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Preface

This book is a collection of survey articles on some of the exciting recent devel-
opments in algebraic combinatorics. It also contains a tutorial on Schubert calculus,
as we felt that such an article would constitute an important addition to the
literature.

Algebraic combinatorics is a vast area of research, and attempting to be
exhaustive in our coverage would have been a mistake. Rather (after reaching out to
many experts in the field for advice), we chose a small number of topics that are
currently enjoying broad interest and rapid growth. And after many thoughtful
discussions, we sought out the authors of this volume—several writers known for
their expository skills as well as a few junior researchers with active research
programs who were willing to share their knowledge. Writing a good survey is a
deceptively tricky endeavor, as decisions on what to include (or not) and how to
best present it lurk at the corner of every sentence! Nonetheless, our contributors
did a remarkable job of introducing exciting directions of current research in
algebraic combinatorics from its foundational questions to the boundaries of what is
known today.

More specifically, the book contains four surveys focusing on representation
theory, symmetric functions, invariant theory, and the combinatorics of Young
tableaux. The other five surveys address subjects at the intersection of algebra,
combinatorics, and geometry: the study of polytopes, lattice points, hyperplane
arrangements, crystal graphs, and Grassmannians. The surveys are written at an
introductory level that emphasizes recent developments and open problems. The
tutorial on Schubert calculus is written in an interactive way and is intended as a
guide for combinatorialists wishing to understand and appreciate the geometric and
topological aspects of Schubert calculus, as well as for geometric-minded
researchers seeking to gain familiarity with the relevant combinatorial tools in
this area.

Each article in this volume was reviewed independently by two referees, and we
are simply amazed by, and deeply grateful for, the generosity of those referees.
Their care in reviewing the articles and their constructive and judicious suggestions
have been invaluable. The authors of this volume wish to warmly thank the referees

v



for their contributions, and we three editors in turn offer our heartfelt thanks to both
the authors and the referees. We are very proud to have edited such a fine book.

We hope that you will enjoy reading these articles as much as we have, and (as
one referee wrote) you will find that the stories flow well and are inspiring!

Berkeley, USA Hélène Barcelo
Claremont, USA Gizem Karaali
Hanover, USA Rosa Orellana
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Partition Algebras and the Invariant
Theory of the Symmetric Group

Georgia Benkart and Tom Halverson

Abstract The symmetric group Sn and the partition algebra Pk(n) centralize one
another in their actions on the k-fold tensor powerM⊗k

n of the n-dimensional permu-
tation moduleMn of Sn . The duality afforded by the commuting actions determines
an algebra homomorphism Φk,n : Pk(n) → EndSn (M

⊗k
n ) from the partition algebra

to the centralizer algebra EndSn (M
⊗k
n ), which is a surjection for all k, n ∈ Z≥1, and

an isomorphism when n ≥ 2k. We present results that can be derived from the dual-
ity between Sn and Pk(n), for example, (i) expressions for the multiplicities of the
irreducible Sn-summands ofM⊗k

n , (ii) formulas for the dimensions of the irreducible
modules for the centralizer algebra EndSn (M

⊗k
n ), (iii) a bijection between vacillat-

ing tableaux and set-partition tableaux, (iv) identities relating Stirling numbers of
the second kind and the number of fixed points of permutations, and (v) character
values for the partition algebra Pk(n). When 2k > n, the map Φk,n has a nontrivial
kernel which is generated as a two-sided ideal by a single idempotent. We describe
the kernel and image of Φk,n in terms of the orbit basis of Pk(n) and explain how
the surjection Φk,n can also be used to obtain the fundamental theorems of invariant
theory for the symmetric group.

Keywords Symmetric group · Partition algebra · Schur–Weyl duality
Invariant theory
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2 G. Benkart and T. Halverson

1 Introduction

Throughout we assume F is a field of characteristic zero. The symmetric group
Sn has a natural action on its n-dimensional permutation module Mn over F by
permuting the basis elements. The focus of this article is on tensor powers M⊗k

n of
Mn , which are Sn-modules under the diagonal action (see (1.2)). For n, k ∈ Z≥1,
the partition algebra Pk(n) is an associative F-algebra with basis indexed by the set
partitions of {1, 2, . . . , 2k} and with multiplication given by concatenation of set-
partition diagrams (described in Sect. 4). In [22], V. Jones constructed a surjective
algebra homomorphism

Φk,n : Pk(n) → EndSn (M
⊗k
n ) (1.1)

from the partition algebra onto the centralizer algebraEndSn (M
⊗k
n )of transformations

that commute with the action of Sn on M⊗k
n . When n ≥ 2k, this surjection is an

isomorphism.
Schur–Weyl duality relates the representation theory of a group and its central-

izer algebra acting simultaneously on a tensor power representation (see, e.g., [16,
Chap. 9] or [19, Sects. 3 and 5]). The classical case considers the general linear
group GLn and its fundamental moduleMn = F

n . The centralizer of GLn on the ten-
sor powerM⊗k

n is provided by the surjection FSk → EndGLn (M
⊗k
n ), where Sk acts by

permuting the tensor factors. This map is an algebra isomorphismwhen n ≥ k. Idem-
potents in the group algebra FSk determine the projection maps onto the irreducible
GLn-summands ofM⊗k

n , and this enabled Schur to construct all the irreducible poly-
nomial representations of GLn from the tensor powers M⊗k

n . A similar surjective
algebra homomorphism, Bk(n) → EndOn (M

⊗k
n ) from the Brauer algebra Bk(n) to

the algebra EndOn (M
⊗k
n ) of transformations of M⊗k

n commuting with the action of
the orthogonal groupOn , is an isomorphism when n ≥ k and has been used to study
the action of On on M⊗k

n . When restricted to the subgroup of permutation matrices
in On , the module Mn becomes the permutation module of Sn , and the inclusions
Sn ⊂ On ⊂ GLn imply reverse inclusions of their centralizer algebras. In particular,
when n ≥ 2k, the centralizer chain is Pk(n) ⊃ Bk(n) ⊃ FSk . In this duality picture,
there are two different symmetric groups acting onM⊗k

n , namely the group Sn which
acts diagonally and the group Sk which acts as tensor place permutations.

The Schur–Weyl duality afforded by the homomorphism Φk,n in (1.1) between
the partition algebra Pk(n) and the symmetric group Sn in their commuting actions
on M⊗k

n enables information to flow back and forth between Sn and Pk(n). Indeed,
the symmetric group Sn has been used to

• develop the combinatorial representation theory of the partition algebras Pk(n) as
k varies [3, 4, 13, 14, 17–19, 28, 29] and

• study the Potts lattice model of interacting spins in statistical mechanics [26–28];

while the partition algebra Pk(n) has been used to

• study eigenvalues of random permutation matrices [14],
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• prove results about Kronecker coefficients for Sn-modules [6–8],
• investigate the centralizer algebras of the binary tetrahedral, octahedral, and icosa-
hedral subgroups of the special unitary group SU2 acting on tensor powers of
V = C

2 via the McKay correspondence [1], and
• construct a nonhomogeneous basis for the ring of symmetric functions and show
that the irreducible characters of Sn can be obtained by evaluating this basis on
the eigenvalues of the permutation matrices, which has led to results on reduced
Kronecker coefficients [31].

The irreducible modules Sλ
n for the symmetric group Sn are indexed by partitions

λ of n, indicated here by λ � n. The n-dimensional permutation module Mn for
Sn has basis elements v1, v2, . . . , vn , which are permuted by the elements σ of Sn ,
σ.vi = vσ(i). ThemoduleMn has a decomposition into irreducibleSn-modules,Mn =
S[n]
n ⊕ S[n−1,1]

n , where the vector v1 + v2 + · · · + vn spans a copy of the trivial Sn-
module S[n]

n , and the vectors vi − vi+1 for 1 ≤ i ≤ n − 1 form a basis for a copy
of the (n − 1)-dimensional module S[n−1,1]

n . The module S[n−1,1]
n is often referred

to as the “reflection representation,” since the transposition switching i and j is a
reflection about the hyperplane orthogonal to vi − v j . The Sn-action onMn extends
to give the tensor power M⊗k

n the structure of an Sn-module:

σ.
(
vi1 ⊗ vi2 ⊗ · · · ⊗ vik

) = σ.vi1 ⊗ σ.vi2 ⊗ · · · ⊗ σ.vik = vσ(i1) ⊗ vσ(i2) ⊗ · · · ⊗ vσ(ik ).

(1.2)

In Sects. 2 and 3, we describe two different ways to determine the multiplicity
mλ

k,n of S
λ
n in the decomposition

M⊗k
n =

⊕

λ�n
mλ

k,n S
λ
n

ofM⊗k
n into irreducibleSn-summands. Thefirst approach, using restriction and induc-

tion on the pair (Sn,Sn−1), leads naturally to a bijection between the set of vacillating
k-tableaux of shape λ and the set of paths in the Bratteli diagram B(Sn,Sn−1) from
the partition [n] at the top of B(Sn,Sn−1) to λ at level k. Both sets have cardinality
mλ

k,n . The secondway, adopted from [4], uses permutationmodules for Sn and results
in an exact expression for the multiplicity of an irreducible Sn-summand ofM⊗k

n . In
particular, we describe how [4, Thm. 5.5] implies that

mλ
k,n =

n∑

t=|λ# |

{
k

t

}
f λ/[n−t],

where the Stirling number of the second kind { kt } counts the number of ways to
partition a set of k objects into t nonempty disjoint blocks (subsets), f λ/[n−t] is the
number of standard tableaux of skew shape λ/[n − t], and λ# is the partition obtained
from λ by removing its first (largest) part. Therefore,
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mλ
k,n =

∣
∣
∣
∣

{
(π,S)

∣
∣
∣
∣
π is a set partition of {1, 2, . . . , k} into t parts, where |λ#| ≤ t ≤ n
S is a standard tableau of skew shape λ/[n − t]

} ∣
∣
∣
∣ .

In Sect. 3.2, we consider set-partition tableaux (tableaux whose boxes are filled
with sets of numbers from {0, 1, . . . , k}) and demonstrate a bijection between set-
partition tableaux and vacillating tableaux. Different bijections between these sets
are given in [10, 18]. However, the bijections in those papers apply only when
n ≥ 2k. The bijection here has the advantage of working for all k, n ∈ Z≥1. Such set-
partition tableaux also appear in the recent investigations of Orellana and Zabrocki
[32, Example2].

At the core of these results is the duality between the representation theories of
the symmetric group Sn and the centralizer algebra,

Zk,n := EndSn (M
⊗k
n ) = {ϕ ∈ End(M⊗k

n ) | ϕσ(x) = σϕ(x), σ ∈ Sn, x ∈ M⊗k
n },
(1.3)

of its action onM⊗k
n . Schur–Weyl duality tells us that the irreducible modulesZλ

k,n for
the semisimple associative algebra Zk,n are indexed by the subset Λk,Sn of partitions
λ of n such that Sλ

n occurs with multiplicity at least one in the decomposition ofM⊗k
n

into irreducible Sn-summands. Moreover,

• M⊗k
n

∼=
⊕

λ∈Λk,Sn

mλ
k,nS

λ
n

︸ ︷︷ ︸
as an Sn -module

∼=
⊕

λ∈Λk,Sn

f λZλ
k,n

︸ ︷︷ ︸
as aZk,n -module

; (1.4)

• dim(Zλ
k,n) = mλ

k,n (the multiplicity ofSλ
n inM

⊗k
n ); (1.5)

• mult(Zλ
k,n) = dim(Sλ

n) = f λ (the number of standard tableaux of shape λ);
(1.6)

• dim(Zk,n) =
∑

λ∈Λk,Sn

(mλ
k,n)

2 = m[n]
2k,n = dim

(
Z[n]
2k,n

)
. (1.7)

The first equality in (1.7) is a consequence of (1.5) and Artin–Wedderburn the-
ory, since dim(Zk,n) is the sum of the squares of the dimensions of its irre-
ducible modules Zλ

k,n . The second equality in (1.7) comes from the isomorphism
Zk,n = EndSn (M

⊗k
n ) ∼= (M⊗2k

n )Sn , since the Sn-invariants in M⊗2k
n correspond to

copies of the trivial one-dimensional module S[n]
n indexed by the one-part partition

[n], and m[n]
2k,n = dim

(
Z[n]
2k,n

)
is the number of trivial summands of M⊗2k

n .
Three additional Schur–Weyl duality results can be found in [5, Cor. 2.5]. From

those results, we know that for any finite group G and any finite-dimensional G-
module V, the dimension of the space

(
V⊗k

)G
of G-invariants is the average of

the character values χV⊗k (g) = χ
V
(g)k as g ranges over the elements of G (com-

pare also [15, Sect. 2.2]). When V is isomorphic to its dual G-module, the dimen-
sion of the centralizer algebra EndG(V⊗k) is the average of the character values
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χV⊗2k (g) = χ
V
(g)2k . Specializing those results and part (i) of [5, Cor. 2.5] to the case

G = Sn and V = Mn gives the following:

• dim
((
M⊗k

n

)Sn ) = 1

n!
∑

σ∈Sn
χMn (σ )k = 1

n!
∑

σ∈Sn
F(σ )k; (1.8)

• dim(Zk,n) = dim(Z[n]
2k,n) = 1

n!
∑

σ∈Sn
F(σ )2k; (1.9)

• dim(Zλ
k,n) = 1

n!
∑

σ∈Sn
χMn (σ )k χλ(σ

−1) = 1

n!
∑

σ∈Sn
F(σ )k χλ(σ ), (1.10)

where χMn (σ ) = F(σ ) (the number of fixed points of σ ) and χλ is the character of
the irreducible Sn-module Sλ

n . In (1.10), we have used the fact that σ and σ−1 have
the same cycle structures, hence the same character values.

In [14], Farina and Halverson develop the character theory of partition algebras
and use partition algebra characters to prove (1.9). The arguments in [14], which are
based on results from [17], require the assumption n ≥ 2k so that Zk,n

∼= Pk(n). The
results in (1.8)–(1.10) are true for all k, n ≥ 1.

When V is a finite-dimensional module for a finite group G, the tensor power V⊗k

has a multiplicity-free decomposition

V⊗k =
⊕

ν

(
Gν ⊗ Zν

k,G

)

into irreducible summands as a bimodule for G × Zk,G, where Zk,G = EndG(V⊗k).
Consequently, the characters ofG,Zk,G andG × Zk,G are intertwined by the following
equation,

ψV⊗k (g × z) =
∑

ν

χν(g) ξν(z).

The irreducible characters of G are orthonormal with respect to the well-known
inner product on class functions of G defined by 〈α, β〉 = |G|−1 ∑

g∈G α(g)β(g−1)

(see, e.g., [15, Thm. 2.12] or [35, Thm. 1.93]). Therefore, sinceψV⊗k ( · × z) : G → F

is a class function on G for each z ∈ Zk,G, we have

〈ψV⊗k (· × z), χν〉 = 1

|G|
∑

g∈G
ψV⊗k (g × z)χν(g

−1) = ξν(z).

Thus, the commuting actions of G and Zk,G on V⊗k lead to one further Schur–Weyl
duality result, namely an expression for the irreducible characters ξν of Zk,G:

• ξν(z) = 1

|G|
∑

g∈G
ψV⊗k (g × z)χν(g

−1). (1.11)



6 G. Benkart and T. Halverson

In Sect. 4.5, we explain how these ideas, when combined with results from [17],
provide the formula in Theorem4.17 for the characters of the partition algebraPk(n).

The surjective algebra homomorphism Φk,n : Pk(n) → Zk,n = EndSn (M
⊗k
n )

enables us to study the Sn-module M⊗k
n using the partition algebra. Since the set

partitions of the set [1, 2k] := {1, 2, . . . , 2k} index an F-basis for Pk(n), the image
of these basis elements linearly spans the Sn-module endomorphisms EndSn (M

⊗k
n ),

and the generators of Pk(n) generate EndSn (M
⊗k
n ) as an associative algebra.

We let Π2k be the set of set partitions of [1, 2k]; for example,
{
1, 7, 8, 10 | 2, 5 |

4, 9, 11 | 3, 6, 12, 14 | 13} is a set partition in Π14 with 5 blocks (subsets). The
number of set partitions in Π2k with t blocks is given by the Stirling number of the
second kind { 2kt }, and thus Pk(n) has dimension equal to the Bell number B(2k) =
∑2k

t=1{ 2kt }.
The algebraPk(n)has twodistinguished bases—the diagrambasis {dπ | π ∈ Π2k}

and the orbit basis {xπ | π ∈ Π2k}. We describe the change of basis matrix between
the diagram basis and the orbit basis in terms of the Möbius function of the set-
partition lattice (see Sect. 4.3). Section4.4 is devoted to a description ofmultiplication
in the orbit basis of Pk(n). The actions of the diagram basis element dπ and the orbit
basis element xπ on M⊗k

n afforded by the representation Φk,n are given explicitly
in Sect. 5.2 for any π ∈ Π2k . The orbit basis is key to understanding the image and
the kernel of Φk,n , as we explain in Sect. 5.3. An analog of the orbit basis exists in
a broader context, and in Sect. 4.2 we explain how to construct an orbit basis for
the centralizer algebra of a tensor power of any permutation module for an arbitrary
finite group G.

The centralizer algebra Zk,n = EndSn (M
⊗k
n ) has a basis consisting of the images

Φk,n(xπ ), where π ranges over the set partitions in Π2k with no more than n blocks.
As a consequence of that result and (1.9), we have

dim(Zk,n) =
n∑

t=1

{
2k

t

}
= 1

n!
∑

σ∈Sn
F(σ )2k . (1.12)

We prove additional relations between Stirling numbers of the second kind and fixed
points of permutations in Sect. 3.1 (more specifically, see Theorem3.7, Proposi-
tion3.9, and Corollary3.11).

The diagrambasis elements dπ inPk+1(n) corresponding to set partitionsπ having
k + 1 and 2(k + 1) in the same block form a subalgebra Pk+ 1

2
(n) of Pk+1(n) under

diagram multiplication. Identifying Pk(n) with the span of the diagrams in Pk+ 1
2
(n)

that have a block consisting solely of the two elements k + 1, 2(k + 1) gives a tower
of algebras,

F = P0(n) ∼= P 1
2
(n) ⊂ P1(n) ⊂ · · · ⊂ Pk(n) ⊂ Pk+ 1

2
(n) ⊂ Pk+1(n) ⊂ · · · .

(1.13)
If we regard Mn as a module for the symmetric group Sn−1 by restriction, where
elements of Sn−1 fix the last basis vector vn , then there is a surjective algebra homo-
morphism
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Φk+ 1
2 ,n : Pk+ 1

2
(n) → EndSn−1(M

⊗k
n ), (1.14)

which is an isomorphismwhen n ≥ 2k + 1. The intermediate algebrasPk+ 1
2
(n) have

proven useful in developing the structure and representation theory of partition alge-
bras (see, e.g., [19, 29]), and they come into play here in the construction of vacil-
lating k-tableaux. The centralizer algebras EndSn−1(M

⊗k
n ) are also closely tied to the

restriction and induction functors that produce the Bratteli diagram B(Sn,Sn−1) in
Sect. 2.3.

For a group G and a finite-dimensional G-module V, the tensor product V ⊗ V∗
of V with its dual module V∗ is isomorphic as a G-module to End(V) via the
mapping v ⊗ φ �→ Av,φ , where Av,φ(u) = φ(u)v. Since g.(v ⊗ φ) = g.v ⊗ g.φ,
where (g.φ)(u) = φ(g−1.u), and g.A = gAg−1 as transformations on V for all
A ∈ End(V), we have

g.(v ⊗ φ) = v ⊗ φ ⇐⇒ gAv,φg
−1 = Av,φ ⇐⇒ gAv,φ = Av,φg ⇐⇒ Av,φ ∈ EndG(V).

Thus, the space of G-invariants (V ⊗ V∗)G = {v ⊗ φ | g.(v ⊗ φ) = v ⊗ φ} is iso-
morphic to the centralizer algebra EndG(V).

In the particular case of the symmetric group Sn and its permutation moduleMn ,
we can identify the centralizer algebra EndSn (M

⊗k
n ) with the space

(M⊗2k
n )Sn ∼= (

M⊗k
n ⊗ (M⊗k

n )∗
)Sn

of Sn-invariants, as Mn is isomorphic to its dual Sn-module M∗
n (this was used in

(1.7) and (1.9)). The fact that Φk,n : Pk(n) → EndSn (M
⊗k
n ) is a surjection tells us

that Pk(n) generates all of the Sn-tensor invariants (M⊗2k
n )Sn and provides the First

Fundamental Theorem of Invariant Theory for Sn (see Theorem6.1 originally proven
by Jones [22]). When 2k > n, the surjection Φk,n has a nontrivial kernel. As 2k
increases in relation to n, the kernel becomes quite significant, and EndSn (M

⊗k
n ) is

only a shadowof the full partition algebra (This is illustrated in the table of dimensions
in Fig. 5.). We have shown in [3] that when 2k > n, the kernel of Φk,n is generated
as a two-sided ideal by a single essential idempotent ek,n (see (5.20)). Identifying

EndSn (M
⊗k
n ) ∼= (

M⊗2k
n

)Sn with Pk(n)/kerΦk,n (= Pk(n)/〈ek,n〉 when 2k > n), we
have the following.

Theorem 1.15 [3, Thm. 5.19] (Second Fundamental Theorem of Invariant Theory
for Sn) For all k, n ∈ Z≥1, imΦk,n = EndSn (M

⊗k
n ) is generated by the partition

algebra generators and relations in Theorem6.5(a)–(c) together with the one addi-
tional relation ek,n = 0 in the case that 2k > n. When k ≥ n, the relation ek,n = 0
can be replaced with en,n = 0.

Classical Schur–Weyl duality provides an analogous result for the general linear
groupGLn and its action bymatrixmultiplication on the spaceV = Mn = F

n ofn × 1
column vectors (more details can be found in [16, Sect. 9.1]). The surjection FSk →
EndGLn (V

⊗k), given by the place permutation action of Sk on the tensor factors of V,

http://dx.doi.org/10.1007/978-3-030-05141-9_9
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is an isomorphism if n ≥ k, and in that case, FSk
∼= (

V⊗k ⊗ (V⊗k)∗
)GLn . When k ≥

n + 1, the kernel is generated by a single essential idempotent
∑

σ∈Sn+1
(−1)sgn(σ )σ

in the group algebra FSk . Thus, the second fundamental theorem comes from the
standard presentation by generators and relations for the symmetric group Sk by
imposing the additional relation

∑
σ∈Sn+1

(−1)sgn(σ )σ = 0 when k ≥ n + 1.
In [9], Brauer introduced algebras Bk(n), now known as Brauer algebras, that

centralize the action of the orthogonal group On and symplectic group Sp2n on
tensor powers of their defining modules. The surjective algebra homomorphisms
Bk(n) → EndOn (V

⊗k) and Bk(−2n) → EndSp2n (V
⊗k) (where V = Mn for On and

V = M2n forSp2n) defined in [9] provide the First Fundamental Theorem of Invariant
Theory for these groups (An exposition of these results appears in [16, Sect. 4.3.2].).
Generators for the kernels of these surjections give the Second Fundamental Theorem
of Invariant Theory for the orthogonal and symplectic groups. In [20], Hu and Xiao
showed that the kernel of the surjection in the symplectic case is principally generated
when k ≥ n + 1. Lehrer and Zhang [23, 24] identified a generator for the kernel
in both the symplectic and orthogonal cases. The Brauer diagram category is an
essential ingredient in these papers (and also in the symplectic group investigations
of Rubey and Westbury [33, 34]) for proving that the kernel of the surjection is
principally generated and in establishing analogous results for the quantum analog of
the Brauer algebra, the Birman–Murakami–Wenzl algebra. As shown in [24, Lemma
5.2] (compare [33, Sects. 7.4 and 7.6] and [34] which establish connections with
cyclic sieving), the element E = 1

(n+1)!
∑

d d, obtained by summing all the Brauer
diagrams d with 2n + 2 vertices, is a central idempotent inBn+1(−2n) corresponding
to the one-dimensional trivial Bn+1(−2n)-module, and it generates the kernel of the
surjectionBk(−2n) → EndSp2n (V

⊗k) for all k ≥ n + 1. As a result, the fundamental
theoremsof invariant theory for the symplectic andorthogonal groups canbe obtained
from Brauer diagram considerations.

Bowman, Enyang, and Goodman [8] adopt a cellular basis approach to describing
the kernels in the orthogonal and symplectic cases, as well as in the case of the
general linear group GLn acting on mixed tensor powers V⊗k ⊗ (V∗)⊗� of its natural
n-dimensional module V and its dual V∗. A surjection of the walled Brauer algebra
Bk,�(n) → EndGLn (V

⊗k ⊗ (V∗)⊗�) is used for this purpose (The algebraBk,�(n) and
some of its representation-theoretic properties including its action on V⊗k ⊗ (V∗)⊗�

can be found, e.g., in [2].).
Although this article is largely a survey discussing recent work on partition alge-

bras and the fundamental theorems of invariant theory for symmetric groups, it
features new results. Among them are a new bijection between vacillating tableaux
and set-partition tableaux, a new expression for the characters of partition algebras,
and new identities relating Stirling numbers of the second kind and fixed points of
permutations.

