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Abstract

These are an accompanying set of (incomplete) notes to an exposi-
tory talk on longest increasing subsequences and analogues to oscillating
tableaux. We start with a quick primer on the RSK correspondence and
Berele insertion. This will lead us into longest increasing subsequences of
permutations and eventually analogous statistics on oscillating tableaux.
Along the way we will discuss computational methods, explicit formulas,
and asymptotics, with surprising ventures into other areas. Most of this
has been taken straight from [1, 11]. Any and all errors are completely
my own.

1 Insertion Algorithms

We begin with a little fun numerology:1

1. Let’s count the number of SYT on all shapes λ ⊢ 1,2,3,4. Let’s then sum
the squares in each case. The results are shown in Table 1.

λ ⊢ 1 λ ⊢ 2 λ ⊢ 3 λ ⊢ 4

∶ 1 ∶ 1 ∶ 1 ∶ 1
∶ 1 ∶ 2 ∶ 3 ∶ 3

∶ 1 ∶ 2 ∶ 1

1 2 6 24

Table 1: Sums of squares of #SYT on shapes λ ⊢ 1,2,3,4.

1We refer the reader to [10] for the definitions and properties of standard Young tableaux
(SYT) and semistandard Young tableaux (SSYT).
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Note that summing the squares of each column gives us 1, 2, 6, 24, which
we can recognize as 1!, 2!, 3!, 4!. We are then led to our first identity:

d! = ∑
λ⊢d

(fλ)
2

(1)

where fλ denotes the number of SYT with shape λ.

2. Let’s count the number of SSYT on all shapes λ ⊢ 3 with entries {1},{1,2},{1,2,3}.
Now, instead of summing the squares, let’s take the sum of the entry-wise
product between these values and the number of SYT on λ ⊢ 3. The
results are given in Table 2.

3. Let’s again count the number of SSYT on all shapes λ ⊢ 3 with entries
{1},{1,2},{1,2,3}, but now look at the inner product between every pair
of columns.

#SSYT with entries
λ ⊢ 3 #SYT {1} {1,2} {1,2,3}

1 1 4 10

2 0 2 8

1 0 0 1

Inner products
1 = 13 ● ●
8 = 23 ● ●
27 = 33 ● ●

1 = (3
3
) = ((1

3
)) ●●

4 = (4
3
) = ((2

3
)) ● ●

10 = (5
3
) = ((3

3
)) ● ●

20 = (6
3
) = ((4

3
)) ●●

56 = (8
3
) = ((6

3
)) ● ●

165 = (11
3
) = ((9

3
)) ●●

Table 2: SSYT on shapes λ ⊢ 3 with entries {1},{1,2},{1,2,3}. Inner products
refers to choosing 2 columns, given by the bullets, and summing up the entry-
wise products
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After some careful inspection, we deduce the second and third identities

nd = ∑
λ⊢d

dλ(n)fλ (2)

((nm
d

)) = ∑
λ⊢d

dλ(n)dλ(m) (3)

where dλ(n) denotes the number of SSYT of shape λ and entries in [n].
The RSK correspondence gives combinatorial proofs of these 3 identities.
Being a little cavalier with the details, it gives a bijection between

pairs (P,Q) where

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(1) P ∈ SY T,Q ∈ SY T
(2) P ∈ SSY T,Q ∈ SY T
(3) P ∈ SSY T,Q ∈ SSY T

and

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(1) permutations

(2) words

(3) 2-lined arrays

For the versed reader, these identities have representation theoretic un-
derpinnings and are known by other names: (2) is known as “Schur-Weyl
duality” and (3) is known as “GLn −GLm duality”. (1) doesn’t have a
name persay, but follows from a general result in finite character theory.
Their more general forms are

(x1 +⋯ + xn)d = ∑
λ⊢d

sλ(x1, . . . , xn)fλ

n

∏
i=1

m

∏
j=1

1

1 − xiyj
=∑

λ

sλ(x1, . . . , xn)sλ(y1, . . . , ym)

We won’t take the time here to go over RSK, but the interested reader
should consult any of the excellent texts [9, 5, 10] for further study.

