to consider the adding poles, first note that the factor of z in the

numerator of  ⇤1(z) cancels the factor of z in the denominator of  0(z), which used

to be the removing pole of the first ⇤. This guarantees that in the presence of the

second ⇤, the first one cannot be removed anymore.

Now we resume the consideration of the adding poles. Note the three poles in

the  ⇤1(z). The first one allows e(z) to add a level-3 ⇤ at (x1, x2, x3) = (2, 0, 0),

with h(⇤) = 2h1, shown by the red box below

1

1

1

h1

h1
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of the first three ⇤’s in (5.20)) and the minimal initial state (5.24) (in order to add
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(5.22), one can only add a ⇤ at h(⇤) = 2hi, but not the ⇤ at h(⇤) = hi + hj with
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But this fact has to be implemented automatically by the pole structure of the

charge function (5.22). Without loss of generality, consider i = 1, for which the

charge function (5.22) is explicitly
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·
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·
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Before we proceed to consider the adding poles, first note that the factor of z in the

numerator of  ⇤1(z) cancels the factor of z in the denominator of  0(z), which used

to be the removing pole of the first ⇤. This guarantees that in the presence of the

second ⇤, the first one cannot be removed anymore.

Now we resume the consideration of the adding poles. Note the three poles in

the  ⇤1(z). The first one allows e(z) to add a level-3 ⇤ at (x1, x2, x3) = (2, 0, 0),

with h(⇤) = 2h1, shown by the red box below

1

1

1

h1

h1

(5.31)
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5.2.2 Level-1 �! Level-2

To fix  ⇤(z), first consider the initial state |⇤i = |⇤i, where |⇤i denotes the config-

uration where only the first ⇤ at the corner is present. The next ⇤ to be added can

be placed in three possible positions:

level-2 :

8
><

>:

⇤1 : (x1, x2, x3) = (1, 0, 0) =) h(⇤) = h1 ,

⇤2 : (x1, x2, x3) = (0, 1, 0) =) h(⇤) = h2 ,

⇤3 : (x1, x2, x3) = (0, 0, 1) =) h(⇤) = h3 ,

(5.13)

shown as the three blue boxes below

1

1

1

1

h1

h2

h3

(5.14)

This means that the function  ⇤(z) for the initial state |⇤i = |⇤i needs to contain

these three poles hi with i = 1, 2, 3.

In addition,  ⇤(z) for the initial state |⇤i = |⇤i should contain a pole at z⇤ = 0,

corresponding to the pole for f(z) to remove this ⇤ to reduce it to vacuum:

removing-pole of ⇤ : z⇤ = h(⇤) = 0 . (5.15)

This pole is already accounted for by the pole in  0(z) in (5.11). Namely, the pole

in  0(z) corresponds to both the creating-pole of e(z) when acting on |;i and the

removing pole of f(z) when acting on |⇤i. Indeed, this is a general feature for

 ⇤(z) of all ⇤ — namely, a creating-pole for e(z) acting on ⇤ and generating a

particular ⇤ is also the same pole for the (removing) action of f(z) when acting on

the configuration |⇤+⇤i and removing this same ⇤.

Therefore, the three poles that correspond to the three ⇤’s in (5.13) must all

come from the function  ⇤(z) when ⇤ is the level-1 box in (5.8):

 ⇤(z) =
N(z)

(z � h1)(z � h2)(z � h3)
for h(⇤) = 0 , (5.16)

where N(z) is the numerator to be fixed momentarily. Let us define  ⇤0(z) ⌘
N(z)

(z�h1)(z�h2)(z�h3)
for later use. In summary, the charge function for |⇤i = |⇤i is

 ⇤(z) =  0(z) ⇤0(z) , (5.17)

which has three adding-poles at

adding-pole of ⇤i : z⇤ = h(⇤) = hi for i = 1, 2, 3 , (5.18)
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coordinate function h(⇤), the most natural ansatz for  ⇤(z) is18

 ⇤(z) =  0(z)
Y

⇤2⇤

 ⇤(z) , (5.7)

where  0(z) is the contribution from the vacuum, i.e. before any ⇤ is added, and

 ⇤(z) is the contribution of an individual ⇤. Therefore we only need to fix the

functions  0(z) and  ⇤(z). The main constraint is that for any ⇤, all poles of ⇤

should correspond to either a location where a ⇤ can be added or a location where

a ⇤ can be removed.

5.2.1 Vacuum �! Level-1

Let us start with the vacuum contribution  0(z). Starting with the vacuum state

|⇤i = |;i, the action of e(z) should create the first ⇤ at the corner, with coordinates

and h(⇤) given by

level-1 : ⇤0 : x1(⇤) = x2(⇤) = x3(⇤) = 0 =) h(⇤) = 0 . (5.8)

Since this is the very first ⇤ that can be added in the plane partition, we call it

level-1 box:

1
(5.9)

Here the box is labelled by 1 since we have only one vertex in this example. (We will

encounter more general situation in the next section.) The charge function for the

vacuum  ⇤(z) =  0(z) should have one and only one pole,19 at

adding-pole of ⇤ : z⇤ = h(⇤) = 0 . (5.10)

Furthermore,  0(z)’s residue at z = 0 should be non-zero — otherwise by the ansatz

(5.4) the action of e(z) on vacuum would annihilate the vacuum instead of creating

the first ⇤. The simplest solution is

 0(z) =
z + C

z
, (5.11)

where C 6= 0 will be fixed later. Finally, since there is no ⇤ to be removed, the

box-removing operator f(z) should annihilate the vacuum |;i. (This is consistent

with the fact that vacuum charge function  0(z) in (5.11) only has one pole, which

we have already seen to be the adding-pole for the level-1 ⇤ in (5.8).) In summary,

the actions of (e(z), (z), f(z)) on the vacuum |;i are:

level-0 :  (z)|;i =  0(z)|;i =
z + C

z
|;i , e(z)|;i =

#

z
|⇤i , f(z)|;i = 0 .

(5.12)

18It will soon be clear why the other natural guess where all the contribution  ⇤(z) are summed
over (instead of multiplied together) fails the criterion that all poles of ⇤ should correspond to
either a location where a ⇤ can be added or a location where a ⇤ can be removed.

19The reason is that there is only one possible position for the first ⇤ to be added, i.e. only one
pole for e(z); and there is no ⇤ to be removed, i.e. no pole for f(z).
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Crucial ingredient: poles keep track of the crystal structure



The other two poles, however, correspond to two ⇤’s (with h(⇤) = h1 + hj for

j = 2, 3) that are not allowed to be added now, shown by the two red boxes below:

1

1 1

1

1

1

h1

h2

h1h3

(5.32)

Also see Figure 9 for a comparison between a legitimate configuration (5.31) and an

illegitimate one (the left one in (5.32)) in their plane partition presentations. This

Figure 9. The configuration on the left (depicting (5.31)) is a legitimate plane partition.

By contrast the configuration on the right (depicting the left graph in (5.32)) violates the

melting rule and is not a plane partition.

means that these two poles have to be canceled by factors in the numerator of  ⇤0(z),

which gives the constraint

h1 + h2 + h3 = 0 . (5.33)

which is precisely the loop constraint (??) for the case of C3:

1

1

1

1 1

1

1

1

1

1

h1

h1

h1

h1

h1
h2 h2

h2

h2

h2

h3

h3

h3

h3

h3

(5.34)
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must contain a factor of z for any i = 1, 2, 3. This constraint fixes the minimal N(z)

to be

N(z) = (z + h1)(z + h2)(z + h3) . (5.28)

We now have the most important function in the construction of the algebra

acting on the set of plane partitions:

'3(z) ⌘
(z + h1)(z + h2)(z + h3)

(z � h1)(z � h2)(z � h3)
=  ⇤(z) for h(⇤) = 0 . (5.29)

By (5.27), we see that the each of the level-2 ⇤’s contribute a factor of '3 function,

with argument shifted by h(⇤).

Before we move on, we need to check whether the three parameters h1,2,3 are

mutually independent. Compare the minimal initial state (5.22) (in order to add one

of the first three ⇤’s in (5.20)) and the minimal initial state (5.24) (in order to add

one of the last three ⇤’s in (5.20)). For example, if one starts with the initial state

(5.22), one can only add a ⇤ at h(⇤) = 2hi, but not the ⇤ at h(⇤) = hi + hj with

j 6= i.

But this fact has to be implemented automatically by the pole structure of the

charge function (5.22). Without loss of generality, consider i = 1, for which the

charge function (5.22) is explicitly

 ⇤(z) =  0(z) ⇤0(z) ⇤1(z)

=
z + C

z
·
(z + h1)(z + h2)(z + h3)

(z � h1)(z � h2)(z � h3)
·

z(z + h2 � h1)(z + h3 � h1)

(z � 2h1)(z � h2 � h1)(z � h3 � h1)
.

(5.30)

Before we proceed to consider the adding poles, first note that the factor of z in the

numerator of  ⇤1(z) cancels the factor of z in the denominator of  0(z), which used

to be the removing pole of the first ⇤. This guarantees that in the presence of the

second ⇤, the first one cannot be removed anymore.