Our main point of emphasis is that the Schur–Weyl duality afforded by the surjec-
tion Φk,n : Pk(n) → EndSn (M

⊗k
n ) furnishes an effective framework for studying the

symmetric group Sn and its invariant theory. Here n is fixed, and the tensor power
k is allowed to grow arbitrarily large. When 2k > n, the kernel of Φk,n can best be

http://dx.doi.org/10.1007/978-3-030-05141-9_4
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described using the orbit basis of the partition algebra and can be used to give the
Second Fundamental Theorem of Invariant Theory for Sn .

2 Restriction–Induction Bratteli Diagrams and Vacillating
Tableaux

In this section,we discuss the restriction and induction functors for a group–subgroup
pair (G,H) and the Bratteli diagram that comes from applying them and then spe-
cialize to the case of the pair (Sn,Sn−1). Further details can be found, for example,
in [4, Sect. 4].

2.1 Generalities on Restriction and Induction

Let (G,H) be a pair consisting of a finite group G and a subgroup H of G. Let U0 be
the trivial one-dimensional G-module. For k ∈ Z≥0, construct the H-module Uk+ 1

2

by restricting Uk to H and then construct the G-module Uk+1 by inducing Uk+ 1
2 to

G. Thus,

Uk+ 1
2 = ResGH(Uk) and Uk+1 = IndGH(Uk+ 1

2 ) = FG ⊗FH Uk+ 1
2 . (2.1)

In this way, U� is defined inductively for all � ∈ 1
2Z≥0, and

Uk = (
IndGHRes

G
H

)k
(U0) for all k ∈ Z≥0. (2.2)

In particular, the module M := IndGH(ResGH(U0)) = U1 is isomorphic to G/H as a
G-module, where G acts on the left cosets of G/H by multiplication.

For a G-module X and an H-module Y, the “tensor identity” says that

IndGH(ResGH(X) ⊗ Y) ∼= X ⊗ IndGH(Y). (2.3)

The mapping (g ⊗FH x) ⊗ y �→ gx ⊗ (g ⊗FH y) can be used to establish this iso-
morphism (see, e.g., [19, (3.18)]). Hence, when X = Uk and Y = ResGH(U0), (2.3)
implies that

IndGH(ResGH(Uk)) ∼= IndGH(ResGH(Uk) ⊗ ResGH(U0)) ∼= Uk ⊗ IndGH(ResGH(U0)) = Uk ⊗ M.

Therefore, by induction, we have the following isomorphisms for all k ∈ Z≥0:

M⊗k ∼= Uk (asG -modules) and ResGH(M⊗k) ∼= Uk+ 1
2 (asH -modules).

(2.4)
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The centralizer algebra of the G -action on M⊗k is defined as

Zk,G := EndG(M⊗k) = {ϕ ∈ End(M⊗k) | ϕ(g.x) = g.ϕ(x) for all x ∈ M⊗k , g ∈ G},

and the centralizer algebra for the restriction to H is denoted by Zk+ 1
2 ,H :=

EndH(ResGH(M⊗k)). As a consequence of (2.4), we have algebra isomorphisms

Zk,G = EndG(M⊗k) ∼= EndG(Uk) and

Zk+ 1
2 ,H = EndH(ResGH(M⊗k)) ∼= EndH(Uk+ 1

2 ).
(2.5)

For k ∈ Z≥0 we adopt the following notation to index the irreducible summands in
these modules.

• Λk,G ⊆ ΛG indexes the irreducible G-modules, and hence also the irreducible
Zk,G-modules, occurring in Uk ∼= M⊗k ;

• Λk+ 1
2 ,H ⊆ ΛH indexes the irreducible H-modules, and hence also the irreducible

Zk+ 1
2 ,H-modules, occurring in Uk+ 1

2 ∼= ResGH(M⊗k).

2.2 The Restriction–Induction Bratteli Diagram

The restriction–induction Bratteli diagram for the pair (G,H) is an infinite, rooted
tree B(G,H) whose vertices are organized into rows labeled by half integers � in
1
2Z≥0. For � = k ∈ Z≥0, the vertices on row k are the elements of Λk,G, and the
vertices on row � = k + 1

2 are the elements of Λk+ 1
2 ,H. The vertex on row 0 is the

root, the label of the trivial G-module, and the vertex on row 1
2 is the label of the

trivial H-module.
The edges ofB(G,H) are constructed from the restriction and induction rules for

H ⊆ G as follows. Let {Gλ}λ∈ΛG
and {Hα}α∈ΛH

be the sets of irreducible modules
for these groups over F. By Frobenius reciprocity, the multiplicity cλ

α of Hα in the
restricted module ResGH(Gλ) equals the multiplicity of Gλ in the induced module
IndGH(Hα), and thus

ResGH(Gλ) =
⊕

α∈ΛH

cλ
α H

α and IndGH(Hα) =
⊕

λ∈ΛG

cλ
α G

λ. (2.6)

In B(G,H), we draw cλ
α edges from λ ∈ Λk,G to α ∈ Λk+ 1

2 ,H and from α ∈ Λk+ 1
2 ,H

to λ ∈ Λk+1,G. Hence, the Bratteli diagram is constructed in such a way that

• The number of paths from the root at level 0 to λ ∈ Λk,G equals the multiplicity of
Gλ inUk ∼= M⊗k and thus also equals the dimension of the irreducibleZk,G-module
Zλ
k,G by (1.5) (these numbers are computed in Pascal-triangle-like fashion and are

placed beneath each vertex);
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• The number of paths from the root at level 0 to α ∈ Λk+ 1
2 ,H equals the multiplicity

of Hα in Uk+ 1
2 and thus also equals the dimension of the Zk+ 1

2 ,H-module Zα

k+ 1
2 ,H

(and is indicated below each vertex);
• The sum of the squares of the labels on row k (resp. row k + 1

2 ) equals dim(Zk,G)

(resp. dim(Zk+ 1
2 ,H)).

The restriction–induction Bratteli diagram for the pair (S5,S4) is displayed in Fig. 1.

2.3 Restriction and Induction for the Symmetric Group Pair
(Sn,Sn−1)

Assume λ = [λ1, λ2, . . . , λn] is a partition of n with parts λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0,
and identify λ with its Young diagram. For example, we identify the partition λ =
[6, 5, 3, 3] � 17 with its Young diagram as follows,

λ = [6, 5, 3, 3] = .

The hook length h(b) of a box b in the diagram is 1 plus the number of boxes to the
right of b in the same row, plus the number of boxes below b in the same column.
Thus, h(b) = 1 + 3 + 2 = 6 for the shaded box in the example above. The dimension
f λ of the irreducible Sn-module Sλ

n can be computed by the hook-length formula,

f λ = n!
∏

b∈λ h(b)
, (2.7)

where the denominator is the product of the hook lengths as b ranges over the boxes
in the Young diagram of λ. This is equal to the number of standard Young tableaux
of shape λ, where a standard Young tableau T is a filling of the boxes in the Young
diagram of λ with the numbers {1, 2, . . . , n} such that the entries increase in every
row from left to right and in every column from top to bottom.

The restriction and induction rules for irreducible symmetric group modules Sλ
n

are well known (and can be found, e.g., in [21, Thm. 2.43]):

ResSnSn−1
(Sλ

n) =
⊕

μ=λ−�
Sμ
n−1, Ind

Sn+1

Sn
(Sλ

n) =
⊕

κ=λ+�
Sκ
n+1, (2.8)

where the first sum is over all partitions μ of n − 1 obtained from λ by removing
a box from the end of a row of the diagram of λ, and the second sum is over all
partitions κ of n + 1 obtained by adding a box to the end of a row of λ.
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Applying these rules to the trivial one-dimensional Sn-module S[n]
n , we see that

IndSnSn−1

(
ResSnSn−1

(S[n]
n )

) = IndSnSn−1

(
S[n−1]
n−1

) = S[n]
n ⊕ S[n−1,1]

n
∼= Mn.

Thus, in the notation of Sect. 2.1, U1 is the permutation module Mn , and by (2.4),

M⊗k
n

∼= Uk (asSn -modules) and ResSnSn−1
(M⊗k

n ) ∼= Uk+ 1
2 (asSn−1 -modules).

(2.9)
Then (2.5) implies that the centralizer algebras are given by

Zk,n := EndSn (M
⊗k
n ) ∼= EndSn (U

k), (2.10)

Zk+ 1
2 ,n := EndSn−1(M

⊗k
n ) ∼= EndSn−1(U

k), (2.11)

wherewe arewritingZk,n rather thanZk,Sn andZk+ 1
2 ,n instead ofZk+ 1

2 ,Sn−1
to simplify

the notation. (The use of n in place of the more natural choice of n − 1 for the second
one should be especially noted.)

From our discussions in Sects. 2.2 and 2.3, we know that the following holds.
If k, n ∈ Z≥0 and n ≥ 1, then for all λ ∈ Λk,Sn ,

dim(Zλ
k,n) = mλ

k,n = ∣∣{ paths inB(Sn,Sn−1) from [n] at level 0 to λ at level k
}∣∣.

(2.12)
In Fig. 1, we display the first several rows of the restriction–induction Bratteli

diagram B(S5,S4). Below each partition, we record the number of paths from the
top of the diagram to that partition. For integer values of k, the number beneath
the partition λ � n represents the multiplicity mλ

k,n of the irreducible Sn-module Sλ
n

in M⊗k
n (with n = 5 in this particular example). For values k + 1

2 , it indicates the
multiplicity of Sμ

n−1, μ � n − 1, in the restriction of M⊗k
n to Sn−1. The number on

the right of each line is dim(Zk,n) (or dim(Zk+ 1
2 ,n)), which is the sum of the squares

of the subscripts on the line.
The moduleMn is faithful, so by Burnside’s theorem every irreducible Sn-module

appears in M⊗k
n for some k ≥ 0. In the example of Fig. 1, all of the irreducible S5-

modules appear in M⊗4
5 (i.e., all of the partitions of 5 appear in B(S5,S4) at level

� = 4). More generally, we can use the Bratteli diagram to establish the following
result.

Proposition 2.13 (i) The irreducible module Sλ
n, λ � n, appears as a summand of

M⊗k
n if and only if k ≥ |λ#| (where λ# is the partition obtained by removing the

first part of λ).
(ii) All irreducible Sn modules appear inM⊗k

n if and only if k ≥ n − 1. Thus,

Λk,Sn = ΛSn = {λ | λ � n} if and only if k ≥ n − 1. (2.14)

Proof (i) Let λ be a partition of n. Successively remove the last box from the bottom
row and place it at the end of the first row until the partition has only one row.
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� = 0
1

� = 1
2

1

� = 1
1 1

� = 1 1
2

2 1

� = 2
2 3 1 1

� = 2 1
2

5 5 1 1

� = 3
5 10 6 6 2 1

� = 3 1
2

15 22 8 9 1

� = 4
15 37 30 31 17 10 1

� = 4 1
2

52 98 47 58 11

� = 5
52 150 145 156 105 69 11

1

1

2

5

15

52

202

855

3845

18002

86472

Fig. 1 Levels 0, 1
2 , 1, . . . , 3 1

2 , 4 of the Bratteli diagram for the pair (S5,S4). All of the partitions
of 5 appear on level � = 4, and the structure of the diagram stabilizes for � ≥ 4

Counting the removal of a box as one step and the adjoining of the box to the first
row as another, this sequence of partitions, when read in reverse order, determines a
path inB(Sn,Sn−1) from [n] at level 0 to λ at level |λ#|. Thus, Sλ

n has multiplicity at

least one inM⊗|λ# |
n . For example, the path to λ = [3, 2, 1] at level |λ#| = |[2, 1]| = 3

in B(S6,S5) given by this construction is
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(
, , , , , ,

)
.

It is impossible for λ to appear before level |λ#|, since any path from [n] to λ

requires removing |λ#| boxes from the first row of the partition and placing them in
lower rows. Finally, if λ ∈ Λk,Sn for some integer k ≥ 0, then λ ∈ Λk+1,Sn , because
we can always remove any removable box in λ and then place it back in its same
position. Therefore, Sλ

n occurs inM
⊗k
n if and only if k ≥ |λ#|.

(ii) As k increases, the last partition of n to appear in M⊗k
n is λ = [1n], which by

part (i) first occurs when k = |[1n]#| = n − 1. Thus, k ≥ n − 1 is a necessary and
sufficient condition for Λk,Sn to equal ΛSn . �

Paths in the Bratteli diagram B(Sn,Sn−1) give the dimension mλ
k,n of the irre-

ducible module Zλ
k,n of the centralizer algebra Zk,n in the same way that paths in

Young’s lattice [35, Sect. 5.1] give the dimension of the symmetric group module
Sλ
n . For this reason, we make the following definition (see also [4, 10, 18], where

this definition is used).

Definition 2.1 Let k ∈ Z≥0 and let λ ∈ Λk,Sn . Each path of length k from [n] at level
0 to λ at level k in the Bratteli diagramB(Sn,Sn−1) determines a vacillating tableau
υ of shape λ and length k, which is an alternating sequence

υ =
(
λ(0) = [n], λ( 1

2 ) = [n − 1], λ(1), λ(1+ 1
2 ), . . . , λ(k− 1

2 ), λ(k) = λ
)

of partitions starting at λ(0) = [n] and terminating at the partition λ(k) = λ such that
λ(i) ∈ Λi,Sn , λ(i+ 1

2 ) ∈ Λi+ 1
2 ,Sn−1

for each integer 0 ≤ i < k, and

(a) λ(i+ 1
2 ) = λ(i) − �,

(b) λ(i+1) = λ(i+ 1
2 ) + �.

In Sect. 3.3, we describe a bijection between vacillating tableaux of shape λ and
length k and set-partition tableaux of shape λ whose nonzero entries are 1, 2, . . . , k.
This bijection is analogous to the well-known bijection between paths to λ of length
k in Young’s lattice and standard tableaux of shape λ � k (see [35, Sect. 5.1]). Since
paths in the Bratteli diagram correspond to vacillating tableaux, (2.12) tells us the
following:

If k, n ∈ Z≥0 and n ≥ 1, then for all λ ∈ Λk,Sn ,

dim(Zλ
k,n) = mλ

k,n = ∣∣{vacillating tableaux of shape λ and length k
}∣∣. (2.15)

http://dx.doi.org/10.1007/978-3-030-05141-9_5
http://dx.doi.org/10.1007/978-3-030-05141-9_5
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3 Set Partitions

For k ∈ Z≥1, let [1, 2k] = {1, 2, . . . , 2k}, as before. The set partitions in

Π2k = {set partitions of [1, 2k] } ,

Π2k−1 = {π ∈ Π2k | k and 2k are in the same block of π} .
(3.1)

index bases of the partition algebras Pk(n) and Pk+ 1
2
(n), respectively. We let |π |

equal the number of blocks of π . For example, if

π = {
1, 8, 9, 10 | 2, 3 | 4, 7 | 5, 6, 11, 12, 14 | 13} ∈ Π14,

ρ = {
1, 8, 9, 10 | 2, 3 | 4 | 5, 6, 11, 12 | 7, 13, 14} ∈ Π13 ⊆ Π14,

(3.2)

then π /∈ Π13 and |π | = |ρ| = 5.
For �, n ∈ Z≥1, define

Π�,n = {π ∈ Π� | π has at most n blocks}. (3.3)

The cardinalities of these sets are Bell numbers: |Π�| = B(�) and |Π�,n| = B(�, n).
We refer to B(�, n) = ∑n

t=1{ �

t } as an n-restricted Bell number.

3.1 Multiplicities from a Permutation Module Perspective

We begin by discussing a second approach to decomposing M⊗k
n using permutation

modules for Sn and then describe connections with set-partition tableaux.
Let {v1, v2, . . . , vn} be the standard permutation basis ofMn such that σ.vi = vσ(i)

forσ ∈ Sn . Assumeπ is a set partition of {1, 2, . . . , k} into t blocks,where 1 ≤ t ≤ n.
Then the vector space

M(π) := spanC
{
v j1 ⊗ v j2 ⊗ · · · ⊗ v jk | ja = jb ⇐⇒ a, b are in the same block of π

}

(3.4)
is an Sn-submodule ofM⊗k

n . To see this, recall that σ ∈ Sn acts diagonally on simple
tensors,σ.(v j1 ⊗ v j2 ⊗ · · · ⊗ v jk ) = vσ( j1) ⊗ vσ( j2) ⊗ · · · ⊗ vσ( jk ), and so it preserves
the condition in (3.4). As an example, if n = 8 and k = 12, then

v = v3 ⊗ v1 ⊗ v3 ⊗ v3 ⊗ v4 ⊗ v5 ⊗ v4 ⊗ v1 ⊗ v1 ⊗ v3 ⊗ v4 ⊗ v5 ∈ M⊗12
8 (3.5)

belongs toM(π) for π = {1, 3, 4, 10 | 2, 8, 9 | 5, 7, 11 | 6, 12}.
A simple tensor v = v j1 ⊗ v j2 ⊗ · · · ⊗ v jk ∈ M(π) also determines an ordered set

partition of the subscripts {1, 2, . . . , n} into blocks of size [n − t, 1t ] in which the
t distinct subscripts of v are in blocks by themselves, in the order they appear in
v, and the n − t unused subscripts are in the first block. In the simple tensor v of
(3.5), there are t = 4 distinct subscripts (namely, 3, 1, 4, and 5, in that order) and
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n − t = 8 − 4 = 4 unused subscripts {2, 6, 7, 8}. Such ordered set partitions can be
represented by the rows of a tabloid of shape [n − t, 1t ] (see [35, Sect. 1.6, 2.1] for
details on tabloids). In this particular example, the corresponding tabloid is

{2, 6, 7, 8 | 3 | 1 | 4 | 5} ←→ 2 6 7 8
3
1
4
5

.

The diagonal action of Sn on the simple tensors in M(π) corresponds exactly to
the permutation action of Sn on the ordered set partitions of {1, 2, . . . , n} of shape
[n − t, 1t ] or, equivalently, on the tabloids of shape [n − t, 1t ]. The span of these
tabloids is the well-known permutation module M[n−t,1t ] obtained by inducing the
trivial module for the subgroup Sn−t × S1 × · · · × S1 (with t copies of S1) to Sn (see,
e.g., [35, Sect. 2.1]). Thus,

M(π) ∼= M[n−t,1t ], when π has t blocks.

Note that the sizes of the blocks of π are immaterial to this isomorphism, what
matters is the number t of blocks. Also observe that sinceMn = M[n−1,1], the use of
the term “permutation module” for both is consistent.

The number of set partitions π of the tensor positions {1, 2, . . . , k} into 1 ≤ t ≤ n
parts is the Stirling number { kt } of the second kind, so by partitioning the simple
tensors this way, we obtain the following decomposition of M⊗k

n into permutation
modules for Sn:

M⊗k
n

∼=
n⊕

t=1

{
k

t

}
M[n−t,1t ]. (3.6)

Note that { kt } = 0 whenever t > k.
Young’s rule (see, e.g., [35, Thm. 2.11.2]) gives the decomposition of the permu-

tation module Mγ for γ = [γ1, γ2, . . . , γn] � n into irreducible Sn-modules Sλ
n . It

states that the multiplicity of Sλ
n in Mγ equals the Kostka number Kλ,γ . The Kostka

number Kλ,γ counts the number of semistandard tableaux T of shape λ and type γ ,
where such a semistandard tableau T is a filling of the boxes of the Young diagram
of λwith the numbers {0γ1 , 1γ2 , . . . , (n − 1)γn }, and the entries of T weakly increase
across the rows from left to right and strictly increase down the columns. It follows
that

M⊗k
n

∼=
n⊕

t=1

{
k

t

}
M[n−t,1t ] ∼=

n⊕

t=1

{
k

t

} (
∑

λ�n
Kλ,[n−t,1t ]Sλ

n

)
∼=

⊕

λ�n

(
n∑

t=1

{
k

t

}
Kλ,[n−t,1t ]

)

Sλ
n .

In this case, the Kostka number Kλ,[n−t,1t ] counts the number of semistandard
tableaux of shape λ filled with the entries {0n−t , 1, 2, . . . , t}. A semistandard tableau
of shape λ whose entries are n − t zeros and the numbers 1, 2, . . . , t must have the

http://dx.doi.org/10.1007/978-3-030-05141-9_2
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n − t zeros in the first row and have a standard filling of the skew shape λ/[n − t]
with the numbers 1, 2, . . . , t . In particular, if λ = [7, 5, 3] and t = 3 then one such
semistandard tableau is

0 0 0 3 6 8 12
1 4 5 7 11
2 9 10

.

The number f λ/[n−t] of such fillings is given by the hook formula for skew shapes
(see, e.g., [36, Cor. 7.16.3]). Furthermore,Kλ,[n−t,1t ] = 0 whenever λ1 < n − t . That
is,Kλ,[n−t,1t ] = 0 whenever t < n − λ1 = |λ#|, where λ# is the partition obtained by
removing one copy of the largest part of λ.

The next result combines [4, Thm. 5.5] with (1.8)–(1.10). In the statement, M⊗0
n

should be interpreted as being F ∼= S[n]
n (as an Sn-module). The discussion above

provides a proof of the final equality in part (a) of the following theorem.

Theorem 3.7 For k ∈ Z≥0 and n ∈ Z≥1, supposeM⊗k
n = ⊕

λ∈Λk,Sn
mλ

k,nS
λ
n. Assume

Zλ
k,n is the irreducible module indexed by λ forZk,n = EndSn (M

⊗k
n ), as in (1.4)–(1.6).

(a) If λ ∈ Λk,Sn , then

1

n !
∑

σ∈Sn
F(σ )kχλ(σ ) = dim(Zλ

k,n) = mλ
k,n =

n∑

t=|λ# |

{
k

t

}
f λ/[n−t],

where F(σ ) is the number of fixed points of σ , and f λ/[n−t] is the number of
standard tableaux of skew shape λ/[n − t].

(b) dim(Zk,n) = dim
(
Z[n]
2k,n

) = 1

n !
∑

σ∈Sn
F(σ )2k =

n∑

t=0

{
2k

t

}
= B(2k, n).

Furthermore, dim(Zk,n) = B(2k, n) = B(2k) if n ≥ 2k.

(c) If μ ∈ Λk+ 1
2 ,Sn−1

, then

dim
(
Zμ

k+ 1
2 ,n

) =
n−1∑

t=|μ# |

{
k + 1

t + 1

}
f μ/[n−1−t] = 1

(n − 1)!
∑

τ∈Sn−1

(
F(τ ) + 1

)k
χμ(τ).

(d) dim(Zk+ 1
2 ,n) = dim

(
Z[n−1]
2k+1,n

) =
n∑

t=1

{
2k + 1

t

}
= B(2k + 1, n).

Furthermore, dim(Zk+ 1
2 ,n) = B(2k + 1, n) = B(2k + 1) if n ≥ 2k + 1.

Remark 3.8 When n > k, the top limit in the summation in part (a) can be taken to
be k, as the Stirling numbers { kt } are 0 for t > k. When n ≤ k, the term [n − t, 1t ]
for t = n is assumed to be the partition [1n]. In that particular case,Kλ,[1n ] = f λ, the
number of standard tableaux of shape λ, as each entry in the tableau appears exactly
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once. When t = n − 1, the Kostka number is the same, Kλ,[1n ] = f λ. The only time
that the term t = 0 contributes is when k = 0. In that case, { 00 } = 1, and the Kostka
numberKλ,[n] = 0 if λ �= [n] andK[n],[n] = 1. Thus, dim Zλ

0(n) = δλ,[n], as expected,
sinceM⊗0

n = S[n]
n .

In items (c) and (d) of Theorem3.7, we have used the fact that as an Sn−1-module,
Mn

∼= Mn−1 ⊕ Fvn , so the character value χMn (τ ) of τ ∈ Sn−1 equals 1 plus the
number of fixed points of τ viewed as a permutation of {1, . . . , n − 1}. Then since
Zk+ 1

2 ,n = EndSn−1(M
⊗k
n ) andMn is self-dual as an Sn−1-module, the first line of part

(d) holds. The expressions in (a) and (c) can be related by the next result.

Proposition 3.9 For all k ∈ Z≥0,

1

n !
∑

σ∈Sn
F(σ )k+1 = m[n]

k+1,n = dim
(
Z[n]
k+1,n

)

= dim
(
Z[n−1]
k+ 1

2 ,n

) = m[n−1]
k+ 1

2 ,n−1
= 1

(n − 1)!
∑

τ∈Sn−1

(
F(τ ) + 1

)k
,

(3.10)

where m[n]
k+1,n is the multiplicity of S

[n]
n in M⊗(k+1)

n , and m[n−1]
k+ 1

2 ,n−1
is the multiplicity

of S[n−1]
n−1 inM⊗k

n , viewed as an Sn−1-module.

Proof The equalities in the first line of (3.10) are a consequence of taking λ = [n]
in part (a) of Theorem3.7, and the equalities in the second line come from setting
μ equal to [n − 1] in part (c). Now observe that the only way S[n]

n can be obtained
by inducing the Sn−1-module ResSnSn−1

(
M⊗k

n

)
to Sn is from a summand S[n−1]

n−1 , so the

multiplicity ofS[n]
n inM⊗(k+1)

n = IndSnSn−1

(
ResSnSn−1

(
M⊗k

n

))
,which equals dim

(
Z[n]
k+1,n

)
,

is the same as themultiplicity of S[n−1]
n−1 inResSnSn−1

(
M⊗k

n

)
, which equals dim

(
Z[n−1]
k+ 1

2 ,n

)
.

