DT Invariants and Holomorphic Curves

Pierrick Bousseau

University of Georgia

Berkeley Informal String-Math Seminar 3 April 2023

Relation between two topics:

- Donaldson-Thomas (DT) invariants of non-compact Calabi-Yau 3-folds: counts of stable coherent sheaves (or complexes of coherent sheaves) on X or special Lagrangian submanifolds of its mirror Y.
- Holomorphic curves in a hyperkähler manifold \mathcal{M} .

Basic relation between X and \mathcal{M} through physics:

- IIA-IIB string theory on $X \times \mathbb{R}^4$: $\mathcal{N} = 2$ 4d field theory \mathcal{T}
- \mathcal{M} : Coulomb branch of \mathcal{T} on $S^1 \times \mathbb{R}^3$, Seiberg–Witten integrable system.

- General expected picture [Kontsevich-Soibelman 1303.3253]
- A concrete example [B 1909.02985-1909.02992, B-Descombes-Le Floch-Pioline 2210.10712]:
 - DT invariants for coherent sheaves on local P²: X = K_{P²} = O_{P²}(-3), non-compact Calabi-Yau 3-fold.
 - ▶ holomorphic curves in \mathcal{M} , (\mathcal{M}, I) : elliptic fibration, $(\mathcal{M}, J) = \mathbb{P}^2 \setminus E$, ALH^* metric [Collins-Jacob-Lin 1904.08363].
- An heuristic/physics derivation of the general correspondence [B 2210.17001]
 - Holomorphic Floer theory for \mathcal{M} .

• DT invariants:

$$\Omega_{\gamma}(u) \in \mathbb{Z}$$

counts of geometric objects on a Calabi-Yau 3-fold X, with given topology class $\gamma \in \mathbb{Z}^n$ and satisfying a (Bridgeland) stability condition u.

- Examples:
 - Stable holomorphic vector bundles of Chern character γ for a Kähler parameter u.
 - Special Lagrangian submanifolds of class γ for a complex parameter u.

• $\mathcal{N} = 2$ supersymmetric 4d field theories

- B: Coulomb branch of vacua of the 4d theory, $B \simeq \mathbb{C}^r$.
- ▶ In a generic vacuum $u \in B \setminus \Delta$, abelian gauge theory $U(1)^r$
- Supersymmetry: charge γ , central charge $Z_{\gamma}(u) \in \mathbb{C}$, BPS bound

$$|M| \geq |Z_{\gamma}(u)|$$

- Space of BPS states, saturating the BPS bound: $H_{\gamma}(u)$
- BPS index

$$\Omega_{\gamma}(u) = \operatorname{Tr}_{H_{\gamma}(u)}(-1)^{F}$$

- Geometric constructions from string theory: IIA or IIB string on Calabi-Yau 3-fold \boldsymbol{X}
- Expectation: the universal cover of B \ Δ naturally maps to the space of Bridgeland stability conditions.
- DT invariants = BPS indices: stability $u \in B \setminus \Delta$
- From now on: consider $\mathcal{N} = 2$ 4d field theories without gravity.
 - Geometrically: non-compact Calabi-Yau 3-folds.

Wall-crossing

- $\Omega_{\gamma}(u)$: constant function of u away from codimension one loci in B, called walls, across which $\Omega_{\gamma}(u)$ jumps discontinuously.
- Jumps controlled by a universal wall-crossing formula [Kontsevich-Soibelman]:

$$\{\Omega_{\gamma}(u^{-})\}_{\gamma} o \{\Omega_{\gamma}(u^{+})\}_{\gamma}$$
 .