A goal of these notes is to come up with (bijective proofs) of identities
(1̃), (2̃), (3̃) for “type C”, i.e. analogous identities involving oscillating
tableaux and symplectic tableaux.

Let’s recall these objects:

Definition 1.1. Let λ,µ be straight shapes. An n-oscillating tableau of
shape λ/µ is a sequence

µ = ν0, ν1, ν2, . . . , λ

of partitions such that for each i,

(i) νi differs from νi−1 by a single box.

(ii) `(νi) ≤ n.

In the literature this is also known as an n-symplectic up-down tableau.
When the length restriction is implicit or not imposed, we will drop the n
and simply refer to this as an oscillating tableau or an up-down tableau.
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Definition 1.2. A symplectic tableau T of shape λ is a filling of the Ferrers
diagram of λ with the letters 1 < 1 < 2 < ⋯ < n < n such that

(a) T is semistandard with respect to the above ordering

(b) The entries i must be in row ≤ i.

Our first new identity can be proved via Berele insertion. The reader
should consult [12] for another excellent exposition on Berele insertion.
We will only state the result:

(x1 + x−11 +⋯ + xn + x−1n )d =∑
λ

spλ(x±11 , . . . , x±1n )f̃λd (n) (2̃)

where spλ is the generating function for symplectic tableaux and f̃λd (n) is
the number of n-oscillating tableaux of shape λ with d steps.

2 Longest Increasing Subsequence

Given a permutation π in 1-line notation, an increasing subsequence (i1, . . . , ik)
of π is a subsequence satisfying

i1 < . . . < ik, π(i1) < . . . < π(ik)

Define is(π) to be the length of the longest increasing subsequence of π.
The first question we can ask ourselves, as we do in all areas of our life:

why? Why would one be interested in is(π)? Why have we introduced is(π)
after first discussing RSK? In an attempt to answer these questions, we consider
the following scenarios:

Scenario 1: Imagine you have a standard 52 card deck that you would
like to sort (or if you’re teaching this semester, 52 midterms that need to be
alphabetized.) What is the fastest way to do so?

We consider the following game, called patience sorting : Take a deck of cards
labeled 1, . . . , n. The deck is shuffled and cards are turned over one at a time
and dealt into piles on a table, according to the rule:

• A low card may be placed on a higher card (e.g. 2 may be placed on 7),
or may be put into a new pile to the right of the existing piles.

The object of the game is to finish with as few piles as possible. To illustrate,
suppose a shuffled deck of 10 cards is in the order

π = 7 2 8 1 3 4 10 6 9 5

If we play this game á la greedy strategy, the game unfolds as follows:

7
2
7

2
7 8

1
2
7 8

1
2 3
7 8

1
2 3
7 8 4

1
2 3
7 8 410

1
2 3 6
7 8 4 10

1
2 3 6
7 8 4 10 9

1 5
2 3 6
7 8 4 10 9
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Note that to sort the cards, we simply take the lowest visible card, then the
next lowest visible card, and so forth. Quoting [1], “Whether this is the fastest
practical method for sorting real cards is an interesting topic for coffee-room
conversation.”

Observation 2.1. There are 5 piles at the end and is(π) = 5.

As it turns out, this is no coincidence.

Lemma 2.1. With deck π, patience sorting played with the greedy strategy ends
with exactly is(π) piles. Furthermore, the game played with any legal strategy
ends with at least is(π) piles, so that the greedy strategy is optimal.

This game not only inspires the study of longest increasing subsequences,
but as we see it also gives an algorithm for computing is(π).

Scenario 2: Now imagine you are playing bridge and you want to sort your
hand of 13 cards. What is the minimum number of “sorts” needed to sort your
hand?