Now we resume the consideration of the adding poles. Note the three poles in

the  ⇤1(z). The first one allows e(z) to add a level-3 ⇤ at (x1, x2, x3) = (2, 0, 0),

with h(⇤) = 2h1, shown by the red box below

1

1

1

h1

h1

(5.31)
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Before we proceed to consider the adding poles, first note that the factor of z in the

numerator of  ⇤1(z) cancels the factor of z in the denominator of  0(z), which used

to be the removing pole of the first ⇤. This guarantees that in the presence of the

second ⇤, the first one cannot be removed anymore.

Now we resume the consideration of the adding poles. Note the three poles in
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The other two poles, however, correspond to two ⇤’s (with h(⇤) = h1 + hj for

j = 2, 3) that are not allowed to be added now, shown by the two red boxes below:
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Also see Figure 9 for a comparison between a legitimate configuration (5.31) and an

illegitimate one (the left one in (5.32)) in their plane partition presentations. This

Figure 9. The configuration on the left (depicting (5.31)) is a legitimate plane partition.

By contrast the configuration on the right (depicting the left graph in (5.32)) violates the

melting rule and is not a plane partition.

means that these two poles have to be canceled by factors in the numerator of  ⇤0(z),

which gives the constraint

h1 + h2 + h3 = 0 . (5.33)

which is precisely the loop constraint (??) for the case of C3:
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must contain a factor of z for any i = 1, 2, 3. This constraint fixes the minimal N(z)

to be

N(z) = (z + h1)(z + h2)(z + h3) . (5.28)

We now have the most important function in the construction of the algebra

acting on the set of plane partitions:

'3(z) ⌘
(z + h1)(z + h2)(z + h3)

(z � h1)(z � h2)(z � h3)
=  ⇤(z) for h(⇤) = 0 . (5.29)

By (5.27), we see that the each of the level-2 ⇤’s contribute a factor of '3 function,

with argument shifted by h(⇤).

Before we move on, we need to check whether the three parameters h1,2,3 are

mutually independent. Compare the minimal initial state (5.22) (in order to add one

of the first three ⇤’s in (5.20)) and the minimal initial state (5.24) (in order to add

one of the last three ⇤’s in (5.20)). For example, if one starts with the initial state

(5.22), one can only add a ⇤ at h(⇤) = 2hi, but not the ⇤ at h(⇤) = hi + hj with

j 6= i.

But this fact has to be implemented automatically by the pole structure of the

charge function (5.22). Without loss of generality, consider i = 1, for which the

charge function (5.22) is explicitly

 ⇤(z) =  0(z) ⇤0(z) ⇤1(z)

=
z + C

z
·
(z + h1)(z + h2)(z + h3)

(z � h1)(z � h2)(z � h3)
·

z(z + h2 � h1)(z + h3 � h1)

(z � 2h1)(z � h2 � h1)(z � h3 � h1)
.

(5.30)

Before we proceed to consider the adding poles, first note that the factor of z in the

numerator of  ⇤1(z) cancels the factor of z in the denominator of  0(z), which used

to be the removing pole of the first ⇤. This guarantees that in the presence of the

second ⇤, the first one cannot be removed anymore.

Now we resume the consideration of the adding poles. Note the three poles in

the  ⇤1(z). The first one allows e(z) to add a level-3 ⇤ at (x1, x2, x3) = (2, 0, 0),

with h(⇤) = 2h1, shown by the red box below
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In general, loop constraint ensures that poles are in correct positions  
as dictated by the melting rule of the crystal



Figure 4: This figure shows an example of three-dimensional version of Young
diagram (a). If you rotate (a) by 180 degrees, we have (b), which looks like
melting of a crystal. By projecting this figure onto two-dimensions, we have a
perfect matching of a bipartite graph defined on honeycomb bipartite graph
(c), or equivalently tiling of plane using three types of rhombi shown in (d)
(this is an analogue of “domino tiling” in Figure 2). This one-to-one corre-
spondence between three-dimensional Young diagram and perfect matching
in dimer model is a higher-dimensional generalization of more familiar cor-
respondence shown in Figure 3. The interesting fact is that this type of
three-dimensional Young diagram appears in string theory, in the “melting
crystal” picture of [21].

8

Truncations and D4-branes
For non-generic equivariant parameters, we have null states, so that the crystal 

truncates at the “pit”

There is a corresponding truncation  
of the algebra 

studied by [Gaiotto-Rapcak]  
(also [Bershtein, Feigin, Merzon])

Physically: D4-branes



discussion seems to be more general than similar discussions of infinite-dimensional

algebra in the literature, e.g. the work of [21] where the Yangian associated with the

quiver acts on the cohomologies of quiver varieties. It would be interesting to fully

understand the relation with [21] and other works, e.g. [29], as we will discuss further

in section 10. Let us also mention that during the preparation of this manuscript we

have been notified of the ongoing work [30], who studies cohomological Hall algebras

[31] for some toric Calabi-Yau manifolds.3

The rest of this paper is organized as follows. We begin with a review of the BPS

crystal melting (section 2) and a�ne Yangian of gl1 (section 3). We introduce the

BPS quiver Yangian in section 4. In order to motivate this definition, in section 5 we

first go back to the plane partitions discussed in section 3 and bootstrap the a�ne

Yangian of gl1. Then in section 6 we repeat a similar analysis for a general quiver

corresponding to a toric Calabi-Yau threefold, to obtain our BPS quiver Yangian.

We discuss the truncation of the algebra and the relation with D4-branes in section 7.

We present many examples both for toric Calabi-Yau threefolds without compact 4-

cycles (section 8) and with compact 4-cycles (section 9). These examples will provide

useful illustrations of many of the general results of the previous sections. The final

section 10 is devoted to a summary and discussions.

2 Review: BPS Crystal Melting

2.1 Quiver Diagram and Superpotential

Let us first briefly summarize the BPS crystal melting for general toric Calabi-Yau

threefolds. For a more complete discussion, see [5, 18].

Let us consider type IIA string theory compactified on a non-compact toric

Calabi-Yau threefold X. Combinatorially, the choice of X is encoded in the so-called

toric diagram �, a lattice convex polytope in Z2, see Figure 1 for an example.

Figure 1. The toric diagram for a toric Calabi-Yau threefold, the so-called Suspended

Pinched Point geometry xy = z2w.

The BPS states of the theory are described by D-branes (D0/D2/D4-branes)

wrapping holomorphic cycles (0/2/4-cycles) inside the Calabi-Yau threefold X. The

3 The quiver Yangian is conjectured to be the Drinfeld double of CoHA; or inversely, the CoHA
captures the positive part of the quiver Yangian, i.e. the creation part instead of the annihilation
part.
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Generalization?

Which combination? 

Answer given by perfect matchings [Li-MY]

null state happens at



Figure 3. The bipartite graph for the Suspended Pinched Point geometry of Figure 1

(shown on the left), which is a dual graph to the periodic quiver of Figure 2 (as shown on

the right). The color of a vertex of the bipartite graph is determined from the orientations

of the quiver arrows surrounding it (black for counterclockwise, and white for clockwise).

The periodic-quiver representation of the superpotential makes it easy to read

o↵ the F-term relations (see Figure 4): two paths on the periodic quiver with the

same starting point and endpoint are F-term equivalent. This will be useful when

we discuss global symmetries of the quiver quantum mechanics.

Figure 4. This figure represents a part of the periodic quiver diagram. In this example,

the superpotential W contains two monomial terms W = Tr(�ba�ac�cb � �ba�ad�de�eb).

The F-term relation @W/@�ba = �ac�cb � �ad�de�eb = 0 for the field �ba is represented

by the fact that the two di↵erent paths a ! c ! b and a ! d ! e ! b starting from a

ending at b represents two F-term equivalent fields (i.e. same element in the chiral ring).

2.2 Crystal as a Lift of Periodic Quiver

Let us next construct the BPS crystal. For this purpose, consider a new quiver

diagram Q obtained by uplifting the periodic quiver diagram to the universal cover

of the two-dimensional torus (namely the two-dimensional plane). Each vertex a on

the resulting quiver is still labelled (colored) by a 2 Q0. Note that as before we will

use the symbols a, b, . . . for the vertices of the original quiver diagram Q (and hence

of the periodic quiver diagram), while we use the symbols a, b, . . . for vertices of the

quiver Q on the universal cover.

– 6 –

arrows of the quiver. The relation between �I and �̃p can now be stated as

�I =
Y

p3I

�̃p . (7.15)

This means that the divisor {�I = 0} can now be regarded as the union of the

submanifolds {�̃p = 0}.

Figure 10. The perfect matchings for the Suspended Pinched Point geometry of Figure

1, whose bipartite graph was shown in Figure 3. There are six perfect matchings, each of

which is associated with one of the five lattice points of the toric diagram (with multiplicity

two for the lattice point (1, 0)); this association is determined by the height function, as

explained in the main text.