This can also be seen in the Bratteli diagram B(Sn,Sn−1), as there is a unique path
between [n − 1] at level k + 1

2 and [n] at level k + 1 (compare Fig. 1). �

We know from Theorem3.7(b) that the next result holds for even values of �.
Proposition3.9 combined with part (d) of the theorem allows us to conclude that it
holds for odd values of � as well. Consequently, we have the following:

Corollary 3.11 For all � ∈ Z≥0 and n ∈ Z≥1,

B(�, n) =
n∑

t=0

{
�

t

}
= 1

n!
∑

σ∈Sn
F(σ )�. (3.12)

Remark 3.13 The identity in (3.12) has connections with moments of random per-
mutations. If the randomvariable X denotes the number of fixed points of a uniformly
distributed random permutation of a set of size � ≥ 1 into no more than n parts, then
the �th moment of X is
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E(X �) =
n∑

t=1

{
�

t

}
= B(�, n) = 1

n!
∑

σ∈Sn
F(σ )�.

This formula can be derived by applying Polya’s Theorem [25, I, 2, Ex. 9] or by
using partition algebra characters as is done in [14, (18)] for n ≥ 2k.

Remark 3.14 The results of this section relate Stirling numbers of the second kind
to the number of fixed points of permutations. In the case of parts (a) and (c) of The-
orem3.7, the expressions involve Stirling numbers and also the number of standard
tableaux of certain skew shapes. It would be interesting to have combinatorial bijec-
tions that demonstrate the identities. A determinantal formula for the number f λ/ν

of standard tableaux of skew shape λ/ν was given by Aitken (see [36, Cor. 7.16.3]).
Hook-length formulas for f λ/ν are studied in [30] and the references therein.

3.2 Set-Partition Tableaux

Part (a) of the Theorem3.7 has inspired the following definition:

Definition 3.1 For λ = [λ1, λ2, . . . , λn] a partition of n, assume λ# = [λ2, . . . , λn]
and t ∈ Z is such that |λ#| ≤ t ≤ n. A set-partition tableauT of shape λ and content
{0n−t , 1, . . . , k} is a filling of the boxes of λ so that the following requirements are
met:

(i) the first n − t boxes of the first row of λ are filled with 0;
(ii) the boxes of the skew shape λ/[n − t] are filled with the numbers in [1, k] =

{1, 2, . . . , k} such that the entries in each box of λ/[n − t] form a block of a set
partition π(T) of [1, k] having t blocks;

(iii) the boxes of T in the skew shape λ/[n − t] strictly increase across the rows and
down the columns of λ/[n − t], where if b1 and b2 are two boxes of λ/[n − t],
then b1 < b2 holds if the maximum entries in these boxes satisfy max(b1) <

max(b2).

Example 3.15 Below is a set-partition tableau T of shape λ = [5, 4, 2, 1] � 12 and
content {04, 1, 2, . . . , 20}with corresponding set partitionπ(T) = {1, 6 | 4, 7, 9, 10 |
2, 11, 12 | 8, 14 | 15, 16 | 5, 13, 18 | 3, 17, 19 | 20} ∈ Π20 consisting of t = 8
blocks. The blocks of π(T) are listed in increasing order according to their largest
elements, which are the underlined numbers.

T =
0 0 0 0
1, 6 4, 7, 9, 10

2, 11, 12 8, 14

15, 16

5, 13, 18

3, 17, 19

20
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Remark 3.16 If λ is a partition of n with |λ#| = k andT is a set-partition tableau of
shape λ and content {0n−t , 1, . . . , k}, then the k boxes ofT corresponding to λ# form
a set partition of [1, k], so theymust be a standard tableau of shape λ#. The first row of
Tmust then consist of a single row of zeros of length of t = λ1 = n − |λ#| = n − k.
For example, if n = 9 and k = 5, then one possible set-partition tableau of shape λ

with λ# = [3, 2] is

0 0 0 0
1 3 5
2 4

.

The following statement is an immediate consequence of Definition3.1 and Theo-
rem3.7(a):

If k, n ∈ Z≥0 and n ≥ 1, then for all λ ∈ Λk,Sn ,

dim(Zλ
k,n) = mλ

k,n =
∣∣∣∣

{
set-partition tableaux of shape λ and content
{0n−t , 1, . . . , k} for some t such that |λ#| ≤ t ≤ n

}∣∣∣∣ . (3.17)

3.3 Bijections

Combining the results of the previous two sections with what we know from Schur–
Weyl duality (1.4)–(1.7), we have the following:

Theorem 3.18 For Zk,n = EndSn (M
⊗k
n ) and for λ � n, the following are equal:

(a) the multiplicity mλ
k,n of S

λ
n inM

⊗k
n ,

(b) the dimension of the irreducible Zk,n-module Zλ
k,n indexed by λ,

(c) the number of paths in the Bratteli diagram B(Sn,Sn−1) from [n] at level 0 to λ

at level k,
(d) the number of vacillating tableaux of shape λ and length k,
(e) the number of pairs (π,S), where π is a set partition of {1, 2, . . . , k} with t

blocks, and S is a standard tableau of shape λ/[n − t] for some t such that
|λ#| ≤ t ≤ n,

(f) the number of set-partition tableaux of shape λ and content {0n−t , 1, . . . , k}, for
some t such that |λ#| ≤ t ≤ n.

The fact that (c) and (d) have the same cardinality is immediate from the definition
of vacillating tableaux. The fact that (e) and (f) have equal cardinalities can be seen
by taking a set-partition tableau as in (e), and replacing the entries in the boxes having
nonzero entries with the numbers 1, 2, . . . , t according to their maximal entries from
smallest to largest. The reverse process fills the boxes of the standard tableau S with
the entries in the blocks of π according to their maximal elements with 1 for the
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block with smallest maximal entry and proceeding to t for the block with the largest
entry. For instance, the set-partition tableau T of Example3.15 corresponds to the
pair (π,S) given by

π = {1, 6 | 4, 7, 9, 10 | 2, 11, 12 | 8, 14 | 15, 16 | 5, 13, 18 | 3, 17, 19 | 20}, and

S = 7
1 2 6 8
3 4
5

.

Wenowdescribe an algorithm that gives a bijection between set-partition tableaux
of shapeλ and content {0n−t , 1, . . . , k} for some |λ#| ≤ t ≤ n andvacillating tableaux
of length k. The algorithm assumes familiarity with Schensted row insertion (see
[37, Sect. 7.11]). We use T ← b to mean row insertion of the box b (along with its
entries) into the set-partition tableau T governed by their maximum elements as in
Definition3.1. That is, do usual Schensted insertion on the maximal elements of each
box, but then also include all the entries of the box.

A. Set-partition Tableaux ⇒ Vacillating Tableaux

Given a set-partition tableau T of shape λ � n and content {0n−t , 1, . . . , k}, with
|λ#| ≤ t ≤ n, the following algorithm recursively produces a vacillating k-tableau
([n] = λ(0), λ( 1

2 ), λ(1), . . . , λ(k) = λ) of shape λ. Examples can be found in Figs. 2
and 3.

(1) Let λ(k) = λ, and set T(k) = T.
(2) For j = k, k − 1, . . . , 1 (in descending order), do the following:

(a) Let T( j− 1
2 ) be the tableau obtained from T( j) by removing the box b that

contains j . At this stage, j will be the largest entry of T so this box will be
removable. Let λ( j− 1

2 ) be the shape of T( j− 1
2 ).

(b) Delete the entry j from b. If b is then empty, add 0 to it.
(c) Let T( j−1) = T( j− 1

2 ) ← b be the Schensted row insertion of b into T( j− 1
2 ),

and let λ( j−1) be the shape of T( j−1).

We delete the largest number j at the j th step, so by our construction T( j) is a
tableau containing a set partition of {1, 2, . . . , j} for each k ≥ j ≥ 1. Furthermore,
Schensted insertion keeps the rowsweakly increasing and columns strictly increasing
at each step. At the conclusion, T(0) is a semistandard tableau that contains only
zeros, and as such it must have shape λ(0) = [n]. The sequence of underlying shapes
(λ(0), λ( 1

2 ), λ(1), . . . , λ(k)), listed in reverse order from the way they are constructed,
is obtained by removing and adding a box at alternate steps, so it is a vacillating
tableau of shape λ and length k.

B. Vacillating Tableaux ⇒ Set-Partition Tableaux

AlgorithmA is easily seen to be invertible.Given avacillating tableau (λ(0), λ( 1
2 ), λ(1),

. . . , λ(k)) of shape λ and length k, the following algorithm produces a set-partition
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0 0 0 0 0j = 0

0 0 0 0 ← 0j = 1
2

0 0 0 0
1

j = 1

0 0 0 1 ← 0j = 1 1
2

0 0 0 1
2

j = 2

0 0 0
2

← 1j = 2 1
2

0 0 0
2 13

j = 3

0 0 13
2

← 0j = 3 1
2

0 0 13
2 4

j = 4

0 0
2 4

← 13j = 4 1
2

0 0
2 4

135

j = 5

0 4
2

135

← 0j = 5 1
2

0 4
2 6

135

j = 6

0 6
2

135

← 4j = 6 1
2

0 6
2 47

135

j = 7

Fig. 2 Bijection between a vacillating 7-tableau of shape [2, 2, 1] and a 7-set-partition tableau of
shape [2, 2, 1]

tableau T of shape λ. This process recursively fills the boxes of the shapes λ( j) to
produce the same fillings as the algorithm above.

(1′) Let T(0) be the semistandard tableau of shape λ(0) = [n] with each of its boxes
filled with 0.

(2′) For j = 0, 1, . . . , k, do the following:

(a′) Let T( j+ 1
2 ) be the tableau given by un-inserting the box of T( j) at position

λ( j)/λ( j+ 1
2 ), and let b be the box that is un-inserted in this process. That is,

T( j+ 1
2 ) and b are the unique tableau of shape λ( j+ 1

2 ) and box, respectively,
such that T( j) = T( j+ 1

2 ) ← b.
(b′) Add j to box b. If b contains 0, delete 0 from it.
(c′) Add the content of the box b to the box in position λ( j+1)/λ( j+ 1

2 ), and fill
the rest of T( j+1) with the same entries as in the boxes of T( j+ 1

2 ).

AlgorithmsA andB invert one another step-by-step, since (a) and (c′), (b) and (b′),
and (c) and (a′) are easily seen to be the inverses of one another. The fact that steps
(a) and (c′) are inverses comes from the fact that Schensted insertion is invertible.

Our bijection implies the following result:
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0 0 0 0 0j = 0

0 0 0 0 ← 0j = 1
2

0 0 0 0
1

j = 1

0 0 0 1 ← 0j = 1 1
2

0 0 0 1
2

j = 2

0 0 0
2

← 1j = 2 1
2

0 0 0
2 13

j = 3

0 0 13
2

← 0j = 3 1
2

0 0 13
2
4

j = 4

0 0
2
4

← 13j = 4 1
2

0
2
4

0 135j = 5

0
4

2 135 ← 0j = 5 1
2

0
4

2 135 6j = 6

0
4

2 135 ← 6j = 6 1
2

0
4

2 135 67j = 7

0 4 135 67 ← 2j = 7 1
2

0 4 135 67 28j = 8

Fig. 3 Bijection between the set partition π = {4 | 135 | 67 | 28} and an 8-vacillating tableau of
shape [5] illustrating Corollary3.20

Theorem 3.19 For each λ ∈ Λk,Sn , there is a bijection between the set of vacillating
tableaux of shape λ and length k and the set of set-partition tableaux of shape λ and
content {0n−t , 1, . . . , k} for some t such that |λ#| ≤ t ≤ n.

Our bijection also provides a combinatorial proof of the dimension formula for
Zk,n (see (b) of Theorem3.7), which is illustrated with an example in Fig. 3. In this
case, the bijection is between set partitions of [1, 2k] with at most n blocks and
vacillating tableaux of shape [n] and length 2k.

Corollary 3.20 For k, n ∈ Z≥1, dim(Zk,n) = dim(Z[n]
2k,n) = m[n]

2k,n = B(2k, n) =
n∑

t=1

{
2k

t

}
, the number of set partitions of a set of size 2k into at most n parts.

Proof The first equality comes from (1.7) and the second equality from the previous
corollary (or alternatively from (1.6)). To see the third equality, we note that m[n]

2k,n
equals the number of set-partition tableaux of shape [n] having content given by a
set partition π ∈ Π2k with t blocks for t = 1, 2, . . . , n (the case t = |[n]#| = 0 not
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allowed). This is the number of set partitions of {1, 2, . . . , 2k} which have at most n
blocks, which is exactly B(2k, n). �

Remark 3.21 We know that dim(Zk,n) = dim(Z[n]
2k,n) = m[n]

2k,n = ∑
λ∈Λk,Sn

(mλ
k,n)

2.
We can see the last equality combinatorially as well. Given a vacillating tableau
([n], [n − 1], λ(1), . . . , λ(2k−1), [n − 1], [n]) of shape [n] and length 2k, let λ = λ(k).
Then the first portion of this tableau ([n], [n − 1], λ(1), . . . , λ(k− 1

2 ), λ(k)) and the
second portion ([n], [n − 1], λ(2k−1), . . . , λ(k− 1

2 ), λ(k)) arranged in reverse order form
a pair of vacillating tableaux of shape λ and length k. This gives a bijection between
vacillating tableaux of shape [n] and length 2k and pairs of vacillating tableaux of
shape λ and length k for some λ ∈ Λk,Sn .

Remark 3.22 Different bijections between set partitions of [1, 2k] and vacillating
tableaux of shape [n] and length 2k are given in [10, 18]. However, the bijections
in those papers require that n ≥ 2k holds. The bijection here has the advantage of
working for all k, n ∈ Z≥1.

4 The Partition Algebra Pk(n)

4.1 The Diagram Basis of the Partition Algebra Pk(n)

Let π ∈ Π2k be a set partition of [1, 2k] = {1, 2, . . . , 2k}. The diagram dπ of π has
two rows of k vertices each, with the bottom vertices indexed by 1, 2, . . . , k, and
the top vertices indexed by k + 1, k + 2, . . . , 2k from left to right. Edges are drawn
so that the connected components of dπ are the blocks of π . An example of a set
partition π ∈ Π16 and its corresponding diagram dπ is

π = {
1, 10 | 2, 3 | 4, 9, 11 | 5, 7 | 6, 12, 15, 16 | 8, 14 | 13} and

dπ =
1

9

2

10

3

11

4

12

5

13

6

14

7

15

8

16

.

The way the edges are drawn is immaterial; what matters is that the connected
components of the diagram dπ correspond to the blocks of the set partition π . Thus,
dπ represents the equivalence class of all diagramswith connected components equal
to the blocks of π .

Multiplication of two diagrams dπ1 , dπ2 is accomplished by placing dπ1 above dπ2 ,
identifying the vertices in the bottom row of dπ1 with those in the top row of dπ2 ,
concatenating the edges, deleting all connected components that lie entirely in the
middle row of the joined diagrams, and multiplying by a factor of n for each such
middle-row component. For example, if
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dπ1 = and dπ2 =

then

dπ1dπ2 = = n2 = n2dπ1∗π2 ,

where π1 ∗ π2 is the set partition obtained by the concatenation of π1 and π2 in this
process. It is easy to confirm that the product depends only on the underlying set
partition and is independent of the diagram chosen to represent π . For any two set
partitions π1, π2 ∈ Π2k , we let 〈π1 ∗ π2〉 denote the number of blocks deleted from
the middle of the product dπ1dπ2 , so that the product is given by

dπ1dπ2 = n〈π1∗π2〉dπ1∗π2 . (4.1)

For n ∈ Z≥1 and for k ∈ Z≥1, the partition algebra Pk(n) is the F-span of {dπ |
π ∈ Π2k} under the diagram multiplication in (4.1). Thus, dim(Pk(n)) = B(2k),
the 2k-th Bell number. We refer to {dπ | π ∈ Π2k} as the diagram basis. Diagram
multiplication is easily seen to be associative with identity element

Ik =
· · ·
· · · (4.2)

corresponding to the set partition
{
1, k + 1 | 2, k + 2 | · · · | k, 2k}.

Set partitions in Π2k−1 have k and 2k in the same block, and if π1, π2 ∈ Π2k−1,
then k and 2k are also in the same block of π1 ∗ π2. Thus, for k ∈ Z≥1, we define
Pk− 1

2
(n) ⊂ Pk(n) to be the F-span of {dπ | π ∈ Π2k−1 ⊂ Π2k}. There is also an

embedding Pk(n) ⊂ Pk+ 1
2
(n) given by adding a top and a bottom node to the right

of any diagram in Pk(n) and a vertical edge connecting them. Setting P0(n) = F, we
have a tower of embeddings

P0(n) ∼= P 1
2
(n) ⊂ P1(n) ⊂ P1 1

2
(n) ⊂ P2(n) ⊂ P2 1

2
(n) ⊂ · · · (4.3)

with dim(Pk(n)) = |Π2k | = B(2k) (the 2k-th Bell number) for each k ∈ 1
2Z≥1.
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Fig. 4 Hasse diagram of the partition lattice Π4 in the refinement ordering

4.2 The Orbit Basis

For k ∈ Z≥1, the set partitions Π2k of [1, 2k] form a lattice (a partially ordered set
(poset) for which each pair has a least upper bound and a greatest lower bound) under
the partial order given by

π � ρ if every block ofπ is contained in a block of ρ. (4.4)

In this case, we say that π is a refinement of ρ and that ρ is a coarsening of π , so
that Π2k is partially ordered by refinement. For example, the Hasse diagram of the
partial order � on Π4 is shown in Fig. 4.

For each k ∈ 1
2Z≥1, there is a second basis {xπ | π ∈ Π2k} of Pk(n), called the

orbit basis, defined by the following coarsening relation with respect to the diagram
basis:

dπ =
∑

π�ρ

xρ. (4.5)

Thus, the diagram basis element dπ is the sum of all orbit basis elements xρ for
which ρ is coarser than π . For the remainder of the paper, we adopt the following
convention used in [3]:

Diagramswith white vertices indicate orbit basis elements, and
those with black vertices indicate diagram basis elements.

(4.6)
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For example, the expression below writes the diagram d1|23|4 in P2(n) in terms of the
orbit basis,

= + + + + .

Remark 4.7 We refer to the basis {xπ | π ∈ Π2k} as the orbit basis, because the
elements in this basis act on the tensor spaceM⊗k

n in a natural way that corresponds
to Sn-orbits on simple tensors (see (5.12)). Jones’ original definition of the partition
algebra in [22] introduced the orbit basis first and defined the diagram basis later
using the refinement relation (4.5). The multiplication rule is more easily stated in
the diagram basis, and for that reason the diagram basis is usually the preferred basis
when working with Pk(n). However, when working with Pk(n) for 2k > n the orbit
basis is especially useful. For example, in Sect. 5 we are able to describe the kernel
of the action of Pk(n) on tensor space as the two-sided ideal generated by a single
orbit basis element.

4.3 Change of Basis

The transition matrix determined by (4.5) between the diagram basis and the orbit
basis is the matrix ζ2k , called the zeta matrix of the posetΠ2k . It is unitriangular with
respect to any extension to a linear order, and thus it is invertible, confirming that
indeed the elements xπ , π ∈ Π2k , form a basis of Pk(n). The inverse of ζ2k is the
matrix μ2k of the Möbius function of the set-partition lattice, and it satisfies

xπ =
∑

π�ρ

μ2k(π, ρ)dρ, (4.8)

where μ2k(π, ρ) is the (π, ρ) entry of μ2k . The Möbius function of the set-partition
lattice can be readily computed using the following formula. If π � ρ, and ρ consists
of � blocks such that the i th block of ρ is the union of bi blocks of π , then (see, e.g.,
[36, p. 30]),

μ2k(π, ρ) =
�∏

i=1

(−1)bi−1(bi − 1)!. (4.9)

The Hasse diagram of the partition lattice of Π4 is shown in Fig. 4. In the change
of basis between the orbit basis and the diagram basis (in either direction), each basis
element is an integer linear combination of the basis elements above or equal to it in
the Hasse diagram. If, for example, we apply formula (4.8) to express the orbit basis
elements x1 | 2 | 3 | 4 and x1 | 23 | 4 in terms of the diagram basis in P2(n), we get
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= − − − − − − + 2

+ 2 + + + + 2 + 2 − 6 ,

= − − − + 2 .

(4.10)

Remark 4.11 If π ∈ Π2k−1 ⊂ Π2k , then k and 2k are in the same block of π . Since
the expression for xπ in the diagram basis and the expression for dπ in the orbit basis
are sums over coarsenings of π , they involve only set partitions in Π2k−1. Thus, the
relations in (4.5) and (4.8) apply equally well to the algebras Pk− 1

2
(n). The corre-

sponding Hasse diagram is the sublattice of the diagram for Π2k of partitions greater
than or equal to {1 | 2 | · · · | k − 1 | k + 1 | k + 2 | · · · | 2k − 1 | k, 2k}. For example,
the Hasse diagram for Π3 is found inside that of Π4 in Fig. 4 as those partitions

greater than or equal to .

Remark 4.12 The orbit diagram I◦k := · · ·
· · · is not the identity element inPk(n).

To get the identity element Ik , we must sum all coarsenings of I◦k , as in the first line
below:

Ik = = + + + + and

I◦k = = − − − + 2 .

4.4 Multiplication in the Orbit Basis

In this section, we describe the rule for multiplying in the orbit basis of the partition
algebra Pk(n) using the following conventions:

For �,m ∈ Z≥0, let

(m)� = m(m − 1) · · · (m − � + 1). (4.13)

Thus, (m)� = 0 if � > m, (m)0 = 1, and (m)� = m!/(m − �)! if m ≥ �.
When π ∈ Π2k , then π induces a set partition on the bottom row {1, 2, . . . , k}

and a set partition on the top row {k + 1, k + 2, . . . , 2k}. If π1, π2 ∈ Π2k , then we
say that π1 ∗ π2 exactly matches in the middle if the set partition that π1 induces
on its bottom row equals the set partition that π2 induces on the top row modulo
k. For example, if k = 4 then π1 = {1, 4, 5 | 2, 8 | 3, 6, 7} induces the set partition
{1, 4 | 2 | 3} on the bottom row of π1, and π2 = {1, 5, 8 | 2, 6 | 3 | 4, 7} induces the
set partition {5, 8 | 6 | 7} ≡ {1, 4 | 2 | 3}mod 4 on the top row of π2. Thus, π1 ∗ π2
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exactly matches in the middle. This definition is easy to see in terms of the diagrams,
as the examples below, particularly Example4.16, demonstrate.

In the next result,wedescribe the formula formultiplying twoorbit basis diagrams.
This formula was originally stated by Halverson and Ram in unpublished notes and
was proven in [3, Cor. 4.12]. In the product expression below, xρ = 0 whenever ρ

has more than n blocks. Recall that 〈π1 ∗ π2〉 is the number of blocks deleted from
the middle row of π1 ∗ π2.

Theorem 4.14 Multiplication in Pk(n) in terms of the orbit basis {xπ }π∈Π2k is given
by

xπ1xπ2 =
⎧
⎨

⎩

∑

ρ

(n − |ρ|)〈π1∗π2〉 xρ, ifπ1 ∗ π2 exactly matches in the middle,

0 otherwise,

where the sum is over all coarsenings ρ of π1 ∗ π2 obtained by connecting blocks
that lie entirely in the top row of π1 to blocks that lie entirely in the bottom row of
π2.

Example 4.15 Suppose k = 3, n ≥ 2, andπ = {1, 2, 3 | 4, 5, 6} ∈ Π6. Then, accor-
ding to Theorem4.14,

= (n − 2) + (n − 1) , n ≥ 2.

Example 4.16 Here k = 4, n ≥ 5, and 〈π1 ∗ π2〉 = 2 (two blocks are removed upon
concatenation of π1 and π2).

= (n − 5)(n − 6)

+(n − 4)(n − 5)
(

+ + +
)

+(n − 3)(n − 4)

⎛

⎝ +
⎞

⎠ .
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4.5 Characters of Partition Algebras

Letγr be the r -cycle (1, 2, . . . , r) inSr ⊆ Pr (n). For a partitionμ = [μ1, μ2, . . . , μt ]
� �, with μt > 0 and 0 ≤ � ≤ k, define γμ = γμ1 ⊗ γμ2 ⊗ · · · ⊗ γμt ⊗ ( )⊗(k−�) ∈
Pk(n), where “⊗” here stands for juxtaposing diagrams from smaller partition alge-
bras. For example, if μ = [5, 3, 2, 2] and k = 15, then the diagram of γμ in Pk(n)

is

γ[5,3,2,2] = .

In [17, Sect. 2.2], it is shown that characters of the partition algebra Pk(n) are
completely determined by their values on the elements of the set {γμ | μ � �, 0 ≤
� ≤ k}, and thus, the γμ are analogous to conjugacy class representatives in a group.

For any integer m ∈ Z≥1, let Fm(σ ) = F(σm), the number of fixed points of σm

for σ ∈ Sn . For the partition μ = [μ1, μ2, . . . , μt ] � � above, set

Fμ(σ ) = Fμ1(σ ) · · ·Fμt (σ ).