Ulam thought hard about this and defined the following metric:

U(π1, π2) = min{d ∣ π1g1g2⋯gd = π2, gi ∈ G}

where G consists of the generators {(i, i + 1, . . . , j)±1 ∣ 1 ≤ i < j ≤ n}. Ulam
showed that

U(e, π) = n − is(π)

Scenario 3: Let U(k) denote the group of k×k unitary matrices. Recall that
this is a compact group and so has an associated Haar measure dg. Given a
function f ∶ U(k) → C, we can then define the expected value of f with respect
to this Haar measure:

E[f] = ∫
U(k)

f(g) dg

Diaconis, Shashahani first show that if n ≤ k, then

E[∣Trn ∣2] = n!

where Tr is the usual trace of a matrix. Rains [7] extends this to the case n > k
and also to the other classical groups. For the unitary group, Rains shows that
these higher moments of the trace of a random unitary matrix is related to
longest increasing subsequences via

Proposition 2.1.
E[∣Trn ∣2] = #{π ∈ Sn ∣ is(π) ≤ k}

In other words, if we define the random variable isn = is(πn) where πn is chosen
uniformly randomly from Sn, then

P (isn ≤ k) =
1

n!
∫
U(k)

∣ tr g∣2n dg
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At first glance this seems like a rather surprising connection. However, this
follows straightforwardly from (2), orthogonality of characters, and a property of
RSK discussed later. Rains proves several other identities between combinatorial
objects and various moments over the unitary group. For the symplectic and
orthogonal groups, Rains shows

Theorem 2.1. Let I∗n denote the subset of fixed-point-free involutions of Sn.
Let O(k), Sp(2k) denote the group of linear transformations of Ck (resp. C2k)
preserving a nondegenerate symmetric (resp. skew-symmetric) bilinear form.
Then,

EO(k)[Trn] = #{π ∈ I∗n ∣ is(π) ≤ k}

ESp(2k)[Trn] = #{π ∈ I∗n ∣ ds(π) ≤ 2k}

We return now back to RSK to unveil its connection to longest increasing
subsequences. Let’s take

π = 7 2 8 1 3 4 10 6 9 5

and row insert. We get

∅← π = 7 8

2 6 10

1 3 4 5 9

Observation 2.2. The size of the first part of the tableau above is 5.

Again, this is no coincidence.

Theorem 2.2. Let π be a permutation and let λ be the shape of the tableaux
corresponding to π under the RSK correspondence. Then,

is(π) = λ1

Moreover, if we define is(π, k) to be the length of the largest union of k disjoint
increasing subsequences, then

is(π, k) = λ1 +⋯ + λk

Hence

Corollary 2.1. Fix integers j, k, n ≥ 0. Then,

#{π ∈ Sn ∣ is(π) ≤ k} = ∑
λ⊢n
λ1≤k

(fλ)2

#{π ∈ Sn ∣ is(π) ≤ k,ds(π) ≤ j} = ∑
λ⊢n

λ1≤k,`(λ)≤j

(fλ)2

This connection between is(π) and RSK allows us to prove a theorem dating
all the way back to Erdös (who else?)
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Corollary 2.2 (Erdös, Szekeres). Let π ∈ Sn. Write n = pq+1 for some p, q ≥ 1.
Then, either is(π) > p or ds(π) > q.

In fact, this is strongest possible: If π ∈ Spq, then there are permutations
with is(π) ≤ p and ds(π) ≤ q. Indeed, it is not hard to see that

#{π ∈ Spq ∣ is(π) = p,ds(π) = q} = (f (p
q))2

3 Asymptotics

We are interested in the “typical” values of is(π). More specifically, let’s take
a random permutation π of Sn, sampled uniformly, and consider the random
variable isn ∶= is(π). What are the expectation E[isn] and standard deviation
σ(isn) for large n? What about the entire distribution?