Now, for each perfect matching we can associate a lattice point of the toric dia-

gram (in general this can either be on the boundary or inside of the toric diagram),

see Figure 10 for an example. This is determined by the so-called height function

introduced in the dimer model literature — one chooses one of the perfect match-

ings as a reference matching, and when this is superimposed with another perfect

matching we have a set of closed paths on the torus. The total winding numbers
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Perfect matching specifies which edges 
should be “eliminated” 

Bipartite graph (brane tiling): dual of periodic quiver

of the resulting paths, labeled by two integers corresponding to winding in ↵ and

� cycles of the two-dimensional torus, determine the corresponding lattice point of

the toric diagram. (One can show that the resulting toric diagram is independent of

the choice of the reference perfect matching, up to a GL(2,Z)-transformation on the

toric diagram.)

In general multiple perfect matchings can be associated with the same lattice

point. In this paper we consider the case of D4-branes associated with a corner

lattice point of the toric diagram. In this case, it is known that there is a unique

perfect matching p corresponding to the lattice point (cf. [33]), and one can show

[56, Theorem 2] that the D4-brane divisor can be identified with the locus {�̃p = 0}

associated with that perfect matching p. In this locus {�̃p = 0}, we set all the

bifundamental fields belonging to the perfect matching to zero. Such a truncation

for the BPS crystal melting model was discussed previously in [57] (see also [58, 59]).

For the present purpose of identifying the number of D4-branes, when we consider

a D4-brane wrapping the divisor {�̃p = 0}, we impose the condition

hI = 0 when I 2 p . (7.16)

This leaves a restricted set of parameters, which we regard as the parameter space

needed for the truncation with D4-branes.

X

p

Np

 
X

I2p

hI

!
+ C = 0 . (7.17)

Since we consider divisors associated with perfect matchings for the corner lattice

points of the toric diagram, this will be specified by Ecorner, the number of such lattice

points. This should be compared with the set of |Q0| + 1 = E + 2I � 1 integers NA

associated with truncations of the algebra. Note, however, not all the possible sets

of integers NA are realized in the quiver diagram, and hence the actual possible

truncations are much more limited. We will discuss many examples in section 8

and section 9, and find that the truncations of the algebra are always labelled by

a set of two integers, at least for all the examples studied in this paper. This is

actually smaller than the number Ecorner of independent D4-brane charges associated

with corner perfect matchings. Moreover, we in general have many more complex

submanifolds described by non-corner perfect matchings. This suggests that there

exist more general representations of the quiver Yangians than studied in this paper.

We leave a detailed discussion of these subtleties for future work.

8 Examples: Calabi-Yau Threefolds without Compact 4-

cycles

In the next two sections we apply the algorithm outlined in section 4 on various toric

Calabi-Yau threefolds. For each example, we will construct explicitly its associated
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In either case, from the viewpoint of the D0-brane quantum mechanics the D4-brane

looks like a flavor brane.

The divisors in question are regions of the (p, q) 5-brane webs. This is also

in one-to-one correspondence with a lattice point of the toric diagram. Since we

have denoted the number of external (internal) lattice points by E (I), we have E

non-compact (I compact) D4-brane divisors.

When we include D4-branes, we need to include strings connecting D0-brane to

the D4-brane, which gives a pair of the quark chiral multiplet q and the anti-quark

chiral multiplet q̃. They couple to one of the bifundamental fields �I of the D0-brane

quiver quantum mechanics, with superpotential

W = q̃�I q . (7.14)

Which bifundamental field do we get? To answer this, it is useful to take T-

duality twice, so that both the D0-brane and the D4-brane are turned into D2-branes

[56]. We then have a brane configuration consisting of D2-branes and an NS5-brane

(see [41] for a detailed analysis), which gives a physical realization of the brane tilings

and the periodic quiver.

Let us consider the situation where the flavor D4-brane (which is now a flavor D2-

brane) is associated with a non-compact region corresponding to the corner external

vertex of the toric diagram. One then finds that the D2-brane in the D2/NS5 brane

configuration is sandwiched between two asymptotic NS5-brane cylinders, which are

related by string duality to two asymptotic lines of (p, q)-webs surrounding D4-brane

region. The string at the intersection of the two NS5-branes gives rise to a bifunda-

mental chiral multiplet, which can be identified with the bifundamental field �I in

question.

When we include the D4-brane, the bifundamental chiral multiplet �I will in

general have a VEV (Vacuum Expectation Value), and this gives masses to the

quarks. This means that the probe D0-brane and the flavor D4-brane are separate.

In order to identify the D4-brane divisor, one therefore needs to probe the locus

where the VEV of the chiral multiplet vanishes: �I = 0. Since we have one complex

equation, we could expect a divisor.

While �I = 0 is a legitimate equation, one needs to remember that we need to

take into account the F-term relations arising from the derivatives of the superpoten-

tial. One systematic approach is to solve the F-term equations first, and then impose

the condition �I = 0. This process is helped greatly by the fact that the F-term

equations can be solved by a set of fields �̃p associated with perfect matchings p of

the dimer model [38]. Here a perfect matching refers to a subset of the edges of the

bipartite graph such that any vertex of the bipartite graph is contained in exactly

one edge (see Figure 10). Since the periodic quiver is the dual of the bipartite graph,

this means that a perfect matching can be regarded as a subset of Q1, the set of
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which is associated with one of the five lattice points of the toric diagram (with multiplicity

two for the lattice point (1, 0)); this association is determined by the height function, as

explained in the main text.

Now, for each perfect matching we can associate a lattice point of the toric dia-

gram (in general this can either be on the boundary or inside of the toric diagram),

see Figure 10 for an example. This is determined by the so-called height function

introduced in the dimer model literature — one chooses one of the perfect match-

ings as a reference matching, and when this is superimposed with another perfect

matching we have a set of closed paths on the torus. The total winding numbers
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Physical explanation:  
D4-brane = flavor brane, with extra superpotential

This describes the divisor,  
represented by 

regions filled by D4-branes  
[Imamura-Kimura-Y]

studied in “forward algorithm” 
[Franco-Hanany-Kennaway-Vegh-Wecht]
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Quantum Mechanics 
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We will try to describe the BPS Hilbert space in geometrical terms as it appears in
the mathematics literature, see, for example, [44]. The target space of SQM, which we
denote by MSQM, is spanned by the scalar fields of SQM. This includes adjoint scalars

X1,2,3
v associated with vector multiplets, and bifundamental scalars q(a: v!w) associated

with chiral multiplets (see Appendix A for more details):

MSQM :
X3

v 2 u(nv), �v 2 gl(nv,C) , v 2 V ,

q(a: v!w) 2 Hom(Cnv ,Cnw) , a 2 A ,
(2.4)

where we introduced a complex combination �v := X1
v + iX2

v .

The supercharge has the form of a di↵erential on the target space (see Appendix
A):1

Q̄1̇ = e�H
�
dX3 + @̄�,q + ◆V + dW^

�
eH , (2.5)

where we define the height function:

H :=
X

v2V

Tr X3
v

✓
1

2

⇥
�v, �̄v

⇤
� µR,v

◆
, (2.6)

a vector field:

V :=
X

(a: v!w)2A

(�wqa � qa�v)
@

@qa
, (2.7)

and the moment maps define stability conditions:

µR,v := ✓v1nv⇥nv �
X

x2V

X

(a:v!x)2A

qaq
†

a +
X

y2V

X

(b:y!v)2A

q†bqb . (2.8)

Using the standard reasoning [45] we can identify the BPS Hilbert space with the
Ĝ-equivariant cohomology of one of the four supercharges, which we take to be Q̄1̇:

HBPS
⇠= H⇤

Ĝ
(Q̄1̇) . (2.9)

Under such geometrical identification the cohomological degree is identified with the
fermion number of a physical state.

One subtlety in the identification (2.9) is that the target space in the SQM is singular
in general. To regularize it we introduce the ⌦-background [31], and we consider the
cohomology (2.9) after the ⌦-deformation.

To introduce the ⌦-deformation, we introduce an additional U(1) gauge multiplet
U(1)F,a for each arrow a : v ! w, so that the bifundamental chiral field labeled by an

1A version of this formula is well-known since the classic paper [45], however we are not aware if
this particular expression has appeared previously in the literature.
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Ĝ
(Q̄1̇) . (2.9)

Under such geometrical identification the cohomological degree is identified with the
fermion number of a physical state.

One subtlety in the identification (2.9) is that the target space in the SQM is singular
in general. To regularize it we introduce the ⌦-background [31], and we consider the
cohomology (2.9) after the ⌦-deformation.

To introduce the ⌦-deformation, we introduce an additional U(1) gauge multiplet
U(1)F,a for each arrow a : v ! w, so that the bifundamental chiral field labeled by an

1A version of this formula is well-known since the classic paper [45], however we are not aware if
this particular expression has appeared previously in the literature.

8

We will try to describe the BPS Hilbert space in geometrical terms as it appears in
the mathematics literature, see, for example, [44]. The target space of SQM, which we
denote by MSQM, is spanned by the scalar fields of SQM. This includes adjoint scalars

X1,2,3
v associated with vector multiplets, and bifundamental scalars q(a: v!w) associated

with chiral multiplets (see Appendix A for more details):

MSQM :
X3

v 2 u(nv), �v 2 gl(nv,C) , v 2 V ,

q(a: v!w) 2 Hom(Cnv ,Cnw) , a 2 A ,
(2.4)

where we introduced a complex combination �v := X1
v + iX2

v .