Applying the duality between Sn and Pk(n), Halverson [17, Thm. 3.22] showed that
the character value of σ × γμ onM⊗k

n is nk−�Fμ(σ ).
The conjugacy classes of Sn are indexed by the partitions δ � n that correspond to

the cycle type of a permutation. The number of permutations of cycle type δ is n!/zδ ,
where zδ = 1δ12δ2 · · · nδn δ1!δ2! · · · δn! when δ has δi parts equal to i . The number
of fixed points of a permutation depends only on its cycle type. So Fμ is a class
function, and we let Fμ(δ) be the value of Fμ on the conjugacy class labeled by δ.
Similarly, we let χλ(δ) denote the value of the irreducible Sn-character χλ, λ � n, on
the class labeled by δ. Then, applying (1.11), we have the following (compare [17,
Cor. 3.25]):

Theorem 4.17 Assume n ≥ 2k. For λ ∈ Λk,Sn , and μ = [μ1, μ2, . . . , μt ] � � with
0 ≤ � ≤ k, the value of the irreducible character ξλ for Pk(n) on γμ is given by

ξλ(γμ) = nk−�

n!
∑

σ∈Sn
Fμ(σ )χλ(σ

−1) = nk−�

n!
∑

σ∈Sn
Fμ(σ )χλ(σ ) = nk−�

∑

δ�n

1

zδ
Fμ(δ)χλ(δ).

Remark 4.18 In the special case thatμ = [1k] (the partition of k with all parts equal
to 1), thenFμ(σ ) = F1(σ )k = F(σ )k , and γμ = Ik , the identity element ofPk(n). The
result in Theorem4.17 reduces to

dim Zλ
k,n = ξλ(Ik) = 1

n!
∑

σ∈Sn
F(σ )kχλ(σ ),
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which is exactly the expression in Theorem3.7(a) for the dimension of the irreducible
Zk,n-module Zλ

k,n indexed by λ, since we can identify Pk(n) with the centralizer
algebra Zk,n = EndSn (M

⊗k
n ) when n ≥ 2k.

5 The Representation Φk,n : Pk(n) → EndSn(M
⊗k
n ) and Its

Kernel

Jones [22] defined an action of the partition algebra Pk(n) on the tensor space M⊗k
n

that commutes with the diagonal action of the symmetric group Sn on that same space
and showed that this action affords a representation of Pk(n) onto the centralizer
algebra EndSn (M

⊗k
n ). In this section, we describe the action of each diagram basis

element dπ and each orbit basis element xπ of Pk(n) on M⊗k
n , and we use the orbit

basis to describe the image and the kernel of this action.

5.1 The Orbit Basis of EndG(M⊗k
n ) for G a Subgroup of Sn

Assume k, n ∈ Z≥1, and let {v j | 1 ≤ j ≤ n} be the basis for the permutation mod-
ule Mn of Sn . The elements vr = vr1 ⊗ · · · ⊗ vrk for r = (r1, . . . , rk) ∈ [1, n]k =
{1, 2, . . . , n}k form a basis for the Sn-module M⊗k

n with Sn acting diagonally,
σ.vr = vσ(r) := vσ(r1) ⊗ · · · ⊗ vσ(rn), as in (1.2).

Suppose ϕ = ∑
r,s∈[1,n]k ϕs

r E
s
r ∈ End(M⊗k

n ) where {Es
r} is a basis of matrix units

for End(M⊗k
n ), and the coefficients ϕs

r belong to F. Then E
s
rvt = δr,tvs, with δr,t being

the Kronecker delta, and the action of ϕ on the basis of simple tensors is given by

ϕ(vr) =
∑

s

ϕs
r vs. (5.1)

For any subgroupG ⊆ Sn (in particular, forSn itself) and for the centralizer algebra
EndG(M⊗k

n ) = {ϕ ∈ End(M⊗k
n ) | ϕσ = σϕ for all σ ∈ G}, we have

ϕ ∈ EndG(M⊗k
n ) ⇐⇒ σϕ = ϕσ for all σ ∈ G

⇐⇒
∑

s∈[1,n]k
ϕs
r vσ(s) =

∑

s∈[1,n]k
ϕs

σ(r) vs for all r ∈ [1, n]k,

and so

ϕ ∈ EndG(M⊗k
n ) ⇐⇒ ϕs

r = ϕ
σ(s)
σ (r) for all r, s ∈ [1, n]k, σ ∈ G.

(5.2)
It is convenient to view the pair of k-tuples r, s ∈ [1, n]k in (5.2) as a single 2k-
tuple (r, s) ∈ [1, n]2k . In this notation, condition (5.2) tells us that the elements of
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EndG(M⊗k
n ) are in one-to-one correspondence with the G-orbits on [1, n]2k , where

σ ∈ G acts on (r1, . . . , r2k) ∈ [1, n]2k by σ(r1, . . . , r2k) = (σ (r1), . . . , σ (r2k)).
We adopt the shorthand notation (r|r′) = (r1, . . . , r2k) ∈ [1, n]2k when r =

(r1, . . . , rk) ∈ [1, n]k and r′ = (rk+1, . . . , r2k) ∈ [1, n]k . Let the G-orbit of (r|r′) ∈
[1, n]2k be denoted by G(r|r′) = {σ(r|r′) | σ ∈ G} and define

X(r|r′) =
∑

(s|s′)∈G(r|r′)
Es′
s , (5.3)

where the sum is over the distinct elements in the orbit. This is the indicator function
of the orbit G(r|r′), and it satisfies (5.2), so X(r|r′) ∈ EndG(M⊗k

n ). Let [1, n]2k/G be a
set consisting of one 2k-tuple (r|r′) for each G-orbit. Since (5.2) is a necessary and
sufficient condition for a transformation to belong to EndG(M⊗k

n ), and the elements
X(r|r′) for (r|r′) ∈ [1, n]2k/G are linearly independent, we have the following result.

Theorem 5.4 For G ⊆ Sn and n, k ∈ Z≥1, the centralizer algebra EndG(M⊗k
n ) has

a basis {X(r|r′) | (r|r′) ∈ [1, n]2k/G}. In particular, dim(EndG(M⊗k
n )) equals the num-

ber of G-orbits on [1, n]2k .
When G = Sn , then since Sn acts transitively on [1, n], the Sn-orbits on [1, n]2k

correspond to set partitions of [1, 2k] into at most n blocks. In particular, if π ∈ Π2k

is a set partition of [1, 2k], then

{(r1, r2, . . . , r2k) | ra = rb ⇐⇒ a, b are in the same block of π} (5.5)

is the Sn-orbit corresponding to π (compare this with (3.4)). The condition (5.5)
requires there to be n or fewer blocks in π ; otherwise there are not enough distinct
values ra ∈ [1, n] to assign to each of the blocks.

If G ⊂ Sn is a proper subgroup, then the Sn-orbits may split into smaller G-
orbits. For example, if k = 2 and G = A4 ⊆ S4, the alternating subgroup, then the
S4-orbit corresponding to π = {1 | 2 | 3, 4} contains (1, 2, 3, 3) and (1, 2, 4, 4), but
no element of A4 sends (1, 2, 3, 3) to (1, 2, 4, 4), since it would have to fix 1 and 2
and swap 3 and 4.

When G = Sn , the orbit basis has an especially nice form, since the Sn-orbits of
[1, n]2k correspond to set partitions of [1, 2k] having at most n parts. For π ∈ Π2k ,
we designate a special labeling associated with π as follows.

Definition 5.1 LetB1 be the block of π containing 1, and for 1 < j ≤ |π |, letB j be
the block ofπ containing the smallest number not inB1 ∪ B2 ∪ · · · ∪ B j−1. The stan-
dard labeling of π is (bπ |b′

π ), where bπ = (b1, . . . , bk) and b′
π = (bk+1, . . . , b2k)

in [1, n]k , and

b� = j if � ∈ B j for � ∈ [1, 2k]. (5.6)

Rather than writing X(bπ |b′
π ) for the Sn-orbit element determined by (bπ |b′

π) ∈
[1, n]2k , we denote this simply as Xπ . Then it follows that
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Xπ =
∑

(s|s′)∈Sn(bπ |b′
π )

Es′
s =

∑

(r|r′)∈[1,n]2k
(Xπ )r

′
r E

r′
r , (5.7)

where

(Xπ )r
′
r =

{
1 if ra = rb if and only if a and b are in the same block ofπ,

0 otherwise.
(5.8)

In this case, Theorem5.4 specializes to the following.

Theorem 5.9 For k, n ∈ Z≥1,EndSn (M
⊗k
n ) has a basis {Xπ | π ∈ Π2k,n}, and there-

fore dim(EndSn (M
⊗k
n )) = B(2k, n).

Remark 5.10 If G is any finite group andM is any permutation module for G (that
is, g ∈ G acts as a permutation on a distinguished basis of n elements of M), then
G can be viewed as a subgroup of Sn and M can be regarded as the module Mn .
Thus, the method of this section applies to tensor powers of any permutation module
for any group G. For example, an action of a group G on a finite set {x1, . . . , xn}
can be viewed as an action of the subgroup G of Sn on the permutation module
span

F
{x1, x2, . . . , xn}.

5.2 The Definition of Φk,n

For k, n ∈ Z≥1, define Φk,n : Pk(n) → End(M⊗k
n ) by

Φk,n(xπ ) =
{
Xπ ifπ has n or fewer blocks, and

0 ifπ has more than n blocks.
(5.11)

As {xπ | π ∈ Π2k} is a basis for Pk(n), we can extend Φk,n linearly to get a transfor-
mation, Φk,n : Pk(n) → End(M⊗k

n ). It follows from Theorem5.9 that Φk,n maps
Pk(n) surjectively onto EndSn (M

⊗k
n ) for all k, n ∈ Z≥1. When n ≥ 2k, we have

dim(Pk(n)) = B(2k) = dim(EndSn (M
⊗k
n )), and thus Φk,n is a bijection.

From (5.11) we see that

Φk,n(xπ )r
′
r =

{
1 if ra = rb if and only if a and b are in the same block of π,

0 otherwise.
(5.12)

Since the diagram basis {dπ | π ∈ Π2k} is related to the orbit basis {xπ | π ∈ Π2k}
by the refinement relation (4.5), we have as an immediate consequence,

Φk,n(dπ )r
′
r =

{
1 if ra = rb when a and b are in the same block of π,

0 otherwise.
(5.13)
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ThemapΦk,n canbe shown tobe an algebra homomorphism (thediagrambasisworks

especially well for doing that, see [3, Prop. 3.6]), and soΦk,n affords a representation
of the partition algebra Pk(n).

Example 5.14 (Example4.15 revisited) Recall that in this example π =
{1, 2, 3 | 4, 5, 6} and ρ = {1, 2, 3, 4, 5, 6 |} are elements of Π6. Then, by definition,
Φ3,n(xπ ) = ∑

i �= j∈[1,n] E
j j j
i i i for all n ≥ 2 so that

Φ3,n(x2π ) = (
Φ3,n(xπ )

)2 = (n − 2)
∑

i �= j∈[1,n]
E
j j j
i i i + (n − 1)

∑

i∈[1,n]
Ei i ii i i

= (n − 2)Φ3,n(xπ ) + (n − 1)Φ3,n(xρ) = Φ3,n
(
(n − 2)xπ + (n − 1)xρ

)
.

Such examples inspired the product rule in Theorem4.14.

We identify Sn−1 with the subgroup of Sn of permutations that fix n and make
the identificationM⊗k

n
∼= M⊗k

n ⊗ vn ⊆ M⊗(k+1)
n , so thatM⊗k

n is a submodule for both
Sn−1 and Pk+ 1

2
(n) ⊂ Pk+1(n). Then for tuples r̃, s̃ ∈ [1, n]k+1 having rk+1 = n =

sk+1, condition (5.2) for G = Sn−1 becomes

ϕ s̃
r̃ = ϕ

σ(s̃)
σ (r̃) for all r̃, s̃ ∈ [1, n]k+1, σ ∈ Sn−1.

Thus, the matrix units for G = Sn−1 in (5.3) correspond to set partitions in Π2k+1;
that is, set partitions of {1, 2, . . . , 2(k + 1)} having k + 1 and 2(k + 1) in the same
block.

Let Φk+ 1
2 ,n : Pk+ 1

2
(n) → End(M⊗k

n ⊗ vn) be defined by

Φk+ 1
2 ,n(xπ ) =

∑

(r̃|r̃′)∈[1,n]2(k+1)

(Xπ )r̃
′
r̃ E

r̃′
r̃ ,

where the sum is over tuples of the form r̃ = (r1, . . . , rk, n), r̃′ = (rk+1, . . . , r2k, n)

in [1, n]k+1, and

(Xπ )r̃
′
r̃ =

{
1 if ra = rb if and only if a and b are in the same block of π,

0 otherwise.
(5.15)

Then the argument proving [3, Prop. 3.6] can be easily adapted to show that Φk+ 1
2 ,n

is a representation of Pk+ 1
2
(n).

The next theorem describes a basis for the image and the kernel of Φk,n . Part (a)
follows from our work in Sect. 5.1 and is originally due to Jones [22]. The extension
to Φk+ 1

2 ,n can be found in [19, Thm. 3.6].

Theorem 5.16 Assume n ∈ Z≥1 and {xπ | π ∈ Π2k} is the orbit basis for Pk(n).

(a) For k ∈ Z≥1, the representation Φk,n : Pk(n) → End(M⊗k
n ) has
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imΦk,n = EndSn (M
⊗k
n ) = spanC{Φk,n(xπ ) | π ∈ Π2k has ≤ n blocks}

kerΦk,n = spanC{xπ | π ∈ Π2k has more than n blocks}.

Consequently, EndSn (M
⊗k
n ) is isomorphic to Pk(n) for n ≥ 2k.

(b) For k ∈ Z≥0, the representation Φk+ 1
2

: Pk+ 1
2
(n) → End(M⊗k

n ) has

imΦk+ 1
2 ,n = EndSn−1(M

⊗k
n ) = spanC{Φk+ 1

2 ,n(xπ ) | π ∈ Π2k+1 has ≤ n blocks}
kerΦk+ 1

2 ,n = spanC{xπ | π ∈ Π2k+1 has more than n blocks}.

Consequently, EndSn−1(M
⊗k
n ) is isomorphic to Pk+ 1

2
(n) for n ≥ 2k + 1.

Remark 5.17 The assertion that the map Φk,n (resp. Φk+ 1
2 ,n) is an isomorphism

when n ≥ 2k (resp. when n ≥ 2k + 1) holds because set partitions π ∈ Π2k (resp.
π ∈ Π2k+1) have no more than n blocks under those assumptions.

Example 5.18 When k = 2 and n = 2, the image of Φ2,2 : P2(2) → EndS2(M
⊗2
2 )

is spanned by the images of the following 8 diagrams,

, , , , , , , ,

and the kernel is spanned by the following 7 diagrams,

, , , , , , .

Remark 5.19 Recall from Corollary3.11 that B(�, n) = (n !)−1 ∑
σ∈Sn F(σ )� for

all � ∈ Z≥0. When n = 2, only the identity element of S2 has fixed points, and we
see that B(2k, 2) = 1

2 (2
2k) = 22k−1 for all k ∈ 1

2Z≥0, in agreement with the values
in the first column of Fig. 5. When n = 3, there are three transpositions in S3, each
having one fixed point, and two cycles of length 3 that have no fixed points. Thus,

B(2k, 3) = 1

6

(
32k + 3 · 12k + 2 · 02k

)
= 32k−1 + 1

2
for k ∈ 1

2
Z≥0.

These values correspond to the numbers in the second column of the table.

5.3 The Kernel of the Surjection
Φk,n : Pk(n) → EndSn(M

⊗k
n ) When 2k > n

This section is devoted to a description of the kernel of the map Φk,n (and also of
Φk− 1

2 ,n) when 2k > n. Toward this purpose, the following orbit basis elements ek,n
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k B(2k,2) B(2k,3) B(2k,4) B(2k,5) B(2k,6) B(2k,7) B(2k,8) B(2k)
1
2 1 1 1 1 1 1 1 1

1 2 2 2 2 2 2 2 2

1 1
2 4 5 5 5 5 5 5 5

2 8 14 15 15 15 15 15 15

2 1
2 16 41 51 52 52 52 52 52

3 32 122 187 202 203 203 203 203

3 1
2 64 365 715 855 876 877 877 877

4 128 1094 2795 3845 4111 4139 4140 4140

4 1
2 256 3281 11051 18002 20648 21110 21146 21147

5 512 9842 43947 86472 109299 115179 115929 115975

5 1
2 1024 29525 175275 422005 601492 665479 677359 678570

6 2048 88574 700075 2079475 3403127 4030523 4189550 4213597

Fig. 5 Table of values of the restricted Bell number B(2k, n), which equals the dimension of the
image of the surjection Φk,n : Pk(n) → EndSn (M

⊗k
n ). The rightmost column gives dim(Pk(n)) =

B(2k), the 2kth (unrestricted) Bell number. Note that columnB(2k, 5) equals the right-hand column
of dimensions in the Bratteli diagram B(S5,S4) displayed in Fig. 1

for k, n ∈ Z≥1 and 2k > n were introduced in [3, Sect. 5.3]:

ek,n =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

· · ·
· · ·

· · ·
· · ·

︸ ︷︷ ︸
n+1−k

︸ ︷︷ ︸
2k−n−1

if n ≥ k > n/2,

· · ·
· · ·

· · ·
· · ·

︸ ︷︷ ︸
k

if k > n.

(5.20)

ek− 1
2 ,n = ek,n, if 2k − 1 > n. (5.21)

Observe that if n ≥ k > n/2, then the number of blocks in ek,n is |ek,n| = 2(n + 1 −
k) + 2k − n − 1 = n + 1, so ek,n is in the kernel of Φk,n . For example,

e4 1
2 ,6 = e5,6 =

has |e5,6| = 7 blocks. The elements ek,n for k ≤ 5 and n ≤ 9 are displayed in Fig. 6.

Theorem 5.22 ([3, Thms. 5.6 and 5.9]) Assume k, n ∈ Z≥1 and 2k > n.

(a) The orbit basis element ek,n in (5.20) is an essential idempotent such that
(ek,n)

2 = ck,nek,n, where

ck,n =
{

(−1)n+1−k (n + 1 − k)! if n ≥ k > n/2,

1 if k > n.
(5.23)
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ek,n k = 1 k = 1 1
2 k = 2 k = 2 1

2 k = 3 k = 3 1
2 k = 4 k = 4 1

2 k = 5

n= 1

n= 2

n= 3

n= 4

n= 5

n= 6

n= 7

n= 8

n= 9

Fig. 6 The essential idempotent ek,n for k ≤ 5 and n ≤ 9. When n < 2k, the kernel of Φk,n equals
the principal ideal 〈ek,n〉

(b) The kernel of the representationΦk,n is the ideal ofPk(n) generated by ek,n when
2k > n.

(c) The kernel of the representation Φk− 1
2 ,n is the ideal of Pk− 1

2
(n) generated by

ek− 1
2 ,n = ek,n when 2k > n + 1.

Remark 5.24 For a fixed value of n, the first time the kernel is nonzero is when
k = 1

2 (n + 1) (i.e., when n = 2k − 1). This is the first entry in each row in the
table in Fig. 6. For that particular value of n, (ek,2k−1)

2 = (−1)k/k! ek,2k−1 by The-
orem5.22(a).

The expression for ek,n in the diagram basis is given by

ek,n =
∑

ρ∈Π2k , πk,n�ρ

μ2k(πk,n, ρ)dρ, (5.25)

where πk,n is the set partition of [1, 2k] corresponding to ek,n . When k = 1
2 (n + 1)

and n is odd, ek,n = · · ·· · · , and all ρ in Π2k occur in the expression for ek,n . When

k = 1
2 (n + 1) andn is even, ek,n = · · ·· · · , and allρ inΠ2k−1 occur in the expression

for ek,n . If k > n, then ek,n = · · ·· · · , and the set partitions ρ ∈ Π2k that occur in the

expression for ek,n correspond to the coarsenings of the k columns of the diagram
πk,n . There are Bell number B(k) such terms. In each case, the integer coefficients
μ2k(πk,n, ρ) can be computed using (4.9).
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Remark 5.26 The element e4,3 = generates the kernel of the surjection

Φ4,3 : P4(3) → EndS3(M
⊗4
3 ). Below is the diagram basis expansion for e4,3 using

the Möbius formulas in (4.8) and (4.9). The diagram basis expansion for e2,3 can be
found in (4.10).

e4,3 = = − − − −

− − + 2 + 2 + 2

+ 2 + + + − 6 .

There are 15 = B(4) diagram basis elements in the expression for orbit element ek,n .

6 The Fundamental Theorems of Invariant Theory for Sn

Section5.2 gives the explicit construction of the algebra homomorphism Φk,n :
Pk(n) → EndSn (M

⊗k
n ) and shows that the partition algebra generates the tensor

invariants of the symmetric group Sn . The First Fundamental Theorem of Invari-
ant Theory for Sn says that the partition algebra generates all tensor invariants of
Sn on EndSn (M

⊗k
n ) ∼= (

M⊗2k
n

)Sn , as Φk,n is a surjection for all k, n. A more precise
statement is the following:

Theorem 6.1 ([22]) (First Fundamental Theorem of Invariant Theory for Sn) For
all k, n ∈ Z≥1,Φk,n : Pk(n) → EndSn (M

⊗k
n ) is a surjective algebra homomorphism,

and when n ≥ 2k, Φk,n is an isomorphism, so Pk(n) ∼= EndSn (M
⊗k
n ) when n ≥ 2k.

For k ∈ Z≥1, the partition algebra Pk(n) has a presentation by the generators

si = · · ·
· · ·

· · ·
· · ·

i i+1

1 ≤ i ≤ k − 1, (6.2)

pi = 1

n

· · ·
· · ·

· · ·
· · ·

i

1 ≤ i ≤ k, (6.3)

bi = · · ·
· · ·

· · ·
· · ·

i i+1

1 ≤ i ≤ k − 1, (6.4)

and the relations in the next result. Additional results on presentations for partition
algebras can be found in [11] and the references therein, and in [12] which adopts a
Jucys–Murphy element point of view.
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Theorem 6.5 [19, Thm. 1.11]Assume k ∈ Z≥1, and set pi+ 1
2

= bi (1 ≤ i ≤ k − 1).
Then Pk(n) has a presentation as a unital associative algebra by generators si (1 ≤
i ≤ k − 1), p� (� ∈ 1

2Z≥1, 1 ≤ � ≤ k), and the following relations:

(a) s2i = Ik, sis j = s jsi (|i − j | > 1), si si+1si = si+1si si+1 (1 ≤ i ≤ k − 2);
(b) p2� = p�, p�pm = pmp� (m �= � ± 1

2 ), p�p�± 1
2
p� = p� (p 1

2
:= Ik =: pk+ 1

2
);

(c) sipipi+1 = pipi+1, sipisi = pi+1,

sipi+ 1
2

= pi+ 1
2
si = pi+ 1

2
(1 ≤ i ≤ k − 1),

sisi+1pi+ 1
2
si+1si = pi+ 3

2
(1 ≤ i ≤ k − 2),

sip� = p�si (� �= i − 1
2 , i, i + 1

2 , i + 1, i + 3
2 ).

Remark 6.6 It is easily seen from the relations that Pk(n) is generated by the ele-
ments p1, b1 = p1+ 1

2
, and si (1 ≤ i ≤ k − 1).

Theorems5.6 and 5.8 of [3] prove that ek,n is an essential idempotent that generates
the kernel of Φk,n as a two-sided ideal. Moreover, Theorem5.15 of [3] shows that
the kernel of Φk,n is generated as a two-sided ideal by the embedded image en,n ⊗
( )⊗(k−n) (the diagram of en,n with k − n vertical edges juxtaposed to its right) of
the essential idempotent en,n in Pk(n) for all k ≥ n. By [3, Remark5.20], kerΦk,n

cannot be generated by e�,n ⊗ ( )⊗(k−�) for any � such that k ≥ n > � ≥ 1
2 (n + 1).

Identifying en,n with its image in Pk(n) for k ≥ n, we have

Theorem 6.7 [3, Thm. 5.19] (Second Fundamental Theorem of Invariant Theory
for Sn) For all k, n ∈ Z≥1, imΦk,n = EndSn (M

⊗k
n ) is generated by the partition

algebra generators and relations in Theorem6.5(a)–(c) together with the one addi-
tional relation ek,n = 0 in the case that 2k > n. When k ≥ n, the relation ek,n = 0
can be replaced with en,n = 0.

Example 6.8 The kernel of Φ3,3 : P3(3) → EndS3(M
⊗3
3 ) is generated by e3,3 =

, and the embedded element e3,3 ⊗ ( )⊗(k−3) principally generates the ker-
nel for Pk(n) for all k ≥ 3. The image, imΦ3,3

∼= P3(3)/kerΦ3,3, is generated by the
partition algebra P3(3) with the additional dependence relation

0 = = − − − − −

− + + + + 2

+ 2 + 2 + 2 − 6 .

This dependence relation is analogous to the one that comes from setting the ker-
nel generator

∑
σ∈Sn+1

(−1)sgn(σ )σ of the surjection FSk → EndGLn (V
⊗k) (V = F

n)
equal to 0 in the Second Fundamental Theorem of Invariant Theory for GLn .