We’ve seen that RSK gives us a formula for P (isn = k), so that

1

n!
∑
π∈Sn

is(π) = E[isn] =∑
k

kP (isn = k) =∑
k

k
1

n!
∑
λ⊢n
λ1=k

(fλ)2 = 1

n!
∑
λ⊢n

λ1 (fλ)
2

If we let λmax denote the partition which maximizes fλ, then we have the close

approximation E[isn] ≈ 1
n!
λmax
1 (fλ

max

)2. In turn though, we can approximate

fλ
max

via (1), which we recall says that

n! = ∑
λ⊢n

(fλ)
2

We note that there are far fewer than n! terms on the right hand side, so that
fλ

max

≈
√
n!. Thus, we have the approximation

E[isn] ≈
1

n!
λmax
1 (fλ

max

)
2
≈ λmax

1

We normalize the partitions to have area one, so that each box has side length
1/

√
n. As n → ∞, one might expect the shape of this normalized λmax to

approach some limiting curve. Indeed, furthering this analysis, Vershik and
Kerov [13] and Logan and Shepp [6] independently find this curve and show

Proposition 3.1. As n→∞, E[isn] ∼ 2
√
n and σ(isn) = o(n1/6).

The curve for reference is y = Φ(x) given parametrically by

⎧⎪⎪⎨⎪⎪⎩

x = y + 2 cos θ

y = 2
π
(sin θ − θ cos θ)

for θ ∈ [0, π], shown below in Figure 1. We note that they obtain this limiting
curve by solving a variational problem involving the hook length formula. A
different proof was given by Aldous, Diaconis known in the language of statistical

7



Figure 1: The limiting curve Φ(x) for the typical shape of a permutation under
RSK.

physics as the hydrodynamic limit argument. Refinements given by Kerov and
Borodin, Okounkov, Olshanski. A good survey can be found in Dan Romik’s
book [8].

The next breakthrough in these analyses came from Baik-Deift-Johansson
[2] who gave the full distribution of isn. To state their results, we define the
Tracy-Widom distribution to be

F (t) = exp(−∫
∞

t
(x − t)u(x)2 dx)

where u(x) is a solution to a certain nonlinear second order differential equation
known as the Painlevé II equation. Baik-Deift-Johansson prove the following
result

Theorem 3.1. We have for random (uniform) π ∈ Sn and all t ∈ R that

lim
n→∞P ( isn −2

√
n

n1/6
≤ t) = F (t)

and give the corollary

Corollary 3.1.
E(isn) = 2

√
n + αn1/6 + o(n1/6)

where α = −1.7710868074 . . .

You might wonder why this distribution does not share the names of the au-
thors cited above. That’s because the Tracy-Widom distribution has shown up
before, surprisingly in the theory of random hermitian matrices. More specifi-
cally, let a random n×n hermitian matrix M have eigenvalues α1 ≥ α2 ≥ ⋯ ≥ αn.
Then, Tracy and Widom showed that

lim
n→∞P ((α1 −

√
2n)

√
2n1/6 ≤ t) = F (t)
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Thus, as n→∞, isn and α1 have the same distribution, after scaling. Tracy and
Widom also gave a generalization of this to the other eigenvalues αk. Borodin,
Okounkov, and Olshanski [3] later show that if λ = sh(π), then as n → ∞, λk
and αk have the same distribution. In other words, the difference isn(π, k) −
isn(π, k − 1) and αk have the same distribution.

Below is an excerpt taken from [11]:

Okounkov provides a direct connection, via the topology of random

surfaces, between the two seemingly unrelated appearances of the

Tracy-Widom distribution in the theories of random matrices and

increasing subsequences. A very brief explanation of this connection

is the following: a surface can be described either by gluing together

polygons along their edges or by a ramified covering of a sphere. The

former description is related to random matrices via the theory of

quantum gravity, while the latter can be formulated in terms of the

combinatorics of permutations.

Apparently the Tracy-Widom distribution is also related to the ASEP but I
don’t know anything about this...

4 Generalizations (to type C)

Those familiar with Lie theory might recognize GLn and Sn as “type A” objects.
Is there a theory of RSK and longest increasing subsequences to “other Lie
types”?

For example, instead of considering longest increasing subsequences, we
could look at pattern avoidance. Given v = b1⋯bk ∈ Sk, we say that a per-
mutation π = a1⋯an ∈ Sn avoids v if it contains no subsequence ai1⋯aik in
the same relative order as v. Another way to say that is(π) < k is that it is
12⋯k-avoiding, and similarly ds(w) < k iff it is k(k − 1)⋯1-avoiding. Pattern
avoidance appears in Schubert calculus, among other areas, and extending these
asymptotic results has been an object of study.