• Example: $\mathcal{N} = 2 SU(2)$ gauge theory

Seiberg-Witten integrable system

• \mathcal{M} : Coulomb branch of the theory on $\mathbb{R}^3 \times S^1$, hyperkähler manifold of complex dimension 2r, complex integrable system:

$$\pi\colon \mathcal{M} \longrightarrow B$$

- Low energy: 3d $\mathcal{N} = 4$ sigma model with target \mathcal{M}
- Twistor sphere of complex structures I, J, K
 - π *I*-holomorphic: in complex structure *I*, generic fibers of π are abelian varieties of dimension *r*.
 - For every θ ∈ ℝ/2πℤ, generic fibers of π are special Lagrangians in complex structure J_θ = (cos θ)J + (sin θ)K.
- $u \in B \setminus \Delta$, $\gamma \in \pi_2(\mathcal{M}, \pi^{-1}(u)) \to H_1(\pi^{-1}(u), \mathbb{Z}) = \mathbb{Z}^{2r}$,

$$Z_{\gamma}(u) = \int_{\gamma} \Omega_I$$

Seiberg-Witten integrable system

• Class S on C: $\pi: \mathcal{M} \to B$ is (essentially) the Hitchin integrable system for C.

• For every point $u \in B \setminus \Delta$, and class $\gamma \in \pi_2(\mathcal{M}, \pi^{-1}(u))$,

$$\Omega_{\gamma}(u) = N_{\gamma}(u)$$
.

- $\Omega_{\gamma}(u)$: DT/BPS invariants counting *u*-stable objects of class γ .
- $N_{\gamma}(u)$: count of J_{θ} -holomorphic disks in \mathcal{M} with boundary on the fiber $\pi^{-1}(u)$ and of class γ , where $\theta = \operatorname{Arg} Z_{\gamma}(u)$.
- Evidence:
 - ► BPS spectrum $\{\Omega_{\gamma}(u)\}$ → hyperkähler geometry of \mathcal{M} [Gaiotto-Moore-Neitzke]
 - J_θ-holomorphic disks: instantons/quantum corrections to construct the mirror of (M, ω_θ) [Fukaya, Kontsevich-Soibelman,...]
 - Same wall-crossing formula [Kontsevich-Soibelman]
 - Tropical curves in B from holomorphic disks and attractor trees from DT invariants [Kontsevich-Soibelman]

Problems:

- The embedding of *B* in the space of Bridgeland stability conditions is not known in general.
- \bullet Defining counts of holomorphic disks is difficult in general (see Y-S. Lin for surfaces)

- Log Gromov–Witten invariants: algebro-geometric version of holomorphic disks used by Gross-Siebert in their mirror symmetry construction.
- DT invariants of quivers with potential versus log Gromov–Witten invariants of toric and cluster varieties [Argüs-B, arXiv:2302.02068].
- This talk:
 - DT invariants counting coherent sheaves on local \mathbb{P}^2
 - One of the few examples where the embedding in the space of Bridgeland stability conditions is known.

Local \mathbb{P}^2

• $X = K_{\mathbb{P}^2} = \mathcal{O}_{\mathbb{P}^2}(-3)$ non-compact Calabi-Yau 3-fold

• Zero section $\iota \colon \mathbb{P}^2 \hookrightarrow X$

• $D_{\mathbb{P}^2}(X)$: bounded derived category of sheaves on X set-theoretically supported on \mathbb{P}^2

•
$$\iota_*: D^bCoh(\mathbb{P}^2) \to D_{\mathbb{P}^2}(X)$$

- $\mathcal{O}(n) := \iota_* \mathcal{O}_{\mathbb{P}^2}(n)$ (D4-branes with n units of D2-charges)
- IIA string theory on X: $\mathcal{N} = 2$ 4d theory.
 - Seiberg-Witten geometry $\pi : \mathcal{M} \to B$?
 - Mirror symmetry: B \ Δ = ℍ/Γ₁(3), modular curve. M: universal family of elliptic curves.