The supercharge has the form of a di↵erential on the target space (see Appendix
A):1

Q̄1̇ = e�H
�
dX3 + @̄�,q + ◆V + dW^

�
eH , (2.5)

where we define the height function:

H :=
X

v2V

Tr X3
v

✓
1

2

⇥
�v, �̄v

⇤
� µR,v

◆
, (2.6)

a vector field:

V :=
X

(a: v!w)2A

(�wqa � qa�v)
@

@qa
, (2.7)

and the moment maps define stability conditions:

µR,v := ✓v1nv⇥nv �
X

x2V

X

(a:v!x)2A

qaq
†

a +
X

y2V

X

(b:y!v)2A

q†bqb . (2.8)

Using the standard reasoning [45] we can identify the BPS Hilbert space with the
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Step 1: SQM and its equivariant cohomology

We have the vacuum moduli space from supersymmetric 
quiver quantum mechanics (e.g. [Denef])

BPS Hilbert space [Witten]:

Supercharge [Galakhov-MY]



arrow a : v ! w has charge �1 with respect to this symmetry U(1)F,a. We then freeze
these additional degrees of freedom by setting up expectation values to the complex
adjoint scalar �a of the U(1)F,a vector multiplet: h�ai = ✏a. As a result one finds that
this procedure leads to a modification of the vector field action (2.7):

V (qa) =
X

(a: v!w)2A

(�wqa � qa�v � ✏aqa)
@

@qa
. (2.10)

In addition, a requirement of supercharge nilpotency (see superalgebra relations (A.12))
leads to a constraint that the superpotential is invariant with respect to the equivariant
torus action:

Q̄2
1̇
= �4

X

a2A

✏a Tr

✓
qa

@

@qa

◆
W = 0 . (2.11)

Since the superpotential W is a sum of monomials (2.1), (2.11) means that ✏a is a flavor
symmetry charge assignment to the bifundamental chiral multiplets consistent with the
superpotential. On the crystal the charge assignment satisfies the “loop constraint” [16],
i.e. the sum of the all the charges around any face of the periodic quiver is zero. This
charge assignment is parametrized by |V|+1 parameters [16, Section 4.1], where the |V|
is the number of the vertices of the quiver Q. We can use gauge degrees of freedom to
shift the charge assignment, and this causes the reshu✏ing of the algebra as discussed
in [16, Section 4.3.2]. We can fix this ambiguity e.g. by imposing the “vertex constraint”,
which reduces the number of parameters to two [16]—these are nothing but the two
mesonic flavor symmetries of the SQM, which when combined with an R-symmetry
(the R-symmetry for the parent four-dimensional N = 1 theory) correspond to the
three isometries of the toric Calabi-Yau three-fold. The two parameters are precisely
the two parameters for the 2d projection of the crystal [16].

2.3 Localization and RG Flow

Let us briefly review an application of the localization technique to a SQM. As we shall
see, this is tightly related to the renormalization group (RG) flow.

Consider a one-parameter family of di↵erentials

Q̄(s)

1̇
= e�sH

�
dX3 + @̄�,q + ◆sV + s dW^

�
esH . (2.12)

The supercharge of the SQM we considered before in equation (2.5) is a member of

this family for s = 1. Since Q̄(s)

1̇
with di↵erent values of s are related by conjugation, the

corresponding cohomology is an invariant of this one-parameter family. The major idea
of the localization technique is to evaluate this cohomology in a special limit s ! 1.
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Step 2: Omega-deformation

The equivariant parameters should be consistent with W (loop constraint), 
and hence can be identified with       introduced previously

We introduce Omega-deformation [Nekrasov,…]  
to “smooth out” the singular geometry

We will try to describe the BPS Hilbert space in geometrical terms as it appears in
the mathematics literature, see, for example, [44]. The target space of SQM, which we
denote by MSQM, is spanned by the scalar fields of SQM. This includes adjoint scalars

X1,2,3
v associated with vector multiplets, and bifundamental scalars q(a: v!w) associated

with chiral multiplets (see Appendix A for more details):
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Under such geometrical identification the cohomological degree is identified with the
fermion number of a physical state.

One subtlety in the identification (2.9) is that the target space in the SQM is singular
in general. To regularize it we introduce the ⌦-background [31], and we consider the
cohomology (2.9) after the ⌦-deformation.

To introduce the ⌦-deformation, we introduce an additional U(1) gauge multiplet
U(1)F,a for each arrow a : v ! w, so that the bifundamental chiral field labeled by an

1A version of this formula is well-known since the classic paper [45], however we are not aware if
this particular expression has appeared previously in the literature.
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4 BPS Quiver Yangian for General Quivers

In this section let us define the BPS quiver Yangian Y(Q,W ) from a pair (Q,W ).8 Since

the pair (Q,W ) is obtained from a toric Calabi-Yau geometry X (as we discussed in

section 2), the algebra Y(Q,W ) in itself can be associated with the geometry X.

In general, for the same Calabi-Yau manifold X, there exist multiple quiver

gauge theories (Q,W ) which are dual to one another. In these situations the quiver

gauge theories are believed to be related by a sequence of Seiberg dualities (quiver

mutations) [46], and we conjecture that the resulting algebras Y(Q,W ) are all isomor-

phic. We will see concrete examples of this phenomenon in sections 8.3 and 9.2:

the relevant isomorphisms are already known in the mathematical literature for the

examples in 8.3, but not for those in 9.2. It would be interesting to explore this point

further.

In this section we provide a top-down definition of the algebra. Let us mention,

however, that later in section 6 we will provide bottom-up justifications of the algebra.

Indeed, as we will see in section 6, under some reasonable ansatz, the condition

that this algebra acts on the configurations of molten crystal can completely fix the

algebra. In this sense our algebra and its representation on the BPS crystal are

intimately connected.

4.1 Parameters

To define the BPS quiver Yangian Y(Q,W ), we first consider a set of charge assignments

hI for each arrow I 2 Q1. We impose the condition that this charge assignment

is compatible with the superpotential W . In other words, the charges hI can be

regarded as charges under a global symmetry of the quiver quantum mechanics. The

superpotential W will enter into the definition of the algebra Y(Q,W ) through this

charge-assignment constraint only.

In the periodic quiver diagram, a monomial term in the superpotential is repre-

sented by a closed loop. This means that the constraint on the parameters hI can

be written as9

loop constraint:

X

I2L

hI = 0 , (4.1)

where L is an arbitrary loop in the periodic quiver. We will hereafter call this condi-

tion the loop constraint, and the parameters satisfying these conditions as coordinate

parameters. In section 6.4 we will see that this constraint is instrumental in ensuring

the consistency of the crystal-melting representation of the algebra.

8While our interest in this paper is to those pair (Q,W ) originating from toric Calabi-Yau
threefolds, our definition in itself applies to more general choices of (Q,W ). It is not clear, however,
if the algebra acts on BPS states of some gauge/string theory in these more general situations.

9Note that all arrows are in the same direction in the smallest loops.
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The supercharge Q̄(s)

1̇
leads to a family of corresponding Hamiltonians:

H(s) =

⇢
Q̄(s)

1̇
,
⇣
Q̄(s)

1̇

⌘
†
�

⇠ �+ s
2
���~rH

���
2
+ s

2
���~V

���
2
+ s

2
���~rW

���
2
+ . . . . (2.13)

In the limit s ! 1 the contributions of potential terms will grow, therefore trajectories
represented by particles sitting in classical vacua—zeroes of the potential—will give the
dominant contribution to the path integral.

Let us reparameterize the degrees of freedom as:

Xi = hxii+ s
�

1
2xi .

We observe that the Hamiltonian and the supercharge decompose as:

H = sH0 +O
⇣
s

1
2

⌘
, Q̄(s)

1̇
= s

1
2 Q̄(0)

1̇
+ Q̄(1)

1̇
+O(s�

1
2 ) . (2.14)

Here H0 and Q̄(0)

1̇
are simple expressions representing a free particle:

H0 ⇠
X

i

�
�@2xi

+ !2
i x

2
i

�
+
X

i

!i

⇣
 i 

†

i �  †

i i

⌘
, Q̄(0)

1̇
⇠

X

i

 i (@xi + !ixi) .

Let us choose a cuto↵ ⇤cf for frequencies !i. Then the leading contribution to the

supercharge is of order s
1
2⇤

1
2
cf . We can split the wave-function in two parts, fast modes

x|!|>⇤cf
and slow ones x|!|<⇤cf

:

 =  |!|<⇤cf

�
x|!|<⇤cf

�
 |!|>⇤cf

�
x|!|<⇤cf

, x|!|>⇤cf

�
+O(s�1) .

The first order BPS equation reads:
⇣
Q̄(0)

1̇

⌘
†

 |!|>⇤cf
= Q̄(0)

1̇
 |!|>⇤cf

= 0 .

The leading order of the supercharge Q̄(0)

1̇
will not have derivatives with respect to slow

modes x|!|<⇤cf
, which will enter the corresponding expression for the wave-function

only as parameters. Therefore this equation is not enough to define  |!|<⇤cf
. To derive

a defining equation we incorporate contributions to the supercharge up to the first order
and multiply this equation by a bra-vector  †

|!|<⇤cf
:

 †

|!|>⇤cf

⇣
s

1
2 Q̄(0)

1̇
+ Q̄(1)

1̇

⌘
 |!|>⇤cf

 |!|<⇤cf
= 0 .