Another possible generalization is to consider longest increasing subsequences
when restricted to subsets of the whole permutation group. For example, we
could consider the subset consisting of involutions, i.e. w ∈ Sn with w2 = 1. We
saw these objects show up in Rains’ work on moments of the trace of matrices
in the orthogonal or symplectic groups. Fortunately, the RSK correspondence
can still give a formula for the number of involutions with longest increasing
subsequence at most k, since

w
RSK←ÐÐ→ (P,Q) ⇐⇒ w−1 RSK←ÐÐ→ (Q,P )

Thus, involutions correspond to pairs of standard Young tableau (P,Q) with
P = Q, and hence if we let In denote the subgroup of involutions in Sn, then

#{w ∈ In ∣ is(w) ≤ k} = ∑
λ⊢n
λ1≤k

fλ
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Note that since fλ = fλ
′

(as the transpose of a SYT is still a SYT), we have

#{w ∈ In ∣ ds(w) ≤ k} = ∑
λ⊢n
λ1≤k

fλ
′

= ∑
λ⊢n
λ1≤k

fλ = #{w ∈ In ∣ is(w) ≤ k}

For the subset I∗n of fixed-point-free involutions, again the RSK correspondence
gives us a counting tool via the property

w
RSK←ÐÐ→ (P,P ) Ô⇒ #{fixed points of w} = #{columns of P of odd length}

Hence,

#{w ∈ I∗n ∣ is(w) ≤ k} = ∑
λ⊢n
λ′1≤k

(f2λ
′

)
2

#{w ∈ I∗n ∣ ds(w) ≤ 2k} = ∑
λ⊢n
λ1≤k

(f2λ
′

)
2

where 2λ′ = (2λ′1,2λ′2, . . .), the general partition with no columns of odd length.

Remark 4.1. Note that for the entire class of permutations, there is a symmetry
between is(w) and ds(w), since reversing the permutation exchanges increasing
subsequences with decreasing subsequences and also has a simple image under
RSK. As noted above, we again have a symmetry between is(w) and ds(w) for
the subset of involutions. However, this symmetry is broken for fixed-point free
involutions; after all, for a fixed-point free involution, ds(w) can only be even,
whereas is(w) can have any parity.

Surprisingly enough, in trying to fix this broken symmetry, fixed-point free
involutions will be our way to generalizing to type C combinatorics. We first
need to take a detour through (complete) matchings. A matchingM = {B1, . . . ,Bn}
of [2n] is a partition of [2n] into 2-element subsets. It can be visualized as a
diagram of arcs, see Figure 2.

1 2 3 4 5 6 7 8 9 10

Figure 2: The matching M = {{1,5},{2,9},{3,10},{4,8},{6,7}} on [10]

Note that fixed point free involutions in S2n are in 1-1 correspondence with
complete matchings on [2n]. Let Mn denote the set of matchings on [2n] and
let wM denote the fixed-point free involution corresponding to M . We introduce
two statistics on Mn that will replace is(w) and ds(w):

Definition 4.1. Let M ∈Mn. A crossing M consists of two arcs {i, j} and
{k, l} with i < k < j < l. A nesting of M consists of two arcs {i, j} and {k, l}
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with i < k < l < j. The maximum number of mutually crossing arcs of M is
called the crossing number of M , denoted cr(M). Similarly the nesting number
ne(M) is the maximum number of mutually nesting arcs.

For the matching M of Figure 2, we have cr(M) = 3 (corresponding to
the arcs {1,5},{2,9} and {3,10}), while also ne(M) = 3 (corresponding to
{2,9},{4,8}, and {6,7}).

