DT Invariants and Holomorphic Curves

Pierrick Bousseau
University of Georgia

Berkeley Informal String-Math Seminar 3 April 2023

Relation between two topics:

- Donaldson-Thomas (DT) invariants of non-compact Calabi-Yau 3-folds: counts of stable coherent sheaves (or complexes of coherent sheaves) on X or special Lagrangian submanifolds of its mirror Y.
- Holomorphic curves in a hyperkähler manifold \mathcal{M}.

Basic relation between X and \mathcal{M} through physics:

- IIA-IIB string theory on $X \times \mathbb{R}^{4}: \mathcal{N}=24 d$ field theory T
- \mathcal{M} : Coulomb branch of T on $S^{1} \times \mathbb{R}^{3}$, Seiberg-Witten integrable system.
- General expected picture [Kontsevich-Soibelman 1303.3253]
- A concrete example [B 1909.02985-1909.02992, B-Descombes-Le Floch-Pioline 2210.10712]:
- DT invariants for coherent sheaves on local $\mathbb{P}^{2}: X=K_{\mathbb{P}^{2}}=\mathcal{O}_{\mathbb{P}^{2}}(-3)$, non-compact Calabi-Yau 3-fold.
- holomorphic curves in $\mathcal{M},(\mathcal{M}, I)$: elliptic fibration, $(\mathcal{M}, J)=\mathbb{P}^{2} \backslash E$, $A L H^{\star}$ metric [Collins-Jacob-Lin 1904.08363].
- An heuristic/physics derivation of the general correspondence [B 2210.17001]
- Holomorphic Floer theory for \mathcal{M}.

Geometry: DT invariants

- DT invariants:

$$
\Omega_{\gamma}(u) \in \mathbb{Z}
$$

counts of geometric objects on a Calabi-Yau 3-fold X, with given topology class $\gamma \in \mathbb{Z}^{n}$ and satisfying a (Bridgeland) stability condition u.

- Examples:
- Stable holomorphic vector bundles of Chern character γ for a Kähler parameter u.
- Special Lagrangian submanifolds of class γ for a complex parameter u.

Physics: BPS states in $\mathcal{N}=24 \mathrm{~d}$ field theories

- $\mathcal{N}=2$ supersymmetric 4d field theories
- B: Coulomb branch of vacua of the $4 d$ theory, $B \simeq \mathbb{C}^{r}$.
- In a generic vacuum $u \in B \backslash \Delta$, abelian gauge theory $U(1)^{r}$
- Supersymmetry: charge γ, central charge $Z_{\gamma}(u) \in \mathbb{C}$, BPS bound

$$
|M| \geq\left|Z_{\gamma}(u)\right|
$$

- Space of BPS states, saturating the BPS bound: $H_{\gamma}(u)$
- BPS index

$$
\Omega_{\gamma}(u)=\operatorname{Tr}_{H_{\gamma}(u)}(-1)^{F}
$$

- Geometric constructions from string theory: IIA or IIB string on Calabi-Yau 3-fold X
- Expectation: the universal cover of $B \backslash \Delta$ naturally maps to the space of Bridgeland stability conditions.
- DT invariants $=$ BPS indices: stability $u \in B \backslash \Delta$
- From now on: consider $\mathcal{N}=24 d$ field theories without gravity.
- Geometrically: non-compact Calabi-Yau 3-folds.

Wall-crossing

- $\Omega_{\gamma}(u)$: constant function of u away from codimension one loci in B, called walls, across which $\Omega_{\gamma}(u)$ jumps discontinuously.
- Jumps controlled by a universal wall-crossing formula [Kontsevich-Soibelman]:

$$
\left\{\Omega_{\gamma}\left(u^{-}\right)\right\}_{\gamma} \rightarrow\left\{\Omega_{\gamma}\left(u^{+}\right)\right\}_{\gamma} .
$$

