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0. Introduction

A Conway–Coxeter frieze of Dynkin type An is an infinite strip of positive integers of 
the form shown in Fig. 1. It consists of n +2 horizontal rows with an offset between odd 
and even rows. It is bordered by rows of ones and satisfies the condition ad − bc = 1 for 

each “diamond” 
b

a d
c

.

Conway–Coxeter friezes were introduced in [9] and [10] and inhabit a rich combina-
torial theory. For instance, each frieze can be obtained by so-called Conway–Coxeter 
counting on a triangulation of the (n + 3)-gon, see (28) and (29) in [9] and [10] or 
Definition 2.1 below.

SL2-tilings are infinite analogues of Conway–Coxeter friezes. They are bi-infinite ma-
trices of positive integers such that each adjacent 2 × 2-submatrix has determinant 1, 
see Fig. 3. They were introduced by Assem, Reutenauer, and Smith in [3] and have 
turned out to be important objects with a wealth of connections to cluster algebras, 
combinatorics, mathematical physics, and representation theory.

Some classes of SL2-tilings were discovered in [3] and [18], but there were examples 
not belonging to the classes, see [18, Example 2.9], and there was no insight into the 
structure of the set of all SL2-tilings.

We improve the results from [3] and [18] significantly by showing that every SL2-tiling 
can be obtained by Conway–Coxeter counting on an infinite triangulation of the disc with 
two, three, or four accumulation points. We also show that the SL2-tilings found in [3]
and [18] are rather special, because they have infinitely many entries equal to 1. Our 
methods reveal that there are large classes of SL2-tilings with only finitely many 1’s, and 
even a class of tilings with no 1’s at all, see Remark 3.10.

In the latter case, we show that the minimal entry of a tiling is unique, see Lemma 12.4.

Motivations for studying SL2-tilings The introduction of SL2-tilings in [3] was moti-
vated by applications to linear recurrence relations for certain friezes, and to formulae 
for cluster variables in Euclidean type, see [3, Sects. 7 and 8]. There is an application by 
Assem and Reutenauer in [2] to formulae for cluster seeds in types A and Ã.

Fig. 1. A Conway–Coxeter frieze of Dynkin type A4.
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Fig. 2. A triangulation T of the disc with two accumulation points, D2. Black numbers label the vertices, 
green numbers show an example of Conway–Coxeter counting starting at vertex −3I. (For interpretation of 
the colours in this figure, the reader is referred to the web version of this article.)

SL2-tilings were applied to the theory of cluster characters by Assem, Dupont, Schif-
fler, and Smith in [1] and Jørgensen and Palu in [20]. Cluster characters were introduced 
by Palu in [23] to formalise cluster categorification.

Di Francesco in [11,12] and Di Francesco and Kedem in [13,14] showed how SL2-tilings 
are linked to mathematical physics, where a so-called T-system of type A1 is simply a 
pair of SL2-tilings, albeit with Laurent polynomial values.

SL2-tilings were generalised by Bergeron and Reutenauer in [5] to SLk-tilings. Other 
types of SL2-tilings, relaxing parts of the definition, were obtained by Baur, Parsons, 
and Tschabold in [4], Morier-Genoud, Ovsienko, and Tabachnikov in [22], Tschabold in 
[24], and also in [18] and [20].

We continue with a more detailed explanation of this paper.

Primer on Conway–Coxeter counting Fig. 2 shows a triangulation T of the disc with 
two accumulation points, D2. The notches indicate marked points on the boundary of the 
disc, also called vertices. There are countably many vertices in each of two intervals given 
by the upper and lower half circles. The vertices converge clockwise and anticlockwise to 
two accumulation points marked with small circles. A numbering of the vertices is shown 
in black; the superscripts I and III are not powers but distinguish between the vertices on 
the two intervals. The triangulation T is a set of arcs between non-neighbouring vertices 
which divides the disc into triangular regions. The figure shows only a finite part of the 
infinite set T.
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Fig. 3. Left: The SL2-tiling t obtained by Conway–Coxeter counting on T from Fig. 2. Right: An SL2-tiling 
t′ with no entry equal to 1.

Conway–Coxeter counting on T is the following procedure: Start with a fixed vertex 
μ and label it 0. If vertex ν is a neighbour of μ, or linked to μ by an arc in T, then ν
is labelled 1. Now iterate the following: If a triangular region defined by T has precisely 
two labelled vertices π and ρ with labels i and j, then its third vertex σ is labelled i + j. 
The label which eventually appears at σ is denoted T(μ, σ). The green numbers in Fig. 2
show T(μ, σ) for μ = −3I.

It follows from results by Conway and Coxeter that

t(b, v) = T(bI, vIII) (0.1)

with b, v ∈ Z defines an SL2-tiling t, said to arise from T by Conway–Coxeter counting. 
Part of t is shown on the left in Fig. 3. Note that we use matrix notation so b increases 
when going down, v increases when going right.

SL2-tilings without 1’s and the main result Not every SL2-tiling can be obtained as 
above. To see so, observe that if T contains an arc between a vertex bI on the top half 
circle and a vertex vIII on the bottom half circle, then T(bI, vIII) = 1 so t has at least one 
entry equal to 1. But the right half of Fig. 3 shows part of an SL2-tiling t′ with no entry 
equal to 1. One could try to obtain t′ by letting T have no arcs between the top half 
circle and the bottom half circle, but this will not work: If there are no such connecting 
arcs, then Conway–Coxeter counting does not terminate. Indeed, the procedure never 
reaches the bottom half circle at all, so no labels are defined there.

Fig. 4 shows a more sophisticated triangulation T′ of the disc with four accumulation 
points. There are now vertices in four intervals, converging clockwise and anticlockwise 
to four accumulation points marked with small circles. The top and bottom intervals 
are numbered I and III as above; indeed, two of the intervals on a disc will always be 
numbered I and III regardless of how many accumulation points there are. A numbering 
of the vertices in the top and bottom intervals is shown in black, and green numbers show 
the T′(μ, σ) for μ = −3I. The SL2-tiling arising from T′ by Conway–Coxeter counting is 
defined as above: t′(b, v) = T′(bI, vIII), and this is in fact the t′ in the right half of Fig. 3.
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Fig. 4. A triangulation T′ of the disc with four accumulation points, D4. Black numbers label the vertices, 
green numbers show an example of Conway–Coxeter counting starting at vertex −3I. (For interpretation of 
the colours in this figure, the reader is referred to the web version of this article.)

The extra accumulation points mean that there is room in T′ for a horizontal arc 
which blocks T′ from having arcs between the top and bottom intervals. This means 
that T′(bI, vIII) is never equal to 1, so t′ has no entry equal to 1. Note that in this 
example, Conway–Coxeter counting does indeed terminate with labels on the bottom 
interval because it can progress through the side intervals.

Our main result is that four accumulation points are sufficient for every SL2-tiling to 
arise:

Theorem A. Let t be an SL2-tiling. There exists a good triangulation T of the disc with 
two, three, or four accumulation points, such that t arises from T by Conway–Coxeter 
counting between two intervals.

The notion of a good triangulation is made precise in Definition 1.9. The point is that 
Conway–Coxeter counting always terminates for these. Theorem A is a portmanteau of 
Theorems 6.1, 7.4, 8.2, 9.4, 10.2, and 13.8, each of which starts with an SL2-tiling t of a 
certain type and constructs a good triangulation T.
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Fig. 5. An infinite frieze.

On the proof of Theorem A The construction of T is split across six theorems because 
the details depend strongly on t; specifically, on the pattern of entries equal to 1. However, 
the philosophy is the same in all cases as we now explain.

Let t be an SL2-tiling. On the one hand, t gives rise to two infinite friezes in the sense 
of Tschabold, see [24, Definition 1.1] or Definition 3.1 and Fig. 5. They are defined by

p(a, d) =
∣∣∣∣t(a,w) t(a,w + 1)
t(d,w) t(d,w + 1)

∣∣∣∣ , q(u, x) =
∣∣∣∣ t(c, u) t(c, x)
t(c + 1, u) t(c + 1, x)

∣∣∣∣
for integers a � d, u � x. Note that the integers w and c can be chosen freely; p(a, d) and 
q(u, x) do not depend on them. To say that p is an infinite frieze means that p(a, a) = 0, 
p(a, a +1) = 1, p(a, d) � 1 for a < d, and, when writing p as a matrix, each 2 ×2-submatrix 
which makes sense has determinant 1. Note that to improve the compatibility with 
SL2-tilings, our convention for indexing an infinite frieze differs from [24, Definition 1.1].

On the other hand, a putative good triangulation T gives rise not merely to the 
SL2-tiling of Equation (0.1), but also to two infinite friezes defined by

(a, d) �→ T(aI, dI) , (u, x) �→ T(uIII, xIII)

for integers a � d, u � x; this again follows from results by Conway and Coxeter.
To prove Theorem A we must show that when t is an SL2-tiling, there is a good 

triangulation T satisfying Equation (0.1). However, we will tackle the seemingly harder 
problem of also asking for

p(a, d) = T(aI, dI), (0.2)

q(u, x) = T(uIII, xIII) (0.3)

for a � d, u � x. This actually turns out to be easier because the entries in the triple 
(t, p, q) and the numbers T(μ, ν) satisfy two strong sets of equations called Ptolemy 
relations which we do not list here, but see Lemmas 2.3(v) and 3.3. They mean that, 
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when T has been constructed, in order to prove Equations (0.1) through (0.3) in general, 
it is sufficient to do so in a relatively small set of special cases.

For example, suppose that t has infinitely many entries equal to 1 in both the first 
and the third quadrant; this is the case considered in Theorem 6.1. For such a t, we will 
show that the set of arcs

Θ(t) =
{
{bI, vIII}

∣∣ t(b, v) = 1
}
∪
{
{aI, dI}

∣∣ a + 2 � d, p(a, d) = 1
}

∪
{
{uIII, xIII}

∣∣u + 2 � x, q(u, x) = 1
}

(0.4)

is a good triangulation of D2 (observe that we think of an arc as a purely combinatorial 
object specified by giving the end vertices). Moreover, if we set T = Θ(t) then Equa-
tions (0.1) through (0.3) hold in some special cases: If t(b, v) = 1 then {bI, vIII} ∈ T

whence T(bI, vIII) = 1, so Equation (0.1) holds. Likewise, if p(a, d) = 1 then Equa-
tion (0.2) holds, and if q(u, x) = 1 then Equation (0.3) holds. Using only this, the 
Ptolemy relations turn out to imply the three equations in general. In particular, Equa-
tion (0.1) holds in general, so t arises from T by Conway–Coxeter counting.

Before ending this discussion, let us highlight another useful phenomenon: The special 
cases d = a +2 of Equation (0.2) and (symmetrically) x = u +2 of Equation (0.3) imply 
the two equations in general. Indeed, this is just the easy fact that the second diagonal, or 
quiddity sequence, of an infinite frieze determines the whole frieze, see [24, Remark 1.3]. 
When t is given, it is hence important to be able to construct a good triangulation T
which satisfies Equations (0.2) and (0.3) in these special cases. We will use the following 
approach: The vertices aI, (a + 1)I, (a + 2)I are consecutive on the disc. It is known that 
hence, if T can be constructed, then

T
(
aI, (a + 2)I

)
= 1 +

(
the number of arcs in T which end at (a + 1)I

)
.

To get Equation (0.2) for d = a + 2, we must construct T such that

p(a, a + 2) = 1 +
(
the number of arcs in T which end at (a + 1)I

)
.

In Theorems 7.4, 8.2, 9.4, 10.2, and 13.8, this is accomplished by starting with the set of 
arcs Θ(t) from Equation (0.4) and adding arcs so that, eventually, there are p(a, a +2) −1
arcs ending at (a + 1)I for each a. See for instance Fig. 21 where the arcs in Θ(t) are 
black and the additional arcs are red. The figure also illustrates that the additional arcs 
need somewhere to end. This is the reason we need more intervals than I and III. The 
number of arcs to be added at (a + 1)I is given by the defect defp(a + 1) introduced in 
Definition 5.4; this is the rationale for defining and manipulating defects in Section 5. 
See also Fig. 21 and its caption.

Link to the cluster categories of Igusa and Todorov Let n be 2, 3, or 4, and let Dn be 
the disc with n accumulation points. The set of vertices of Dn is an example of a cyclic 
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poset in the sense of Igusa and Todorov, see [19, Definition 1.1.12]. There is an associated 
cluster category C with infinite clusters, see [19, Theorem 2.4.1]. It categorifies Dn in the 
sense that there is a bijection between arcs in Dn and indecomposable objects in C, such 
that crossing of arcs corresponds to existence of non-split extensions. Moreover, if T is 
a good triangulation of Dn, then the arcs in T correspond to a set of indecomposable 
objects whose finite direct sums form a cluster tilting subcategory T of C. See [16] for 
more details.