It is easy to see that ds(wM) = 2 ne(M). However, it is not so clear whether
cr(M) is connected with increasing/decreasing subsequences. To this end, define

fn(i, j) = #{M ∈Mn ∣ cr(M) = i,ne(M) = j}

It is well-known that

∑
j

fn(0, j) =∑
i

fn(i,0) = Cn

the nth Catalan number. See [10, Exer. 6.19(n,o)]. The following generalization
was given by Chen et al [4].

Theorem 4.1. For all i, j, n we have fn(i, j) = fn(j, i).

To prove this, we first prove the following theorem

Theorem 4.2. There is a bijection Φ ∶Mn → F̃ 2n
∅ from the set of matchings

on [2n] to the set of oscillating tableaux of shape ∅ and [2n] steps.

Before we prove this, we note the following consequence

Corollary 4.1.
f̃2n∅ = (2n − 1)!!

as the right hand side above counts the number of matchings on [2n].

Proof of Thm 4.2. Given a matching M ∈ Mn, define an oscillating tableau
Φ(M) = (∅, λ1, . . . , λ2n = ∅) as follows: Label the right endpoints of M with
the numbers {1, . . . , n} in order from right to left. Label each left endpoint with
the unbarred number of its corresponding right endpoint. Let a1, . . . , a2n be the
labels of the endpoints from left to right.

We recursively construct a sequence of tableaux ∅ = T 0, T 1, . . . , T 2n = ∅
for which we define λi ∶= sh(T i). Once T i−1 has been obtained, let T i be the
tableau obtained by either

• Row bumping ai into T i−1 if ai is unbarred.

• Deleting the entry ai from T i−1 and performing jeu-de-taquin at the hole
if ai is barred.

It is easy to see that Φ(M) is an oscillating tableau of shape ∅ and [2n]
steps. We leave it up to the reader to construct the inverse map.
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To prove Theorem 4.1, we simply note the following

Proposition 4.1. Let M ∈ Mn and let Φ(M) = (λ0, . . . , λ2n). Then ne(M)
equals the most number of columns of any λi and cr(M) equals the most number
of rows of any λi.

Composing conjugation with the bijection Φ gives a desired bijection onMn

that interchanges crossings with nestings, and hence is an analogue to reversing
the permutation. We remark that if M ∈Mn maps to Φ(M), and M ′ is the
matching that corresponds to Φ(M)′, it is not easy to describe a direct map
from M to M ′.

Via this bijection between oscillating tableaux and matchings, we can also
derive a generalization of the hook length formula for oscillating tableaux of
shape λ and [2n] steps. Namely, any oscillating tableau (∅, λ1, . . . , λ2n = ∅)
can be thought of as a pair of oscillating tableaux of shape λ = λn, the first
being (∅, λ1, . . . , λn), the second being (λ2n, . . . , λn). Thus, we get

∑
λ

(f̃λn)
2
= (2n − 1)!! (1̃)

Just as in type A, this suggests a lurking representation theory. In fact, there
is a C-algebra Bn(x), where x is a real number, and which is semisimple for
all but finitely many x (and such that these exceptional x are all integers),
called the Brauer algebra. The Brauer algebra has a basis that is indexed in
a natural way by matchings M ∈Mn, so that dimBn(x) = (2n − 1)!!. Just as
Sn appears in Schur-Weyl duality, Brauer showed that Bn(x) is the centralizer
algebra of the action of the orthogonal group O(V ) on V ⊗n (for x = k) as well
as the action of Sp(V ) on V ⊗n (for x = −2k). When Bn(x) is semisimple, its
irreducible representations have dimension f̃λn , so we obtain a representation-
theoretic explanation of equation (2̃).

5 Further Work

• We have the analogues (1̃), (2̃). What about (3̃)? As it turns out, we do
have an analogue:

n

∏
i=1

m

∏
j=1

(xi + x−1i + yj + y−1j ) = ∑
λ⊆(mn)

spλ(x±11 , . . . , x±1n )sp(λ′)c(y±11 , . . . , y±1m )

(3̃)

• Type B: orthogonal tableaux

• Set partitions: vacillating tableaux and partition algebra.

• Skew symplectic tableaux identities

• q-analogues?
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