- Example: $\mathcal{N}=2 S U(2)$ gauge theory

Seiberg-Witten integrable system

- \mathcal{M} : Coulomb branch of the theory on $\mathbb{R}^{3} \times S^{1}$, hyperkähler manifold of complex dimension $2 r$, complex integrable system:

$$
\pi: \mathcal{M} \longrightarrow B
$$

- Low energy: $3 \mathrm{~d} \mathcal{N}=4$ sigma model with target \mathcal{M}
- Twistor sphere of complex structures I, J, K
$\rightarrow \pi$-holomorphic: in complex structure I, generic fibers of π are abelian varieties of dimension r.
- for every $\theta \in \mathbb{R} / 2 \pi \mathbb{Z}$, generic fibers of π are special Lagrangians in complex structure $J_{\theta}=(\cos \theta) J+(\sin \theta) K$.
- $u \in B \backslash \Delta, \gamma \in \pi_{2}\left(\mathcal{M}, \pi^{-1}(u)\right) \rightarrow H_{1}\left(\pi^{-1}(u), \mathbb{Z}\right)=\mathbb{Z}^{2 r}$,

$$
Z_{\gamma}(u)=\int_{\gamma} \Omega_{l}
$$

Seiberg-Witten integrable system

- Class S on $C: \pi: \mathcal{M} \rightarrow B$ is (essentially) the Hitchin integrable system for C.
- For every point $u \in B \backslash \Delta$, and class $\gamma \in \pi_{2}\left(\mathcal{M}, \pi^{-1}(u)\right)$,

$$
\Omega_{\gamma}(u)=N_{\gamma}(u) .
$$

- $\Omega_{\gamma}(u):$ DT/BPS invariants counting u-stable objects of class γ.
- $N_{\gamma}(u)$: count of J_{θ}-holomorphic disks in \mathcal{M} with boundary on the fiber $\pi^{-1}(u)$ and of class γ, where $\theta=\operatorname{Arg} Z_{\gamma}(u)$.
- Evidence:
- BPS spectrum $\left\{\Omega_{\gamma}(u)\right\} \rightarrow$ hyperkähler geometry of \mathcal{M} [Gaiotto-Moore-Neitzke]
- J_{θ}-holomorphic disks: instantons/quantum corrections to construct the mirror of $\left(\mathcal{M}, \omega_{\theta}\right)$ [Fukaya, Kontsevich-Soibelman,...]
- Same wall-crossing formula [Kontsevich-Soibelman]
- Tropical curves in B from holomorphic disks and attractor trees from DT invariants [Kontsevich-Soibelman]

Problems:

- The embedding of B in the space of Bridgeland stability conditions is not known in general.
- Defining counts of holomorphic disks is difficult in general (see Y-S. Lin for surfaces)

Examples:

- Log Gromov-Witten invariants: algebro-geometric version of holomorphic disks used by Gross-Siebert in their mirror symmetry construction.
- DT invariants of quivers with potential versus log Gromov-Witten invariants of toric and cluster varieties [Argüs-B, arXiv:2302.02068].
- This talk:
- DT invariants counting coherent sheaves on local \mathbb{P}^{2}
- One of the few examples where the embedding in the space of Bridgeland stability conditions is known.
- $X=K_{\mathbb{P}^{2}}=\mathcal{O}_{\mathbb{P}^{2}}(-3)$ non-compact Calabi-Yau 3-fold
- Zero section $\iota: \mathbb{P}^{2} \hookrightarrow X$
- $D_{\mathbb{P}^{2}}(X)$: bounded derived category of sheaves on X set-theoretically supported on \mathbb{P}^{2}
- $\iota_{*}: D^{b} \operatorname{Coh}\left(\mathbb{P}^{2}\right) \rightarrow D_{\mathbb{P}^{2}}(X)$
- $\mathcal{O}(n):=\iota_{*} \mathcal{O}_{\mathbb{P}^{2}}(n)$ (D4-branes with n units of D2-charges)
- IIA string theory on $X: \mathcal{N}=24 d$ theory.
- Seiberg-Witten geometry $\pi: \mathcal{M} \rightarrow B$?
- Mirror symmetry: $B \backslash \Delta=\mathbb{H} / \Gamma_{1}(3)$, modular curve. \mathcal{M} : universal family of elliptic curves.
$\mathcal{M} \rightarrow B$
A fundamental domain F_{C} of $\Gamma_{1}(3)$ acting on \mathbb{H} :

The modular curve $B \backslash \Delta=\mathbb{H} / \Gamma_{1}(3)$:

- Work on the 3:1 cover B^{\prime} of B resolving the orbifold point.
- $\mathcal{M}^{\prime} \rightarrow B^{\prime}$: elliptic fibration with 3 singular fibers.