There is an arithmetic Caldero–Chapoton map ρT associated to C and T. As indicated 
by the name, the map is due to Caldero and Chapoton, but the specific version we have 
in mind is the one from [18, Definition 3.1]. It is a map

ϕT : obj C → Z

which can be computed by Conway–Coxeter counting; this follows from [20, Proposi-
tion 1.10] by the method used to prove [17, Theorem 5.4]. Hence if aμν in C is the 
indecomposable object corresponding to the arc {μ, ν}, then

ϕT(aμν) = T(μ, ν).

This means that we can view C and ϕT as categorifying the SL2-tiling arising from T by 
Conway–Coxeter counting.

This is of interest because there is a more general Caldero–Chapoton map

ρT : obj C → Q(xt | t indecomposable in T)

with Laurent polynomial values whose image generates a cluster algebra with infinite 
clusters, see [20, Theorem 2.3 and Corollary 2.5]. The SL2-tiling arising from T by 
Conway–Coxeter counting can be recovered by specialising the initial cluster variables 
xt to 1. Such cluster algebras have so far only been studied carefully for the disc with 
one accumulation point. They have several interesting properties different from cluster 
algebras with finite clusters, and seem likely to be of interest also for larger numbers of 
accumulation points. See [15] by Grabowski and Gratz.

Structure of the paper Theorem A will not be proved in one go, but sums up Theo-
rems 6.1, 7.4, 8.2, 9.4, 10.2, and 13.8. Each of these starts with an SL2-tiling t with a 
certain pattern of entries equal to 1 and constructs a triangulation T of the disc with 
two, three, or four accumulation points.

Reading the theorems in order will make it clear that they cover every possible 
SL2-tiling t: They progress through SL2-tilings t with fewer and fewer entries equal 
to 1, ending with no 1’s at all in Theorem 13.8.

Conversely, SL2-tilings of the types described in the theorems do exist: In each case, 
they can be obtained as the SL2-tilings arising by Conway–Coxeter counting from trian-
gulations of the type constructed in the theorem, see Remark 3.10.
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Section 1 gives formal definitions relating to triangulations of the disc with accumu-
lation points. Section 2 recalls some properties of Conway–Coxeter counting. Section 3
shows some results on SL2-tilings and their associated infinite friezes. Section 4 starts 
with an SL2-tiling t and constructs a partial triangulation Θ(t). In each subsequent case, 
the (full) triangulation T is obtained either as Θ(t) itself (Theorem 6.1), or is constructed 
by adding arcs to Θ(t) (Theorems 7.4, 8.2, 9.4, 10.2, and 13.8). Section 5 introduces what 
we call defects and shows some properties. The defects provide information about how 
many arcs we must add to Θ(t) to get T.

Sections 6 through 10 prove Theorems 6.1, 7.4, 8.2, 9.4, 10.2. Section 11 shows a 
technical result on Conway–Coxeter friezes, Section 12 shows that an SL2-tiling with no 
entry equal to 1 has a unique minimum, and Section 13 proves Theorem 13.8, thereby 
completing the proof of Theorem A.

1. Triangulations of the disc with accumulation points and other basic definitions

Setup 1.1. Throughout, C is a circle with anticlockwise orientation, D is a disc with 
boundary C, and n is 2, 3, or 4.

Notation 1.2. Let μ1, . . ., μm be points on C.
The string of inequalities μ1 < · · · < μm will mean that each μi is different from its 

predecessor, and that if we start from μ1 and move anticlockwise on C by one full turn, 
then we encounter the points in precisely the order μ1, . . ., μm.

It is straightforward to modify this to permit the inequality sign � as well as infinite 
strings of inequalities.

Definition 1.3 (The disc with four accumulation points). Let D4, the disc with four 
accumulation points, be the object sketched in Fig. 6.

More formally, D4 is the disc D along with four points ξI < ξII < ξIII < ξIV on the 
boundary C called accumulation points of D4, and infinitely many points on C called 
vertices of D4, defined as follows:

For each J ∈ {I, II, III, IV}, let . . ., −1J, 0J, 1J, . . . be countably many points on C
which satisfy:

• ξJ−1 < · · · < −1J < 0J < 1J < · · · < ξJ,
• the sequence 0J, 1J, 2J, . . . converges to ξJ,
• the sequence 0J, −1J, −2J, . . . converges to ξJ−1.

Here J − 1 stands for the Roman numeral one below J, or IV if J = I. The vertices of D4

are the points . . ., −1J, 0J, 1J, . . . for J ∈ {I, II, III, IV}.
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Fig. 6. This is D4, the disc with four accumulation points, ξI through ξIV.

Fig. 7. A simpler view of the disc with four accumulation points, D4, and our convention for numbering the 
intervals of the boundary.

The set

{ω ∈ C | ξJ−1 < ω < ξJ}

will be called interval J of the boundary of D4. There is an obvious notion of when two 
intervals are neighbouring.

Our convention for numbering the intervals of the boundary of D4 is shown in sim-
plified form in Fig. 7.

Definition 1.4 (The disc with two or three accumulation points). We can mimic Defini-
tion 1.3 in order to define D2, the disc with two accumulation points, and D3, the disc 
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Fig. 8. The disc with two accumulation points, D2, and our convention for numbering the intervals of the 
boundary.

Fig. 9. The disc with three accumulation points, D3, and our two possible conventions for numbering the 
intervals of the boundary.

with three accumulation points. For reasons which will be explained later, in case of D2

we will denote the intervals by Roman numerals I and III, and in case of D3 by Roman 
numerals {I, II, III} or {I, III, IV}.

That is, intervals I and III are always present, but II and/or IV may be dropped; see 
Figs. 8 and 9.

Notation 1.5. Recall that n is 2, 3 or 4, so we may consider Dn, the disc with n accu-
mulation points.

Generic integers will often be denoted by i, j, k, 	, m and generic vertices of Dn often 
by ι, κ, μ, ν, π, ρ, σ.

If J is an interval of the boundary of Dn and m is an integer, then the vertex mJ is 
in J. Depending on whether J is I, II, III, or IV, we will typically replace m by one of 
the letters in Fig. 10.

In subsequent figures, the superscripts of vertices will be omitted since it is clear from 
a figure when two vertices belong to different intervals. Superscripts will, however, be 
used in the main text.

Definition 1.6 (Edges, arcs, and crossing). Let μ be a vertex of Dn. There are evident no-
tions of the previous vertex μ− and the next vertex μ+. These are called the neighbouring
vertices of μ.

When μ and ν are different vertices of Dn, we can consider the set {μ, ν}. If μ and 
ν are neighbouring vertices then {μ, ν} is called the edge between μ and ν in Dn, and if 
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Fig. 10. Depending on the interval, we typically use these labels for the vertices.

μ and ν are non-neighbouring vertices then {μ, ν} is called the arc between μ and ν in 
Dn. In either case, we say that {μ, ν} ends at μ and ν and links these two vertices.

This is a combinatorial definition, but we keep in mind the geometrical intuition to 
think of an edge as part of the circle C bounding the disc D, and of an arc as an actual 
arc inside D.

The arcs {μ, ν} and {π, ρ} are said to cross if μ < π < ν < ρ or π < μ < ρ < ν. This is 
compatible in an evident way with the geometrical intuition of the previous paragraph, 
see Fig. 14.

Definition 1.7 (Internal, connecting, clockwise, and anticlockwise arcs). An arc {μ, ν} is 
called internal if μ and ν belong to the same interval. Otherwise it is called connecting
(because it connects two different intervals). Note that the words peripheral and bridging
are used in essentially the same sense in [4] and [24].

If {μ, ν} is an internal arc or an edge, then either ν = μ++···+ or ν = μ−−···−. In the 
former case, we say that {μ, ν} goes anticlockwise from μ, in the latter case that {μ, ν}
goes clockwise from μ.

Definition 1.8 (Blocking an accumulation point). Let J and K be neighbouring intervals 
of the boundary of Dn separated by the accumulation point ξ, such that if ι ∈ J and 
κ ∈ K are vertices then ι < ξ < κ.

Let T be a set of arcs in Dn. We say that T blocks the accumulation point ξ if it 
contains the configuration shown in Fig. 11.
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Fig. 11. The arcs block the accumulation point ξ.

More formally, T must contain arcs {ιi, κi} for i � 1 where the vertices ιi ∈ J and 
κi ∈ K satisfy ι1 < ι2 < · · · < ξ < · · · < κ2 < κ1. Note that the ιi and the κi converge 
to ξ from opposite sides.

Definition 1.9 (Triangulations). A set of pairwise non-crossing arcs in Dn is called a 
partial triangulation of Dn, and a maximal set of pairwise non-crossing arcs in Dn is 
called a triangulation of Dn.

A partial triangulation T of Dn is called good if it blocks each accumulation point of 
Dn. It is called locally finite if, for each vertex μ of Dn, only finitely many arcs in T end 
at μ.

Definition 1.10 (Vertex sets compatible with a partial triangulation). Let T be a partial 
triangulation of Dn. A finite set of m � 2 vertices μ1 < μ2 < · · · < μm of Dn is said to 
be compatible with T if each pair {μ1, μ2}, {μ2, μ3}, . . ., {μm, μ1} is either an edge or an 
arc in T.

The pairs {μ1, μ2}, {μ2, μ3}, . . ., {μm, μ1} can be viewed as the edges of a finite 
polygon P with vertices equal to the μi, and we say that the set M = {μ1, . . . , μm}
spans P .

The remaining arcs in T between the μi form a partial triangulation TP of P , and we 
say that T restricts to TP . If T is a triangulation of Dn then TP is a triangulation of P .

The following special cases will play a prominent role.

(i) Let J be an interval of the boundary of Dn. If a < d are such that {aJ, dJ} ∈ T or 
{aJ, dJ} is an edge, then the set of vertices {aJ, . . . , dJ} is compatible with T and 
spans a finite polygon P called the polygon below {aJ, dJ}. See the left part of Fig. 12
where n = 4 and J = I.

(ii) Let J and K be distinct intervals of the boundary of Dn. If a � d and u � x are 
such that {aJ, xK}, {dJ, uK} ∈ T then the set of vertices aJ, . . . , dJ, uK, . . . , xK is 
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Fig. 12. There is a finite polygon P below the arc {aI, dI}. The vertices of P are aI, (a + 1)I, . . ., (d − 1)I, 
dI. Among them, (a + 1)I, (a + 2)I, . . ., (d − 2)I, (d − 1)I are said to be strictly below {aI, dI}. There is 
similar terminology for the finite polygon R, see Definitions 1.10 and 5.1.

compatible with T and spans a finite polygon R called the polygon between {aJ, xK}
and {dJ, uK}. See the right part of Fig. 12 where n = 4, J = I, K = III.

Lemma 1.11. Let T be a good triangulation of Dn and let N be a finite set of vertices of 
Dn. Then there exists a finite set M of vertices such that N ⊆ M and M is compatible 
with T.

The set M spans a finite polygon P , and T restricts to a triangulation TP of P .

Proof. Consider the following construction of a set M of vertices compatible with T:
Start by including in M a vertex in interval I. Move anticlockwise around Dn and 

include in M the vertices in interval I encountered. End with a vertex linked to interval 
II by an arc in T.

Continue by including in M the vertex at the other end of this arc. Move anticlockwise 
around Dn and include in M the vertices in interval II encountered. End with a vertex 
linked to interval III by an arc in T.

Continue in the same fashion, thereby defining a set of vertices M as shown in Fig. 13. 
The set M spans a finite polygon P and T restricts to a triangulation TP of P ; see 
Definition 1.10.

This proves the lemma since we can always accomplish N ⊆ M by making M suf-
ficiently big. Namely, N is finite, and the arcs which link different intervals in the 
construction of M can be chosen arbitrarily close to the accumulation points because T
is good. �
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Fig. 13. The four arcs are elements of a good triangulation T of D4, so the set M of vertices shown in the 
figure is compatible with T. The set M spans a finite polygon P . The four arcs can be viewed as four of 
the edges of P , and T restricts to a triangulation TP of P .

2. Conway–Coxeter counting

Definition 2.1 (Conway–Coxeter counting). Let P be a finite polygon with a triangulation 
S and fix a vertex μ of P . The following procedure is due to [10, (32)], see also [7, Sect. 2]. 
We will refer to it as Conway–Coxeter counting:

Each vertex of P is assigned a non-negative integer by the following inductive proce-
dure. The vertex μ is assigned 0. If {μ, ν} is an edge or an arc in S, then the vertex ν is 
assigned 1. If there is a triangle in S of which only two vertices, say π and ρ, have been 
assigned integers, say a and b, then the third vertex is assigned a + b.

We let S(μ, ν) denote the integer assigned to vertex ν.