The first term in this sum cancels out.

Splitting modes into slow and fast modes is a familiar procedure for the Wilsonian
RG flow: the unknown part  |!|<⇤cf

of the first-order approximation to the wave-
function is annihilated by 1-loop corrected e↵ective supercharge:

Q†

e↵ |!|<⇤cf
= 0, Q†

e↵ :=
D
 |!|>⇤cf

���Q̄(1)

1̇

��� |!|>⇤cf

E
. (2.15)
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Step 3: Higgs branch localization
2.4 Higgs Branch Localization and Crystal Melting

In our setup we choose a Higgs branch localization. In other words, we assume that
✓v-parameters are large and the vacuum expectation values are given to the chiral
fields—we will choose the following orders in the size of the parameters in question:

|✏| ⌧ ⇤cf ⌧ |✓|
1
2 . (2.16)

Actually, as we will see in what follows, the vacuum expectation values of the vector-
multiplet scalars are also non-zero being resolved by the ⌦-background parameters.

Following the procedure of the previous section we associate wave-functions with
vacuum field values—critical points of the height function H and the superpotential W
fixed with respect to the action of complexified gauge field V introduced in (2.10).

Critical points of H define a zero of the real moment map (2.8). This equation
is an analog of the constant curvature equation in the Narashiman-Shishadri-Hitchin-
Kobayashi correspondence [46], and can be traded for a stability condition if we com-
plexify the gauge group.

Consider a complexification

GC =
Y

v2V

GL(nv,C)

of the quiver gauge group G. In general a quiver representation R is a GC-orbit of a
collection of vector spaces

R =
M

v2V

Cnv

associated to quiver nodes, equipped with the action of morphisms associated to quiver
arrows:

q(a: v!w) 2 Hom(Cnv ,Cnw) .

For a quiver representation with a dimension vector � we define a function

✓(�) :=
X

v2V

nv✓v, ✓v 2 R . (2.17)

For a representation R with dimension vector �, the FI parameters ✓v satisfy ✓(�) = 0.
This constraint follows naturally if one adds up traces of all the moment maps (2.8). A
quiver representation R is called semi-stable (stable) if for all proper subrepresentations
R0 we have ✓(�0) > 0 (✓(�0) � 0). A theorem of King [47] (see also [30] and examples
in [48]) states that each stable quiver representation R contains a single solution to
(2.8) up to complexified gauge transformations. And all the solutions to (2.8) are
contained in orbits of semi-stable representations. In our consideration all the semi-
stable representations will be stable, therefore we can establish an equivalence between
solutions to (2.8) and stable quiver representations.
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Wilsonian decomposition of wave function

1-parameter deformation of supercharge



of this expression in a specific basis {mi} for Mmeson where the equivariant vector field
action diagonalizes

V =
X

i

wi mi
@

@mi
,

Notice that restricting gC back to its uncomplexified version g for vector field V we
produce generators of flavour group transformations. Even if the e↵ective metric on
Mmeson is corrected by the RG flow, the resulting metric should remain flavour invari-
ant. This, in turn, implies that di↵erent weight spaces are orthogonal to each other.
We can hence assume in addition that in chosen basis the metric takes the following
simple form:

ds2 =
X

i

dm̄i dmi .

E↵ective supercharges have the form of equivariant Dolbeault di↵erential that is rather
simple in the chosen basis (compare to [53, eq.(23)]):

Q†

e↵ =
X

i

⇣
dm̄i @m̄i + wimi ◆@/@mi

⌘
.

Using dictionary (A.13) we translate them to operators:

Qe↵ ⇠
X

i

(� 1,i@mi +  2,iw̄im̄i) , Q†

e↵ ⇠
X

i

⇣
 ̄1̇,i@m̄i +  ̄2̇,iwimi

⌘
. (2.22)

It is easy to single out a harmonic Q†

e↵ -cohomology representative by the following
condition:

Qe↵ ⇤ = Q†

e↵ ⇤ = 0 . (2.23)

A solution to this system of equations reads:

 ⇤ =

 
Y

i

⇣
wi � |wi|  ̄1̇,i 2,i

⌘
e�|wi||mi|

2

!
Y

i

 ̄2̇,i|0i . (2.24)

This wave-function describes simply Gaussian fluctuations around the vacuum labeled
by the crystal ⇤. One can translate this expression into a di↵erential form using the
dictionary (A.13), the result is precisely the Thom representative of the Euler class:

 ⇤ ⇠
^

i

e�|wi||mi|
2
(wi � |wi| dmi ^ dm̄i) .

Indeed, for (2.24) we have:

 ⇤ =

 
Y

i

wi

!
e
�

⇢
Q†

e↵ ,
P
i

|wi|
wi

m̄i 2,i

�
Y

i

 ̄2̇,i|0i =

=

 
Y

i

wi

!
Y

i

 ̄2̇,i|0i+
⇣
Q†

e↵ -exact term
⌘

.

(2.25)
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Thus the wave-function is cohomologically equivalent to the Pfa�an of the curvature
(compare to [52, Sections 11.1.2 and 11.6]):

 ⇤ ⇠ Eul⇤ :=
Y

i

wi . (2.26)

The Euler class satisfies the following normalization conditions following from equiv-
ariant integration:

Z
 ⇤ = 1 ,

Z
 ⇤ ^ ⇤0 = Eul⇤ �⇤,⇤0 . (2.27)

Here  ⇤ and  ⇤0 in these integrals are treated as forms—elements of equivariant co-
homology, integration goes over the quiver representation moduli space.

This normalization condition is rather unusual from the physics point of view; it
would be more conventional to use the unitary Hermitian norm descending form the
Hermitian structure on the Hilbert space. Nevertheless, as it was pointed out in [39, Sec-
tion 3.3] the very transition form the harmonic forms to the equivariant Dolbeault coho-
mologies we made in Section 2.3 to apply localization techniques prioritizes the complex
structure on GC over unitarity. As we will see this choice of the norm give rise to a
BPS algebra resembling the desired properties of a�ne Yangians. For a comparison, we
could mention a similar phenomenon occurs for a basis of orthogonal Jack polynomi-
als [54]. Jack polynomials are known to deliver a fixed point basis representation in the
BPS Hilbert space for Hilbert scheme on C2, see Section 3.1 for details. The vectors of
this basis are orthogonal simultaneously with respect to two norm choices: a Hermitian
one and a “holomorphic” one. However raising and lowering operators resembled by
multiplications by time variables pn and p�n correspondingly are conjugated to each
other only for the holomorphic norm.

2.5 Hecke Shift Generators

We have considered the e↵ective theory from the point of view of the D0-brane world-
volume. Let us call this description I. On the other hand, we could have started with
an e↵ective theory on the worldvolume of the non-compact D6-brane wrapping the
Calabi-Yau manifold. Let us call this alternative description II.

Description II has an interpretation as “stringy Kähler gravity” [15,55,56], an e↵ec-
tive description of Kähler quantum foam. D0-branes represent point-like gravitational
sources deforming the initial Calabi-Yau geometry in such a way that the Käler form
! takes the following form:

! = !0 + gsFA , (2.28)

where !0 is an unperturbed Kähler form of Calabi-Yau three-fold X, gs is the string
coupling constant, and FA is a curvature of a U(1) connection A. Then, e↵ectively,
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of this expression in a specific basis {mi} for Mmeson where the equivariant vector field
action diagonalizes

V =
X

i

wi mi
@

@mi
,

Notice that restricting gC back to its uncomplexified version g for vector field V we
produce generators of flavour group transformations. Even if the e↵ective metric on
Mmeson is corrected by the RG flow, the resulting metric should remain flavour invari-
ant. This, in turn, implies that di↵erent weight spaces are orthogonal to each other.
We can hence assume in addition that in chosen basis the metric takes the following
simple form:

ds2 =
X

i

dm̄i dmi .

E↵ective supercharges have the form of equivariant Dolbeault di↵erential that is rather
simple in the chosen basis (compare to [53, eq.(23)]):

Q†

e↵ =
X

i

⇣
dm̄i @m̄i + wimi ◆@/@mi

⌘
.

Using dictionary (A.13) we translate them to operators:

Qe↵ ⇠
X

i

(� 1,i@mi +  2,iw̄im̄i) , Q†

e↵ ⇠
X

i

⇣
 ̄1̇,i@m̄i +  ̄2̇,iwimi

⌘
. (2.22)

It is easy to single out a harmonic Q†

e↵ -cohomology representative by the following
condition:

Qe↵ ⇤ = Q†

e↵ ⇤ = 0 . (2.23)

A solution to this system of equations reads:

 ⇤ =

 
Y

i

⇣
wi � |wi|  ̄1̇,i 2,i

⌘
e�|wi||mi|

2

!
Y

i

 ̄2̇,i|0i . (2.24)

This wave-function describes simply Gaussian fluctuations around the vacuum labeled
by the crystal ⇤. One can translate this expression into a di↵erential form using the
dictionary (A.13), the result is precisely the Thom representative of the Euler class:

 ⇤ ⇠
^

i

e�|wi||mi|
2
(wi � |wi| dmi ^ dm̄i) .