Map to the space of stability conditions

- $\operatorname{Stab}\left(D_{\mathbb{P}^{2}}(X)\right)$: space of Bridgeland stability conditions on $D_{\mathbb{P}^{2}}(X)$, complex manifold of dimension 3
- Bayer-Macri (2009):

$$
\begin{aligned}
\widetilde{B \backslash \Delta} & =\mathbb{H} \rightarrow \operatorname{Stab}\left(D_{\mathbb{P}^{2}}(X)\right) \\
\tau & \mapsto(\mathcal{A}(\tau), Z(\tau))
\end{aligned}
$$

- Central charge, additive map:

$$
\begin{gathered}
Z(\tau): \Gamma=K_{0}\left(D_{\mathbb{P}^{2}}(X)\right)=\mathbb{Z}^{3} \rightarrow \mathbb{C} \\
\gamma \mapsto Z_{\gamma}(\tau)
\end{gathered}
$$

At the orbifold point

- At the orbifold point O.

$$
\mathcal{A}\left(\tau_{O}\right)=\operatorname{Coh}_{0}\left(\mathbb{C}^{3} /(\mathbb{Z} / 3 \mathbb{Z})\right)=\operatorname{Rep}^{n i l p}(Q, W)
$$

induced by the exceptional collection $\mathcal{O}, \mathcal{O}(1), \mathcal{O}(2)$ on \mathbb{P}^{2}.

Potential $W=\sum_{i, j, k} \epsilon_{i j k} Z_{k} Y_{j} X_{i}$ with $\epsilon_{i j k}$ the totally antisymmetric tensor with $\epsilon_{123}=1$.

DT/BPS invariants

- To summarize:

$$
\begin{gathered}
\widetilde{B \backslash \Delta}=\mathbb{H} \rightarrow \operatorname{Stab}\left(D_{\mathbb{P}^{2}}(X)\right) \\
\tau \mapsto(\mathcal{A}(\tau), Z(\tau))
\end{gathered}
$$

- We can then do DT theory.
- Moduli spaces

$$
M(\gamma, \tau)=\{\tau \text {-semistable objects in } \mathcal{A}(\tau) \text { of class } \gamma\}
$$

- DT/BPS invariants:

$$
\Omega(\gamma, \tau) \in \mathbb{Z}
$$

- Wall-crossing as a function of $\tau \in \mathbb{H}$.
- Goal: study of the DT/BPS invariants using flow trees organized in "scattering diagrams" in $B \backslash \Delta=\mathbb{H}$
- supergravity attractor picture
- Kontsevich-Soibelman wall-structure on base of complex integrable systems.

Scattering diagrams

- Pick a phase $\theta \in \mathbb{R} / 2 \pi \mathbb{Z}$
- For every $\gamma \in \Gamma$, consider the 1-dimensional locus, "rays":

$$
\mathcal{R}_{\gamma}^{+}(\theta):=\left\{\tau \in \mathbb{H} \mid \operatorname{Arg}\left(Z_{\gamma}(\tau)\right)=\theta, \Omega(\gamma, \tau) \neq 0\right\} \subset \mathbb{H}
$$

- Orient rays such that $\left|Z_{\gamma}(\tau)\right|$ increases.
- Decorate the rays by generating functions of DT invariants, get a scattering diagram \mathfrak{D}_{θ}

Main result

Theorem (B., Descombes, Le Floch, Pioline, 2022)

For every $\theta \in \mathbb{R} / 2 \pi \mathbb{Z}$, the scattering diagram \mathcal{D}_{θ} can be uniquely reconstructed from:

- Explicit initial rays coming from the conifold points.
- Scatterings imposed by the consistency condition.
- Algorithmic reconstruction of the full BPS spectrum (except pure D0) at any point of the physical space of stability conditions.

Initial rays

At the conifold point $\tau_{O}=0, Z_{\mathcal{O}}\left(\tau_{O}\right)=0$. Infinitly many initial rays corresponding to the objects $\mathcal{O}[k], k \in \mathbb{Z}$.

General conifold point: apply $\Gamma_{1}(3)$, spherical object E becoming massless, infinitly many initial rays corresponding to the objects $E[k], k \in \mathbb{Z}$.