Remark 2.2. Let T be a good triangulation of Dn and let μ, ν be vertices of Dn.
By Lemma 1.11, we can pick a finite set of vertices M such that μ, ν ∈ M and such 

that M is compatible with T in the sense of Definition 1.10. The set M spans a finite 
polygon P , and T restricts to a triangulation TP of P , so Conway–Coxeter counting 
defines a non-negative integer TP (μ, ν).

It is easy to see that TP (μ, ν) does not depend on the choice of vertex set M . Indeed, 
TP (μ, ν) can be computed by following the inductive procedure of Definition 2.1 on T
itself. Accordingly, we drop the subscript P and write T(μ, ν).

Lemma 2.3 (Basic properties of Conway–Coxeter counting). Let T be a triangulation of 
a finite polygon P or a good triangulation of Dn. Then Conway–Coxeter counting has 
the following properties.

(i) Each T(μ, ν) is a well-defined non-negative integer.
(ii) T(μ, ν) = 0 if and only if μ = ν.
(iii) T(μ, ν) = 1 if and only if μ and ν are consecutive vertices or {μ, ν} ∈ T.
(iv) T(μ, ν) = T(ν, μ).
(v) If the arcs {μ, ν} and {π, ρ} cross, then we have the following Ptolemy relation 

illustrated by Fig. 14.



C. Bessenrodt et al. / Advances in Mathematics 315 (2017) 194–245 209
Fig. 14. The arcs {μ, ν} and {π, ρ} cross since μ < π < ν < ρ. The crossing gives the Ptolemy relation 
T(μ, ν)T(π, ρ) = T(μ, π)T(ν, ρ) + T(μ, ρ)T(ν, π).

T(μ, ν)T(π, ρ) = T(μ, π)T(ν, ρ) + T(μ, ρ)T(ν, π).

(vi) If μ−, μ, μ+ are three consecutive vertices then

T(μ−, μ+) = 1 + (the number of arcs in T ending at μ).

Proof. By Remark 2.2, the case of a good triangulation of Dn reduces to the case of a 
triangulation of a finite polygon. In this case, all the properties are well-known; indeed, 
(i) through (iii) are clear from Definition 2.1 and Remark 2.2. For (iv) see [7, Corollary 1], 
for (v) see [21, Sect. 4.2], and for (vi) see (27) in [9] and [10] or [21, Theorem 4.3]. �
3. SL2-tilings in the abstract and SL2-tilings arising from triangulations of the disc

Definition 3.1. Let A ⊆ Z × Z be given. A partial SL2-tiling defined on A is a map 
t : A → {1, 2, 3, . . .} such that

∣∣∣∣ t(i, j) t(i, j + 1)
t(i + 1, j) t(i + 1, j + 1)

∣∣∣∣ = 1

whenever the determinant makes sense.
The values of t are called entries of the partial SL2-tiling. We always write the entries 

t(i, j) in matrix style, so i increases when we move down, j increases when we move 
right. Compass directions and words like row, column, first quadrant, and third quadrant
are to be interpreted in this context, see Fig. 15.

If A = Z × Z then t is simply called an SL2-tiling, see Fig. 3.
If A = {(i, j) | i < j} and t(i, i + 1) = 1 for each i, then t is called an infinite 

frieze, see Fig. 5. Infinite friezes were introduced in [24, Definition 1.1]. Note that we 
index them differently from [24] to improve compatibility with SL2-tilings. When t is an 
infinite frieze, we set t(i, i) = 0.

If A is a diagonal band running northwest to southeast and t is equal to 1 on both 
edges of the band, then t is called a Conway–Coxeter frieze. These were introduced 
in [9] and [10] where the band is typeset horizontally, that is, rotated by 45 degrees 
anticlockwise compared to our notation, see Fig. 1.
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Fig. 15. When writing the entries t(i, j) of an SL2-tiling t, we use matrix style so i increases downwards, j
increases to the right.

By (21) in [9] and [10], a Conway–Coxeter frieze has a fundamental domain which is 
the restriction t|F of the frieze t to a triangle F as shown in Fig. 17. The lower edge 
of the frieze is the diagonal with all entries equal to 1. The upper edge of the frieze 
contains the 1 at the upper right corner of the triangle. The entries of the whole frieze 
are obtained by tiling the diagonal band A with translations of t|F and its reflection in 
a line running northwest to southeast.

Setup 3.2. Throughout, t is an SL2-tiling. Recall from [18, Sect. 5] that there are asso-
ciated infinite friezes p and q defined by

p(a, d) =
∣∣∣∣t(a,w) t(a,w + 1)
t(d,w) t(d,w + 1)

∣∣∣∣ , q(u, x) =
∣∣∣∣ t(c, u) t(c, x)
t(c + 1, u) t(c + 1, x)

∣∣∣∣
for integers a � d, u � x. Note that the integers w and c can be chosen freely by [18, 
Remark 5.2], and that p(a, d) and q(u, x) are indeed positive for a < d and u < x by [18, 
Proposition 5.6].

Lemma 3.3. We have the following Ptolemy relations.

(i) Let a < b < c < d be integers. Then

p(a, c)p(b, d) = p(a, b)p(c, d) + p(a, d)p(b, c) and

q(a, c)q(b, d) = q(a, b)q(c, d) + q(a, d)q(b, c).

(ii) Let v and a < b < c be integers. Then
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p(a, c)t(b, v) = p(b, c)t(a, v) + p(a, b)t(c, v) and

q(a, c)t(v, b) = q(b, c)t(v, a) + q(a, b)t(v, c).

(iii) Let b < c and v < w be integers. Then

t(b, v)t(c, w) = t(b, w)t(c, v) + p(b, c)q(v, w).

Proof. See [18], Propositions 5.4, 5.5, and 5.7. �
Lemma 3.4. Let i, m be integers with m > 0. The entry m occurs only finitely many 
times in each of the following (half-)rows and (half)-columns:

t(i,−) , t(−, i) , p(i,−) , p(−, i) , q(i,−) , q(−, i).

Proof. The statements about t(i, −) and t(−, i) are [18, Proposition 6.1]. The proof of 
that result can be modified as follows to show the remaining statements:

Suppose that i < j < k are integers with p(i, j) = p(i, k) = m. The Ptolemy rela-
tion 3.3(i) gives

p(i− 1, j)p(i, k) = p(i− 1, i)p(j, k) + p(i− 1, k)p(i, j) = p(j, k) + p(i− 1, k)p(i, j)

whence

p(j, k) =
∣∣∣∣p(i− 1, j) p(i− 1, k)

p(i, j) p(i, k)

∣∣∣∣ =
∣∣∣∣p(i− 1, j) p(i− 1, k)

m m

∣∣∣∣
= m ·

(
p(i− 1, j) − p(i− 1, k)

)
.

Since p(j, k) > 0 we learn p(i − 1, j) > p(i − 1, k).
Hence if there is a sequence of integers i < j < k < · · · with p(i, j) = p(i, k) = · · · = m, 

then p(i − 1, j) > p(i − 1, k) > · · · . Since the entries of p are non-negative, this implies 
that the sequence is finite, so the half-row p(i, −) has only finitely many entries equal 
to m.

The remaining claims are proved symmetrically. �
Proposition 3.5. Let T be a good triangulation of Dn, the disc with n accumulation points 
where n ∈ {2, 3, 4}.

(i) The map (b, v) �→ T(bI, vIII) is an SL2-tiling.
(ii) The map (a, d) �→ T(aI, dI) is an infinite frieze defined in the half plane {(a, d) |

a � d}.
(iii) The map (u, x) �→ T(uIII, xIII) is an infinite frieze defined in the half plane {(u, x) |

u � x}.
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Proof. (i) We have

∣∣∣∣∣
T(bI, vIII) T

(
bI, (v + 1)III

)
T
(
(b + 1)I, vIII) T

(
(b + 1)I, (v + 1)III

)
∣∣∣∣∣

= T(bI, vIII)T
(
(b + 1)I, (v + 1)III

)
− T

(
bI, (v + 1)III

)
T
(
(b + 1)I, vIII)

= T
(
bI, (b + 1)I

)
T
(
vIII, (v + 1)III

)
= 1,

where the second equality is by the Ptolemy relation in Lemma 2.3(v) and the last 
equality is by Lemma 2.3(iii).

(ii) and (iii) are analogous to (i). �
Remark 3.6. As explained, the point of the paper is to show that every SL2-tiling arises 
as in Proposition 3.5(i).

Definition 3.7. The SL2-tiling (b, v) �→ T(bI, vIII) from Proposition 3.5(i) is said to arise 
from T by Conway–Coxeter counting. It will be denoted Φ(T).

Lemma 3.8. Let t be an SL2-tiling with associated infinite friezes p, q. Let T be a good 
triangulation of Dn.

On the one hand, assume t = Φ(T), that is, t(b, v) = T(bI, vIII) for all integers b, v. 
Then

(i) p(b − 1, b + 1) = T
(
(b − 1)I, (b + 1)I

)
for each b,

(ii) q(v − 1, v + 1) = T
(
(v − 1)III, (v + 1)III

)
for each v.

On the other hand, assume that (i) and (ii) hold along with at least one of the following 
two conditions.

(iii) There are integers e < f and g < h such that

t(e, g) = T(eI, gIII) , t(f, g) = T(f I, gIII) , t(f, h) = T(f I, hIII).

(iii)’ There are integers e < f and g < h such that

t(e, h) = T(eI, hIII) , t(f, g) = T(f I, gIII) , t(f, h) = T(f I, hIII).

Then t = Φ(T), that is, t(b, v) = T(bI, vIII) for all b and v.
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Proof. “On the one hand”: Let b be a given integer and pick an arbitrary integer v. Then

p(b− 1, b + 1)t(b, v) = p(b− 1, b)t(b + 1, v) + p(b, b + 1)t(b− 1, v)

= t(b + 1, v) + t(b− 1, v)

where the first equality is by the Ptolemy relation in Lemma 3.3(ii). Moreover,

T
(
(b− 1)I, (b + 1)I

)
T(bI, vIII)

= T
(
(b− 1)I, bI

)
T
(
(b + 1)I, vIII) + T

(
bI, (b + 1)I

)
T
(
(b− 1)I, vIII)

= T
(
(b + 1)I, vIII) + T

(
(b− 1)I, vIII)

where the first equality is by the Ptolemy relation in Lemma 2.3(v) and the second 
equality is by Lemma 2.3(iii).

By assumption, we have t(c, v) = T(cI, vIII) for each c. In particular this holds for 
c equal to b − 1, b, or b + 1. The two displayed equations therefore combine to give 
p(b − 1, b + 1) = T

(
(b − 1)I, (b + 1)I

)
. This shows (i), and (ii) follows by symmetry.

“On the other hand”: Consider the infinite friezes p and (a, d) �→ T(aI, dI), see Propo-
sition 3.5(ii). Condition (i) says that they agree on the diagonal {(b − 1, b + 1) | b ∈ Z}. 
However, it is easy to see that an infinite frieze is determined entirely by its values on 
this diagonal which is also known as its quiddity sequence; see [24, Remark 1.3]. So the 
two infinite friezes agree:

p(a, d) = T(aI, dI) for a � d. (3.1)

Similarly, condition (ii) implies

q(u, x) = T(uIII, xIII) for u � x. (3.2)

Now suppose condition (iii) holds. If b < e then the Ptolemy relation in 3.3(ii) says

p(b, f)t(e, g) = p(b, e)t(f, g) + p(e, f)t(b, g) (3.3)

while the Ptolemy relation in Lemma 2.3(v) says

T(bI, f I)T(eI, gIII) = T(bI, eI)T(f I, gIII) + T(eI, f I)T(bI, gIII). (3.4)

Equations (3.1) and (3.2) and condition (iii) say that the first five of the six factors in 
Equation (3.3) are equal to the corresponding factors in Equation (3.4). Hence the last 
factors are also equal, so

t(b, g) = T(bI, gIII) for b < e.
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Fig. 16. The entries of t which are equal to 1 occur on a zig-zag which can be bounded or unbounded to each 
side.

Similar arguments can be applied for e < b < f and f < b, and the cases b = e and 
b = f are handled by condition (iii) itself, so we get

t(b, g) = T(bI, gIII) for each b.

Similar arguments prove that

t(f, v) = T(f I, vIII) for each v.

Hence the SL2-tilings t and (b, v) �→ T(bI, vIII) match on column number g and row 
number f . However, it is easy to see that an SL2-tiling is determined entirely by its 
values on a column and a row, so the two SL2-tilings must agree everywhere as claimed.

If condition (iii)’ holds then we proceed symmetrically. �
Lemma 3.9. If t has entries which are equal to 1, then they occur on a zig-zag as shown 
in Fig. 16. The zig-zag is bounded or unbounded to each side.

More formally, there is an interval K ⊆ Z which is bounded or unbounded to each 
side, along with coordinate pairs (bk, vk) for k ∈ K such that the following hold.