Acknowledgements The authors thank the referee for a careful proofreading and useful sugges-
tions.
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Affine Grassmannians and Hessenberg
Schubert Cells

Linda Chen and Julianna Tymoczko

Abstract Wegive an overview of the linear algebra, geometry, and combinatorics of
affine Grassmannians along the lines of Fulton’s Young Tableaux for classical Grass-
mannians. We discuss geometric and linear algebraic aspects of the decomposition
of the affine Grassmannian into affine Schubert cells in terms of coset representa-
tives and linear models. We describe (Grassmannian) Hessenberg Schubert cells and
show that every affine Schubert cell can be realized as a Hessenberg Schubert cell in
a complete flag variety and as a Grassmannian Hessenberg Schubert cell in a finite
Grassmannian.

1 Introduction

Let Grn = GLn(C((t)))/GLn(C[[t]]) denote the affine Grassmannian of type An−1,
where C((t)) is the ring of formal Laurent series and C[[t]] is the ring of formal
power series. It is an infinite dimensional algebraic variety that is a central object in
algebraic combinatorics, algebraic geometry, and geometric representation theory.
Some introductions to the affine Grassmannian in the literature include that by Lam,
Lapointe, Morse, and Shimozono [16], which gives an overview of the Schubert
calculus and tableaux combinatorics of affine Grassmannians, and that by Zhu [27],
which describes connections to Kac–Moody groups, the moduli of vector bundles
on curves, the Langlands program, and the geometric Satake equivalence.
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The geometry of the affine Grassmannian has also been extensively studied. The
homology and cohomology rings of Grn were computed by Bott as a subring and
quotient ring of the ring of symmetric functions. A basis consisting of Schubert
varieties and opposite Schubert varieties was studied by Kostant and Kumar using
the nilHecke ring [14], and Lam identified them as k-Schur and dual k-Schur func-
tions, which arise also in the study of Macdonald polynomials [15]. Lapointe and
Morse gave explicit combinatorial maps between k-Schur functions in the homol-
ogy of the affine Grassmannian and the quantum cohomology rings of the classical
Grassmannian [19].

In this paper,we give a basic and explicit linear algebraic description of the geome-
try of affine Schubert cells, which are indexed by affine Grassmannian permutations.
We show how this gives rise to some of the known combinatorics, as outlined in [16,
17]. In particular, we describe several equivalent formulations of affine Grassman-
nian permutations and their corresponding cells, for instance in terms of windows,
skylines, the geometric linear model, the coset interpretation, cores, and partitions,
extending analogous formulations in the case of the classical Grassmannian.

We also study Hessenberg varieties, which form a family of subvarieties of the
complete flag variety defined by two parameters. Here, the complete flag variety
Fl(n) is the space of flags V• = {V1 ⊆ V2 ⊆ · · · ⊆ Vn = C

n} where each Vi is an i-
dimensional subspace. Given a nilpotent linear operator X and a nondecreasing step
function h : {1, 2, . . . , n} → {1, 2, . . . , n}, the Hessenberg varietyH(X, h) consists
of the flags V• such that XVi ⊆ Vh(i) for each i .

Hessenberg varieties arise in many contexts. They were originally defined by De
Mari, Procesi, and Shayman as a generalization of spaces that appear in numerical
analysis [5]. When h(i) = i for all i , they are known as Springer fibers; the top-
dimensional cohomology of Springer fibers carries a representation of the symmet-
ric group, and all irreducible representations can be obtained bijectively by varying
over the nilpotent conjugacy classes of X [11, 23]. When X is regular nilpotent
(i.e., has a single Jordan block) and h(i) = i + 1 for all i ≤ n − 1, the Hessenberg
varieties H(X, h) can be used to obtain the quantum cohomology of the flag vari-
ety [13, 22]. More generally, when X is regular nilpotent, Hessenberg varieties are
geometrically associated with affine Grassmannians. Peterson proved an explicit iso-
morphism between a localized quantum cohomology ring of Grassmannians and a
localized equivariant cohomology ring of the affine Grassmannian [20]. The geom-
etry of Hessenberg varieties is quite mysterious: we only have limited information
about fundamental properties such as singularities of their components, even for
Springer fibers [7, 8, 10, 12].

We describeHessenberg Schubert cellswhich are the intersection of a Hessenberg
variety with a Schubert cell in Fl(n); their projections to a Grassmannian Gr(k, n)

are calledGrassmannianHessenberg Schubert cells.We show that every affine Schu-
bert cell can be realized as a Grassmannian Hessenberg Schubert cell. We do this in
two ways and show that for one of them, the affine Schubert cell is in fact isomor-
phic to the original Hessenberg Schubert cell. This result does three things: (1) it
further motivates and contextualizes ongoing work on Hessenberg Schubert calculus
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[2, 3, 6], (2) it turns affine Schubert calculus into a finite rather than infinite problem,
and (3) it introduces the study of Grassmannian Hessenberg varieties.

For our purposes in this survey, we work with GLn(C[[t]]) though SLn(C[[t]])
is also common in the literature. The substantive differences between the two cases
are slight.

2 The Classical Grassmannian

The Grassmannian is a central object in algebraic geometry, combinatorics, and
representation theory. A general introduction to the geometry of Grassmannians and
flag varieties and associated combinatorics of Young tableaux can be found in [9].
In this section, we review the features of the Grassmannian that are most useful to
understand when studying the affine Grassmannian. The Grassmannian Gr(k, n) of
k-planes in C

n can be described as the quotient GLn(C)/P where P is a maximal
parabolic subgroup of invertible block upper-triangular matrices of the form

P =
(∗ ∗
0 ∗

)

where the entries in the blocks labeled ∗ are arbitrary (subject to the condition that
the matrix is invertible), and the zero block is (n − k) × k. In other words,

P = {(mi j ) ∈ GLn(C) : mi j = 0 if i > k and j < n − k}. (1)

The Weyl group in type An−1 is the symmetric group W = Sn generated by the
simple reflections s1, s2, . . . , sn−1 subject to the relations

s2i = 1 for all i
si si+1si = si+1si si+1 if i = 1, 2, . . . , n − 2, and

si s j = s j si if |i − j | > 1.

Given integers k and n such that 1 ≤ k ≤ n, the Grassmannian permutations
with (possible) descent at k are the permutations σ ∈ Sn such that
σ(1) < · · · < σ(k) and σ(k + 1) < · · · < σ(n). In fact, Grassmannian permuta-
tions with descent at k are the minimal coset representatives for W/WP , where
WP is the subgroup of W generated by all simple reflections except sk , namely
WP = 〈s j : j �= k〉 ∼= Sk × Sn−k .

We now give concrete descriptions of these objects.

2.1 Combinatorial Description of Grassmannian
Permutations

Grassmannian permutations have combinatorial descriptions in terms of partitions
and bit sequences, as follows. Given a Grassmannian permutation σ with (possible)
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descent at k, we associate a partition λ(σ) = (σ(k) − k, . . . ,σ(1) − 1), which by
construction lies inside a k × (n − k) rectangle. Moreover, since σ is a minimal
coset representative for its coset in W/WP

∼= Sn/(Sk × Sn−k), these cosets can be
described combinatorially via a set on which W acts transitively with stabilizer (at a
point) 〈s j : j �= k〉.

Consider the set of n-bit sequences with exactly k zeros. For each i let the simple
reflection si act on an n-bit sequence by exchanging the elements in positions i and
i + 1. This set corresponds bijectively with the Grassmannian permutations. The
permutation σ is recovered from the bit sequence by letting the ones be indexed by
σ(1), . . . ,σ(k) and the zeros by σ(k + 1), . . . ,σ(n). We can construct the partition
from the bit sequence as follows: starting from the northwest corner of a k × (n − k)
rectangle, traverse the sequence by moving south for each 1 and east for every 0.

Example 2.1. For Gr(4, 9), the permutation σ = 236914578 is a Grassmannian
permutation with descent at k = 4. The associated partition λ(σ) is (5, 3, 1, 1) and
the bit sequence is 011001001.

2.2 Linear Model

Linear algebra is at the heart of traditional Schubert calculus. The Grassmannian
Gr(k, n) is often described as the collection of k-dimensional planes in Cn . Given a
k-dimensional subspace, choose k spanning vectors and write them as the columns
of an n × k matrix. Then use Gaussian elimination on the column vectors to obtain a
normal form for the k-plane. For instance, each element of Gr(2, 4) appears exactly
once in the following list of matrices, where ∗ denotes free entries in C:

⎛
⎜⎜⎝
0 0
0 0
1 0
0 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
0 0
1 0
∗ 0
0 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
1 0
∗ 0
∗ 0
0 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
0 0
1 0
0 1
∗ ∗

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
1 0
∗ 0
0 1
∗ ∗

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
1 0
0 1
∗ ∗
∗ ∗

⎞
⎟⎟⎠ .

2.3 Decomposition into Schubert Cells

Let B denote the Borel subgroup of GLn(C) consisting of invertible n × n upper-
triangular matrices. Then the Grassmannian Gr(k, n) has a decomposition

Gr(k, n) =
⋃

BσP/P
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into a disjoint union of Schubert cells BσP/P indexed by Grassmannian permuta-
tions σ with possible descent at k. Similarly, when B− is the opposite Borel subgroup
consisting of invertible n × n lower-triangular matrices, there is a decomposition

Gr(k, n) =
⋃

B−σP/P

into a disjoint union of opposite Schubert cells B−σP/P .
In order to be compatible with the standard conventions for the affine Grassman-

nian (as in the next sections), we consider the opposite Schubert cell corresponding
to a partition λ in a k × (n − k) rectangle (or equivalently, a Grassmannian permu-
tation with descent at k) [9, §9.4]. When written as in Sect. 2.2, the free entries of the
matrices in the opposite Schubert cell corresponding to σ form the transpose dual
of λ, where the dual partition (n − k − λk, . . . , n − k − λ1) is the complement of
λ and the transpose (or conjugate) means we take columns rather than rows of the
partition (corresponding to our use of column vectors rather than the row vectors
Fulton uses [9]).

To see how a k-plane corresponds to a coset aP , we complete each n × k matrix
in column-reduced echelon form to an n × n matrix so that the n − k rows without
pivots in the first k columns restrict to an (n − k) × (n − k) identity matrix in the last
n − k columns, and so that all other entries in the last n − k columns are zero. With
this description, an opposite Schubert cell in Gr(k, n) corresponds to a collection of
n × k matrices that are in column-reduced echelon form and that have the identity
matrix in a fixed k × k minor.

Example 2.2. For the permutation σ = 236914578 in Gr(4, 9), the opposite Schu-
bert cell is given below for the 4-plane. To the right we show the minimal coset
representative for aP. Note that the free entries form the partition (3, 3, 2, 2), which
is the transpose dual of the partition λ(σ) = (5, 3, 1, 1).

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
1 0 0 0
0 1 0 0
∗ ∗ 0 0
∗ ∗ 0 0
0 0 1 0
∗ ∗ ∗ 0
∗ ∗ ∗ 0
0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
∗ ∗ 0 0 0 1 0 0 0
∗ ∗ 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0
∗ ∗ ∗ 0 0 0 0 1 0
∗ ∗ ∗ 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

3 Affine Grassmannian Permutations

In this section, we give several descriptions of affine Grassmannian permutations
which, analogously to Grassmannian permutations, index affine Schubert cells. We
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use these permutations to describe various aspects of the affineGrassmannian, includ-
ing coset descriptions and linear models.

The group of affine permutations S̃n of type Ãn−1 is the group 〈s0, s1, s2, . . . , sn−1〉
generated by the simple reflections s0, s1, s2, . . . , sn−1 subject to the relations

s2i = 1 for all i
si si+1(mod n)si = si+1(mod n)si si+1(mod n) if i = 0, 1, 2, . . . , n − 1, and

si s j = s j si if |i − j | > 1.

For Gr(k, n), the Grassmannian permutations with descent at k are exactly the
elements of minimal length in their cosets in Sn/(Sk × Sn−k). Compare to the set of
affine Grassmannian permutations, which are the elements of minimal length in their
cosets in S̃n/Sn .

We now give more explicit combinatorial descriptions of the affine Grassmannian
permutations, beginning with a parallel to bit strings in the Grassmannian case. The
affine permutation group S̃n can be described as the set of bijectionsw : Z → Z such
that

• w(i + n) = w(i) + n for all i ∈ Z, and

•
n∑

i=1

(w(i) − i) = 0.

For 0 ≤ i ≤ n, the simple reflections si can be defined by

• si (na + i) = na + i + 1 and si (na + i + 1) = na + i , and
• si acts as the identity on all other integers.

Because of the characterization that w(i + n) = w(i) + n, we sometimes denote an
affine permutation w ∈ S̃n by its uniquely determined window

[w(1), . . . , w(n)].

In window notation, the reflection si exchanges the entries in positions i and i + 1
for 1 ≤ i ≤ n − 1 and ws0 = [w(n) − n, w(2), . . . , w(1) + n].

Moreover, for 1 ≤ i ≤ n, we can divide to express w(i) = nki + σ(i) with
1 ≤ σ(i) ≤ n. Inspecting the description of the window of w, we see that σ is a
permutation of {1, . . . , n} and ∑n

i=1 ki = 0. It is sometimes convenient to write the
window of w as

[w(1), . . . , w(n)] = n[k1, . . . , kn] + [σ(1), . . . ,σ(n)].

We say a permutation w is an affine Grassmannian permutation if its window is
increasing, namely w(1) < · · · < w(n). This is the minimal length element in the
coset wSn ∈ S̃n/Sn . Given an affine Grassmannian permutation, we reorder the ki
according to σ to define the offset sequence d(w) = (d1, . . . , dn). In other words, for
each i we have dσ(i) = ki or equivalently di = kσ−1(i).
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Thus given an affine Grassmannian permutation w, we obtain an element d(w)

of the set

S =
{

(d1, d2, . . . , dn) ∈ Z
n :

n∑
i=1

di = 0

}
.

Conversely, given such an n-tuple d = (d1, d2, . . . , dn), we obtain a unique affine
Grassmannian permutation whose window is the set {ndi + i} taken in increasing
order.

Example 3.1. Consider the permutation w = s0s2s1s0 ∈ S̃3. Its window is
[−1, 0, 7], which can be written [−1, 0, 7] = 3[−1,−1, 2] + [2, 3, 1] so that
k = [−1,−1, 2] and d(w) = (2,−1,−1). The set {ndi + i} = {7,−1, 0} taken in
increasing order recovers the window [−1, 0, 7].
Example 3.2. Consider the permutation w = s2s0s1s2s1s0 ∈ S̃3. Its window is
[−4, 3, 7], which can be written [−4, 3, 7] = 3[−2, 0, 2] + [2, 3, 1] so that
k = [−2, 0, 2] and d(w) = [2,−2, 0]. Then the set {ndi + i} = {7,−4, 3} taken in
increasing order recovers the window [−4, 3, 7].

If i = 1, . . . , n − 1 then since si (ndi + i) = ndi + i + 1 and si (ndi+1 + i + 1) =
ndi+1 + i , the simple reflection si acts on an element in S by exchanging the entries
di and di+1 . Since s0(nd1 + 1) = nd1 = n(d1 − 1) + n and s0(ndn + n) = ndn +
n + 1 = n(dn + 1) + 1, the simple reflection s0 acts on an element d in S by sending

(d1, . . . , dn) �→ (dn + 1, d2, . . . , dn−1, d1 − 1). (2)

With this identification, S̃n acts transitively on S and the stabilizer of (0, 0, . . . , 0)
is Sn , so S is in bijection with the set of affine Grassmannian permutations.

3.1 Coset Description for the Affine Grassmannian

Wenow investigate the elements of the affineGrassmannian as cosets ofGLn(C[[t]]).
By analogy with the classical Grassmannian in Sect. 2, we describe the column
echelon form as an element of GLn(C[[t]]). We use these tools later in Sect. 4 to
give a stratification of the affine Grassmannian by affine Schubert cells, which are
double cosets IwGLn(C[[t]]) where the Iwahori subgroup I ⊆ GLn(C[[t]]) is an
analogue of the Borel subgroup and w is indexed by the set of affine Grassmannian
permutations.

For every g ∈ GLn(C((t))), we construct a column echelon matrix by applying
a version of Gaussian elimination on elements of GLn(C[[t]]). Since there exists a
unique column echelonmatrix in each coset gGLn(C[[t]]), the set of column echelon
matrices give a set of representatives for the cosets gGLn(C[[t]]).

Note that in linear algebra over C[[t]], one must be attentive to units. (This is
more generally true in linear algebra over a ring R. For instance, if R is an arbitrary
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commutative ring with identity, then an element of GLn(R) is a matrix whose deter-
minant is a unit in R.) In particular, an element r(t) ∈ C[[t]] is a unit if and only if
the constant term of r is nonzero. [1, Chapter 1, Exercise 5].

Let e1, . . . , en denote the standard basis ofCn . Given an element g ∈ GLn(C((t)))
with entries gi j (t), repeat the following steps to column-reduce g:

• Assume that the strictly upper-triangular entries of the first i rows of g are zero,
and that the first i entries along the diagonal of g are td1 , td2 , td3 , . . . , tdi . (This is
reduced form for the first i columns and rows.)

• Consider the entries above and on the diagonal along the (i + 1)th row of g.
Suppose gi+1, j is the entry with the smallest minimal-degree term, and suppose
this minimal degree is tdi+1 . Then gi+1, j (t) = tdi+1u(t), where u(t) is a unit in
C[[t]].

Replace the j th column g j of g with the vector (u(t))−1 g j .

• For each i ′ ∈ {i + 1, i + 2, . . . , n} other than j the minimal-degree term of gi+1,i ′

is by definition a multiple of tdi+1 tai ′ for some ai ′ ≥ 0. Hence gi+1,i ′ = tdi+1 tai ′ u′(t)
for some unit u′(t) ∈ C[[t]].

Replace the (i ′)th column gi ′ with gi ′ − tai ′ u′(t)g j .

• Exchange columns j and i + 1.

After this step is implemented, the first i + 1 columns and rows are in reduced form,
so the algorithm can be repeated.

Once the previous algorithm has been repeated n times, we obtain a lower-
triangular matrix with entries td1 , td2 , . . . , tdn along the diagonal, as in Example 3.3.

We may back-eliminate in a similar way, replacing the j th column g j by an
appropriate combination of the columns g j , g j+1, . . . , gn so that each entry gi, j is a
Laurent polynomial with maximal-degree term tdi−1.

After this process, the column-reduced form of g ∈ GLn(C((t))) is a matrix

⎛
⎜⎜⎝

td1 0 · · · 0
g2,1 td2 · · · 0

· · ·
gn,1 gn,2 · · · tdn

⎞
⎟⎟⎠

where gi, j = 0 if i < j , the entries gi,i = tdi along the diagonal, and gi, j is a Laurent
polynomial with maximal-degree term tdi−1 if i > j .

Example 3.3. We demonstrate this column reduction. Reordering according to the
degrees of the first row transforms

⎛
⎝ 0 t t−1

1 + t t−1 + 2t + ∑
i≥1t

2i+1 t−1

3t + 4t2 + t4 + t5 3 + 7t2 + 2t3 + 4t4 + 2t5 + ∑
i≥3(3t

2i + t2i+1) 4 + t + t2 + t3

⎞
⎠

to the matrix
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⎛
⎝ t−1 0 t
t−1 1 + t t−1 + 2t + ∑

i≥1t
2i+1

4 + t + t2 + t3 3t + 4t2 + t4 + t5 3 + 7t2 + 2t3 + 4t4 + 2t5 + ∑
i≥3(3t

2i + t2i+1)

⎞
⎠

Eliminating using the first entry of the first column gives

⎛
⎝ t−1 0 0
t−1 1 + t t−1 + ∑

i≥0t
2i+1

4 + t + t2 + t3 3t + 4t2 + t4 + t5 3 + ∑
i≥1(3t

2i + t2i+1)

⎞
⎠

Reordering, rescaling, and eliminating entries in the second row of the last two
columns gives

⎛
⎝ t−1 0 0
t−1 t−1 1 + t
4 + t + t2 + t3 3 + t3 3t + 4t2 + t4 + t5

⎞
⎠ �→

⎛
⎝ t−1 0 0
t−1 t−1 0
4 + t + t2 + t3 3 + t3 t2

⎞
⎠

In this case, the exponents along the diagonal are −1,−1,−2. Back-eliminating
along the last row and then second-to-last row then gives

⎛
⎝ t−1 0 0
t−1 t−1 0
4 + t 3 t2

⎞
⎠ �→

⎛
⎝ t−1 0 0
0 t−1 0
1 + t 3 t2

⎞
⎠

By construction, the reduced form of g is in the coset gGLn(C[[t]]). In fact, more
is true.

Proposition 3.4. The reduced form of the coset gGLn(C[[t]]) is unique.
Proof. Suppose that g′ and g′′ are two different reduced representatives for g, namely
that

(a) there are matrices h′, h′′ ∈ GLn(C[[t]]) with g′ = gh′ and g′′ = gh′′
(b) both g′ and g′′ are lower-triangular
(c) both g′ and g′′ have td1 , td2 , . . . , tdn along the diagonal
(d) for both g′ and g′′, each lower-triangular entry (i, j) has maximal-degree term

tdi−1

Both g′ and g′′ are invertible in GLn(C((t))). The set of lower-triangular matrices
in GLn(C((t))) forms a subgroup. In particular, the inverse (g′′)−1 is also lower-
triangular, as is the product (g′′)−1g′. The diagonal entries of (g′′)−1g′ agree with
those of (g′′)−1g′′ so the matrix (g′′)−1g′ has ones along the diagonal.

Moreover, the product (g′′)−1g′ = (h′′)−1h′ is inGLn(C[[t]]). In other words, the
product (g′′)−1g′ = h, where h ∈ GLn(C[[t]]) is a lower-triangular matrix with ones
along the diagonal. Writing the product g′ = g′′h, we conclude that the ( j + 1, j)
subdiagonal entry in g′ differs from the corresponding entry in g′′ by a power series
of the form h j+1, j (t)td j+1 for some h j+1, j (t) ∈ C[[t]]. This violates condition (d)
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above, unless h j+1, j (t) = 0. Working backwards along subdiagonals, we conclude
that actually h is the identity, and g′ = g′′ as desired. �

3.2 Geometric Linear Model for the Affine Grassmannian

We now extend our analogy between ordinary and affine Grassmannians to include
the geometric linear model for Grassmannians, as certain subspaces of a vector
space. In the ordinary Grassmannian, we obtain a k-dimensional linear subspace
from the coset aP by constructing the span of the first k columns of a. Similarly,
we can obtain a subspace from the coset gGLn(C[[t]]) by asking for the C[[t]]-
linear span of the columns of g. However, in the ordinary Grassmannian, we have an
intrinsic description of the subspaces that appear, namely the set of all k-dimensional
linear subspaces of a fixed n-dimensional vector space. The intrinsic description of
the subspaces for the affine Grassmannian is more complicated than for ordinary
Grassmannians; we turn our attention to this description now.

The next proposition characterizes subspaces in C((t)) ⊗ C
n that give elements

of the affine Grassmannian Grn . Billey and Mitchell call this the Quillen model for
the affine Grassmannian [4, page 210].

For g ∈ GLn(C((t))) with columns g1, g2, . . . , gn , consider the map

gGLn(C[[t]]) �→ Lg = spanC[[t]] {g1, g2, . . . , gn} . (3)

The columns of each element of the coset gGLn(C[[t]]) are invertible C[[t]]-linear
combinations of the columns of g so the map gGLn(C[[t]]) �→ Lg is well-defined.

Proposition 3.5. The map given in (3) is a bijection between the set of cosets
gGLn(C[[t]]) ∈ GLn(C((t)))/GLn(C[[t]]) and subspaces L ⊆ C((t)) ⊗ C

n sat-
isfying

(a) L is a C[t]-module, namely t L ⊆ L, and
(b) L differs from C[[t]] ⊗ C

n only in a finite window, namely there exists N > 0
such that

t N
(
C[[t]] ⊗ C

n
) ⊆ L ⊆ t−N

(
C[[t]] ⊗ C

n
)
.

Proof. First we prove that for every g, the subspace Lg satisfies Conditions (a) and
(b). Condition (a) holds by construction, since Lg is closed under multiplication by
elements of C[[t]] and hence in particular by t . Without loss of generality, take g
to have the canonical form described in Sect. 3.1. Thus the entries of the i th row of
g have coefficients in C((t)) with maximum degree tdi−1. Let d be the minimum
exponent that appears in any of the entries gi j (t) of g. Then by definition, each
polynomial in each column is in

tdC[t] = spanC
{
td , td+1, td+2, . . .

}
.

So each g j is in td(C[t]) ⊗ C
n and hence Lg is in tdC[[t]] ⊗ C

n .
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Similarly, let d ′ be the maximum exponent so that td
′
appears in any of the gi j (t).

(Note that d ′ must be along the diagonal, since each gi j (t) has maximum degree less
than the exponent of the diagonal element in its row.) The subspace Lg contains the
vectors td

′−dg j for all j = 1, 2, . . . , n because d ′ − d ≥ 0. Moreover, the minimal-
degree term in each td

′−dgi j (t) has degree at least d ′ which by construction is at least
d j . Thus there is a linear combination of the (lower-triangular) columns g1, g2, . . . , gn
and an exponent d ′

j so that

td
′−dg j + p j, j+1g j+1 + p j, j+2g j+2 + · · · + p j,ngn = td

′
j e j

for each j , where p j, j+1, . . . , p j,n ∈ C[t]. So Lg contains the elements td
′
1e1, td

′
2e2,

. . . , td
′
n en for some exponents d ′

1, . . . , d
′
n . In particular, Lg contains td

′′
C[[t]] ⊗ C

n

for d ′′ = max{d ′
1, d

′
2, . . . , d

′
n}. If N = max{|d|, d ′′} then

t N
(
C[[t]] ⊗ C

n
) ⊆ Lg ⊆ t−N

(
C[[t]] ⊗ C

n
)
.