$\mathcal{M} ightarrow B$

A fundamental domain F_C of $\Gamma_1(3)$ acting on \mathbb{H} :

The modular curve $B \setminus \Delta = \mathbb{H}/\Gamma_1(3)$:

$\mathcal{M}' o B'$

- Work on the 3:1 cover B' of B resolving the orbifold point.
- $\mathcal{M}' \to B'$: elliptic fibration with 3 singular fibers.

Map to the space of stability conditions

- Stab(D_{P²}(X)): space of Bridgeland stability conditions on D_{P²}(X), complex manifold of dimension 3
- Bayer-Macri (2009):

$$\widetilde{B\setminus\Delta}=\mathbb{H} o Stab(D_{\mathbb{P}^2}(X))$$
 $au\mapsto (\mathcal{A}(au), Z(au))$

Central charge, additive map:

$$egin{aligned} Z(au) &: \mathsf{\Gamma} = \mathsf{K}_0(\mathcal{D}_{\mathbb{P}^2}(X)) = \mathbb{Z}^3 o \mathbb{C} \ & \gamma \mapsto Z_\gamma(au) \end{aligned}$$

At the orbifold point

• At the orbifold point O.

$$\mathcal{A}(\tau_{\mathcal{O}}) = \mathit{Coh}_{0}(\mathbb{C}^{3}/(\mathbb{Z}/3\mathbb{Z})) = \mathit{Rep}^{\mathit{nilp}}(\mathcal{Q}, \mathcal{W})$$

induced by the exceptional collection $\mathcal{O}, \mathcal{O}(1), \mathcal{O}(2)$ on \mathbb{P}^2 .

Potential $W = \sum_{i,j,k} \epsilon_{ijk} Z_k Y_j X_i$ with ϵ_{ijk} the totally antisymmetric tensor with $\epsilon_{123} = 1$.

DT/BPS invariants

To summarize:

$$\widetilde{B\setminus\Delta}=\mathbb{H} o Stab(D_{\mathbb{P}^2}(X))$$
 $au\mapsto (\mathcal{A}(au), Z(au))$

- We can then do DT theory.
 - Moduli spaces

 $M(\gamma, \tau) = \{\tau \text{-semistable objects in } \mathcal{A}(\tau) \text{ of class } \gamma\}$

DT/BPS invariants:

$$\Omega(\gamma, \tau) \in \mathbb{Z}$$

- Wall-crossing as a function of $\tau \in \mathbb{H}$.
- Goal: study of the DT/BPS invariants using flow trees organized in "scattering diagrams" in $\widetilde{B \setminus \Delta} = \mathbb{H}$
 - supergravity attractor picture
 - Kontsevich-Soibelman wall-structure on base of complex integrable systems.

Scattering diagrams

• Pick a phase $heta \in \mathbb{R}/2\pi\mathbb{Z}$

For every $\gamma \in \Gamma$, consider the 1-dimensional locus, "rays":

 $\mathcal{R}^+_\gamma(heta) \mathrel{\mathop:}= \{ au \in \mathbb{H} \, | \, \mathrm{Arg}(Z_\gamma(au)) = heta \,, \Omega(\gamma, au)
eq 0 \} \subset \mathbb{H}$

- Orient rays such that $|Z_{\gamma}(\tau)|$ increases.
- Decorate the rays by generating functions of DT invariants, get a scattering diagram D_θ

Theorem (B., Descombes, Le Floch, Pioline, 2022)

For every $\theta \in \mathbb{R}/2\pi\mathbb{Z}$, the scattering diagram \mathcal{D}_{θ} can be uniquely reconstructed from:

- Explicit initial rays coming from the conifold points.
- Scatterings imposed by the consistency condition.
- Algorithmic reconstruction of the full BPS spectrum (except pure D0) at any point of the physical space of stability conditions.

Initial rays

At the conifold point $\tau_O = 0$, $Z_O(\tau_O) = 0$. Infinitly many initial rays corresponding to the objects $\mathcal{O}[k]$, $k \in \mathbb{Z}$.