Indeed, for (2.24) we have:
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Y

i

wi

!
e
�

⇢
Q†

e↵ ,
P
i

|wi|
wi

m̄i 2,i

�
Y

i

 ̄2̇,i|0i =

=

 
Y

i

wi

!
Y

i

 ̄2̇,i|0i+
⇣
Q†

e↵ -exact term
⌘

.

(2.25)
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Choose a basis such that the gauge action V is diagonal:

We can then solve for the effective wavefunction  as

to find the Euler class



A singular homomorphism of holomorphic bundles induces corresponding homo-
morphism of quiver representations. Following [47] we define a homomorphism ⌧ of
quiver representations R and R0:

⌧ : R0 �! R ,

to be a collection of linear maps {⌧v}v2V :

⌧v : Cn0
v �! Cnv ,

satisfying the following relations:

q(a : v!w) · ⌧v = ⌧w · q0(a : v!w) . (2.33)

Note that the quiver description of the morphism (2.33) works for a general Calabi-Yau
manifold other than C3.

The generalization of ADHMN construction to 6d instantons maps a self-dual gauge
connection to morphisms qa of the quiver representation. Then we can treat equation
(2.33) as an image of (2.32) under this equivalence relation.

We define the raising Hecke operator êv as a BPS operator performing a Hecke
modification on a bundle associated to description II and increasing the number of
D0 branes of charge v 2 V by 1. Similarly, lowering Hecke operator f̂v decreases the
number of v-colored D0-branes by 1. Correspondingly, we have

n0

v = nv ± 1, and n0

w = nw, for w 6= v .

In the case, say, n0
v = nv + 1 homomorphism ⌧ describes R as a subrepresentation

of R0. A physical interpretation of this fact is [49] that R can appear among products
of R0’s decay. Unfortunately, we are unable to give an immediate description of the
decay process in the current framework for the following reason. A decay of a bound
state occurs establishing a wall-crossing phenomenon at the boundary of the marginal
stability chamber where the stability constraint for (2.17) is not fulfilled. At this
boundary some part of FI parameters ✓v change the sign going through the zero value.
However, the Higgs branch description fails down in a vicinity of ✓v = 0 where the
Coulomb branch or a mixed branch opens. A non-perturbative parallel transport of
branes through such regions is available for some models [62] and represents a physical
description of braiding for brane categories through a Fourier–Mukai transform we will
mention later.

Here let us present some physical arguments to derive matrix elements for operators
ê, f̂ . A picture of a molten crystal suggests a natural physical intuition behind the
decay (recombination) processes that an atom is taken to (brought from) infinity being
detached from (attached to) the crystal body. Eigenvalues of the complex scalar field in
the gauge multiplet �⇤ are in general complex numbers. Let us assign to atoms ⇤ 2 ⇤
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Step 4: Hecke modification

Momentarily, we will discuss relations in our BPS algebra. Let us implement first
another set of notations adopted form [16]. Define matrix elements of operators ê, f̂ :

Ê(⇤! ⇤+⇤) :=
h ⇤+⇤|ê| ⇤i
h ⇤+⇤| ⇤+⇤i

=
Eul⇤

Eul⇤,⇤+⇤
,

F̂ (⇤! ⇤�⇤) :=
h ⇤�⇤|f̂ | ⇤i
h ⇤�⇤| ⇤�⇤i

=
Eul⇤

Eul⇤�⇤,⇤
.

(2.50)

Calculation of these matrix coe�cients for each concrete crystal ⇤ and atom ⇤
is a well-posed linear algebra problem, however dimensions of involved vector spaces
grow quite rapidly with the crystal size. Currently, we are unable to present generic
combinatorial expressions for matrix coe�cients E and F . Using programming tools,
however, we are able to predict relations between matrix coe�cients and to check them
in a vast variety of quiver examples and for various crystals. We will concentrate on
these examples in section 3 and put some explicit calculations in Appendix C.

We find that the matrix elements satisfy the following set of relations (cf. [16]):

Ê(⇤! ⇤+⇤)F̂ (⇤+⇤ ! ⇤) = res
z=p⇤

 ̂(⇤̂)
⇤ (z) = � res

z=p⇤
 ̂(⇤̂)
⇤+⇤(z) ,

Ê(⇤+⇤1 ! ⇤+⇤1 +⇤2)F̂ (⇤+⇤1 +⇤2 ! ⇤+⇤1)

F̂ (⇤+⇤1 ! ⇤)Ê(⇤! ⇤+⇤2)
= 1 ,

Ê(⇤! ⇤+⇤1)Ê(⇤+⇤1 ! ⇤+⇤1 +⇤2)

Ê(⇤! ⇤+⇤2)Ê(⇤+⇤2 ! ⇤+⇤1 +⇤2)
'̂⇤̂1,⇤̂2

�
�⇤1

� �⇤2

�
= 1 ,

F̂ (⇤+⇤1 +⇤2 ! ⇤+⇤1)F̂ (⇤+⇤1 ! ⇤)

F̂ (⇤+⇤1 +⇤2 ! ⇤+⇤2)F̂ (⇤+⇤2 ! ⇤)
'̂⇤̂1,⇤̂2

�
�⇤1

� �⇤2

�
= 1 ,

(2.51)

where we introduced the following functions (cf. [16]):

'̂v,w(z) := (�1)�v,w+|a: v!w|

Q
(a : v!w)2A

(z + ✏a)

Q
(b: w!v)2A

(z � ✏b)
,

 ̂(v)
⇤ (z) :=

✓
1

z

◆�f .n.,v

0

@
Y

(a: v!v)2A

� 1

✏a

1

A
Y

⇤2⇤

'̂v,⇤̂(z � �⇤) .

(2.52)

Here f .n. denotes the color of the root atom corresponding to the node that is “framed”,
i.e. it is the target of the map ◆ from the framing node.

The BPS algebra is often compactly represented by the introduction of the spectral
parameter. In addition to (2.48) we can also introduce spectral-parameter dependence
to the generators ê, f̂ by the commutator:

ê(v)(z) :=
⇥
Tr (z � �v)

�1, ê
⇤
,

f̂ (v)(z) := �
h
Tr (z � �v)

�1, f̂
i
.

(2.53)
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This modification helps to split the action of operators ê, f̂ on the vacant atom positions
in ⇤+ and ⇤�, so that the matrix elements of ê(v) and f̂ (v) will have poles in vacant
atom positions projected to the �-plane [16]:

ê(v)(z)|⇤i =
X

⇤2⇤+

⇤̂=v

1

z � �⇤
⇥ Ê(⇤ ! ⇤+⇤)|⇤+⇤i ,

f̂ (v)(z)|⇤i =
X

⇤2⇤�

⇤̂=v

1

z � �⇤
⇥ F̂ (⇤ ! ⇤�⇤)|⇤�⇤i .

(2.54)

Also we introduce an operator  ̂(v)(z) through its matrix elements on the crystal rep-
resentation:

 ̂(v)(z)|⇤i =  ̂(v)
⇤ (z)⇥ |⇤i . (2.55)

We would like to consider a BPS algebra generated by the following set of genera-
tors:

ê(v)(z) , f̂ (v)(z) ,  ̂(v)(z) , v 2 V .

Using relations (2.51) we find that these generators satisfy the following closed set
of OPE (cf. [16, section 6]):

h
ê(v)(x), f̂ (w)(y)

i
⇠ �vw

 ̂(v)(x)�  ̂(w)(y)

x� y
,

 ̂(v)(x)ê(w)(y) ' '̂v,w(x� y)ê(w)(y) ̂(v)(x) ,

 ̂(v)(x)f̂ (w)(y) ' ['̂v,w(x� y)]�1 f̂ (w)(y) ̂(v)(x) ,

ê(v)(x)ê(w)(y) ⇠ '̂v,w(x� y)ê(w)(y)ê(v)(x) ,

f̂ (v)(x)f̂ (w)(y) ⇠ ['̂v,w(x� y)]�1 f̂ (w)(y)f̂ (v)(x) ,

(2.56)

where ⇠ (') imply that both sides coincide in expansion in x and y up to monomials
xjyk�0 and xj�0yk (xj�0yk�0).

The OPE relations are slightly di↵erent from those expected for the BPS quiver
Yangian Y(Q,W ) of [16]. In particular, when the Calabi-Yau 3-fold in question is a

generalized conifold Y(Q,W ) becomes a Yangian of a�ne Lie superalgebra Y (bglm|n),
and generators e and f acquire parity. In this case the e–f commutator in (2.56) is
expected to be substituted by a supercommutator taking into account generator parity,
for example.