(i) t(b, v) = 1 if and only if (b, v) = (bk, vk) for some k ∈ K.
(ii) For each k �= max(K), we have precisely one of the following two options:

(a) bk+1 < bk and vk+1 = vk or
(b) bk+1 = bk and vk+1 > vk.

(iii) If K is unbounded above, then there are infinitely many shifts between options (a) 
and (b) when k increases.

(iv) If K is unbounded below, then there are infinitely many shifts between options (a) 
and (b) when k decreases.
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Proof. The proof of [18, Proposition 8.2] works. �
Remark 3.10. Lemma 3.9 says that the zig-zag of 1’s in t, shown in Fig. 16, is bounded 
or unbounded to each side. There are hence four possibilities which can all be realised, 
as one can see in the SL2-tilings t = Φ(T) for various choices of the triangulation T.

Namely, by Lemma 2.3(iii), the 1’s in t correspond to the arcs in T which connect 
intervals I and III.

It follows that if T has the form in Fig. 20, then the zig-zag of 1’s in t is unbounded 
to both sides. That is, t has infinitely many 1’s in both the first and the third quadrant.

If T has the form in Fig. 21, then the zig-zag is bounded to the left and unbounded 
to the right. That is, t has infinitely many 1’s in the first, but not the third quadrant. 
The opposite situation can be obtained by reflecting T in a vertical line.

If T has the form in Fig. 22, then the zig-zag is bounded to the left and to the right. 
That is, t has only finitely many 1’s.

Finally, note that if T has the form in Fig. 29, then t has no entries equal to 1. This 
corresponds to K = ∅ in Lemma 3.9.

4. The partial triangulation Θ(t) of an SL2-tiling t

Recall that t is a fixed SL2-tiling with associated infinite friezes p and q, see Setup 3.2.

Definition 4.1 (The partial triangulation Θ(t)). We define a set of arcs in Dn as follows.

Θ(t) =
{
{bI, vIII}

∣∣ t(b, v) = 1
}
∪
{
{aI, dI}

∣∣ a + 2 � d, p(a, d) = 1
}

∪
{
{uIII, xIII}

∣∣u + 2 � x, q(u, x) = 1
}
.

The definition makes sense since intervals I and III are always present on the boundary 
of Dn; see Definitions 1.3 and 1.4.

Remark 4.2. We remind the reader that when t is given and we seek to construct a good 
triangulation T of Dn such that t = Φ(T), we will do so by adding arcs to Θ(t).

Lemma 4.3. The set Θ(t) is a partial triangulation of Dn.

Proof. If the internal arcs {aI, cI} and {bI, dI} cross, then we can suppose a < b < c < d. 
Then the Ptolemy relation in Lemma 3.3(i) says

p(a, c)p(b, d) = p(a, b)p(c, d) + p(a, d)p(b, c) � 2,

where the inequality holds since each of p(a, b), p(c, d), p(a, d), p(b, c) is a positive integer. 
Hence p(a, c) and p(b, d) cannot both be equal to 1, so {aI, cI} and {bI, dI} cannot both 
be in Θ(t).
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Fig. 17. Assume that d � a + 2 and that the entry at position (a, d) in the infinite frieze p is equal to 1. 
Then the restriction of p to the triangle F is the fundamental domain of a Conway–Coxeter frieze.

A crossing of an internal arc and a connecting arc is handled similarly by means 
of Lemma 3.3(ii), and a crossing of two connecting arcs is handled by means of 
Lemma 3.3(iii). �
Lemma 4.4. The partial triangulation Θ(t) is locally finite in the sense of Definition 1.9.

Proof. Consider the arcs in Θ(t) which end at the vertex μ = bI in interval I. By Defi-
nition 4.1 they correspond to the entries which are equal to 1 in the row t(b, −) and the 
half-rows p(b, −) and p(−, b). By Lemma 3.4 there are only finitely many such entries.

The arcs in Θ(t) which end at the vertex μ = vIII in interval III are handled by 
symmetry. �
Lemma 4.5. Let a < d be such that {aI, dI} ∈ Θ(t) or {aI, dI} is an edge, and let P denote 
the finite polygon below {aI, dI}, see Definition 1.10 and the left half of Fig. 12.

(i) The restriction Θ(t)P is a triangulation of P .
(ii) Conway–Coxeter counting on Θ(t)P agrees with a certain part of the infinite frieze 

p in the following sense: If a � b � c � d, then

p(b, c) = Θ(t)P (bI, cI).

Proof. If {aI, dI} is an edge then P is a 2-gon and the lemma is trivial, so suppose 
{aI, dI} ∈ Θ(t). In particular {aI, dI} is an arc so d � a + 2.

The infinite frieze p is defined on the half plane {(b, c) ∈ Z × Z | b < c} and we have 
p(b, b + 1) = 1 for each b. Recall that we set p(b, b) = 0 so p is as shown in Fig. 17. The 
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condition {aI, dI} ∈ Θ(t) means p(a, d) = 1. In the figure, this entry is at the upper right 
corner of the triangle

F = {(b, c) | a � b < c � d},

and it implies that the restriction p|F coincides with the fundamental domain of a 
Conway–Coxeter frieze s. This follows from (10) in [9] and [10]; see also [18, Lemma 7.1].

The elements (b, c) of F correspond to the edges and arcs {bI, cI} of the polygon 
with vertices aI, . . . , dI, that is, the polygon P . Hence the frieze s corresponds to a 
triangulation S of P ; specifically,

S =
{
{bI, cI} is an arc of P

∣∣ s(b, c) = 1
}
.

This is due to [9,10], and more details are given in [7, Sect. 2]. Since s and p agree on F , 
the equation shows that S consists of some of the arcs in Θ(t). Indeed, S is precisely 
the restriction Θ(t)P of Θ(t) to P . Hence Θ(t)P is a triangulation of P , proving part (i) 
of the lemma.

The same references show that, conversely, the fundamental region of the frieze s can 
be obtained by Conway–Coxeter counting on S, namely if {bI, cI} is an edge or an arc 
of P then

s(b, c) = S(bI, cI).

This gives part (ii) of the lemma for b < c because s and p agree on F while S = Θ(t)P . 
If b = c then part (ii) of the lemma is trivially true. �
Lemma 4.6. Let u < x be such that {uIII, xIII} ∈ Θ(t) or {uIII, xIII} is an edge, and let 
Q denote the finite polygon below {uIII, xIII}.

(i) The restriction Θ(t)Q is a triangulation of Q.
(ii) Conway–Coxeter counting on Θ(t)Q agrees with a certain part of the infinite frieze 

q in the following sense: If u � v � w � x, then

q(v, w) = Θ(t)Q(vIII, wIII).

Proof. Follows from Lemma 4.5 by symmetry. �
Lemma 4.7. Let a � d and u � x be such that {aI, xIII}, {dI, uIII} ∈ Θ(t) and let R
denote the finite polygon between the arcs {aI, xIII} and {dI, uIII}, see the right half of 
Fig. 12.

(i) The restriction Θ(t)R is a triangulation of R.
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(ii) Conway–Coxeter counting on Θ(t)R agrees with certain parts of the SL2-tiling t and 
the infinite friezes p, q in the following sense: If a � b � c � d and u � v � w � x, 
then

t(b, v) = Θ(t)R(bI, vIII) , p(b, c) = Θ(t)R(bI, cI) , q(v, w) = Θ(t)R(vIII, wIII).

Proof. If {aI, xIII} = {dI, uIII} then R is a 2-gon and the lemma is trivial, so suppose 
that {aI, xIII} and {dI, uIII} are distinct.

Then the proof is analogous to that of Lemma 4.5, except that a more sophisticated 
method is needed to obtain a fundamental region of a Conway–Coxeter frieze. Specifically, 
{aI, xIII}, {dI, uIII} ∈ Θ(t) implies t(a, x) = t(d, u) = 1, and these two entries of t span 
a rectangle in the plane to which t can be restricted. It is shown in [18, Proposition 7.2 
and Fig. 15] how to position suitable restrictions of p and q next to the rectangle in order 
to obtain a partial SL2-tiling defined on a triangle F . As in the proof of Lemma 4.5, this 
tiling coincides with the fundamental region of a Conway–Coxeter frieze, and the proof 
then proceeds as for Lemma 4.5. �
5. Saturated vertices and defects associated to an SL2-tiling

Recall that t is a fixed SL2-tiling with associated infinite friezes p and q, see Setup 3.2.

Definition 5.1 (Vertices strictly below and strictly between arcs). Let J, K ∈ {I, II, III, IV}
be intervals of the boundary of Dn.

(i) If a � d − 2 then the vertices (a + 1)J, . . ., (d − 1)J are said to be strictly below the 
(internal) arc {aJ, dJ}, see the left half of Fig. 12.

(ii) If a � d and u � x are such that {aJ, xK}, {dJ, uK} are distinct arcs, then the 
vertices (a + 1)J, . . ., (d − 1)J, (u + 1)K, . . ., (x − 1)K are said to be strictly between 
the (connecting) arcs {aJ, xK}, {dJ, uK}, see the right half of Fig. 12.

Definition 5.2 (Saturated vertices). A vertex of intervals I or III is called saturated if it 
is strictly below an internal arc {aI, dI} or {uIII, xIII} in Θ(t), or strictly between two 
connecting arcs {aI, xIII}, {dI, uIII} in Θ(t); see Definition 5.1.

A vertex of intervals I or III which is not saturated is called non-saturated.

Remark 5.3. Suppose {aI, dI} ∈ Θ(t) and let P denote the finite polygon below the 
internal arc {aI, dI}. If a < b < d then

p(b− 1, b + 1) = 1 + (the number of arcs in Θ(t) ending at bI).

This follows from Lemmas 4.5 and 2.3(vi). A similar equality holds for q. In general, 
there is no such equality, and this is captured by the defects introduced in the next 
definition.
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Fig. 18. This sketch shows Θ(t) when it has no connecting arcs ending at bI0. There are i internal arcs in Θ(t)
which go anticlockwise from bI0 and the longest is b0 = {bI0, bI1}. There are k internal arcs in Θ(t) which go 
clockwise from bI0 and the longest is b−1 = {bI0, bI−1}.

In due course, the defects will be used to augment the partial triangulation Θ(t) to a 
triangulation T which satisfies

p(a, d) = T(aI, dI)

for all a � d. In turn, this will permit us to use Lemma 3.8 to prove

t(b, v) = T(bI, vIII)

for all b, v, that is, to prove t = Φ(T).

Definition 5.4. The p-defect of an integer b is

defp(b) = p(b− 1, b + 1) − 1 − (the number of arcs in Θ(t) ending at bI)

and the q-defect of an integer v is

defq(v) = q(v − 1, v + 1) − 1 − (the number of arcs in Θ(t) ending at vIII).

Lemma 5.5. Suppose that Θ(t) has no connecting arcs which end at the vertex bI0. We use 
the following notation, illustrated by Fig. 18, which makes sense because Θ(t) is locally 
finite by Lemma 4.4:

Let b0 = {bI0, bI1} be either the longest internal arc in Θ(t) going anticlockwise from 
bI0, or, if there are no such arcs, the edge going anticlockwise from bI0.

Let b−1 = {bI−1, b
I
0} be either the longest internal arc in Θ(t) going clockwise from bI0, 

or, if there are no such arcs, the edge going clockwise from bI0.
Then

defp(b0) = p(b−1, b1) − 1.

Proof. The special cases where b0 or b−1 is an edge are omitted since they are easy. We 
assume that b0 and b−1 are arcs.
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We let i, respectively k, denote the number of internal arcs in Θ(t) going anticlockwise, 
respectively clockwise, from bI0, see Fig. 18.

First, consider the finite polygon P below b0. Lemma 4.5 says that Θ(t) restricts to 
a triangulation Θ(t)P of P and that

p(b0 + 1, b1) = Θ(t)P
(
(b0 + 1)I, bI1

)
= (∗).

Viewed in P , the vertices (b0 + 1)I, bI0, bI1 are consecutive so Lemma 2.3(vi) gives

(∗) = 1 + (the number of arcs in Θ(t)P ending at bI0) = (∗∗).

The arcs in Θ(t)P ending at bI0 are precisely the arcs in Θ(t) going anticlockwise from 
bI0, except for b0 which is an edge of P . Hence

(∗∗) = i.

This proves the first of the following equalities, and the second follows by symmetry.

p(b0 + 1, b1) = i, (5.1)

p(b−1, b0 − 1) = k. (5.2)

Secondly, we show two consequences of the Ptolemy relations in Lemma 3.3.