Next we show that every subspace of the desired form arises as Lg for somematrix
g in GLn(C((t))). We do this by explicitly constructing the columns g1, g2, . . . of g
inductively from L . Suppose that g1, . . . , gi−1 ∈ L have been chosen such that every
v ∈ L can be written as

v = q1(t)g1 + · · · + q j−1(t)g j−1 + r j (t)e j + · · · + rn(t)en (4)

where q1(t), . . . , q j−1(t) ∈ C[[t]] and r j (t), . . . rn(t) ∈ C((t)).
Choose v j ∈ L to be any vector for which the minimum exponent d j of r j (t) in

Equation (4) is minimal. Since L ⊆ t−N
C[[t]] ⊗ C

n , every power of t that appears
is at least −N and so this degree d j exists. By construction, (r j (t)t−d j ) ∈ C[[t]] has
nonzero constant term and hence is a unit. Define

g j = (r j (t)t
−d j )−1(v j − q1(t)g1 − · · · − q j−1(t)g j−1) = td j e j + v′

j

where v′
j ∈ C((t)) ⊗ spanC

{
e j+1, . . . , en

}
. When j = 1, this proves the base case.

Otherwise note that since d j was chosen minimally, by adjusting Eq. (4) by a C[[t]]-
multiple of g j , every v ∈ L can be written

v = q1(t)g1 + · · · + q j−1(t)g j−1 + q j (t)g j + r j+1(t)e j+1 + · · · + rn(t)en

where q1(t), . . . , q j (t) ∈ C[[t]] and r j+1(t), . . . rn(t) ∈ C((t)).
Continuing in this manner, we obtain g1, . . . , gn where each g j has leading term

td j e j . Moreover, the C[[t]]-span of the g1, . . . , gn is the subspace L . By construc-
tion, the vectors g1, g2, . . . , gn are lower-triangular and so linearly independent
over C[[t]]. Thus the matrix g whose columns are the g j is in GLn(C((t))) as
desired. �
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Remark 3.6. Note that the subspaces L satisfying Conditions (a) and (b) are in fact
generated by Laurent polynomials since that holds for the coset representatives in
Sect.3.1. (This can be proven directly by back-substituting at the end of the previous
proof, as well.)

Example 3.7. Continuing Example 3.3, in this case d = −1 and d ′ = 2. We obtain
the three column vectors

(t2, 0, t3 + t4)T , (0, t2, 3t3)T , (0, 0, t5)T

The third vector is simply t5e3 so d ′
3 = 5 in this case. We eliminate the last entry of

t3g1 and t3g2 using polynomial multiples of the original column vector (0, 0, t2)T .
This gives t2e1 and t2e2 so d ′

1 = d ′
2 = 2 in this case. (In general, we would need

another polynomial linear combination to eliminate the second entry of td
′−dg1.)

3.3 Affine Grassmannian Permutations and Skyline
Diagrams

In this subsection, we give the coset description corresponding to an affine Grass-
mannian permutation and describe its associated subspace using the geometric linear
model of Sect. 3.2.

For each i with 1 ≤ i ≤ n − 1, the affine permutations si correspond to the usual
permutation matrix in GLn(C), namely the identity matrix with columns i and
i + 1 exchanged. The affine permutation s0 can also be represented as a matrix
in GLn(C((t))) that incorporates both a classical permutation (corresponding to the
reflection that exchanges 1 and n) and a rescaling by t . Explicitly, the matrix for s0
is the monomial matrix with ones along the diagonal in rows 2, 3, . . . , n − 1, has t
in the top right corner, and has t−1 in the bottom-left corner.

Given an affine Grassmannian permutation w, we give the coset description for
wGLn(C[[t]]). Since the ordinary permutation matrices of Sn are in GLn(C[[t]]),
we may reorder the columns of w so that nonzero elements lie on the diagonal. This
means that wGLn(C[[t]]) corresponds to a diagonal matrix with td1 , td2 , . . . , tdn

along the diagonal, where
∑n

i=1 di = 0. More specifically, under the map (3), a coset
wGLn(C[[t]]) corresponds to

L = spanC[[t]]{td1e1, td2e2, . . . , tdn en}

such that
∑

di = 0. This is equivalent to the bijection between affine Grassmannian
permutations and the set S of offset sequences d = (d1, d2, . . . , dn) from Sect. 3.

The action of the affine Weyl group S̃n on the set S of offset sequences described
in (2) is equivalent to the following action on C((t)) ⊗ C

n on each generator taeb:

• If si is a simple transposition with i = 1, . . . , n − 1 then si (taeb) = taesi (b) where
si acts on the integers by exchanging i and i + 1 and fixing all other integers.
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• The simple transposition s0 acts by

s0(t
ae1) = ta−1en and s0(t

aen) = ta+1e1 for each j

and by fixing taeb if b �= 1, n.

One can “sketch” these elementswGLn(C[[t]]) of the affine Grassmannian using
skyline diagrams. (David Nadler and Jared Anderson introduced us to this diagram-
matic depiction; it also appears in [16, page 59] with the metaphor “above sea level,”
though the top of our diagram is the bottom of the diagram in [16].) We create a
bi-infinite array of dots that describes the generators for C((t)) ⊗ C

n: each dot rep-
resents taeb for some a, b, and each row represents taCn for some a. Figure 1 shows
this array for n = 3, with rows labeled by the exponent of t .

If taeb is contained in L then Condition (a) of Proposition 3.5 guarantees that all
ta

′
eb with a′ ≥ a are in L; in the diagram, this means that once a single dot is in L ,

so are all dots below and in the same column. Hence we sketch L by outlining the
generators that L contains, as shown in Fig. 1a; it is understood that L contains all of
the dots below the line. Reading the topmost dots in each column from left to right
gives exactly the heights d1, . . . , dn .
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Fig. 1 Examples of skyline diagrams

Condition (b) of Proposition 3.5 ensures that every L in Grn can be summarized
in a finite interval and that every L eventually contains an entire row (and hence,
by Condition (1), all the rows beneath). In particular, a skyline diagram like Fig. 1b
does NOT represent an element of Grn .

Example 3.8. The example in Fig.1a represents the plane L = spanC[[t]]{t2e1,
t−1e2, t−1e3} and has skyscrapers with heights d = (2,−1,−1). This corresponds
to the permutation s0s2s1s0 in Example 3.1.

Moreover, the affine Grassmannian can be partitioned according to the exponents
of the entries td1 , td2 , . . . , tdn along the diagonal in the column-reduced form for the
general coset gGLn(C[[t]]). This hints at the decomposition into affine Schubert
cells, to which we turn in Sect. 4.
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4 Affine Schubert Cells

Similar to the finite case, the affine Grassmannian has a decomposition into affine
Schubert cells; these cells can be described similarly to their finite analogues. The
most important difference is that many entries in affine Schubert cells for the affine
Grassmannian are not free. This has deep implications for our calculations.

We first describe a subgroup of GLn(C[[t]]) that determines Schubert cells in the
affine Grassmannian, analogous to the role of the Borel subgroup B of GLn(C) in
the classical case.

Definition 4.1. The Iwahori subgroup I ⊆ GLn(C[[t]]) consists of the elements of
GLn(C[[t]]) that are upper-triangular mod t and invertible mod t.

Remark 4.2. The elements of I are precisely those matrices in GLn(C[[t]]) whose
strictly lower-triangular elements are divisible by t, and none of whose diagonal
entries are divisible by t.

We give two examples of matrices that are not in I , and one that is:

NO:

(
1 + t −t−1

t3 1 − t

)
NO:

(
t 1 + t

t − 1 t

)
YES:

(
1 + t −1
t2 1 − t

)

Definition 4.3. For an affine Grassmannian permutation w, the affine Schubert cell
�w is the coset IwGLn(C[[t]]).

By Sect. 3.3, we may also write the Schubert cell IwGLn(C[[t]]) as I tdGLn

(C[[t]]), where (d1, . . . , dn) is the offset sequence d(w) and td denotes the diagonal
matrix with td1 , td2 , . . . , tdn along the diagonal.

Using Gaussian elimination, we can describe explicitly the elements of affine
Schubert cells. In principle, we would like to conjugate each element g in I td by an
appropriate permutation matrix σ ∈ Sn so that the diagonal entries are reordered in
decreasing order. However, while multiplication on the right by σ−1 preserves cosets
in the affine Grassmannian (because σ is in GLn(C[[t]]) for each permutation σ),
the Iwahori subgroup does not contain σ unless σ is the identity.

Given an affine Grassmannian permutation w whose offset sequence is
d(w) = (d1, . . . , dn), let Mw be the set of matrices in GLn(C((t))) that satisfy
the following four conditions:

(i) the ( j, j) entry is td j ,
(ii) if di < d j , the (i, j) entry is zero,
(iii) if di > d j , then the (i, j) entry has degree at most di − 1,
(iv) if the (i, j) entry is nonzero, then its minimum exponent is at least d j or, if

i > j , at least d j + 1.

Theorem 4.4. Letw be an affine Grassmannian permutation whose offset sequence
is (d1, . . . , dn). Then elements of the affine Schubert cell�w are in bijection with the
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matrices in Mw according to the map (3) that sends g ∈ Mw to the C[[t]]-span of
the columns of g.

Proof. Consider the C[[t]]-span of the columns of a matrix g ∈ Mw. This corre-
sponds to a coset gGLn(C[[t]]) byProposition 3.5. Let g′ = g(td)−1. The entries of g′
are in C[[t]] by Condition (iv). The matrix g′ is invertible because
det(g′) = det g · det(td)−1 = det g is a unit inC((t)) that is also an element ofC[[t]].
Thus g′ ∈ GLn(C[[t]]). Condition (i) implies that g′ has ones along the diagonal and
Condition (iv) implies that the lower-triangular entries of g′ are divisible by t . There-
fore g′ is in I and so g ∈ I td. Hence the C[[t]]-span of the columns of a matrix in
Mw is an element of �w = I tdGLn(C[[t]]).

In the other direction, for any γ = (γi j (t)) ∈ I , consider γtdGLn(C[[t]]). We
wish to find a matrix g ∈ Mw such that gGLn(C[[t]]) = γtdGLn(C[[t]]).

By Remark 4.2 γ j j (t) is a unit inC[[t]] for all j and γi j (t) = 0 mod t for i > j .
By rescaling each column of γtd, i.e., multiplying on the right by the diagonal
matrix with entries (γ j j (t))−1, there is a representative g0 ∈ γtdGLn(C[[t]]) whose
j th column can be written

g01 j (t)e1 + · · · + g0j−1, j (t)e j−1 + td j e j + g0j+1, j (t)e j+1 + · · · + g0nj (t)en (5)

where g0j j (t) = td j and if nonzero, the entries g0i j (t) ∈ C[[t]] have minimal degree at
least d j when i < j and d j + 1 when i > j . In other words, the matrix g0 satisfies
Conditions (i) and (iv).

Choose an ordering i1, . . . , in of {1, 2, . . . , n} so that di1 ≤ di2 ≤ · · · ≤ din . We
proceed by induction. Given amatrix gk−1 ∈ γtdGLn(C[[t]]) that satisfies Condition
(i) for all diagonal entries and Conditions (ii)–(iv) for rows i = i1, . . . , ik−1, we will
describe column operations that produce a matrix gk satisfying Condition (i) for all
diagonal entries and Conditions (ii)–(iv) for rows i = i1, . . . , ik−1, ik .

For the base case, consider row i1 of the matrix g0. By minimality of di1 , we can
eliminate all nondiagonal entries in row i1 by adding multiples of the i1th column.
In particular, since the j th column looks like (5), we can eliminate the entry g0i1, j (t)
by scaling as indicated in Fig. 2. In both cases, we add a vector whose entries have
the same minimum exponents as the corresponding nondiagonal entry in the j th
column, so Condition (iv) remains valid. Also in both cases, the diagonal entry of the
j th column is modified by a power series that is divisible by td j+1 so its minimum
entry is still td j . Thus if needed, we may rescale the j th column by a unit inC[[t]] so
that td j is on the diagonal again. So g1 satisfies Condition (i) for all diagonal entries
and Conditions (ii)–(iv) for row i = i1.

Now suppose that gk−1 ∈ γtdGLn(C[[t]]) satisfies Condition (i) for all rows and
Conditions (ii)–(iv) for rows i = i1, . . . ik−1. The ik th column of gk−1 can be written

gk−1
1,ik (t)e1 + · · · + tdik eik + · · · + gk−1

n,ik
(t)en.

The entries of row ik have the form gk−1
ik , j

(t). We eliminate terms of degree at least dik
in these entries by adding appropriate multiples of the ik th column of gk−1, using a
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⎛
⎜⎜⎜⎜⎜⎜⎜⎝

min deg
di

min deg
di + 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

min deg
dj

min deg
dj + 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

min deg
di

min deg
di + 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

case i < j case i > j
scaled by jth column scaled by
tdj−di tdj−di+1

Fig. 2 Schematic for two relative cases of i th and j th columns

polynomial that is divisible by td j−dik for ik < j or that is divisible by td j+1−dik for
ik > j . By construction, Conditions (i)–(iv) hold for the resulting matrix gk when
we restrict our attention to the ik th row.

Note that Condition (ii) for i = i1, . . . , ik−1 for the matrix gk−1 implies that
the entries gk−1

i1,ik
(t) = · · · = gk−1

ik−1,ik
(t) = 0 since di1 ≤ · · · ≤ dik−1 ≤ dik . Thus adding

C[[t]]-multiples of column ik leaves the entries in rows i1, . . . , ik−1 unchanged.
Therefore, Conditions (i)–(iv) hold for the matrix gk for i = i1, . . . , ik−1 as well.

Finally, by the schematic in Fig. 2 and the same argument as for g1, the diagonal
entry in the j th column for j > ik can only be changed by terms of degree strictly
greater than d j , so we may rescale the j th column for j > ik by a unit to preserve
Condition (i). Thus Condition (i) holds for the matrix gk for all rows.

Taking g = gn , this completes the proof. �

In this geometric description of affine Schubert cells, if we set all nondiagonal
entries of the matrix g to zero, we obtain the plane

L = spanC[t]]{td1e1, td2e2, . . . , tdn en}

corresponding to a skyline diagram. This is consistent with the geometric analogy
between affine and ordinary Schubert cells: each is described as the span of a collec-
tion of vectors parametrized freely by variables; setting those variables to zero gives
the unique Weyl group element in the cell.

Example 4.5. Consider the case when the offset sequence is (−1,−1, 2) and γ is

⎛
⎝ 1 + t 1 0
t 1 0
t + 5t2 + t3 4t + t2 1 − t

⎞
⎠
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The matrix g0 is the product

⎛
⎝ t−1 + 1 t−1 0
1 t−1 0
1 + 5t + t2 4 + t t2 − t3

⎞
⎠

⎛
⎝

∑
i≥0(−t)i 0 0

0 1 0
0 0

∑
i≥0t

i

⎞
⎠ =

⎛
⎝ t−1 t−1 0∑

i≥0(−t)i t−1 0
(1 + 5t + t2)(

∑
i≥0(−t)i ) 4 + t t2

⎞
⎠

Using the original ordering of the columns, we obtain g1 by scaling the middle
column of the following by 1 + t:

⎛
⎝ t−1 0 0∑

i≥0(−t)i t−1 − ∑
i≥0(−t)i 0

(1 + 5t + t2)(
∑

i≥0(−t)i ) 4 + t − (1 + 5t + t2)(
∑

i≥0(−t)i ) t2

⎞
⎠

In other words

g1 =
⎛
⎝ t−1 0 0∑

i≥0(−t)i t−1 0
(1 + 5t + t2)(

∑
i≥0(−t)i ) (4 + t)(1 + t) − (1 + 5t + t2) t2

⎞
⎠

In fact, the (3, 2) entry simplifies to 3. To get g2 we subtract t
∑

i≥0(−t)i times the
second column from the first:

g2 =
⎛
⎝ t−1 0 0
0 t−1 0
(1 + 2t + t2)(

∑
i≥0(−t)i ) 3 t2

⎞
⎠

Finally, we eliminate all terms of degree at least 2 from the third entry of the first
column to get g3:

g3 =
⎛
⎝ t−1 0 0
0 t−1 0
1 + t 3 t2

⎞
⎠

In other words, this continues Example 3.3.

5 Descriptions of Affine Schubert Cells: Bit Sequence,
Linear Model, Cores, and Partitions

This section defines the combinatorial concepts of the core and the partition associ-
ated to an affineGrassmannian permutationw and relates these to the linear algebraic
model of the previous section.

Much of the combinatorics of the (co)homology of affineGrassmannians is formu-
lated in terms of cores and partitions.We first describe a bi-infinite bit sequence p(w)

associated to an affine Grassmannian permutation w and called the edge sequence of
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w [16]. The edge sequence p(w) = . . . p−1 p0 p1 p . . . is givenby setting pnd+w(i) = 0
for 1 ≤ i ≤ n and d ≥ 0 and all other p j = 1.We oftenwrite p = . . . p−1|p0 p1 p . . .,
inserting the symbol | to form a line between p−1 and p0.

The diagramof the core is constructed by tracing fromnorthwest to southeast, with
a south step for every one and an east step for every zero in p(w); in this sense, it is
like a Young diagram. For instance, the edge sequence p(id) = . . . 11111|10000 . . .

corresponds to the empty diagram. The core can also be constructed using the natural
action of S̃n on the bit sequences p(w) induced from the association between S̃n and
functions Z → Z. In other words, applying the reflections of a reduced word of w

from right to left to p(id) yields the bit sequence p(w) as well as its associated core.
Let ≺ be the total order on the generators of C((t)) ⊗ C

n

{taeb : a ∈ Z, 1 ≤ b ≤ n}

defined by

· · · ≺ ta−1en ≺ tae1 ≺ tae2 ≺ · · · ≺ taen ≺ ta+1e1 ≺ · · · .

When we rewrite the results of the previous section in terms of this total order, the
Gaussian elimination used is essentially ordinary Gaussian elimination. We will see
that the bit sequence p(w) is encoded in the linear algebraic model. Moreover, the
reindexing of the generators lets us read the associated core and partition almost
immediately. Section 6 uses ideas similar to these in the context of the flag variety.

More precisely, we write the generators {taeb} as the totally ordered set { f j } j∈Z
reindexed via the correspondence fna+b ↔ taeb for all a ∈ Z and 1 ≤ b ≤ n. This
bijection satisfies the following:

• the total order on the generators {taeb} of C((t)) ⊗ C
n is equivalent to the total

order on the { f j }, in the sense that taeb ≺ ta
′
eb′ if and only if na+b<na′+b′, and

• the C[t]-module structure on C((t)) ⊗ C
n gives a C[t]-module structure defined

by t · f j = f j+n

With this notation and reinterpreting Conditions (i)–(iv) in terms of the total order
≺, we can rewrite Theorem 4.4 as follows. We describe the generators of subspaces
using two different bases, though the identification between the bases is so natural
as to sometimes make this distinction confusing. We also describe two different
generators, the second of which eliminates some unnecessary repetition.

Corollary 5.1. Let w be an affine Grassmannian permutation w whose offset
sequence is (d1, . . . , dn). Then elements of the affine Schubert cell�w are in bijection
with the collection of subspaces L that are the C[[t]]-span of
• the vectors v1, . . . , vn given by

v j = td j e j +
∑

β j,a,bt
aeb

where the sum is over td j e j ≺ taeb and a < d + b, or
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• the vectors v′
1, . . . , v

′
n given by

v′
j = fnd j+ j +

∑
nd j+ j<k,pk=1

α j,k fk .

Proof. First we confirm that the four conditions for Mw from Theorem 4.4 are
equivalent to the conditions on v j . The requirements that both td j e j ≺ taeb and
a < db for β j,a,b to be nonzero mean that td j is the only nonzero coefficient of e j in
v j . This is Condition (i). Conditions (ii) and (iv) are captured by td j e j ≺ taeb and
Condition (iii) by a < db.

We find the {v′
j } by rewriting {v j } in terms of the generators { fk} and then adding

a convenient normalizing condition. If fk corresponds to taeb then the condition
td j e j ≺ taeb corresponds to nd j + j < k. Thus we need only determine a condi-
tion equivalent to a < db. The affine Schubert cell is the C[[t]]-span of the vectors
v1, . . . , vn so it is also generated by the larger set of vectors td · v j with d ≥ 0 and
1 ≤ j ≤ n. The leading term of the generator td · v j is td+d j e j and the set of td+d j e j
corresponds exactly to those fk with pk = 0, so we will consider only generators
with zero in those entries. This gives the second condition. In other words, write the
matrix (v1, v2, . . . , tv1, tv2, . . . , t2v1, t2v2, . . .) in terms of the generators fk and
then use “column operations” to obtain a reduced echelon form with columns

v′
j = fnd j+ j +

∑
nd j+ j<k,pk=1

α j,k fk

and
td · v′

j = fnd+(nd j+ j) +
∑

nd+(nd j+ j)<k,pk=1

α j,k−nd fk

for each j with 1 ≤ j ≤ n and each d ≥ 0. (Those “column operations” are in
fact equivalent to forming a linear combination of the v1, v2, . . . , vn over C[[t]]
so this process is algebraically valid.) The C[[t]]-span of the v′

1, v
′
2, . . . , v

′
n is the

same as theC[[t]]-span of the set v′
1, v

′
2, . . . , tv

′
1, tv

′
2, . . . , t

2v′
1, t

2v′
2 . . ., proving the

claim. �

The shape formed by the variables in the reduced echelon form for the matrix

[v1, v2, . . . , tv1, tv2, . . .]

is exactly the core. The independent free variables are precisely α j,k with 1 ≤ j ≤ n
and pk = 1; these appear exactly once in v′

1, v
′
2, . . . , v

′
n . Thus restricting the reduced

echelon form for (v1, v2, . . . , tv1, tv2, . . .) to the columns associated tov1, v2, . . . , vn
gives an associated partition, which is clearly (n − 1)-bounded since no row has free
entries in more than n − 1 columns.

The following examples demonstrate this correspondence. In our examples, we
write the reduced vectors only until we reach that particular reduced vector tdv′

j for
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which all generators that come after the pivot of tdv′
j are contained in the affine

Schubert cell. We also use the order ≺ on the vectors’ leading terms to obtain a
lower-triangular matrix; each column sums to one of v′

1, v
′
2, . . . , tv

′
1, tv

′
2, . . ..

Example 5.2. For w = s0 with window [0, 2, 4], the affine Schubert cell in GL3

(C((t))) corresponds to te1, e2, t−1e3 and bit sequence p(w) = . . . 11|0100000 . . ..
It is given by theC[[t]]-span of v1 = te1, v2 = e2, v3 = t−1e3 + αe1, or equivalently
by the C[[t]]-span of v′

1 = f4, v′
2 = f5, v′

3 = f2 + a f1, tv′
3. The reduced echelon

form for the range 0 ≤ k ≤ 4 (bolded in the above bit sequence) is

t−1e3
e1
e2
e3
te1

⎛
⎜⎜⎜⎜⎝

1 0 0 0
α 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎟⎠

f0
f1
f2
f3
f4

where the columns give the generators v3, v2, tv3 − αv1, v1, respectively. (We think
of the third column as associated to tv3 even though it is in fact a linear combination
with leading term the same as that of tv3.) In this case, the core and partition coincide
and are both (1), representing the unique (and free) variable.

Example 5.3. For the window w = [−1, 0, 7], p−1 = p2 = p5 = · · · = 0, p0 =
p3 = p6 = · · · = 0, and p7 = p10 = · · · = 0, so that p(w) = . . . 11110|0100100000
. . .. The reduced echelon form has all zeros for k < −1, and the range −1 ≤ k ≤ 7
whose p-values are in bold above, is pictured below.

v′
2 v′

3 tv′
2 tv′

3 t2v′
2 t

2v′
3 v′

1⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

t−1e2 1 0 0 0 0 0 0 f−1

t−1e3 0 1 0 0 0 0 0 f0
e1 α1,1 α2,1 0 0 0 0 0 f1
e2 0 0 1 0 0 0 0 f2
e3 0 0 0 1 0 0 0 f3
te1 α1,4 α2,4 α1,1 α2,1 0 0 0 f4
te2 0 0 0 0 1 0 0 f5
te3 0 0 0 0 0 1 0 f6
t2e1 0 0 0 0 0 0 1 f7

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 1 0
∗ ∗ 0
0 0 0
0 0 0
∗ ∗ 0
0 0 0
0 0 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The core (4, 2) comes from all of the nonzero variables in this cell. The free variables
are indexed by restricting our attention to the columns corresponding to v′

2, v
′
3 and v′

1
as sketched in the matrix on the right. In this case, the associated bounded partition
is (2, 2). (Examples 3.3 and 4.5 both concerned an element in this cell.)