We could assign a parity to atoms of color v 2 V as it appears in the cohomological
Hall algebra construction [44]. Similarly, according to the boxed contribution in (2.52)
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 ̂(v)(x)f̂ (w)(y) ' ['̂v,w(x� y)]�1 f̂ (w)(y) ̂(v)(x) ,

ê(v)(x)ê(w)(y) ⇠ '̂v,w(x� y)ê(w)(y)ê(v)(x) ,
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�
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to the generators ê, f̂ by the commutator:
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Raising/lowering operators of the algebra obtained by “Hecke modification” 
 shifting the dimension vectors at the quiver nodes:

Define generators 

and its action on crystal configurations is 

Need



To derive the wave function for ⇤ � ⇤, one has to implement also degrees of freedom
corresponding to V1, since they are absent in the initial system for crystal ⇤. Gathering
all contributions one arrives to the following relation:

 !<|⇤cf |
(V1)⇥ !<|⇤cf |

(M2)⇥ !>|⇤cf |
=

=
Eul(V2)

Eul(W1)
⇥ !<|⇤cf |

(M1)⇥ !<|⇤cf |
(W2)⇥ 0

!>|⇤cf |
.

(2.43)

The wave function  !<|⇤cf |
(W2) contains degrees of freedom W2 that are not pro-

jected to M1. Since these degrees of freedom do not become high frequency modes, it
is natural to associate this wave function with the D0 brane and W2 with the degrees
of freedom carried away.

We associate to the action of f̂ a matrix coe�cient given by a numerical coe�cient
in the above expression:

Eul(V2)

Eul(W1)
=

Eul(M2)

Eul(⌃)
, (2.44)

where we used (2.38). Let us introduce the following notations:

Eul⇤ := Eul(M2), Eul⇤�⇤,⇤ := Eul(⌃) . (2.45)

A complete expression for f̂ is given by contributions from all possible atom sub-
tractions from the crystal ⇤. Denote ⇤�(⇤+) a set of atoms that can be removed
from/added to crystal ⇤ and the result will be a crystal again, then we have:

f̂  ⇤ =
X

⇤2⇤�

Eul⇤
Eul⇤�⇤,⇤

 ⇤�⇤ . (2.46)

Expression for ê is defined from the requirement that ê and f̂ are conjugate with
respect to the norm (2.27):

ê  ⇤ =
X

⇤2⇤+

Eul⇤
Eul⇤,⇤+⇤

 ⇤+⇤ . (2.47)

These expressions coincide with ones derived by geometric methods in [60], where
Hecke modification corresponds to a Fourier–Mukai transform of  ⇤ 2 H⇤

GC(M2) on a
product manifold M1⇥M2 with a kernel given by a structure sheaf of the equivariant
incidence locus (2.33). Indeed, using orthogonality of norm (2.27) we can calculate
corresponding coe�cients in expansion (2.47) as

c⇤ :=

R

M1

(ê  ⇤) ^ ⇤+⇤
R

M1

 ⇤+⇤ ^ ⇤+⇤
.
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of freedom carried away.

We associate to the action of f̂ a matrix coe�cient given by a numerical coe�cient
in the above expression:

Eul(V2)

Eul(W1)
=

Eul(M2)

Eul(⌃)
, (2.44)

where we used (2.38). Let us introduce the following notations:

Eul⇤ := Eul(M2), Eul⇤�⇤,⇤ := Eul(⌃) . (2.45)

A complete expression for f̂ is given by contributions from all possible atom sub-
tractions from the crystal ⇤. Denote ⇤�(⇤+) a set of atoms that can be removed
from/added to crystal ⇤ and the result will be a crystal again, then we have:

f̂  ⇤ =
X

⇤2⇤�

Eul⇤
Eul⇤�⇤,⇤

 ⇤�⇤ . (2.46)

Expression for ê is defined from the requirement that ê and f̂ are conjugate with
respect to the norm (2.27):

ê  ⇤ =
X

⇤2⇤+

Eul⇤
Eul⇤,⇤+⇤

 ⇤+⇤ . (2.47)

These expressions coincide with ones derived by geometric methods in [60], where
Hecke modification corresponds to a Fourier–Mukai transform of  ⇤ 2 H⇤

GC(M2) on a
product manifold M1⇥M2 with a kernel given by a structure sheaf of the equivariant
incidence locus (2.33). Indeed, using orthogonality of norm (2.27) we can calculate
corresponding coe�cients in expansion (2.47) as

c⇤ :=

R

M1

(ê  ⇤) ^ ⇤+⇤
R

M1

 ⇤+⇤ ^ ⇤+⇤
.
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The correct formula: 

Mathematically, this is derived by the Fourier-Mukai transform with the  
incident locus as a kernel [Nakajima,…]

Physically, we need to bring in particles from infinity. Along the process 
Some low-frequency modes get exchanged with high-frequency modes

The supercharge Q̄(s)

1̇
leads to a family of corresponding Hamiltonians:

H(s) =

⇢
Q̄(s)

1̇
,
⇣
Q̄(s)

1̇

⌘
†
�

⇠ �+ s
2
���~rH

���
2
+ s

2
���~V

���
2
+ s

2
���~rW

���
2
+ . . . . (2.13)

In the limit s ! 1 the contributions of potential terms will grow, therefore trajectories
represented by particles sitting in classical vacua—zeroes of the potential—will give the
dominant contribution to the path integral.

Let us reparameterize the degrees of freedom as:

Xi = hxii+ s
�

1
2xi .

We observe that the Hamiltonian and the supercharge decompose as:

H = sH0 +O
⇣
s

1
2

⌘
, Q̄(s)

1̇
= s

1
2 Q̄(0)

1̇
+ Q̄(1)

1̇
+O(s�

1
2 ) . (2.14)

Here H0 and Q̄(0)

1̇
are simple expressions representing a free particle:

H0 ⇠
X

i

�
�@2xi

+ !2
i x

2
i

�
+

X

i

!i

⇣
 i 

†

i �  †

i i

⌘
, Q̄(0)

1̇
⇠

X

i

 i (@xi + !ixi) .

Let us choose a cuto↵ ⇤cf for frequencies !i. Then the leading contribution to the

supercharge is of order s
1
2⇤

1
2
cf . We can split the wave-function in two parts, fast modes

x|!|>⇤cf
and slow ones x|!|<⇤cf

:

 =  |!|<⇤cf

�
x|!|<⇤cf

�
 |!|>⇤cf

�
x|!|<⇤cf

, x|!|>⇤cf

�
+O(s�1) .

The first order BPS equation reads:
⇣
Q̄(0)

1̇

⌘
†

 |!|>⇤cf
= Q̄(0)

1̇
 |!|>⇤cf

= 0 .

The leading order of the supercharge Q̄(0)

1̇
will not have derivatives with respect to slow

modes x|!|<⇤cf
, which will enter the corresponding expression for the wave-function

only as parameters. Therefore this equation is not enough to define  |!|<⇤cf
. To derive

a defining equation we incorporate contributions to the supercharge up to the first order
and multiply this equation by a bra-vector  †

|!|<⇤cf
:

 †

|!|>⇤cf

⇣
s

1
2 Q̄(0)

1̇
+ Q̄(1)

1̇

⌘
 |!|>⇤cf

 |!|<⇤cf
= 0 .

The first term in this sum cancels out.

Splitting modes into slow and fast modes is a familiar procedure for the Wilsonian
RG flow: the unknown part  |!|<⇤cf

of the first-order approximation to the wave-
function is annihilated by 1-loop corrected e↵ective supercharge:

Q†

e↵ |!|<⇤cf
= 0, Q†

e↵ :=
D
 |!|>⇤cf

���Q̄(1)

1̇

��� |!|>⇤cf

E
. (2.15)
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this particular case, the supercommutator should be decomposed as follows:

A1 = Symz1,z2

h
e(2)(z1),

h
e(3)(w1),

h
e(2)(z2), e

(1)(w2)
ooo

=

= Symz1,z2

h
e(2)(z1),

h
e(3)(w1),

n
e(2)(z2), e

(1)(w2)
oii

=

= e(1)(w2)e
(2)(z1)e

(3)(w1)e
(2)(z2) + e(1)(w2)e

(2)(z2)e
(3)(w1)e

(2)(z1)�
� e(2)(z1)e

(1)(w2)e
(2)(z2)e

(3)(w1) + e(2)(z1)e
(1)(w2)e

(3)(w1)e
(2)(z2)�

� e(2)(z1)e
(2)(z2)e

(1)(w2)e
(3)(w1) + e(2)(z1)e

(3)(w1)e
(1)(w2)e

(2)(z2)+

+ e(2)(z1)e
(3)(w1)e

(2)(z2)e
(1)(w2)� e(2)(z2)e

(1)(w2)e
(2)(z1)e

(3)(w1)+

+ e(2)(z2)e
(1)(w2)e

(3)(w1)e
(2)(z1)� e(2)(z2)e

(2)(z1)e
(1)(w2)e

(3)(w1)+

+ e(2)(z2)e
(3)(w1)e

(1)(w2)e
(2)(z1) + e(2)(z2)e

(3)(w1)e
(2)(z1)e

(1)(w2)�
� e(3)(w1)e

(1)(w2)e
(2)(z1)e

(2)(z2)� e(3)(w1)e
(1)(w2)e

(2)(z2)e
(2)(z1)�

� e(3)(w1)e
(2)(z1)e

(1)(w2)e
(2)(z2)� e(3)(w1)e

(2)(z2)e
(1)(w2)e

(2)(z1) .