• Since b0 = {bI0, bI1} is in Θ(t), we have

p(b0, b1) = 1. (5.3)

This gives the first equality in the following computation,

p(b0 − 1, b0 + 1) = p(b0 − 1, b0 + 1)p(b0, b1)

= p(b0 − 1, b0)p(b0 + 1, b1) + p(b0 − 1, b1)p(b0, b0 + 1)

= i + p(b0 − 1, b1), (5.4)

where the second equality is by the Ptolemy relation in Lemma 3.3(i) and the third 
equality uses Equation (5.1).

• Since b−1 = {bI−1, b
I
0} is in Θ(t), we have p(b−1, b0) = 1. This gives the first equality 

in the following computation,

p(b0 − 1, b1) = p(b−1, b0)p(b0 − 1, b1)

= p(b−1, b0 − 1)p(b0, b1) + p(b−1, b1)p(b0 − 1, b0)

= k + p(b−1, b1), (5.5)
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Fig. 19. This sketch shows Θ(t) when it contains j � 1 connecting arcs a1, . . ., aj ending at bI0. There are i
internal arcs in Θ(t) which go anticlockwise from bI0 and the longest is b0 = {bI0, bI1}. There are k internal 
arcs in Θ(t) which go clockwise from bI0 and the longest is b−1 = {bI0, bI−1}.

where the second equality is by the Ptolemy relation in Lemma 3.3(i) and the third 
equality uses Equations (5.2) and (5.3).

Finally, the previous equations combine as follows.

p(b0 − 1, b0 + 1) (5.4)= i + p(b0 − 1, b1)
(5.5)= i + k + p(b−1, b1)

Subtracting i + k + 1 from this equation turns the left hand side into defp(b0) because 
there are a total of i + k arcs in Θ(t) which end at bI0; see Fig. 18 and Definition 5.4. 
This proves the lemma. �
Lemma 5.6. Suppose that Θ(t) has at least one connecting arc which ends at the vertex 
bI0. We use the following notation, illustrated by Fig. 19, which makes sense because Θ(t)
is locally finite by Lemma 4.4:



222 C. Bessenrodt et al. / Advances in Mathematics 315 (2017) 194–245
Let v1 < · · · < vj be such that a1 = {bI0, vIII
1 }, . . . , aj = {bI0, vIII

j } are all the connecting 
arcs in Θ(t) which end at bI0.

Let b0 = {bI0, bI1} be either the longest internal arc in Θ(t) going anticlockwise from 
bI0, or, if there are no such arcs, the edge going anticlockwise from bI0.

Let b−1 = {bI−1, b
I
0} be either the longest internal arc in Θ(t) going clockwise from bI0, 

or, if there are no such arcs, the edge going clockwise from bI0.
Then

defp(b0) = t(b−1, vj) + t(b1, v1) − 2.

Proof. The special cases where b0 or b−1 is an edge or where j = 1 are omitted since 
they are easy. We assume that b0 and b−1 are arcs and that j � 2.

We let i, respectively k, denote the number of internal arcs in Θ(t) going anticlockwise, 
respectively clockwise, from bI0. The choice of v1 < · · · < vj means that there are j
connecting arcs in Θ(t) ending at bI0. See Fig. 19.

First, an argument like the one used to prove Equation (5.1) shows

q(v1, vj) = j − 1. (5.6)

Secondly, the same arguments as in the proof of Lemma 5.5 show that Equations (5.2), 
(5.3), and (5.4) remain valid. We collect three other consequences of the Ptolemy relations 
from Lemma 3.3.

• Since a1 = {bI0, vIII
1 } is in Θ(t), we have t(b0, v1) = 1. This gives the first equality in 

the following computation,

p(b0 − 1, b1) = p(b0 − 1, b1)t(b0, v1)

= p(b0 − 1, b0)t(b1, v1) + p(b0, b1)t(b0 − 1, v1)

= t(b1, v1) + t(b0 − 1, v1), (5.7)

where the second equality is by the Ptolemy relation in Lemma 3.3(ii) and the third 
equality uses Equation (5.3).

• Since aj = {bI0, vIII
j } is in Θ(t), we have t(b0, vj) = 1. This gives the first equality in 

the following computation,

t(b0 − 1, v1) = t(b0 − 1, v1)t(b0, vj)

= t(b0 − 1, vj)t(b0, v1) + p(b0 − 1, b0)q(v1, vj)

= t(b0 − 1, vj) + j − 1, (5.8)

where the second equality is by the Ptolemy relation in Lemma 3.3(iii) and the third 
equality uses t(b0, v1) = 1 and Equation (5.6).
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• Since b−1 = {bI−1, b
I
0} is in Θ(t), we have p(b−1, b0) = 1. This gives the first equality 

in the following computation,

t(b0 − 1, vj) = p(b−1, b0)t(b0 − 1, vj)

= p(b0 − 1, b0)t(b−1, vj) + p(b−1, b0 − 1)t(b0, vj)

= t(b−1, vj) + k, (5.9)

where the second equality is by the Ptolemy relation in Lemma 3.3(ii) and the third 
equality uses t(b0, vj) = 1 and Equation (5.2).

Finally, the previous equations combine as follows.

p(b0 − 1, b0 + 1) (5.4)= i + p(b0 − 1, b1)
(5.7)= i + t(b1, v1) + t(b0 − 1, v1)
(5.8)= i + t(b1, v1) + t(b0 − 1, vj) + j − 1
(5.9)= i + t(b1, v1) + t(b−1, vj) + k + j − 1

Subtracting i +j+k+1 from this equation turns the left hand side into defp(b0) because 
there are a total of i + j + k arcs in Θ(t) which end at bI0; see Fig. 19 and Definition 5.4. 
This proves the lemma. �
Lemma 5.7.

(i) bI is saturated if and only if defp(b) = 0.
(ii) bI is non-saturated if and only if defp(b) > 0.
(iii) vIII is saturated if and only if defq(v) = 0.
(iv) vIII is non-saturated if and only if defq(v) > 0.

Proof. To prove parts (i) and (ii), it is enough to prove “only if” in each part.
Part (i), “only if”: Let bI be a saturated vertex, see Definition 5.2. There are two cases.
The first case is that bI is strictly below the internal arc {aI, dI} ∈ Θ(t), whence 

a < b < d. Let P denote the finite polygon below {aI, dI}. Lemma 4.5 says that the 
restriction Θ(t)P is a triangulation of P and that

p(b− 1, b + 1) = Θ(t)P
(
(b− 1)I, (b + 1)I

)
= (∗).

Lemma 2.3(vi) gives

(∗) = 1 + (the number of arcs in Θ(t)P ending at bI) = (∗∗).



224 C. Bessenrodt et al. / Advances in Mathematics 315 (2017) 194–245
However, Θ(t) is a partial triangulation of Dn so none of its arcs can cross {aI, dI}. It 
follows that

(∗∗) = 1 + (the number of arcs in Θ(t) ending at bI).

This shows defp(b) = 0.
The second case is that bI is strictly between the connecting arcs {aI, xIII}, {dI, uIII} ∈

Θ(t). This is handled similarly, replacing Lemma 4.5 by Lemma 4.7.
Part (ii), “only if”: Let bI be a non-saturated vertex. There are two cases.
The first case is that there are no connecting arcs in Θ(t) which end at bI. Set b0 = b

and apply Lemma 5.5; in the notation of the lemma, Θ(t) at bI0 looks like Fig. 18. The 
lemma gives

defp(b) = defp(b0) = p(b−1, b1) − 1 = (†).

However, since bI is non-saturated, the arc {bI−1, b
I
1} cannot be in Θ(t). It follows that 

p(b−1, b1) > 1 so (†) > 0 as desired.
The second case is that there are connecting arcs in Θ(t) which end at bI. Set b0 = b

and apply Lemma 5.6; in the notation of the lemma, Θ(t) at bI0 looks like Fig. 19. The 
lemma gives

defp(b) = defp(b0) = t(b−1, vj) + t(b1, v1) − 2 = (‡).

However, since bI is non-saturated, it cannot be that both arcs {bI−1, v
III
j } and {bI1, vIII

1 }
are in Θ(t). It follows that t(b−1, vj) > 1 or t(b1, v1) > 1 so (‡) > 0 as desired.

(iii) and (iv) follow by symmetry. �
Lemma 5.8. Let T be a good triangulation of Dn such that Θ(t) ⊆ T.

(i) bI is saturated ⇒ T
(
(b − 1)I, (b + 1)I

)
= p(b − 1, b + 1).

(ii) vIII is saturated ⇒ T
(
(v − 1)III, (v + 1)III

)
= q(b − 1, b + 1).

Proof. (i) Since bI is saturated, Lemma 5.7(i) says defp(b) = 0 which means

p(b− 1, b + 1) = 1 + (the number of arcs in Θ(t) ending at bI) = (∗)

by Definition 5.4. There are two cases.
The first case is that bI is strictly below an internal arc {aI, dI} ∈ Θ(t), whence a <

b < d. Let P be the finite polygon below {aI, dI}. The restriction Θ(t)P is a triangulation 
of P by Lemma 4.5. Since no arc in Θ(t) crosses {aI, dI}, we have

(∗) = 1 + (the number of arcs in Θ(t)P ending at bI) = (∗∗).

The inclusion Θ(t) ⊆ T implies Θ(t)P = TP so we get the first of the following equalities,
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Fig. 20. Outline of the triangulation T = Θ(t) of D2 corresponding to an SL2-tiling t with infinitely many 
entries equal to 1 in the first and the third quadrant, giving the connecting arcs am. Between the am are 
the finite polygons Rm.

(∗∗) = 1 + (the number of arcs in TP ending at bI)

= 1 + (the number of arcs in T ending at bI) = (∗∗∗),

where the second equality holds since a < b < d and since no arc in T crosses {aI, dI} ∈ T. 
Finally,

(∗∗∗) = T
(
(b− 1)I, (b + 1)I

)

by Lemma 2.3(vi).
The second case is that bI is strictly between the connecting arcs {aI, xIII}, {dI, uIII} ∈

Θ(t). This is handled similarly, replacing Lemma 4.5 by Lemma 4.7.
(ii) follows by symmetry. �

6. Case 1: SL2-tilings with infinitely many entries equal to 1 in each of the first and 
third quadrants

Theorem 6.1. Let t be an SL2-tiling with infinitely many entries equal to 1 in each of the 
first and third quadrants.

Consider D2, the disc with two accumulation points and intervals denoted I and III, 
see Fig. 8.

Then T = Θ(t) is a good triangulation of D2 which satisfies Φ(T) = t; see Fig. 20.

Proof. Since t has infinitely many 1’s in the first and the third quadrant, Lemma 3.9
implies that there are integers · · · < b−1 < b0 < b1 < · · · and · · · < v−1 < v0 < v1 < · · ·
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such that t(bm, v−m) = 1 for each integer m. There are corresponding (connecting) arcs 
am = {bIm, vIII

−m} in T = Θ(t). By Definition 1.10, the arcs am can be viewed as dividing 
D2 into finite polygons Rm, see Fig. 20. For each m, Lemma 4.7 says that the arcs in T
between the vertices of Rm form a triangulation TRm

of Rm. It follows that the whole 
of T is a triangulation of D2. The triangulation is good because the arcs am block both 
accumulation points, see Definition 1.8.

To show Φ(T) = t we use Lemma 3.8:
Lemma 3.9 implies that there are integers e < f and g < h such that t(e, h) =

t(f, g) = t(f, h) = 1. Hence the arcs {eI, hIII}, {f I, gIII}, {f I, hIII} are in T whence 
T(eI, hIII) = T(f I, gIII) = T(f I, hIII) = 1. This verifies condition (iii)’ in Lemma 3.8.

The arcs am mean that each vertex in intervals I and III is saturated. If bI and vIII

are given, Lemma 5.8 hence confirms conditions (i) and (ii) in Lemma 3.8. �
7. Case 2: SL2-tilings with infinitely many entries equal to 1 only in the first or the 
third quadrant

By symmetry, it is enough to let t be an SL2-tiling with infinitely many entries equal 
to 1 in the first quadrant, but not in the third quadrant.

Remark 7.1. Consider D3, the disc with three accumulation points and intervals denoted 
I, II, and III as in the left part of Fig. 9. We will construct a good triangulation T of D3

such that Φ(T) = t. The overall structure of T is shown in Fig. 21.
Note that if t had infinitely many ones in the third quadrant, but not in the first 

quadrant, then we would instead use the disc with three accumulation points and inter-
vals denoted I, III, and IV as in the right part of Fig. 9. The overall structure of T would 
be the mirror image in a vertical line of Fig. 21.