Example 5.4. For the window w = [−4, 3, 7], p−4 = p−1 = p2 = p5 = · · · = 0,
p3 = p6 = · · · = 0, and p7 = p10 = · · · = 0, so that p(w) = . . . 11110110|11001000000
. . .. The associated core is (4, 2, 2, 1, 1).
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In sum, affine Grassmannians have affine Schubert cells that can be described
linear algebraically by analogy with the Schubert cells in the finite Grassmannian.
The finite Schubert cells are indexed by either of two sets of combinatorial objects: n-
bit sequenceswith zeros (corresponding to the basis vectors contained in the Schubert
cell) or Young diagrams (corresponding to the shape created by the free entries in the
Schubert cell). Similarly, the affine Schubert cells are indexed by either: sequences
(d1, . . . , dn) ∈ Z

n with
∑

d j = 0 (corresponding to the exponents along the diagonal
of the affine Grassmannian permutation) or Young diagrams (corresponding to the
entries in the Schubert cell parametrized by variables). Here, the dimension of an
affine Schubert cell�w is equal to the length �(w), which is also equal to the number
of boxes in the associated bounded partition.

6 (Grassmannian) Hessenberg Schubert Cells and Varieties

In this section,we review several key facts and definitions aboutHessenberg varieties.
We use notation and terminology from type A, though many of these facts extend to
general Lie type. We define Hessenberg Schubert cells in the flag variety and their
images when projected to a Grassmannian, which we call Grassmannian Hessenberg
Schubert cells. We show that a class of Hessenberg Schubert cells are isomorphic to
affine space, a fact that we use in Sect. 7. Finally we give conditions for the image
of the closure of a Hessenberg Schubert cell to be the closure of the corresponding
Grassmannian Hessenberg Schubert cell.

6.1 Hessenberg Varieties

LetV• = V1 ⊆ V2 ⊆ · · · ⊆ Vn = C
n be a complete flag inCn . The space of suchflags

forms the complete flag variety Fl(n) which can also be described as GLn(C)/B
where B is the Borel subgroup of invertible n × n upper-triangular matrices.

In this and the next section, we use the upper-triangular Borel to describe the flag
variety. This leads to different conventions for combinatorics and linear algebra than
in the previous sections. Reconciling these notations is the key point of the results
in the last section.

Definition 6.1. Fix a linear operator X : Cn → C
n. Fix a nondecreasing function

h : {1, 2, . . . , n} → {1, 2, . . . , n} with h(i) ≥ i for all i . The Hessenberg variety of
X and h is denoted H(X, h) and defined to be

H(X, h) = {V• : XVi ⊆ Vh(i)}.

Here, the function h is called a Hessenberg function.
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Equivalently, we can describe Hessenberg varieties using Lie theory. Write Mn

for the set of n × n complex matrices and b for the set of upper-triangular matrices
in Mn . A Hessenberg space H is a linear subspace of Mn that satisfies the following
two properties:

(1) H contains the upper-triangular matrices b, and
(2) H is closed under Lie bracket with the upper-triangularmatrices, so [b, H ] ⊆ H .

Since Hessenberg spaces are closed under Lie bracket with the diagonal matrices,
each Hessenberg space is a sum of root spaces. Hence, each Hessenberg space can
be denoted by the subset of roots RH satisfying

H = 〈Eii : i = 1, 2, . . . , n〉 ⊕
⊕

(i, j)∈RH

〈Ei j 〉

where Ei j denotes the matrix with 1 in the (i, j) entry and zero elsewhere.
Given a linear operator X : Cn → C

n and a Hessenberg space H , the Hessenberg
variety of X and H is

H(X, H) = {mB ∈ GLn(C)/B : m−1Xm ∈ H}.

(Since H is closed under Lie bracket with b it is also closed under conjugation by
elements of B, so Hessenberg varieties are in fact well-defined.) The two definitions
of Hessenberg varieties are equivalent because there is a natural bijection between
Hessenberg functions and Hessenberg spaces that is given by

H = 〈Ei j : i ≤ h( j) for all j = 1, 2, . . . , n〉.

Hessenberg varieties have a natural partial order induced by inclusion of vector
spaces in Mn . This is equivalent to the partial order on Hessenberg functions given
by

h ≥ h′ if and only if h(i) ≥ h′(i) (6)

for all i = 1, 2, . . . , n.
In this paper, we assume X is nilpotent. In this case, the Jordan canonical form

of X determines a Young diagram by the rule that if the Jordan form has blocks
of dimension d1 ≥ d2 ≥ · · · then the Young diagram has rows d1 ≥ d2 ≥ · · · . Our
convention is to use Young diagrams that are left-aligned and top-aligned. We now
define a particular permutation using the Jordan form of X (Fig. 3).

Definition 6.2. Fill the boxes in the Young diagram for X with the numbers
{1, 2, . . . , n} without repetition, starting at the lower left corner and moving up
the first column, then up the second column, and so on. The permuted Jordan form
of X is the matrix X = ∑

Ei j where the sum is taken over pairs i j in the filled
Young diagram.
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3 5 6
2 4
1 ⇔ X = E2,4 + E3,5 + E5,6

Fig. 3 An example of permuted Jordan form

6.2 Hessenberg Schubert Cells and Varieties

Hessenberg Schubert cells are obtained by intersecting a Hessenberg variety with a
Schubert cell in Fl(n). Our convention is to associate a permutation σ ∈ Sn with the
permutation matrix (also denoted σ) so that for each i , the i th row of the matrix σ
is the basis vector eσ(i). The permutation matrix for σ−1 is transpose to that for σ so
that the permutation σ−1 can be read from the columns of σ.

The complete flag variety Fl(n) has a decomposition

Fl(n) =
⋃

BσB/B

into a disjoint union of Schubert cells Cσ := BσB/B indexed by σ ∈ Sn .

Definition 6.3. Let H(X, h) ⊆ Fl(n) be a Hessenberg variety. The Hessenberg
Schubert cell forH(X, h) andσ ∈ Sn is the intersectionCσ,H(X,h) := H(X, h) ∩ Cσ.
The corresponding Hessenberg Schubert variety is the closure
Cσ,H(X,h) inH(X, h). When X and h are understood, we write Cσ,H and Cσ,H.

AHessenberg Schubert cell can be a complicated topological space. For instance,
Kostant and Rietsch studied an important paving of Peterson varieties created from
nonaffine Hessenberg Schubert cells [13, 22]. For our purposes, we want Hessenberg
Schubert cells to be affine cells. This is true under the conventions of Proposition
6.4, when X is a nilpotent matrix in permuted Jordan form and the Schubert cells
are written with respect to the upper-triangular Schubert decomposition.

The next proposition shows that when X is in permuted Jordan form, eachHessen-
berg Schubert cell in the flag variety is isomorphic to an affine space and constructs
that isomorphism. The proof is not new; the maps identified by the second author in
earlier work [24, Lemma 5.2 and Theorem 6.1] are actually isomorphisms, though
the earlier paper only used the fact that the maps were homeomorphisms.

Proposition 6.4. SupposeH(X, h) is a Hessenberg variety for a nilpotent operator
X in permuted Jordan form and aHessenberg function h. Forσ ∈ Sn, theHessenberg
Schubert cell Cσ,H is nonempty if and only if the flag σB ∈ H(X, h), and in this case,
Cσ,H is isomorphic to an affine space C� for some � ≥ 0.

Proof. The fact that the intersection H(X, h) ∩ Cσ is nonempty if and only if the
flag σB ∈ H(X, h) was proved in the original result [24, Theorem 6.1].
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We sketch the argument of the isomorphism to affine space, referring to details in
[24] as needed, and checking at each stage that the homeomorphisms in that work
are in fact isomorphisms.

In [24, Theorem 6.1], Tymoczko showed that the Hessenberg Schubert cell Cσ,H
can be described as an iterated tower of affine fiber bundles

Z1
π1−→ Z2

π2−→ Z3
π3−→ · · · πn−2−→ Zn−1

where Z1 is homeomorphic to the Hessenberg Schubert cell itself, the base space
Zn−1 is homeomorphic to affine space C

�n−1 and each map πi : Zi−→Zi+1 is a
fiber bundle whose fiber is an affine space C

�i . Explicitly, each Zi is defined as
a subset of the unipotent group U of upper-triangular matrices with ones along the
diagonal, as follows. The groupU can be factored uniquely asU = Un−1Un−2 · · ·U1

where each Ui is the subset of U whose nondiagonal entries all lie on the i th row.
The maps πi : Zi−→Zi+1 send the element un−1un−2 · · · ui+1ui ∈ Zi to the element
un−1un−2 · · · ui+1 ∈ Zi+1.

In other words, each Zi is isomorphic (as an algebraic variety not a group) to
a product space, and each map πi is the algebraic map given by projection to one
factor.

Reference [24, Theorem 6.1] also defined the homeomorphism between Z1 and
the Hessenberg Schubert cell Cσ,H as multiplication τ �→ τσ composed with the
quotient map G → G/B that sends the matrix τσ to the flag τσB.

These maps are both algebraic. When we restrict the inverse map to a single
Schubert cell, the inverse map from G/B to G is also algebraic. So in fact Z1 is
isomorphic as a variety to Cσ,H.

Reference [24, Lemma 5.2] describes the fiber bundle structure of each Zi as
follows. Given u′ ∈ Zi+1 the fiber π−1

i (u′) is the set of solutions xu′ to a system
of equations xu′Mu′ = vu′ . The system is affine linear, meaning that each equation
is polynomial of degree one and may have a constant term. Both Mu′ and vu′ vary
continuously in u′ by conjugation. Reference [24, Lemma 5.2] identified a fixed set
of indices I so that the entries in positions I of the matrices in π−1

i (u′) are free and
showed that the map sending u′u �→ (u′, (uik)k∈I ) is a homeomorphism with inverse
determined by the system xu′Mu′ = vu′ .

This map is algebraic because it realizes the varieties as product spaces and then
projects to certain factors. The inverse map is also algebraic because it is the solution
to an affine linear system. Thus each Zi is isomorphic as a variety to the product of
Zi+1 with the affine fiber C�i .

Finally the space Zn−1 is affine itself because it is a subgroup of Un−1 in which
certain entries, determined by σ, are set to zero [24, Definition 2.3 and Theorem 6.1].
This shows that the Hessenberg Schubert cell is in fact isomorphic to affine space,
of the same dimension as in the original result. �
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6.3 Grassmannian Hessenberg Schubert Cells

For a fixed Hessenberg variety H(X, h) ⊆ Fl(n) and an integer 1 ≤ k ≤ n, we
describe Grassmannian Hessenberg Schubert cells as projections of Hessenberg
Schubert cells to the Grassmannian Gr(k, n).

There is a natural projection map from the complete flag variety to the Grassman-
nian given by πk : Fl(n) → Gr(k, n) that sends the flag V• to its k-dimensional part
Vk . If Gr(k, n) is realized as a quotient G/Pk by a maximal parabolic Pk then the
projection may be written as the quotient map πk : G/B → G/Pk .

Definition 6.5. Given k and a Hessenberg Schubert cell Cσ,H the Grassmannian
Hessenberg Schubert cell is the image

πk
(
Cσ,H

)

in Gr(k, n). The corresponding Grassmannian Hessenberg Schubert variety is the

closure πk
(
Cσ,H

)
in Gr(k, n).

The next lemma follows directly from the corresponding fact for flag varieties.

Lemma 6.6. The image of the projection πk : Cσ,H → Gr(k, n) is nonempty if and
only if the collection {Vk : V• ∈ Cσ,H} contains the k-plane 〈eσ−1(1), eσ−1(2), . . . , eσ−1(k)〉.
Proof. Proposition 6.4 stated that Cσ,H is nonempty if and only if σB ∈ H(X, h). If
B consists of the upper-triangular matrices, then the k-dimensional part of the flag
σB is 〈eσ−1(1), eσ−1(2), . . . , eσ−1(k)〉 by definition. The set

{Vk : V• ∈ Cσ,H}

is the image of Cσ,H under the projection to Gr(k, n), so the claim follows. �

6.4 Hessenberg Schubert Varieties and Grassmannian
Hessenberg Schubert Varieties

We now give a dimension condition for the image of a Hessenberg Schubert variety
under the projection map to be a Grassmannian Hessenberg Schubert variety. More
precisely we have the following.

Proposition 6.7. LetH := H(X, h) be aHessenberg variety in Fl(n) for a nilpotent
X in permuted Jordan form and a Hessenberg function h. For 1 ≤ k ≤ n and σ ∈ Sn,
if the dimension of the Hessenberg Schubert cell Cσ,H is equal to the dimension of
the Grassmannian Hessenberg Schubert cell πk(Cσ,H) then

πk(Cσ,H) = πk(Cσ,H).
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Proof. The image of a closed irreducible topological space under a closed continuous
map is irreducible (and closed). The closed set Cσ,H is irreducible because Cσ,H is
isomorphic to affine space, as proven in Proposition 6.4. Thus the image πk(Cσ,H) is
a closed irreducible set, and since it contains the Grassmannian Hessenberg Schubert
cell πk(Cσ,H),

πk(Cσ,H) ⊆ πk(Cσ,H). (7)

This gives dim πk(Cσ,H) ≤ dim πk(Cσ,H) ≤ dimCσ,H. The dimension of each open
set is the same as the dimension of its closure, so by our hypothesis on the dimensions,
these inequalities are all in fact equalities. Since πk(Cσ,H) is closed and irreducible,
Equation (7) becomes an equality as needed. �

The dimension of a Hessenberg Schubert cell is usually larger than that of a
corresponding Grassmannian Hessenberg Schubert cell. However, there are many
natural examples when they are the same, e.g., Sect. 7. The previous proposition
suggests that when equality holds, the Schubert calculus of Hessenberg varieties
could be computed through Schubert calculus in the Grassmannian. Results on the
dimension of Hessenberg Schubert cells can be found in [21, 26].

6.5 Minimal Hessenberg Schubert Cells

Before applying the results of Sect. 6 to affine Schubert cells in the next section,
we consider minimal Hessenberg Schubert cells for fixed X and w and prove that
they are well-defined and unique when X is nilpotent. Recall the partial order on
Hessenberg functions h′ ≤ h given by (6).

Definition 6.8. Fix an n × n matrix X and a permutation σ ∈ Sn. A Hessenberg
function h is a minimal Hessenberg function for X and σ if

• Cσ,H(X,h) �= ∅ in Fl(n) and
• for every Hessenberg function h′ ≤ h the Hessenberg Schubert cell Cσ,H(X,h′) is
empty.

In this case we call Cσ,H(X,h) a minimal Hessenberg Schubert cell for X and σ.

The next result shows that minimal Hessenberg Schubert cells are well-defined
and unique.

Proposition 6.9. Let X be a nilpotent linear operator in permuted Jordan form. The
minimal Hessenberg Schubert cell for X and σ is well-defined. In particular, there
is a unique minimal Hessenberg function h with Cσ,H(X,h) �= ∅.
Proof. From Proposition 6.4, the Hessenberg Schubert cell Cσ,H(X,h) is nonempty if
and only if the flagσB ∈ H(X, h). The flagσB ∈ H(X, h) if and only ifσ−1Xσ ∈ H
by definition.
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Fig. 4 An example of shadows for σ = (14)(325) and X = E13 + E24 + E45 (shaded), with min-
imal Hessenberg function h = 33345 (Hessenberg space outlined)

Each Hessenberg space H is a direct sum of root spaces because it is closed under
the adjoint action of t. Hence if a Hessenberg space H contains an element

∑
ci j Ei j

then it contains every root space 〈Ei j 〉 for which ci j �= 0. If σ−1Xσ ∈ H then H
contains 〈Eσ(i),σ( j)〉 for each pair i, j that appears in the sum X = ∑

Ei j .
In particular, define a Hessenberg space by

H = b +
⊕

〈Ei j : i ≤ σ(i ′) and j ≥ σ( j ′)〉

where the sum is over all pairs (σ(i ′),σ( j ′)) that appear in σ−1Xσ = ∑
Eσ(i),σ( j).

This is a Hessenberg space by construction. It contains σ−1Xσ also by construction.
Conversely, any Hessenberg space containing σ−1Xσ must contain H .

The Hessenberg function corresponding to this Hessenberg space H is defined by

h(i) = max

⎧⎨
⎩
i
h(i − 1)
σ( j1) where E j1, j2 is in permuted Jordan form for X and j2 = σ−1(i).

�
Recall that E j1, j2 is in the permuted Jordan form for X if and only if j1 j2 is in

the Young tableau describing permuted Jordan form (Fig. 4).
Theminimal H is easy to describe schematically. If Ei ′, j ′ is a root vector, define the

shadow of Ei ′, j ′ to be the span 〈Ei j : i ′ ≤ i and j ′ ≥ j〉. Given an element X ∈ Mn

with X = ∑
ci j Ei j , define the shadow of X to be the sum of the shadows of Ei j

for which ci j �= 0. Given X and σ, denote the shadow of σ−1Xσ by V . Then the
minimal Hessenberg Schubert cell for X and σ is defined using the Hessenberg
space H = V + b.

7 Affine Schubert Cells and Hessenberg Schubert Cells

In this section, we show that every affine Schubert cell �w is isomorphic to a Hes-
senberg Schubert cell. Denote by hid the Hessenberg function defined by hid(i) = i
for all i .
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Theorem 7.1. Every affine Schubert cell is isomorphic to a Hessenberg Schubert
cell.More precisely, given an affineGrassmannian permutationw, the corresponding
affine Schubert cell �w is isomorphic to a Hessenberg Schubert cell Cσ,H(X,hid ) for
some nilpotent linear operator X : CN → C

N and permutation σ ∈ SN .

In order to prove the theorem, we first give two constructions identifying�w with
a Grassmannian Hessenberg Schubert cell in a finite Grassmannian.

Proposition 7.2. Given an affine Grassmannian permutationw with corresponding
affine Schubert cell�w, there are integers 1 ≤ K ≤ N, a projection map π : Grn →
Gr(K , N ), and a nilpotent linear operator X : CN → C

N so that:

(a) there is a Hessenberg function h with corresponding Hessenberg variety
Hh := H(X, h) and a permutation τ ∈ SN for which the Grassmannian Hes-
senberg Schubert cell is the projection of the affine Schubert cell to Gr(K , N ):

πK (Cτ ,Hh ) = π(�w)

(b) there is a Grassmannian permutation τ ∈ SN so that τ B ∈ Hid := H(X, hid)
and

πK (Cτ ,Hid ) = π(�w)

Proof. Given an affine Grassmannian permutation w and its corresponding affine
Schubert cell �w we start by defining N , K , and X .

• A positive integer N : Let ta
′
eb′ be the lowest-ordered generator with respect to

≺ that is not contained in every plane in �w. Let taeb be the highest-indexed
generator that appears as a pivot in�w. Define a′′ to be a′ if b − 1 ≥ b′ and a′ + 1
otherwise. Let N = n(a′′ − a) and consider the vector spaceN spanned by the N
vectors

〈taeb, taeb+1, t
aeb+2, . . . , t

aen , t
a+1e1, t

a+1e2, t
a+1e3, . . . , t

a+1en , t
a+2e1, . . . , t

a′+1eb′ . . . , ta
′′
eb−1〉︸ ︷︷ ︸

N vectors .

The vector spaceN of dimension N is called the slice of the affine Grassmannian.
(In principle, we want the slice to be theC-span of the vectors from taeb to ta

′+1eb′

inclusive, so that each vector e1, e2, . . . , en is represented in the slice. However,
we expand the slice for notational convenience so that N is divisible by n.)

• A positive integer K ≤ N : Write the vectors spanning a generic plane in the affine
Grassmannian cell as

v1, tv1, . . . , ta1v1
v2, tv2, . . . , ta2v2

...

vn, tvn, . . . , tanvn

where each ai ≥ 0 is defined by the condition that the leading term of tai vi is in
the slice but tai+1vi is not. Assume without loss of generality that the vectors are
indexed satisfying the constraint that
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leading term of v1 � leading term of v2 � · · · � leading term of vn.

Let K be the number of nonzero vectors in this set.
• We identify each vector in the affine Grassmannian with its image under the pro-
jection π : Grn → Gr(K , N ) insideN . We conflate terminology slightly and say
that this is the image of Grn inside the slice.

• We reorder the nonzero vectors v1, tv1, . . . , ta1v1, v2, tv2, . . . , ta2v2, . . . , vn, tvn,
. . . , tanvn in decreasing order of leading terms and call these reordered vectors
u1, u2, . . . , uK . (Note that u1 = v1 by assumption that the leading term of v1 is
maximal.)

• A nilpotent linear operator X : Let X be the matrix in permuted Jordan form corre-
sponding to the rectangular n × (a′′ − a)Young diagram, as in Definition 6.2. (By
construction, N = n(a′′ − a) so the matrix can act on a slice.) Define a bijection
between C

N and the slice under consideration by labeling the basis vectors of
C

N with taeb in the bottom-left corner of the Young diagram for X and then in
decreasing order up the leftmost column, then up the second-to-left column, etc.
Since X is written in permuted Jordan form with respect to this basis, we have
X = ∑N−n

i=1 Ei,i+n .
With these conventions, the action of X coincides with the action of t in the
following sense:

– tui = u j if and only if Xui = u j

– tui is outside the window if and only if Xui = 0.

We can now define the matrix of the permutation τ ∈ SN . For each integer i with
1 ≤ i ≤ K the i th column of τ is one in the entry corresponding to the pivot of ui .
Now append the last N − K basis vectors as columns with no descents. Though there
are no descents in the last N − K entries, τ is not a Grassmannian permutation: each
of the first K entries is a descent by definition of the ui .

For each i ∈ {1, 2, . . . , K } define the Hessenberg function h as follows:

• If tui = u j then h(i) = j and
• if tui is outside the slice then h(i) = K .

For each i ∈ {K + 1, . . . , N } define h(i) = i .
In the first K columns, the conditions used to define h are the same as those

used to construct X and in the last N − K columns, the conditions are moot. So
τ B ∈ H(X, h).

We now prove that the Grassmannian Hessenberg Schubert cell defined by these
parameters is the same as the projection of the affine Schubert cell to the specified
slice. Corollary 5.1 says that the affine Schubert cell conditions are equivalent to
choosing the entries of v1, v2, . . . , vn freely subject to the constraint that the leading
entry of each vector is in the position specified by τ , and generating the rest of
the K vectors by appropriate powers t iv j . By contrast, the first K columns of the
flags in Cτ ,Hh are the same freely chosen v1, v2, . . . , vn and powers Xiv j ordered
consistent with u1, u2, . . . , uK , while the last N − K columns of the flag are the
basis vectors indicated by the last N − K entries of τ . (As before, such a flag is in
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Hh by construction of X .) No other flag that satisfies the Hessenberg conditions also
satisfies the affine Schubert cell conditions because for each i ≤ K adding a nonzero
linear combination of the first i − 1 columns of the flag to the i th column would
change the pivot in the i th column, thus moving the flag outside of the cell Cτ .

It follows that πK (Cτ ,Hh ) is the projection of the affine Schubert cell �w to the
specified slice, as desired.

This Hessenberg Schubert cell is “natural” in the sense that it doesn’t require any
normalization to see that it is the projection of the corresponding affine Schubert
cell. To prove part (b), we modify the cell so that the permutation flag corresponds to
a Grassmannian permutation. (The vectors in part (b) are the v′

1, v
′
2, v

′
3, . . ., though

this fact is not explicitly needed in the proof.)
Define τ to be the Grassmannian permutation obtained from the permutation τ

by reordering the first K columns so there are no descents.
We now confirm both that τ B ∈ H(X, hid) and that πK (Cτ ,Hid ) are the projection

π(�w) of the affine Schubert cell �w to the slice under consideration.
First note that τ B ∈ H(X, hid) because by construction, the basis vectors within

each Jordan block of X appear in the flag τ B in increasing order (though not neces-
sarily successively). Thus the image of each of the first i columns of τ under X is
either zero or one of the first i − 1 columns of τ .

Now we show that πK (Cτ ,Hid ) is the projection of �w to the slice under consid-
eration. Let ci1 , ci2 , . . . , cin be columns satisfying the following:

• they are within the first K columns of the matrix of the flag
• there is exactly one column corresponding to a multiple of each of e1, e2, . . . , en
in the generators {taeb} for the affine Grassmannian

• the pivot for each column corresponds to the multiple of e1, e2, . . . , en with the
lowest power of t within the first K columns of the matrix. (More technically: if
the column ci j corresponds to t

aeb then none of the first K columns of the matrix
have a pivot in the position corresponding to ta−1eb.)

For each i j we know that Xci j is in the span of the first i j columns of the matrix by
definition of hid and thus so are X2ci j , X

3ci j , X
4ci j , . . .. The pivots of all nonzero

elements of ci j , Xci j , X
2ci j , X

3ci j , X
4ci j , . . . are distinct by construction of X . The

pivots for different i j are distinct because they correspond to generators taeb for
different eb.