(C.59)

We apply this operator to the root crystal ⇤0. Operators e(a)(z) have poles in points
corresponding to atom weights:

1) w2 = �~2 , 2) z1 = ~1 + ~2 , 3) z2 = �3~1 � 3~2 , 4) w1 = ~1 + ~2 . (C.60)

The expression A1(z1, z2, w1, w2)|⇤0i will produce the whole crystal ⇤, and the residue
will consist of a sum over matrix elements E(⇤1 ! ⇤2) in various combinations. Each
term in this sum will add consequently 4 atoms to ⇤0 to get ⇤ in the result. For
example, this type of term

E(⇤0 ! ⇤0 + a)E(⇤0 + a ! ⇤0 + a+ b)E(⇤0 + a+ b ! ⇤0 + a+ b+ c)⇥
⇥E(⇤0 + a+ b+ c ! ⇤0 + a+ b+ c+ d)

adds atoms a, b, c, d in a sequence [a, b, c, d]. For the sake of brevity let us denote such
quintic E-terms by such sequences. The residue of our interest acquires the following
form:

A2 := Res
z1,z2,w1,w2

h⇤|A1|⇤0i =

= [1, 2, 4, 3] + [1, 3, 4, 2]� [2, 1, 3, 4] + [2, 1, 4, 3]� [2, 3, 1, 4] + [2, 4, 1, 3]+

+ [2, 4, 3, 1]� [3, 1, 2, 4] + [3, 1, 4, 2]� [3, 2, 1, 4] + [3, 4, 1, 2] + [3, 4, 2, 1]�
� [4, 1, 2, 3]� [4, 1, 3, 2]� [4, 2, 1, 3]� [4, 3, 1, 2] .

(C.61)

Using methods discussed above we calculate the necessary coe�cients in multipliers
of �

~32 (~1 + ~2) (2~1 + ~2) 2 (4~1 + ~2)
��1
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for brevity of expressions. The corresponding expressions read

[2, 4, 1, 3]=� 1

48
, [4, 2, 1, 3]=� 1

96
, [2, 1, 4, 3]=� 1

48
, [1, 2, 4, 3]=

1

32
,

[4, 1, 2, 3]=
1

64
, [1, 4, 2, 3]=

1

64
, [4, 1, 3, 2]=� 1

64
, [1, 4, 3, 2]=� 1

64
,

[2, 4, 3, 1]=
2~1 + ~2

24 (4~1 + ~2)
, [4, 2, 3, 1]=

2~1 + ~2
48 (4~1 + ~2)

,

[2, 3, 4, 1]=
(2~1 + ~2) 2

12 (4~1 + ~2) (4~1 + 3~2)
, [3, 2, 4, 1]=� (2~1 + ~2) 2

12 (4~1 + ~2) (4~1 + 3~2)
,

[4, 3, 2, 1]=� 2~1 + ~2
48 (4~1 + ~2)

, [3, 4, 2, 1]=� (2~1 + ~2) 2
24 (4~1 + ~2) (4~1 + 3~2)

,

[2, 1, 3, 4]=� 2~1 + ~2
24 (4~1 + 3~2)

, [1, 2, 3, 4]=
2~1 + ~2

16 (4~1 + 3~2)
,

[2, 3, 1, 4]=
(2~1 + ~2) 2

12 (4~1 + ~2) (4~1 + 3~2)
, [3, 2, 1, 4]=� (2~1 + ~2) 2

12 (4~1 + ~2) (4~1 + 3~2)
,

[1, 3, 2, 4]=� 2~1 + ~2
16 (4~1 + 3~2)

, [3, 1, 2, 4]=
(2~1 + ~2) 2

8 (4~1 + ~2) (4~1 + 3~2)
,

[4, 3, 1, 2]=
2~1 + ~2

32 (4~1 + ~2)
, [3, 4, 1, 2]=

(2~1 + ~2) 2
16 (4~1 + ~2) (4~1 + 3~2)

,

[1, 3, 4, 2]=� 2~1 + ~2
32 (4~1 + 3~2)

, [3, 1, 4, 2]=
(2~1 + ~2) 2

16 (4~1 + ~2) (4~1 + 3~2)
.

(C.62)

Summing up these contributions with appropriate signs we conclude:

A2 = 0 . (C.63)

As this example shows, the consistency of the Serre relation requires highly non-trivial
cancellations.
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this particular case, the supercommutator should be decomposed as follows:

A1 = Symz1,z2

h
e(2)(z1),

h
e(3)(w1),

h
e(2)(z2), e

(1)(w2)
ooo
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= Symz1,z2

h
e(2)(z1),

h
e(3)(w1),

n
e(2)(z2), e

(1)(w2)
oii

=
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(3)(w1) + e(2)(z1)e
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� e(2)(z1)e
(2)(z2)e

(1)(w2)e
(3)(w1) + e(2)(z1)e

(3)(w1)e
(1)(w2)e

(2)(z2)+

+ e(2)(z1)e
(3)(w1)e

(2)(z2)e
(1)(w2)� e(2)(z2)e

(1)(w2)e
(2)(z1)e

(3)(w1)+

+ e(2)(z2)e
(1)(w2)e

(3)(w1)e
(2)(z1)� e(2)(z2)e

(2)(z1)e
(1)(w2)e

(3)(w1)+

+ e(2)(z2)e
(3)(w1)e

(1)(w2)e
(2)(z1) + e(2)(z2)e

(3)(w1)e
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(1)(w2)�
� e(3)(w1)e

(1)(w2)e
(2)(z1)e

(2)(z2)� e(3)(w1)e
(1)(w2)e

(2)(z2)e
(2)(z1)�

� e(3)(w1)e
(2)(z1)e

(1)(w2)e
(2)(z2)� e(3)(w1)e

(2)(z2)e
(1)(w2)e

(2)(z1) .
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We apply this operator to the root crystal ⇤0. Operators e(a)(z) have poles in points
corresponding to atom weights:

1) w2 = �~2 , 2) z1 = ~1 + ~2 , 3) z2 = �3~1 � 3~2 , 4) w1 = ~1 + ~2 . (C.60)

The expression A1(z1, z2, w1, w2)|⇤0i will produce the whole crystal ⇤, and the residue
will consist of a sum over matrix elements E(⇤1 ! ⇤2) in various combinations. Each
term in this sum will add consequently 4 atoms to ⇤0 to get ⇤ in the result. For
example, this type of term

E(⇤0 ! ⇤0 + a)E(⇤0 + a ! ⇤0 + a+ b)E(⇤0 + a+ b ! ⇤0 + a+ b+ c)⇥
⇥E(⇤0 + a+ b+ c ! ⇤0 + a+ b+ c+ d)

adds atoms a, b, c, d in a sequence [a, b, c, d]. For the sake of brevity let us denote such
quintic E-terms by such sequences. The residue of our interest acquires the following
form:

A2 := Res
z1,z2,w1,w2

h⇤|A1|⇤0i =

= [1, 2, 4, 3] + [1, 3, 4, 2]� [2, 1, 3, 4] + [2, 1, 4, 3]� [2, 3, 1, 4] + [2, 4, 1, 3]+

+ [2, 4, 3, 1]� [3, 1, 2, 4] + [3, 1, 4, 2]� [3, 2, 1, 4] + [3, 4, 1, 2] + [3, 4, 2, 1]�
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Using methods discussed above we calculate the necessary coe�cients in multipliers
of �

~32 (~1 + ~2) (2~1 + ~2) 2 (4~1 + ~2)
��1
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C.4 Example of Serre Relation Calculation

Consider the case of Y (bgl3|1) with the following parity choice ⌃3,1 = {1,�1, 1, 1}, the
quiver diagram has the following form:

(C.57)

Without loss o↵ generality we use the gauge freedom of choosing the weight space, to
obtain the following parameterization:

wB1 = ~1, wC1 = ~2 � ~1, wB2 = ~2, wC2 = �~2 � ~1,
wB3 = ~1, wC3 = �~1 � ~2, wA3 = ~2, wB4 = ~1, wC4 = �~1 � ~2, wA4 = ~2 .

(C.58)

Consider a particular 9-atom crystal:

1 1

1

1

1 1

1

1 1

2

4 1

3

We have enumerated marked atoms. It turns out these atoms can be added to
the root crystal marked by an orange circle in an arbitrary order, and still on all
intermediate steps a derived configuration of atoms is a valid crystal.

Atoms labeled by numbers 2 and 3 have the same color, and moreover they have
a flavor corresponding to the color of an odd node. Therefore the raising generators
adding these atoms are fermionic. Therefore this is the case exactly suitable for checking
quartic Serre relations in Y (bgl3|1), where we have a relation between two odd generators
of the same color, and two other generators corresponding to neighboring nodes. In
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Highly non-trivial cancellations!  
For example, for one of the Serre relations of 



• BPS/DT/PT counting for toric CY3: solved by crystal melting 

• We defined a new algebra, the BPS quiver Yangian, in terms of CY3 data 

• We have a well-defined representation of quiver Yangian in terms of crystal 
melting 

• The representation is derived by equivariant localization in supersymmetric 
quantum mechanics

Summary 

New Physics and new Mathematics!!