Description 7.2 (The partial triangulation Θ(t)). The black arcs in Fig. 21 show the 
overall structure of Θ(t) in D3 which we now describe:

Using Lemma 3.9, we can suppose that among the entries in t which are equal to 
1, the one which is furthest southwest is t(b0, v0) = 1. We can also choose integers 
· · · < b−1 < b0 and v0 < v1 < · · · such that t(bm, v−m) = 1 for m � 0. There are 
corresponding (connecting) arcs am = {bIm, vIII

−m} in Θ(t).
The vertices (b0−1)I, (b0−2)I, . . . and (v0+1)III, (v0+2)III, . . . are saturated because 

of the arcs am. On the other hand, bI0 is non-saturated: It is not strictly between two 
connecting arcs in Θ(t), nor is it strictly below an internal arc in Θ(t) because such an 
arc would have to cross {bI0, vIII

0 } ∈ Θ(t).
Let b0 = {bI0, bI1} be either the longest internal arc in Θ(t) going anticlockwise from 

bI0, or, if there are no such arcs, the edge going anticlockwise from bI0. This makes sense 
because Θ(t) is locally finite by Lemma 4.4. It is easy to see that bI1 is also non-saturated, 
while the vertices strictly below b0 are saturated.
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Fig. 21. Outline of the triangulation T of D3 corresponding to an SL2-tiling t with infinitely many entries 
equal to 1 only in the first quadrant. The arcs in Θ(t) are black. We add red arcs from the non-saturated 
vertices to define T. They connect each non-saturated vertex in intervals I and III to a block of consecutive 
vertices in interval II. The number of red arcs added at vertex bI is defp(b), and the number of red arcs 
added at vertex vIII is defq(v). (For interpretation of the colours in this figure, the reader is referred to the 
web version of this article.)

We can repeat this and thereby get integers b0 < b1 < · · · such that the non-saturated 
vertices in interval I are precisely bI0, bI1, . . .. A similar treatment provides integers · · · <
v−1 < v0 such that the non-saturated vertices in interval III are precisely . . ., vIII

−1, vIII
0 .

Construction 7.3 (The triangulation T). We add arcs to Θ(t) as follows to create a 
triangulation T of D3; see Fig. 21 where the added arcs are shown in red:

From the non-saturated vertex bI0, add defp(b0) arcs ending at the consecutive vertices 
0II, −1II, . . ., βII in interval II. Note that defp(b0) > 0 by Lemma 5.7(ii). Then, from 
the non-saturated vertex bI1, add defp(b1) arcs ending at the next block of consecutive 
vertices βII, (β−1)II, . . . in interval II. Continue in the same way with the non-saturated 
vertices bI2, bI3, . . ..

Finally, add arcs by a similar recipe from the non-saturated vertices vIII
0 , vIII

−1, . . ., 
using defq instead of defp.

Theorem 7.4. Let t be an SL2-tiling with infinitely many entries equal to 1 only in the 
first or the third quadrant.

Then there is a good triangulation T of D3 such that Φ(T) = t.
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Proof. As remarked at the start of the section, it is enough by symmetry to let t be an 
SL2-tiling with infinitely many entries equal to 1 in the first quadrant, but not in the 
third quadrant. Let T be as in Construction 7.3, see Fig. 21.

Consider the finite polygons between the arcs am and below the arcs b−m and vm
shown in Fig. 21, see Definition 1.10. In each such polygon, Θ(t) and hence T restricts to 
a triangulation by Lemmas 4.5 through 4.7. The arcs added at the end of Construction 7.3
(red in Fig. 21) clearly complete T to a triangulation of D3.

The arcs am block the accumulation point between intervals I and III, see Defini-
tion 1.8. The arcs added at the end of Construction 7.3 block the accumulation points 
between interval II and the other intervals. Hence T is a good triangulation of D3.

To show Φ(T) = t we use Lemma 3.8:
Lemma 3.9 implies that there are integers e < f and g < h so that t(e, h) = t(f, g) =

t(f, h) = 1. Hence the arcs {eI, hIII}, {f I, gIII}, {f I, hIII} are in T whence T(eI, hIII) =
T(f I, gIII) = T(f I, hIII) = 1. This verifies condition (iii)’ in Lemma 3.8.

To verify Lemma 3.8, condition (i), note that if b is given such that bI is saturated, 
then the condition holds by Lemma 5.8(i). If bI is non-saturated, then b = bm for some 
m � 0. Definition 5.4 gives

(the number of arcs in Θ(t) ending at bI) = p(b− 1, b + 1) − defp(b) − 1.

Compared to Θ(t), the triangulation T has an additional defp(b) arcs ending at bI by 
Construction 7.3, so

(the number of arcs in T ending at bI) = p(b− 1, b + 1) − 1.

On the other hand, T is a good triangulation of D3 so

(the number of arcs in T ending at bI) = T
(
(b− 1)I, (b + 1)I

)
− 1

by Lemma 2.3(vi). The last two equations imply p(b − 1, b + 1) = T
(
(b − 1)I, (b + 1)I

)
, 

verifying Lemma 3.8, condition (i).
Lemma 3.8, condition (ii) is verified by symmetry. �

8. Case 3: SL2-tilings with entries equal to 1 only in a proper rectangle

Let t be an SL2-tiling with entries equal to 1 only in a proper rectangle. We do not 
permit all the entries equal to 1 to occur in a single row or a single column; these cases 
are handled separately in Section 9.

Construction 8.1 (The triangulation T). To construct T, proceed similarly to Construc-
tion 7.3.

The difference is that there are now only finitely many connecting arcs between in-
tervals I and III. There will consequently be non-saturated vertices at both ends of each 
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Fig. 22. Outline of the triangulation T of D4 corresponding to an SL2-tiling t with entries equal to 1 only in 
a proper rectangle. The arcs in Θ(t) are black. We add red arcs from the non-saturated vertices to define T. 
They connect each non-saturated vertex in intervals I and III to a block of consecutive vertices in interval 
II or IV. The number of red arcs added at the vertex bI is defp(b), and the number of red arcs added at 
the vertex vIII is defq(v). (For interpretation of the colours in this figure, the reader is referred to the web 
version of this article.)

of intervals I and III, so to go from Θ(t) to a triangulation T we will need two intervals 
in addition to I and III. Hence T will be a triangulation of D4.

This is shown in Fig. 22 where the black arcs show the overall structure of Θ(t) and 
the red arcs are added to Θ(t) in order to obtain T. At the vertex bI we add defp(b) red 
arcs. At the vertex vIII we add defq(v) red arcs.

Theorem 8.2. Let t be an SL2-tiling with entries equal to 1 only in a proper rectangle. 
We do not permit all the entries equal to 1 to occur in a single row or a single column.

Then there is a good triangulation T of D4 such that Φ(T) = t.

Proof. Using T from Construction 8.1 (see Fig. 22) the proof is similar to the proof of 
Theorem 7.4. �
9. Case 4: SL2-tilings with entries equal to 1 only in a single row or column

By symmetry, it is enough to let t be an SL2-tiling with entries equal to 1 only in a 
single row. We do not permit t to have fewer than two entries equal to 1. The case of 
a unique entry equal to 1 is handled in Section 10. The case of no entries equal to 1 is 
handled in Section 13.
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Fig. 23. Outline of the triangulation T of D4 corresponding to an SL2-tiling t with entries equal to 1 only 
in a single row. The arcs in Θ(t) are black. We add red arcs from the non-saturated vertices to define T. 
The number of red arcs added is given by the defect at the relevant vertex, but at bI0 there is a choice of 
how many arcs should go to interval II, and how many to IV. This is resolved by letting t(b−1, vj) − 1 arcs 
go to IV. (For interpretation of the colours in this figure, the reader is referred to the web version of this 
article.)

By Lemma 3.4, only finitely many entries of t are equal to 1. Let them be t(b0, v1) =
· · · = t(b0, vj) = 1 with j � 2.

Description 9.1 (The partial triangulation Θ(t)). The black arcs in Fig. 23 show the 
overall structure of Θ(t) which we now describe:

The only connecting arcs in Θ(t) are a� = {bI0, vIII
� } for 	 ∈ {1, . . . , j}. The vertices 

(v1 + 1)III, . . ., (vj − 1)III strictly between a1 and aj are saturated, see Definition 5.2.
On the other hand, bI0 is non-saturated: It is not strictly between two connecting arcs 

in Θ(t), nor is it strictly below an internal arc in Θ(t) because such an arc would have 
to cross {bI0, vIII

1 } ∈ Θ(t). Similarly, vIII
1 and vIII

j are non-saturated.
Let b0 = {bI0, bI1} be either the longest internal arc in Θ(t) going anticlockwise from 

bI0, or, if there are no such arcs, the edge going anticlockwise from bI0. This makes sense 
because Θ(t) is locally finite by Lemma 4.4. It is easy to see that bI1 is also non-saturated, 
while the vertices strictly below b0 are saturated.

We can repeat this to both sides of b0 and thereby get integers · · · < b−1 < b0 < b1 <

· · · such that the non-saturated vertices in interval I are precisely the bI�.
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A similar treatment provides integers · · · < v−1 < v0 < v1 and vj < vj+1 < vj+2 · · ·
such that the non-saturated vertices in interval III are precisely . . ., vIII

−1, vIII
0 , vIII

1 and 
vIII
j , vIII

j+1, vIII
j+2, . . ..

Lemma 9.2. With the notation of Description 9.1 and Fig. 23, we have

defp(b0) −
(
t(b−1, vj) − 1

)
> 0.

Proof. We have

defp(b0) −
(
t(b−1, vj) − 1

)
= t(b1, v1) − 1 > 0

where the equality is by Lemma 5.6 and the inequality is because t(b1, v1) �= 1 by 
assumption. �
Construction 9.3 (The triangulation T). We add arcs to Θ(t) as follows to create a 
triangulation T of D4; see Fig. 23 where the added arcs are shown in red:

From vertex bI0, add t(b−1, vj) −1 arcs ending at the consecutive vertices 0IV, 1IV, . . ., 
ϕIV. Note that t(b−1, vj) − 1 > 0 since b−1 �= b0.

From vertex bI−1, add defp(b−1) arcs ending at the next block of consecutive vertices 
in interval IV. Note that defp(b−1) > 0 by Lemma 5.7(ii). Continue in the same fashion 
with vertices bI−2, bI−3, . . ..

Going back to vertex bI0, add defp(b0) −
(
t(b−1, vj) −1

)
arcs ending at the consecutive 

vertices 0II, −1II, . . ., βII. This makes sense because defp(b0) −
(
t(b−1, vj) − 1

)
> 0 by 

Lemma 9.2.
From vertex bI1, add defp(b1) arcs ending at the next block of consecutive vertices in 

interval II. Continue in the same fashion with vertices bI2, bI3, . . ..
Finally, add arcs by a similar recipe from vertices . . ., vIII

−1, vIII
0 , vIII

1 and vIII
j , vIII

j+1, 
vIII
j+2, . . . using defq instead of defp.

Theorem 9.4. Let t be an SL2-tiling with at least two entries equal to 1, and assume these 
occur only in a single row or in a single column.

Then there is a good triangulation T of D4 such that Φ(T) = t.

Proof. As remarked at the start of the section, it is enough by symmetry to let t be an 
SL2-tiling with entries equal to 1 only in a single row. Let T be as in Construction 9.3, 
see Fig. 23.

Consider the finite polygons between the arcs a1 and aj and below the arcs bm and vm
shown in Fig. 23, see Definition 5.1. In each such polygon, Θ(t) and hence T restricts to a 
triangulation by Lemmas 4.5 through 4.7. The arcs added at the end of Construction 9.3
(red in Fig. 23) clearly complete T to a triangulation of D4. These arcs also block all 
four accumulation points so T is a good triangulation.

To show Φ(T) = t we use Lemma 3.8.
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Since a1, aj ∈ T we have

t(b0, v1) = 1 = T(bI0, vIII
1 ) , t(b0, vj) = 1 = T(bI0, vIII

j ). (9.1)

Moreover, the vertices bI−1, bI0, vIII
j , 0IV, . . ., ϕIV can be viewed as the vertices of a finite 

polygon P inside which T restricts to a triangulation TP . In P , the vertices bI−1, bI0, vIII
j , 

are consecutive whence

TP (bI−1, v
III
j ) = 1 + (the number of arcs in TP ending at bI0) = t(b−1, vj)

where the first equality is by Lemma 2.3(vi) and the second equality is by the construction 
of T, see Construction 9.3 and Fig. 23. It follows that

t(b−1, vj) = TP (bI−1, v
III
j ) = T(bI−1, v

III
j ), (9.2)

where the second equality is by Remark 2.2. Equations (9.1) and (9.2) verify condition 
(iii)’ in Lemma 3.8 with e = b−1, f = b0, g = v1, h = vj .

Lemma 3.8, conditions (i) and (ii) are verified by the same method as in the last 
paragraph of the proof of Theorem 7.4. �
10. Case 5: SL2-tilings with a unique entry equal to 1

Let t be an SL2-tiling in which t(b0, v1) = 1 is the unique entry equal to 1.

Construction 10.1 (The triangulation T). To construct T, proceed similarly to Construc-
tion 9.3 with a small tweak.