Reconstruction from initial rays

- Rays of \mathfrak{D}_{θ} are gradient flow lines of $\operatorname{Re}\left(e^{-i \theta} Z_{\gamma}(\tau)\right)$.
- Key point: for every $\gamma \in \Gamma$, the holomorphic function

$$
\begin{gathered}
\mathbb{H} \rightarrow \mathbb{C} \\
\tau \mapsto Z_{\gamma}(\tau)
\end{gathered}
$$

has no critical point on \mathbb{H} :

$$
\frac{d}{d \tau} Z_{\gamma}(\tau)=(-r \tau+d) C(\tau) \neq 0
$$

- Study of the boundary behavior: $C(\tau) \rightarrow 0$ when τ goes to a conifold point, not otherwise.

The scattering diagram \mathfrak{D}_{0}

- The global picture of \mathfrak{D}_{0} also give a clear description of the correspondence between normalized $(-1<\mu \leq 0)$ torsion free Gieseker semi-stable sheaves on \mathbb{P}^{2} and representations of the Beilinson quiver.
- For these objects \mathfrak{D}_{0} gives a path from the large volume point to the orbifold point avoiding the walls of marginal stability.

Holomorphic disks?

- Expectation: for every $\theta \in \mathbb{R} / 2 \pi \mathbb{Z}$, the scattering diagram \mathfrak{D}_{θ} should describe J_{θ}-holomorphic disks in \mathcal{M}^{\prime}.
- Problem: how to describe \mathcal{M}^{\prime} as a complex manifold for the complex structure J_{θ} ?
- We only know that $\left(\mathcal{M}^{\prime}, I\right)$ is an elliptic fibration over B.
- [Collins-Jacob-Lin]:
- $\left(\mathcal{M}^{\prime}, J_{\frac{\pi}{2}}\right)=\mathbb{P}^{2} \backslash E$, where $E \subset \mathbb{P}^{2}$ is a smooth cubic. Affine algebraic variety.
- $\left(\mathcal{M}^{\prime}, J_{0}\right) \simeq\left(\mathcal{M}^{\prime}, I\right)$, elliptic fibration. Twin torus fibrations.
- In both cases, use algebro-geometric definition of counts of holomorphic disks as log Gromov-Witten invariants.

Holomorphic disks?

Theorem (Gräfnitz, B.)

The scattering diagram $\mathfrak{D}_{\frac{\pi}{2}}$ describes log curves in $\left(\mathcal{M}^{\prime}, J_{\frac{\pi}{2}}\right)=\mathbb{P}^{2} \backslash E$.

Corollary (B.)

Correspondence between DT invariants of $K_{\mathbb{P}^{2}}$ of phase $\frac{\pi}{2}$ and counts of log curves in $\mathbb{P}^{2} \backslash E$

Applications:

- Proof of Takahashi's conjecture on Gromov-Witten invariants of $\left(\mathbb{P}^{2}, E\right)$ [B.].
- Proof of quasimodularity of generating series of DT invariants [B-Fan-Guo-Wu].

The scattering diagram \mathfrak{D}_{0}

Theorem (Gross-Hacking-Keel)

The scattering diagram \mathfrak{D}_{0} describes log curves in $\left(\mathcal{M}^{\prime}, J_{0}\right)$.

Corollary (B.)

Correspondence between $D T$ invariants of $K_{\mathbb{P}^{2}}$ of phase $0, D T$ invariants of the quiver (Q, W), and counts of log curves in the elliptic fibration $\left(\mathcal{M}^{\prime}, J_{0}\right)$.

General question

Why are the counts of BPS states of a $\mathcal{N}=24 d$ theory given by counts of holomorphic curves in the Seiberg-Witten geometry $\pi: \mathcal{M} \rightarrow B$?

- Mirror symmetry and hyperkähler rotation for $X=K_{\mathbb{P}^{2}}$.
- In general?
- Stronger conjecture formulated using holomorphic Floer theory.
- Physics derivation.