General conifold point: apply $\Gamma_1(3)$, spherical object E becoming massless, infinitly many initial rays corresponding to the objects E[k], $k \in \mathbb{Z}$.

Reconstruction from initial rays

- Rays of \mathfrak{D}_{θ} are gradient flow lines of $\operatorname{Re}(e^{-i\theta}Z_{\gamma}(\tau))$.
- Key point: for every $\gamma \in \Gamma$, the holomorphic function

$$\mathbb{H} \to \mathbb{C}$$
$$\tau \mapsto Z_{\gamma}(\tau)$$

has no critical point on \mathbb{H} :

$$rac{d}{d au}Z_\gamma(au)=(-r au+d)C(au)
eq 0$$

 Study of the boundary behavior: C(τ) → 0 when τ goes to a conifold point, not otherwise.

The scattering diagram $\mathfrak{D}_{rac{\pi}{2}}$

The scattering diagram \mathfrak{D}_0

- The global picture of \mathfrak{D}_0 also give a clear description of the correspondence between normalized $(-1 < \mu \leq 0)$ torsion free Gieseker semi-stable sheaves on \mathbb{P}^2 and representations of the Beilinson quiver.
- For these objects \mathfrak{D}_0 gives a path from the large volume point to the orbifold point avoiding the walls of marginal stability.

- Expectation: for every θ ∈ ℝ/2πℤ, the scattering diagram 𝔅_θ should describe J_θ-holomorphic disks in 𝓜'.
- Problem: how to describe *M*' as a complex manifold for the complex structure *J*₀?

• We only know that (\mathcal{M}', I) is an elliptic fibration over *B*.

- [Collins-Jacob-Lin]:
 - $(\mathcal{M}', J_{\frac{\pi}{2}}) = \mathbb{P}^2 \setminus E$, where $E \subset \mathbb{P}^2$ is a smooth cubic. Affine algebraic variety.
 - $(\mathcal{M}', J_0) \simeq (\mathcal{M}', I)$, elliptic fibration. Twin torus fibrations.
- In both cases, use algebro-geometric definition of counts of holomorphic disks as log Gromov–Witten invariants.

Holomorphic disks?

Theorem (Gräfnitz, B.)

The scattering diagram $\mathfrak{D}_{\frac{\pi}{2}}$ describes log curves in $(\mathcal{M}', J_{\frac{\pi}{2}}) = \mathbb{P}^2 \setminus E$.

Corollary (B.)

Correspondence between DT invariants of $K_{\mathbb{P}^2}$ of phase $\frac{\pi}{2}$ and counts of log curves in $\mathbb{P}^2 \setminus E$

Applications:

- Proof of Takahashi's conjecture on Gromov–Witten invariants of (\mathbb{P}^2, E) [B.].
- Proof of quasimodularity of generating series of DT invariants [B-Fan-Guo-Wu].

The scattering diagram \mathfrak{D}_0

Theorem (Gross-Hacking-Keel)

The scattering diagram \mathfrak{D}_0 describes log curves in (\mathcal{M}', J_0) .

Corollary (B.)

Correspondence between DT invariants of $K_{\mathbb{P}^2}$ of phase 0, DT invariants of the quiver (Q, W), and counts of log curves in the elliptic fibration (\mathcal{M}', J_0) .

Why are the counts of BPS states of a $\mathcal{N} = 2$ 4d theory given by counts of holomorphic curves in the Seiberg–Witten geometry $\pi : \mathcal{M} \to B$?

- Mirror symmetry and hyperkähler rotation for $X = K_{\mathbb{P}^2}$.
- In general?
 - Stronger conjecture formulated using holomorphic Floer theory.
 - Physics derivation.