The black arcs in Fig. 24 show the overall structure of Θ(t) which can be obtained by 
the method used in Description 9.1. However, there is now only a single connecting arc 
a = {bI0, vIII

1 }.
When adding red arcs to obtain the triangulation T of D4, the red arcs go to interval 

II or interval IV, depending on which side of a they are on. We always add as many red 
arcs at a vertex as dictated by the defect at that vertex.

At vertices bI0 and vIII
1 only, there are red arcs to both intervals II and IV.

From bI0 there are t(b−1, v1) − 1 arcs to IV. Note that by Lemma 5.6, this number is 
strictly smaller than defp(b0), so there will also be at least one arc from bI0 to II.

From vIII
1 there are t(b0, v2) −1 arcs to IV. Again, this number is strictly smaller than 

defq(v1), so there will also be at least one arc from vIII
1 to II.

Theorem 10.2. Let t be an SL2-tiling with a unique entry equal to 1.
Then there is a good triangulation T of D4 such that Φ(T) = t.

Proof. We suppose t(b0, v1) = 1 and let T be as in Construction 10.1, see Fig. 24.
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Fig. 24. Outline of the triangulation T of D4 corresponding to an SL2-tiling t with only a single entry equal 
to 1. The arcs in Θ(t) are black. We add red arcs from the non-saturated vertices to define T. The number 
of red arcs added is given by the defect at the relevant vertex, but at bI0 there is a choice of how many 
arcs should go to interval II, and how many to IV. This is resolved by letting t(b−1, v1) − 1 arcs go to IV. 
Similarly at vIII

1 we let t(b0, v2) −1 arcs go to IV. (For interpretation of the colours in this figure, the reader 
is referred to the web version of this article.)

Arguing like the proof of Theorem 9.4, the choices at the end of Construction 10.1
imply that T satisfies

t(b−1, v1) = T(bI−1, v
III
1 ) , t(b0, v2) = T(bI0, vIII

2 ).

We also have

t(b0, v1) = 1 = T(bI0, vIII
1 )

so condition (iii) of Lemma 3.8 holds with e = b−1, f = b0, g = v1, h = v2. Now proceed 
like the proof of Theorem 9.4. �
11. A lemma on Conway–Coxeter friezes

Definition 11.1. In this section we will write S =
{(

i j
k 	

)
∈ SL2(Z)

∣∣∣∣i, j, k, 	 � 0
}

.

The following lemma was proved in [6, Theorem 6.2] and [8, Lemma 4.1].



234 C. Bessenrodt et al. / Advances in Mathematics 315 (2017) 194–245
Lemma 11.2. Each X in S can be obtained by starting with the 2 × 2 identity matrix E
and performing a sequence of operations of the form: add one of the rows to the other 
row, or add one of the columns to the other column.

Lemma 11.3. Let r and m be coprime integers with 0 < r < m. There exists 
(
i j
k 	

)
in 

S such that r = i + j, m = i + j + k + 	.

Proof. Set n = m −r. Then r and n are coprime so there are integers s, p with sr−pn = 1.
We can replace s, p with s + tn, p + tr so may assume 0 � p < r. It follows that 

0 � pn < rn, and since pn = rs − 1 this reads 0 � rs − 1 < rn, that is 1 � rs < rn + 1, 
that is 1 � rs � rn. Hence 1 � s � n.

It is now straightforward to check that

(
i j
k 	

)
=

(
r − p p
n− s s

)

can be used in the lemma. �
Lemma 11.4. Let r and m be coprime integers with 0 < r < m.

There exists a finite polygon R which has two adjacent vertices χ and χ+ = β, two 
adjacent vertices γ and γ+ = ϕ, and a triangulation S such that

r = S(χ, γ) + S(χ, ϕ),

m = S(χ, γ) + S(χ, ϕ) + S(β, γ) + S(β, ϕ).

Proof. By Lemma 11.3 there is

X =
(
i j
k 	

)

in S with r = i + j, m = i + j + k + 	. It is hence enough to show the following:

(a) There exists a finite polygon R which has two adjacent vertices χ and χ+ = β, two 
adjacent vertices γ and γ+ = ϕ, and a triangulation S such that X is equal to

Y =
(
S(χ, γ) S(χ, ϕ)
S(β, γ) S(β, ϕ)

)
. (11.1)

To show that (a) holds for each X in S, it is enough to show the following by Lemma 11.2.

(i) If X = E then (a) holds.
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Fig. 25. The polygon R with two adjacent vertices χ, β, two adjacent vertices γ, ϕ, and a triangulation S.

(ii) If (a) holds for a matrix X in S, then it also holds for the matrices X ′ obtained from 
X by operations of the form: add one of the rows to the other row, or add one of 
the columns to the other column.

(i) is true since for X = E, we can let R be the 2-gon with χ = ϕ equal to one of the 
vertices, β = γ equal to the other, and S empty.

(ii): Suppose that (a) holds for X in S with the polygon R and triangulation S. Let Ψ
denote one of the operations described in (ii) and perform Ψ on X to obtain a new matrix 
X ′. To show that (a) holds for X ′, it is enough to show that there is a way to change R
and S to R′ and S′ such that Ψ is performed on the matrix Y in Equation (11.1).

We specialise to Ψ being the operation of adding the first row to the second, since 
the other operations have similar proofs. To go from R and S to R′ and S′, it turns out 
that we can glue an “ear” as illustrated by going from Fig. 25 to Fig. 26. That is, R′

keeps the vertices of R, with β renamed βold, and acquires a new vertex, βnew, between 
βold and χ. And S′ keeps the arcs of S and acquires a new arc, {χ, βold}.

It is clear from Definition 2.1 that for an arbitrary pair of the vertices χ, βold, γ, ϕ
in Fig. 26, Conway–Coxeter counting on S and S′ gives the same result. Hence the first 
row of Y is unchanged by going to R′ and S′.

If γ is not equal to βold or χ then the arcs {βold, χ} and {βnew, γ} in R′ cross, so the 
Ptolemy formula in Lemma 2.3(v) gives

S′(βold, χ)S′(βnew, γ) = S′(βold, γ)S′(βnew, χ) + S′(βold, βnew)S′(χ, γ).

Since {βold, χ} is in S′ and {βnew, χ}, {βold, βnew} are edges, the corresponding factors 
in the equation are equal to 1. This gives the first of the following equalities:
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Fig. 26. Compared to Fig. 25, an “ear” has been glued to the triangulated polygon R, resulting in a new 
triangulated polygon R′.

S′(βnew, γ) = S′(βold, γ) + S′(χ, γ) = S(βold, γ) + S(χ, γ).

This also holds trivially for γ equal to βold or χ, and the same computation works with ϕ
instead of γ. Hence the first row of Y is added to the second by going to R′ and S′. �
12. An SL2-tiling with no entry equal to 1 has a unique minimum

The following lemma is obvious.

Lemma 12.1. Suppose that 
(
i j
k 	

)
is in SL2(Z) and that each entry is � 1. If two 

entries which are horizontal or vertical neighbours are equal, then they are equal to 1.

Lemma 12.2. Suppose that 
(
i j
k 	

)
is in SL2(Z), has each entry � 2, and that j < 	, 

k < 	. Then i < j, i < k.

Proof. Lemma 12.1 implies that we cannot have i = j. If we had i > j then we would 
have i	 > j	. But we know 	 > k whence j	 > jk. Combining the inequalities would give 
i	 > j	 > jk so the determinant of the matrix would be i	 − jk � 2 which is false.

It follows that i < j, and i < k is proved by considering the transpose. �
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Fig. 27. A minimal entry m appearing twice in an SL2-tiling would have to do so in one of these patterns.

Lemma 12.3.

(i) If t(b, v) is a local maximum in the b’th row of t in the sense that

t(b, v − 1) < t(b, v) > t(b, v + 1), (12.1)

then deleting the v’th column from t gives a new SL2-tiling.
(ii) If t(b, v) is a local maximum in the v’th column of t in the sense that

t(b− 1, v) < t(b, v) > t(b + 1, v),

then deleting the b’th row from t gives a new SL2-tiling.

Proof. (i): The second Ptolemy relation of Lemma 3.3(ii) gives q(v − 1, v + 1)t(c, v) =
q(v − 1, v)t(c, v + 1) + q(v, v + 1)t(c, v − 1) for each c, that is

q(v − 1, v + 1)t(c, v) = t(c, v + 1) + t(c, v − 1).

Set c = b and combine with the inequalities in part (i) of the lemma. It follows that the 
positive integer q(v − 1, v + 1) must be 1, so the displayed equation reads

t(c, v) = t(c, v + 1) + t(c, v − 1)

for each c. It is elementary from this that deleting from t the v’th column with entries 
t(−, v) gives a new SL2-tiling.

(ii) follows by symmetry. �
Lemma 12.4. Let t be an SL2-tiling with no entry equal to 1. Then t has a unique minimal 
entry.

Proof. If the minimal entry m � 2 occurred twice in t, then it would do so in one of the 
patterns shown in Fig. 27. We treat the cases separately.

(i): Suppose that the b’th row of t has at least two entries equal to m. Pick two such 
entries which have no entries between them equal to m. Then either the two m’s are 
neighbours, or each entry between them is > m.

In the latter case, somewhere between the two m’s is a local maximum t(b, v) in the 
sense of Equation (12.1). By Lemma 12.3(i), we can delete column number v and get 
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Fig. 28. If an SL2-tiling t has no entries equal to 1 but has minimal entry m occurring twice in the pattern 
from Fig. 27(iv), then we can achieve the inequalities shown here by deleting rows and columns from t.

a new SL2-tiling. If we iterate this process, then all entries between the two m’s will 
eventually be deleted, giving an SL2-tiling where the two m’s are neighbours.

However, two neighbouring m’s would contradict Lemma 12.1.
(ii): Symmetric to (i), replacing Lemma 12.3(i) with Lemma 12.3(ii).
(iii): Suppose that the two entries equal to m are t(b, v) = t(c, w) = m with b < c, 

v < w. Then the Ptolemy relation in Lemma 3.3(iii) implies

m2 = t(b, w)t(c, v) + p(b, c)q(v, w).

However, this contradicts that t(b, w), t(c, v) � m while p(b, c), q(v, w) � 1.
(iv): Suppose that the two entries equal to m are t(b, v) = t(c, w) = m with b > c, 

v < w. Repeat as many times as possible the process of seeking out local maxima among 
the entries t(b, v + 1), . . ., t(b, w − 1) and t(c, v + 1), . . ., t(c, w − 1) and deleting the 
corresponding columns using Lemma 12.3(i). Then repeat as many times as possible the 
process of seeking out local maxima among the entries t(c + 1, v), . . ., t(b − 1, v) and 
t(c + 1, w), . . ., t(b − 1, w) and deleting the corresponding rows using Lemma 12.3(ii).

The resulting SL2-tiling t′ still contains the two entries equal to m which we started 
with, and they are still minimal. Since the local maxima are gone, the entries of t′ satisfy 
the inequalities in Fig. 28. Note that the inequalities are sharp by Lemma 12.1 because 
each entry of t′ is � 2.

Starting from the lower right corner of Fig. 28 and moving left using Lemma 12.2
repeatedly would give that the two lower rows of Fig. 28 satisfied the following inequal-
ities.

∗ < ∗ < · · · < ∗

> >

m < ∗ < · · · < ∗

However, the leftmost inequality contradicts Fig. 28. �
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Fig. 29. Outline of the triangulation T of D4 corresponding to an SL2-tiling t with no entry equal to 1. The 
arcs in Θ(t) are black. We add red arcs from the non-saturated vertices to define T. The total number of 
red arcs added is given by the defect at the relevant vertex. The vertices bI0 and vIII

0 are the only ones with 
red arcs both to intervals II and IV. These vertices are chosen by t(b0, v0) being the unique minimal entry 
in t. (For interpretation of the colours in this figure, the reader is referred to the web version of this article.)

13. Case 6: SL2-tilings with no entry equal to 1

Let t be an SL2-tiling with no entry equal to 1 and unique minimal entry t(b, v), see 
Lemma 12.4.

Notation 13.1. Let us describe part of what is shown with black arcs in Fig. 29: Since 
Θ(t) is locally finite by Lemma 4.4, we can let a < b < c be such that

• b−1 = {bI, aI} is the longest internal arc in Θ(t) going clockwise from bI, or, if there 
are no such arcs, the edge going clockwise from bI,

• b0 = {bI, cI} is the longest internal arc in Θ(t) going anticlockwise from bI, or, if 
there are no such arcs, the edge going anticlockwise from bI.
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Likewise, we can let v < w be such that

• v1 = {vIII, wIII} is the longest internal arc in Θ(t) going anticlockwise from vIII, or, 
if there are no such arcs, the edge going anticlockwise from vIII.