Mirror symmetry and hyperkähler rotation

- How to go from coherent sheaves on $X=K_{\mathbb{P}^{2}}$ to J_{θ}-holomorphic curves in the Coulomb branch $\pi: \mathcal{M} \rightarrow B$?
- Claim: the mirror Y of X is the non-compact Calabi-Yau 3-fold $Y: u v=\pi-t$.
- Hyperkähler rotation: J_{θ}-holomorphic disks in $\mathcal{M} \rightarrow$ special Lagrangian disks in (\mathcal{M}, I) of phase θ.
- Suspension \rightarrow closed special Lagrangians in Y.
- Mirror symmetry \rightarrow stable coherent sheaves on X.
- Physics: IIA on $X \leftrightarrow$ IIB on $Y \leftrightarrow$ IIA on \mathcal{M} and NS5 on $\pi^{-1}(u) \leftrightarrow$ M on \mathcal{M} and M 5 on $\pi^{-1}(u) \leftrightarrow$ IIB on B, D3 on u (string junctions on D3-brane probe)

Holomorphic Floer theory

[Kontsevich-Soibelman] [Doan-Rezchikov], [B.]

- $\left(\mathcal{M}, I, \Omega_{I}\right)$: holomorphic symplectic manifold.
- Hyperkähler structure $I, J, K, J_{\theta}:=(\cos \theta) J+(\sin \theta) K$.
- $L_{1}, L_{2} \subset \mathcal{M}$: I-holomorphic Lagrangian, $\Omega_{\mid}\left|L_{1}=\Omega_{\mid}\right| L_{2}=0$.
- P : space of paths between L_{1} and $L_{2}, W:=\int_{\mathfrak{p}} d^{-1} \Omega_{l}$ (multivalued!)
- Critical points: intersection points $L_{1} \cap L_{2}$.
- Gradient flow lines: J_{θ} holomorphic curves, $u: \mathbb{R}^{2} \rightarrow \mathcal{M}$.
- ζ-instantons, $u: \mathbb{R}^{3} \rightarrow \mathcal{M}$, solutions to Fueter equation

$$
\partial_{\tau} u+I \partial_{s} u+J_{\theta} \partial_{t} u=0 .
$$

- LG model for (P, W) :
- $p, q \in L_{1} \cap L_{2} \rightarrow$ vector space $H_{p q}$ of 2d BPS states of (P, W)
- $L_{1}, L_{2} \rightarrow$ category Brane (P, W)
- $\mathcal{M} \rightarrow 2$-category of I-holomorphic Lagrangians (A-model versus Rozansky-Witten B-model).

Holomorphic Floer theory and DT invariants

- Back to a $\mathcal{N}=24 d$ field theory.
- How to recover the BPS spectrum $\left\{\Omega_{\gamma}(u)\right\}$ from holomorphic Floer theory? Correct holomorphic symplectic manifolds \mathcal{M} and holomorphic Lagrangians L_{1}, L_{2} ?
- \mathcal{M} : Seiberg-Witten integrable system
- $L_{1}=\pi^{-1}(u)$: fiber of $\pi: \mathcal{M} \rightarrow B$ over $u \in B$.
- $L_{2}=S$: natural section of π. Physical definition: boundary condition for the 3d sigma model of target \mathcal{M} defined by the cigar geometry [Nekrasov-Witten]. Hitchin system example: Hitchin section.

- $L_{1} \cap L_{2}=\pi^{-1}(u) \cap S=\{p\}$
- But $\pi_{1}(P) \neq 0$ and W is multivalued.
- $\pi_{1}(P)=\pi_{2}\left(\mathcal{M}, \pi^{-1}(u)\right)$: on \widetilde{P}, critical points of W indexed by

$$
\gamma \in \pi_{2}\left(\mathcal{M}, \pi^{-1}(u)\right)
$$

Holomorphic Floer theory and DT invariants

Conjecture (B)

Given a $\mathcal{N}=24 d$ field theory, the space of BPS states $H_{\gamma}(u)$ of class γ in the vacuum u is isomorphic to the vector space $H_{0 \gamma}$ associated by holomorphic Floer theory for the Seiberg-Witten integrable system \mathcal{M} to the lifts 0 and γ of the intersection point between the fiber $\pi^{-1}(u)$ and the section S :

$$
H_{\gamma}(u) \simeq H_{0 \gamma}
$$

Gradient flow lines are naturally J_{θ}-holomorphic disks with boundary on $\pi^{-1}(u)$ and so one recovers the previous expectation in the numerical limit.

Thank you for your attention!