Mirror symmetry and hyperkähler rotation

- How to go from coherent sheaves on X = K_{P²} to J_θ-holomorphic curves in the Coulomb branch π: M → B?
- Claim: the mirror Y of X is the non-compact Calabi-Yau 3-fold $Y : uv = \pi t$.
 - Hyperkähler rotation: J_θ-holomorphic disks in M → special Lagrangian disks in (M, I) of phase θ.
 - Suspension \rightarrow closed special Lagrangians in Y.
 - Mirror symmetry \rightarrow stable coherent sheaves on X.
- Physics: IIA on X ↔ IIB on Y ↔ IIA on M and NS5 on π⁻¹(u) ↔ M on M and M5 on π⁻¹(u) ↔ IIB on B, D3 on u (string junctions on D3-brane probe)

[Kontsevich-Soibelman] [Doan-Rezchikov], [B.]

- $(\mathcal{M}, I, \Omega_I)$: holomorphic symplectic manifold.
 - Hyperkähler structure $I, J, K, J_{\theta} := (\cos \theta)J + (\sin \theta)K$.
 - $L_1, L_2 \subset \mathcal{M}$: *I*-holomorphic Lagrangian, $\Omega_I|_{L_1} = \Omega_I|_{L_2} = 0$.
- P: space of paths between L_1 and L_2 , $W := \int_{\mathfrak{p}} d^{-1}\Omega_I$ (multivalued!)
 - Critical points: intersection points $L_1 \cap L_2$.
 - Gradient flow lines: J_{θ} holomorphic curves, $u : \mathbb{R}^2 \to \mathcal{M}$.
 - ζ -instantons, $u : \mathbb{R}^3 \to \mathcal{M}$, solutions to Fueter equation

$$\partial_{\tau} u + I \partial_{s} u + J_{\theta} \partial_{t} u = 0.$$

- LG model for (*P*, *W*):
 - ▶ $p, q \in L_1 \cap L_2 \rightarrow$ vector space H_{pq} of 2d BPS states of (P, W)
 - ▶ $L_1, L_2 \rightarrow \text{category Brane}(P, W)$
 - M → 2-category of *I*-holomorphic Lagrangians (A-model versus Rozansky-Witten B-model).

Holomorphic Floer theory and DT invariants

- Back to a $\mathcal{N}=2$ 4d field theory.
- How to recover the BPS spectrum $\{\Omega_{\gamma}(u)\}\$ from holomorphic Floer theory? Correct holomorphic symplectic manifolds \mathcal{M} and holomorphic Lagrangians L_1, L_2 ?
 - \mathcal{M} : Seiberg-Witten integrable system
 - $L_1 = \pi^{-1}(u)$: fiber of $\pi : \mathcal{M} \to B$ over $u \in B$.
 - L₂ = S: natural section of π. Physical definition: boundary condition for the 3d sigma model of target *M* defined by the cigar geometry [Nekrasov-Witten]. Hitchin system example: Hitchin section.

Holomorphic Floer theory and DT invariants

Holomorphic Floer theory and DT invariants

•
$$L_1 \cap L_2 = \pi^{-1}(u) \cap S = \{p\}$$

- But $\pi_1(P) \neq 0$ and W is multivalued.
- $\pi_1(P) = \pi_2(\mathcal{M}, \pi^{-1}(u))$: on \widetilde{P} , critical points of W indexed by

$$\gamma \in \pi_2(\mathcal{M}, \pi^{-1}(u))$$

Conjecture (B)

Given a $\mathcal{N} = 2$ 4d field theory, the space of BPS states $H_{\gamma}(u)$ of class γ in the vacuum u is isomorphic to the vector space $H_{0\gamma}$ associated by holomorphic Floer theory for the Seiberg-Witten integrable system \mathcal{M} to the lifts 0 and γ of the intersection point between the fiber $\pi^{-1}(u)$ and the section S:

 $H_{\gamma}(u) \simeq H_{0\gamma}$

Gradient flow lines are naturally J_{θ} -holomorphic disks with boundary on $\pi^{-1}(u)$ and so one recovers the previous expectation in the numerical limit.

Physics derivation

Thank you for your attention !