Lemma 13.2. Consider the following divisions with remainders:

t(a, v) = 	t(b, v) + r, 0 � r < t(b, v),

t(b, w) = mt(b, v) + s, 0 � s < t(b, v).

Then

(i) 0 < 	 < defp(b),
(ii) 0 < m < defq(v),
(iii) rs ≡ 1 mod t(b, v). Note that since 0 � r, s < t(b, v) by definition, it follows that 

0 < r, s < t(b, v) and that r, s are inverses modulo t(b, v).

Proof. (i): Since t has no entries equal to 1, there are no connecting arcs in Θ(t). In 
particular, Θ(t) has no connecting arcs ending at bI, so Lemma 5.5 can be applied; see 
also Fig. 18. In the lemma and the figure, we must set b−1 = a, b0 = b, b1 = c to match 
the notation of this section. The lemma gives

p(a, c) = defp(b) + 1.

The Ptolemy relation in Lemma 3.3(ii) implies

p(a, c)t(b, v) = p(a, b)t(c, v) + p(b, c)t(a, v).

Here p(a, b) = p(b, c) = 1 since {aI, bI}, {bI, cI} ∈ Θ(t), so combining the displayed 
equations shows 

(
defp(b) + 1

)
t(b, v) = t(c, v) + t(a, v), that is,

t(a, v) =
(
defp(b) + 1

)
t(b, v) − t(c, v) < defp(b)t(b, v)

where the inequality holds since t(b, v) is the unique minimal entry of t. This implies 
part (i).

(ii): Follows by symmetry.
(iii): The Ptolemy relation in Lemma 3.3(iii) implies

t(a, v)t(b, w) = t(a,w)t(b, v) + p(a, b)q(v, w).

Here p(a, b) = q(v, w) = 1 since {aI, bI}, {vIII, wIII} ∈ Θ(t) so

t(a, v)t(b, w) ≡ 1 mod t(b, v).
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Since t(a, v) ≡ r mod t(b, v) and t(b, w) ≡ s mod t(b, v) by definition of r and s, part (iii) 
follows. �
Remark 13.3. Parts (i) and (ii) of the lemma imply defp(b) � 2 and defq(v) � 2 so bI

and vIII are non-saturated vertices by Lemma 5.7.

Description 13.4 (The partial triangulation Θ(t)). The black arcs in Fig. 29 show the 
overall structure of Θ(t) which we now describe:

We will set b0 = b and v0 = v. The vertex bI0 is non-saturated by Remark 13.3. Let 
b0 = {bI0, bI1} be either the longest internal arc in Θ(t) going anticlockwise from bI0, or, if 
there are no such arcs, the edge going anticlockwise from bI0. This makes sense because 
Θ(t) is locally finite by Lemma 4.4. It is easy to see that bI1 is also non-saturated, while 
the vertices strictly below b0 are saturated.

We can repeat this to both sides of b0 and thereby get integers · · · < b−1 < b0 < b1 <

· · · such that the non-saturated vertices in interval I are precisely . . ., bI−1, bI0, bI1, . . ..
A similar treatment provides integers · · · < v−1 < v0 < v1 < · · · such that the 

non-saturated vertices in interval III are precisely . . ., vIII
−1, vIII

0 , vIII
1 , . . ..

Note that we already considered some “longest arcs” in Notation 13.1, and that hence,

a = b−1 , b = b0 , c = b1 , v = v0 , w = v1.

Construction 13.5 (The triangulation T). We add arcs to Θ(t) as follows to create a 
triangulation T of D4; see Fig. 29 where the added arcs are shown in red:

The vertices βII, γII, ϕIV, χIV will be explained at the end; for the time being, consider 
them fixed and add the arcs {χIV, βII} and {γII, ϕIV}.

Recall the numbers 	, m, and r from Lemma 13.2.
From vertex bI0, add 	 arcs ending at the consecutive vertices χIV, (χ + 1)IV, . . ., ψIV. 

Also from vertex bI0, add defp(b0) −	 arcs ending at the consecutive vertices βII, (β−1)II, 
. . .. This makes sense because 	 and defp(b0) − 	 are both positive by Lemma 13.2(i).

From vertex bI1, add defp(b1) arcs ending at the next block of consecutive vertices in 
interval II. Continue in the same fashion with vertices bI2, bI3, . . ..

From vertex bI−1, add defp(b−1) arcs ending at the next block of consecutive vertices 
in interval IV. Continue in the same fashion with vertices bI−2, bI−3, . . ..

Add arcs by a similar recipe from the vertices · · · , vIII
−1, vIII

0 , vIII
1 , · · · using m, defq, 

γII, ϕIV, instead of 	, defp, βII, χIV.
Now consider the finite polygon R between the arcs {χIV, βII} and {γII, ϕIV}. Viewed 

in R, each of χIV, βII and γII, ϕIV is a pair of adjacent vertices. By Lemma 13.2(iii) we 
may apply Lemma 11.4, and thus, if we space each pair βII, γII and ϕIV, χIV suitably, 
then there is a triangulation S of R which satisfies

r = S(χIV, γII) + S(χIV, ϕIV),

t(b, v) = S(χIV, γII) + S(χIV, ϕIV) + S(βII, γII) + S(βII, ϕIV). (13.1)



242 C. Bessenrodt et al. / Advances in Mathematics 315 (2017) 194–245
The final step in constructing T is to add to it the arcs in S.

Proposition 13.6. The T of Construction 13.5 is a good triangulation of D4.

Proof. Consider the finite polygons below the arcs bj and vj shown in Fig. 29. In each 
such polygon, Θ(t) and hence T restricts to a triangulation by Lemmas 4.5 through 4.7. 
The arcs added in Construction 13.5 (red in Fig. 29) clearly complete T to a triangu-
lation of D4. The added arcs also block the accumulation points of D4 so T is a good 
triangulation. �

The following lemma collects several consequences of the Ptolemy relation in 
Lemma 2.3(v) applied to T.

Lemma 13.7. The numbers 	 and m from Lemma 13.2 and the triangulation T from 
Construction 13.5 satisfy the following.

(i) (a) T(aI, βII) = 	 + 1.
(b) T(wIII, γII) = m + 1.

(ii) T(χIV, vIII)T(ϕIV, bI) ≡ 1 mod T(bI, vIII).
(iii) (a) T(χIV, γII) + T(χIV, ϕIV) = T(χIV, vIII).

(b) T(ϕIV, βII) + T(ϕIV, χIV) = T(ϕIV, bI).
(c) T(βII, γII) + T(βII, ϕIV) = T(βII, vIII).

(iv) (a) T(βII, vIII) + T(χIV, vIII) = T(bI, vIII).
(b) T(γII, bI) + T(ϕIV, bI) = T(bI, vIII).

(v) T(bI, vIII) = T(χIV, γII) + T(χIV, ϕIV) + T(βII, γII) + T(βII, ϕIV).
(vi) (a)

(
T(aI, βII) − 1

)
T(bI, vIII) + T(χIV, vIII) = T(aI, vIII).

(b)
(
T(wIII, γII) − 1

)
T(bI, vIII) + T(ϕIV, bI) = T(bI, wIII).

Proof. (i) Fig. 29 shows that the vertex set {aI, bI, βII, χIV, . . . , ψIV} is compatible with 
T in the sense of Definition 1.10. These vertices span a finite polygon P and T restricts to 
a triangulation TP of P . In P , the vertices aI, bI, βII are consecutive, so Lemma 2.3(vi) 
gives

TP (aI, βII) = 1 + (the number of arcs in TP ending at bI) = 1 + 	.

By Remark 2.2 this implies part (i)(a), and part (i)(b) follows by symmetry.
(ii) If χ = ϕ then {χIV, vIII} = {ϕIV, vIII} and {ϕIV, bI} = {χIV, bI} are in T, so 

T(χIV, vIII) = T(ϕIV, bI) = 1 and part (ii) holds even without the congruence.
If χ �= ϕ then the arcs {χIV, vIII} and {ϕIV, bI} cross so the Ptolemy relation gives

T(χIV, vIII)T(ϕIV, bI) = T(χIV, ϕIV)T(bI, vIII) + T(χIV, bI)T(ϕIV, vIII)

≡ T(χIV, bI)T(ϕIV, vIII) mod T(bI, vIII).
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This proves part (ii) because T(χIV, bI) = T(ϕIV, vIII) = 1 since {χIV, bI}, {ϕIV, vIII} ∈ T.
(iii) If χ = ϕ then part (iii)(a) claims

T(ϕIV, γII) + T(χIV, χIV) = T(ϕIV, vIII).

This equation just reads 1 + 0 = 1 because {ϕIV, γII}, {ϕIV, vIII} ∈ T.
If χ �= ϕ then the arcs {χIV, vIII} and {γII, ϕIV} cross so the Ptolemy relation gives

T(χIV, vIII)T(γII, ϕIV) = T(χIV, γII)T(vIII, ϕIV) + T(χIV, ϕIV)T(vIII, γII).

This proves (iii)(a) because T(γII, ϕIV) = T(vIII, ϕIV) = T(vIII, γII) = 1 since {γII, ϕIV}, 
{vIII, ϕIV}, {vIII, γII} ∈ T. Parts (iii)(b) and (iii)(c) follow by symmetry.

(iv) The arcs {βII, χIV} and {bI, vIII} cross so the Ptolemy relation gives

T(βII, χIV)T(bI, vIII) = T(βII, bI)T(χIV, vIII) + T(βII, vIII)T(χIV, bI).

This proves (iv)(a) because T(βII, χIV) = T(βII, bI) = T(χIV, bI) = 1 since {βII, χIV}, 
{βII, bI}, {χIV, bI} ∈ T. Part (iv)(b) is follows by symmetry.

(v) Combine parts (iii)(a), (iii)(c), and (iv)(a).
(vi) The arcs {aI, βII} and {bI, vIII} cross so the Ptolemy relation gives

T(aI, βII)T(bI, vIII) = T(aI, bI)T(βII, vIII) + T(aI, vIII)T(βII, bI).

We have T(aI, bI) = T(βII, bI) = 1 since {aI, bI}, {βII, bI} ∈ T, so the equation reads

T(aI, βII)T(bI, vIII) = T(βII, vIII) + T(aI, vIII).

Combining with part (iv)(a) gives

T(aI, βII)T(bI, vIII) = T(bI, vIII) − T(χIV, vIII) + T(aI, vIII)

which can be reorganised into (vi)(a). Part (vi)(b) follows by symmetry. �
Theorem 13.8. Let t be an SL2-tiling with no entry equal to 1.

Then there is a good triangulation T of D4 such that Φ(T) = t.

Proof. Let T be as in Construction 13.5, see Fig. 29. It was proved in Proposition 13.6
that T is a good triangulation of D4. To show Φ(T) = t we use Lemma 3.8 in which we 
first verify condition (iii).

By construction, in the finite polygon R between the arcs {χIV, βII} and {γII, ϕIV}, 
the triangulation T agrees with the triangulation S featured in Equations (13.1) which 
can hence be rewritten with T instead of S. Combining with Lemma 13.7(iii)(a) gives
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r = T(χIV, vIII), (13.2)

t(b, v) = T(χIV, γII) + T(χIV, ϕIV) + T(βII, γII) + T(βII, ϕIV). (13.3)

Combining Equation (13.3) with Lemma 13.7(v) shows

t(b, v) = T(bI, vIII). (13.4)

Combining this with Lemma 13.2, Lemma 13.7(i)(a), and Equation (13.2) shows

t(a, v) = 	t(b, v) + r =
(
T(aI, βII) − 1

)
T(bI, vIII) + T(χIV, vIII) = (∗)

and Lemma 13.7(vi)(a) gives

(∗) = T(aI, vIII).

Now, on the one hand, Lemma 13.2(iii) says that 0 < r, s < t(b, v) and that r
and s are inverses modulo t(b, v). On the other hand, Lemma 13.7, (iii)(a), (iii)(b), 
and (v), imply that 0 < T(χIV, vIII), T(ϕIV, bI) < T(bI, vIII) and Lemma 13.7(ii) says 
that T(χIV, vIII) and T(ϕIV, bI) are inverses modulo T(bI, vIII). Combining with Equa-
tions (13.2) and (13.4) shows s = T(ϕIV, bI). We can now proceed as above, combining 
this with Lemma 13.2 and Lemma 13.7(i)(b) to get

t(b, w) = mt(b, v) + s =
(
T(wIII, γII) − 1

)
T(bI, vIII) + T(ϕIV, bI) = (∗∗),

and Lemma 13.7(vi)(b) says

(∗∗) = T(bI, wIII).

Combining the last five displayed equations verifies Lemma 3.8, condition (iii), with 
e = a, f = b, g = v, h = w.

Finally, Lemma 3.8, conditions (i) and (ii) are verified by the same method as in the 
second half of the proof of Theorem 7.4. �
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