This means that πK (Cτ ,Hid ) contains the K -dimensional space spanned by
ci1 , ci2 , . . . , cin together with all images under successive powers of X of those vec-
tors. In other words, πK (Cτ ,Hid ) is the K -dimensional space π(�w) as desired. �

Proof of Theorem 7.1. Let Gr(K , N ),Hid , and τ be as in Proposition 7.2.
The map πK : Fl(N ) → Gr(K , N ) = G/P restricts to an isomorphism

Cμ
∼= BμP/P for μ ∈ SN when μ is a Grassmannian permutation so Cμ

∼= πK (Cμ).
Since τ is a Grassmannian permutation forGr(K , N ) and τ B is contained inHid ,

it follows that
Cτ ,Hid

∼= πK
(
Cτ ,Hid

)
.
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This is equal to π(�) by Proposition 7.2, so setting σ = τ completes the proof. �

Example 7.3. We describe N and K for Examples 5.2 and 5.3. Both examples show
vectors needed for a minimum slice. For notational convenience we pick N = 6
in Example 5.2 and N = 9 in Example 5.3. The slice corresponding to N = 6 in
Example 5.2 contains the generator te2 so K = 5, corresponding to the vectors
v1, v2, tv1, v3, tv2. (The last vector is not shown in the example.) By contrast Example
5.3 shows all the generators taeb in the slice and so the column vectors shown in the
example are precisely the desired set of vectors, meaning K = 7.

Example 7.4. We show τ and τ for Example 5.3, with τ on the left. The conven-
tion that B is upper-triangular means that the standard coset representatives for
BσB/B ∈ G/B have pivots in the lowest nonzero entry in each column, with free
entries above and zeros identically to the right. This reverses the order ≺ so the top
row of the matrix for a flag corresponds to the largest generator taeb and the bottom
row corresponds to the smallest generator.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

b6 b11 α1,4 α2,4 α1,1 α2,1 1 0 0
b5 b10 b3 b8 b1 1 0 0 0
b4 b9 b2 b7 1 0 0 0 0

α1,4 α2,4 α1,1 α2,1 0 0 0 1 0
b3 b8 b1 1 0 0 0 0 0
b2 b7 1 0 0 0 0 0 0

α1,1 α2,1 0 0 0 0 0 0 1
b1 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 α2,1 α1,1 α2,4 α1,4 1 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 α2,1 α1,1 0 1
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
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A Survey of the Shi Arrangement

Susanna Fishel

Abstract In [58], Shi proved Lusztig’s conjecture that the number of two-sided
cells for the affine Weyl group of type An−1 is the number of partitions of n. As a
byproduct, he introduced the Shi arrangement of hyperplanes and found a few of
its remarkable properties. The Shi arrangement has since become a central object in
algebraic combinatorics. This article is intended to be a fairly gentle introduction to
the Shi arrangement, intended for readers with a modest background in combina-
torics, algebra, and Euclidean geometry.

In his 1986 paper “The Kazhdan-Lusztig cells in certain affineWeyl groups” [58],
Jian-Yi Shi proved Lusztig’s conjecture that the number of two-sided cells for the
affine Weyl group of type An−1 is the number of partitions of n. As a byproduct,
he introduced the Shi arrangement of hyperplanes and found a few of its remark-
able properties. The Shi arrangement has since become a central object in algebraic
combinatorics. This article is intended to be a gentle introduction to the Shi arrange-
ment, intended for readers with a modest background in combinatorics, algebra, and
Euclidean geometry. After a review of background material in Sect. 1, we discuss
how the Shi arrangement arose in Sect. 2, some of its marvelous enumerative prop-
erties in Sect. 3, and some of its surprising connections to algebra in Sect. 4. For
some brief comments on recent extensions, see Sect. 5 and for an incomplete list of
topics we left out, see Sect. 6.

1 Background

In this section, wewill give very brief introductions to some of the ingredients needed
to define the Shi arrangement.
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1.1 Root Systems and Coxeter Group Notation

Let V be a finite dimensional real vector space with fixed inner product 〈|〉. We’ll
use � to denote a root system: a finite set of vectors in V which satisfies

(1) � ∩ Rα = {α,−α} for all α ∈ � and
(2) sα� = � for all α ∈ �,

where sα is the reflection about the hyperplane with normal α. We use �+ to denote
a choice of positive roots of �, so that � = �+ ∪ −�+, and � to denote the simple
roots, which are a basis for the R-span of �. The reflections S = {sα}α∈� generate
a finite reflection group W . The rank of the system and of W is the dimension of the
space spanned by �.

Coxeter groups generalize finite reflection groups. LetW be a group with a set of
generators S ⊂ W . Let mst be the order of the element st , with s, t ∈ S. If there is
no relation between s and t , we set mst = ∞. If W has a presentation such that

(1) mss = 1
(2) for s, t ∈ S, s 	= t , 1 < mst ≤ ∞,

thenW is aCoxeter group.We refer to (W, S) as aCoxeter system. Ifmst ∈ {2, 3, 4, 6}
when s 	= t , then the Coxeter group is called crystallographic and, if finite, is aWeyl
group. It is also a reflection group. The product in any order of all the elements in
S is called a Coxeter element; all Coxeter elements for a given W are conjugate and
their order is the Coxeter number of W .

The expression for the reflection sα, α ∈ �, is

sα(v) = v − 2
〈v | α〉
〈α | α〉α

for v ∈ V . For any k ∈ R, we can define an affine reflection sα,k by

sα,k(v) = v − 2
〈v | α〉 − k

〈α | α〉 α.

We define the affine Weyl group to be the group generated by all affine reflections
sα,k for α ∈ � and k ∈ Z. It is also a Coxeter group. Its simple reflections are the
simple reflections S of the finite Weyl group, plus an extra reflection, s0, about a
translate of a certain other hyperplane in the arrangement. See Fig. 1. Its root system,
for us, is the root system for the corresponding finiteWeyl group. Our proofs will not
be detailed enough to need the full set of affine roots, and we will not define them.
Given a root system �, we write W� for the corresponding finite group. Please see
[41] or [43] for more information.

We put a partial order on any root system. The root poset of � is the set of
positive roots�+, partially ordered by setting α ≤ β if β − α is a nonnegative linear
combination of simple roots. If the root system is irreducible, then there is a unique
highest root relative to this ordering. We will denote this root by θ. See Fig. 2 for a
picture of the root poset for type A4.
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Fig. 1 The roots and
reflecting hyperplanes of
affine type A2. The reflection
s1 (resp. s2) flips the plane
over the hyperplane Hα1,0
(Hα2,0). The reflection s0
reflects over Hθ,1

α2

α1

θ

Hα2,0

Hα1,0

Hθ,0 Hθ,1

Let W be a Coxeter group. Every w ∈ W has an expression as a product of
elements of S: w = si1 · · · sik . If k is minimal among all expressions for w, then k is
the length �(w). Any expression for w of length �(w) is a reduced expression.

We will often refer to the type of a group or root system, particularly “type A”
and “affine type A,” which are the symmetric group or affine symmetric group if we
are referring to groups. Please see [41] for more information on the classification of
finite reflection groups and Coxeter groups. Humphreys and [17] are good sources
for the definitions of irreducible, Bruhat order, and other material omitted here.

1.1.1 Type A

Wewill be seeing type A often, sowe’ll be a littlemore concrete. For An−1, the vector
space V is {(a1, . . . , an) ∈ R

n | a1 + · · · + an = 0}. Let {ε1, . . . , εn} be the standard
basis ofRn and 〈 | 〉 be the bilinear form forwhich this is an orthonormal basis. The set

1 2 3 4 5

ε1 − ε2 ε2 − ε3 ε3 − ε4 ε4 − ε5

ε1 − ε3 ε2 − ε4 ε3 − ε5

ε1 − ε4 ε2 − ε5

ε1 − ε5 ε1−ε5ε1−ε4ε1−ε3ε1−ε2

ε2−ε5ε2−ε4ε2−ε3

ε3−ε5ε3−ε4

ε4−ε5

Fig. 2 On the left is the nonnesting set partition π = {{1, 3}, {2, 4, 5}}. Next to it is the root poset
of type A4 with the filter corresponding to π circled. The third figure is the partition inside the
staircase which corresponds to π. On the right is the corresponding Dyck path
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of roots is � = {εi − ε j | i 	= j} and a root α ∈ � is positive, written α > 0, if α ∈
�+ = {εi − ε j | i < j}. Set αi = εi − εi+1; the simple roots are {α1, . . . ,αn−1}.
The set � is a basis of V .

The Coxeter group that Shi studied was the affine symmetric group ̂Sn , and we
review that here. There are several possible descriptions, here we give one due to
Lusztig [48]. It is the set of permutations w of Z such that

(1) w(i + n) = w(i) + n for all i ∈ Z

(2)
∑n

i=1 w(i) = (n+1
2

)

It’s a Coxeter group: for any i , 0 ≤ i < n, si corresponds to the permutation

t �→

⎧

⎪

⎨

⎪

⎩

t if t mod n 	= i and t mod n 	= (i + 1)mod n

t − 1 if t mod n = (i + 1)mod n

t + 1 if t mod n = i

The set of reflections S is {s1, . . . , sn−1, s0} and
̂Sn = 〈s1, . . . , sn−1, s0〉.

The affine symmetric group contains the symmetric groupSn as a subgroup.Sn

is the subgroup generated by the si , 0 < i < n. We identify Sn as permutations of
{1, . . . , n} by identifying si with the simple transposition (i, i + 1). We act on the
right, as did Shi.

1.2 A Taste of Coxeter Combinatorics, Type A

The number of parking functions and the Catalan numbers appear in every discussion
of the Shi arrangement. We’ll define the parking functions when we first see them,
in Sect. 3.5, but we’ll collect some facts on the Catalan objects here, mostly type A.
There are an awful lot of Catalan objects, but only a few of them will appear in this
survey.

A partition is a finite sequence λ = (λ1, . . . ,λr ) of positive integers in decreasing
order: λ1 ≥ λ2 ≥ · · · ≥ λr > 0. We identify a partition with its Young diagram, the
left-justified array of boxes where the i th row from the top has λi boxes. A box is
called removable (respectively addable) if we can remove (respectively add) it and
still have a diagram of a partition. We use |λ| = λ1 + · · · + λr and �(λ) = r .

1.2.1 Set Partitions

We denote the set {1, 2, . . . , n} by [n]. The nonempty subsets B1, . . . , Bk of [n] are
a set partition of [n] if they are pairwise disjoint and their union is [n]. We denote
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the set partition {B1, . . . , Bk} by B1| · · · |Bk . For example, 13|256|4 is a partition of
[6]. The arc diagram of a set partition π is defined as follows: place the numbers
1, 2, . . . , n in order on a line and draw an arc between each pair i < j such that

• i and j are in the same block of π, and
• there is no k such that i < k < j and i , k, and j are in the same block.

See Fig. 2.
The partition π has k blocks if and only if it has n − k arcs. This is easy to see if

the partition has no arcs. Consider a partition with k blocks and n − k arcs, where i
and j are in different blocks. Suppose we add an arc from i to j . We have joined i’s
and j’s blocks, and we now have k − 1 blocks and n − k + 1 arcs.

A set partition is called noncrossing if there does not exist i < j < k < l such
that there is an arc from i to k and an arc from j to l. There are Cn noncrossing set
partitions, where

Cn = 1

n + 1

(

2n

n

)

is the Catalan number (type A). It is called nonnesting if there does not exist i <

j < k < l such that there is an arc from i to l and an arc from j to k.

1.2.2 Dyck Paths

ADyck path of length n is a lattice path which starts at (0,0), takes only north or east
steps of length 1, never goes below the line y = x , and ends at (n, n). A north step
followed by an east step is called a valley of the path.

1.2.3 Root Poset

An ideal of a poset P is a subset I of the elements of P such that if x ∈ I and y ≤ x
then y ∈ I . A filter is like an ideal, except that the condition becomes that x ∈ I
and x ≤ y implies y ∈ I . A subset X of the elements of P is an antichain if no two
elements in X are comparable.An ideal is determined by itsmaximal elements,which
form an antichain, just as a filter is by its minimal elements. These antichains are
also called nonnesting partitions; in type A the bijection to the nonnesting partition
described above is simply sending the root εi − ε j in an antichain to the arc from i to
j . There are Catalan number of ideals, filters, and antichains in the root poset defined
in Sect. 1.1. We can map a filter F in the root poset for type An−1 to a partition λ
whose diagram fits inside the staircase partition (n − 1, n − 2, . . . , 1) by the rule that
εi − ε j ∈ F if and only if the box in row i and column n + 1 − j is in the diagram
of λ. The minimal elements of F correspond to the removable boxes of λ.

There are well-known bijections among all these objects; please see Stanley’s
book on the subject [71].
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1.3 Deformation of Coxeter Arrangements

A (real) hyperplane arrangement H is a set of hyperplanes, possibly affine hyper-
planes, in a real vector space. For us, the vector space will be V , the span of some
root system�, with a fixed inner product 〈|〉which isW� invariant. We’ll be looking
at connected components of a hyperplane arrangement’s complement V \ ⋃

H∈H H .
We will refer to these as the regions of the arrangement. The closure R̄ of the region
R is a convex polyhedron. A face ofH is a nonempty set of the form R̄ ∩ x , where x
is an intersection of hyperplanes inH. The dimension of a face is the dimension of its
affine span. See Stanley [67] for more details. A wall H of R is a hyperplane H ∈ H
such that dim(H ∩ R̄) = dim(H). The word “bounded” applied to a region has its
usual meaning: a region is bounded if there is a real number M such that all points
in the region are within distance M of the origin. Let r(A) and b(A) be the number
of regions and number of bounded regions, respectively, of the arrangement A.

Let � be a root system. The roots (plus the integers) define a system of affine
hyperplanes

Hα,k = {v ∈ V | 〈v | α〉 = k}.

Note H−α,−k = Hα,k . In type A, we will sometimes write xi − x j = k instead of
Hαi+···+α j−1,k .

The Coxeter arrangement, also called the braid arrangement, is defined

Cox� = {Hα,0 : α ∈ �+}.

We give the regions of this arrangement the special name chambers. Each cham-
ber corresponds to an element of W = W (�). The dominant chamber of V is
⋂n−1

i=1 Hαi ,0
+, where Hαi ,k

+ is the half-space {v ∈ V | 〈v | α〉 ≥ k}. the dominant
chamber corresponds to the identity of W . It is also referred to as the fundamental
chamber in the literature.

The affineCoxeter arrangement is all integer translates of the hyperplanes inCox�;
that is, it is the whole system of hyperplanes {Hα,k}α∈�+,k∈Z. In this arrangement,
each region is called an alcove and the fundamental alcove is A0, the interior of
Hθ,1

− ∩ ⋂

α∈� Hα,0
+, where θ is the highestroot. A dominant alcove is one contained

in the dominant chamber.
We also have the m-Catalan arrangement:

Catm� = {Hα,r : α ∈ �, 0 ≤ r ≤ m}.

Let W be an affine Weyl group and V the vector space spanned by its roots. W
acts on V via affine linear transformations, and acts freely and transitively on the
set of alcoves. In affine type An−1, si reflects over Hαi ,0 for 1 ≤ i ≤ n − 1 and s0
reflects over Hθ,1, where θ is the highest root. We identify each alcove A with the
unique w ∈ W such that A = A0w. For example, if w is the element of affine A2
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CatmΔ = {Hα,r : α ∈ Δ, 0 ≤ r ≤ m}.

Hα2,0

Hα1,0

Hθ,0

A0

Fig. 3 The Coxeter arrangement for A2 is on the left, with shaded fundamental chamber. On the
right is all its translates, with fundamental alcove shaded

whose reduce decomposition is s0s1, then A0w is the image of A0 after reflecting
first across Hθ,1 and then across Hα1,0. See Fig. 6.

We can be even more specific for type An−1. The action on V is given by

si (a1, . . . , ai , ai+1, . . . , an) = (a1, . . . , ai+1, ai , . . . , an) for i 	= 0, and

s0(a1, . . . , an) = (an + 1, a2, . . . , an−1, a1 − 1).

Note ̂Sn preserves 〈 | 〉, but ̂Sn does not.
An alcove A can be described by the hyperplanes it is between. For example,

in Fig. 6, the alcove labeled by 20 is between Hα1,1 and Hα1,2, between Hα2,0 and
Hα2,1 and between Hθ,1 and Hθ,2. Given a positive root α, there is a unique integer
k = kα(A) such that k < 〈α | x〉 < k + 1 for all x ∈ A. Let K (A) = {kα(A)}α∈�+

denote the set of coordinates for A, indexed by the positive roots. Returning to Fig. 6,
the alcove labeled by 20 has coordinates kα1 = kθ = 1 and kα2 = 0.

Shi characterized the sets of integers which can arise as K (A) for some alcove
A; for type A in [58, Chapter 6] and for general affine Weyl groups in [59]. The
situation in general is rather messy, but if we assume our root system is an irreducible
crystallographic one, then Shi found (see also [11]) that a collection of integers
indexed by the positive roots �+ corresponds to an alcove if and only if

kα + kβ ≤ kα+β ≤ kα + kβ + 1 (1.1)

for all α,β ∈ �+ such that α + β ∈ �+. We call the set K (A) the coordinates of A
(Fig. 3).
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2 Origin

2.1 Kazhdan–Lusztig Cells

Weprovide a bare-bones introduction toKazhdan–Lusztig theory. Formore informa-
tion, see [17, 44, 58]. If you are willing to believe that Kazhdan and Lusztig defined
an equivalence relation on the elements of a Coxeter group, then skip this section.We
include this collection of definitions for completeness. We’ll need the Hecke algebra
H and the Kazhdan–Lusztig polynomials in order to define the W -graph and then
the cells. We will prove none of our claims.

LetW be a Coxeter group and let S be the corresponding set of simple reflections.
Wefirst follow [44], who follow [19], for the definition of theHecke algebra. LetA be
the ring of Laurent polynomials in the indeterminate q1/2 with integral coefficients.
The Hecke algebraH = H(W, S) is a free module overAwith basis Tw, one for each
w ∈ W . The multiplication is defined by the rules

(1) TwTw′ = Tww′ if �(ww′) = �(w) + �(w′)
(2) (Ts + 1)(Ts − q) = 0 if s ∈ S;

here �(w) is the length of w.
Now for the polynomials. The involution on A a �→ ā defined by q1/2 = q−1/2

extends to an involution of the ring H:

∑

awTw =
∑

awT
−1
w−1 .

Kazhdan’s and Lusztig’s theorem, Theorem 2.1 in this survey, asserts the existence
of elements Cw ∈ H, one for eachw ∈ W , and simultaneously defines the Kazhdan–
Lusztig polynomials Py,w, where y, x ∈ W . The order is the Bruhat order on W .

Theorem 2.1 ([44]). For any w ∈ W , there is a unique element Cw ∈ H such that

• Cw = Cw

• Cw = ∑

y≤w

(−1)�(y)+�(w)q�(w)/2−�(y)Py,wTy

where Py,x ∈ A is a polynomial in q of degree at most 1
2 (�(w) − �(y) − 1) for

y < w, and Pw,w = 1.

Kazhdan and Lusztig used the polynomials to define a graph and from there
the cells. Now we follow the exposition given in [17], simplified just a bit because
we will not prove anything. For u, w ∈ W , define μ(u, w) to be the coefficient of
q

1
2 (�(w)−�(u)−1) in Pu,w(q) if u < w and 1

2 (�(w) − �(y) − 1) is an integer; otherwise,
μ(u, w) is 0. LetL(w) be the set of left descents ofw:L(w) = {s ∈ S|sw < w}. The
directed, labeled graph �̃L

(W,S) is the graph with vertices x ∈ W and edges x
(s,μ)−−→

y ∈ E . There are two types of edges in E :
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(1) x, y ∈ W , x 	= y, either μ(x, y) 	= 0 or μ(y, x) 	= 0, and s ∈ L(x) \ L(y). Let
μ be either μ(x, y) or μ(y, x), whichever is not 0.

(2) Loops at x : labeled by s ∈ S and

μ =
{

1 if s /∈ L(x),

−1 if s ∈ L(x).

The graph �̃R
(W,S) has an analogous definition, using right descents of w: R(w) =

{s ∈ S|ws < w}. The graph �̃LR
(W,S) is the superposition of the �̃L

(W,S) and �̃R
(W,S). We

describe the cells in graph theoretic terms. A directed graph is strongly connected if
there is a directed path between all pairs of vertices. A strongly connected component
of a directed graph is amaximal strongly connected subgraph. Finally, the left cells are
the strongly connected components of �̃L

(W,S), the right cells the strongly connected

components of �̃R
(W,S), and the two-sided cells the strongly connected components

of �̃LR
(W,S).

The list of areas in math where cells appear is mind-boggling. Please see the short
survey by Gunnells [32], for example, for references, as well as for insight into the
geometry of the cells. The book by Björner and Brenti [17] explains much of the
combinatorial connection.

2.2 Shi Regions and Kahzdan–Lusztig Cells

Shi was studying cells in [58]. He concentrated on the affine Weyl groups of type
A, because of the following conjectures of Lusztig. In [48], Lusztig defined a map σ
from ̂Sn to partitions of n. He conjectured that for any partition λ of n, σ−1(λ), a set
of affine permutations, is in fact a two-sided cell. Lusztig also conjectured a formula
for the number of left (or right) cells which make up the two-sided cell σ−1(λ). The
description of the map is simple enough and we define here. Let w ∈ ̂Sn and define
dk = dk(w) to be themaximumsize of a subset ofZwhose elements are noncongruent
to each other modulo n andwhich is a disjoint union of k subsets each of which has its
natural order reversed byw. The partition λ is given by (d1, d2 − d1, . . . , dn − dn−1).

Example 2.2. Let n = 3. The permutation s0 is

( · · · −3 −2 −1 0 1 2 3 4 5 6 · · ·
· · · −2 −3 −1 1 0 2 4 3 5 3 · · ·

)

.

The set {3, 4} has its order reversed by s0 and there is no larger set, so d1 = 2. The
sets {3, 4} and {2} show that d2 = 3. Therefore σ(s0) = (2, 1). In our notation, s0s2
is
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Fig. 4 The cells for affine
A2. The yellow region is the
two-sided cell
σ−1((1, 1, 1)), which is also
a single left-cell. The six
pink regions are left-cells,
whose union is the two-sided
cell σ−1((3)). The three gray
regions are also left cells,
and their union is the
two-sided cell σ−1((2, 1)).
See [58, Page 98]

A0

( · · · −3 −2 −1 0 1 2 3 4 5 6 · · ·
· · · −2 −4 0 1 −1 3 4 2 6 7 · · ·

)

.

and σ(s0s2) = (2, 1) also. The identity maps to (1, 1, 1) under σ and s1s2s1, for
example, maps to (3).

Shi proved both of Lusztig’s conjectures, and more. Shi used the identification of
̂Sn with alcoves to describe the cells of affine type A. He showed that the two-sided
cells correspond to connected sets of alcoves, one set of alcoves for each partition
λ of n. A two-sided cell is a disjoint union of left-cells. Inside the two-sided cell
corresponding to the partition λ, there is one left-cell for each tabloid of shape λ.
See Fig. 4.

What came to be known as the Shi arrangement was not initially defined in terms
of hyperplanes. Shi began by defining rank n sign types as triangular arrays X =
(xi j )1≤i< j≤n with entries from {+,−,©}. The admissible sign types correspond to
the regions of his arrangement. He defined them as the sign types which satisfy the
following condition: for all 1 ≤ i < t < j ≤ n, the triple

xi j
xit xt j

is a member of the set GA of admissible sign types of rank 3 (A2). GA is the set

{ ++ + , ++ © , +© + , ++ − , +− + , +© © , ©© © , ©+ − ,

©− + , ©© − , ©− © , −− − , −+ − , −− + , −− © , −© − }
(2.1)
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Two comments on GA. If we order the symbols {©,+,−} as − < 0 < +, then
GA can be seen as the rank 3 sign types where either x12 ≤ x13 ≤ x23 or x23 ≤ x13 ≤
x12, together with x13 = +, x12 = x23 = 0. The set GA has cardinality 16, which is
(n + 1)n−1 for n = 3.

Shi connected the admissible sign types to geometry using (1.1) and the map ζ.
If K is the set of coordinates for an alcove A, then define the sign type X = ζ(A) by

xi j =

⎧

⎪

⎨

⎪

⎩

+ if ki j > 0

© if ki j = 0

− if ki j < 0.

He then calculated the hyperplanes so that the regions defined by them were made
up of alcoves with the same image under the map ζ. We use admissible sign type,
region in the Shi arrangement, and Shi region interchangeably.

Shi showed in [58] that the left-cells for affine type A are themselves disjoint
unions of admissible sign types. Admissible sign types were not used directly in the
proofs of the Lusztig conjectures in Shi’s monograph, but describe the structure of
the cells. They have taken on a life of their own.

Later, in [60], Shi extended the definition of admissible sign types, thereby gen-
eralizing the Shi arrangement. This is the definition we give below.

We give the definition for any irreducible, crystallographic root system �. When
the root system is type An−1, we will sometimes write Shin instead of Shi�.
Definition 2.3. The Shi arrangement Shi� is the collection of hyperplanes

{Hα,k | α ∈ �+, 0 ≤ k ≤ 1}.

Example 2.4. All alcoves in the region labeled by

©+ −
in Fig. 5 have positive coordinate k12 = kα1 , have negative coordinate kα2 , and have
the coordinate kθ equal to zero. Likewise, all three coordinates of all alcoves in the
region labeled by

++ +
are positive. See Sect. 1.3 for the definition of coordinates of an alcove.

We mention here that in the case where the Coxeter graph of the system contains
an edge with a label greater than 3, it is not true that all the left-cells of the affine
Weyl group are unions of admissible sign types. It may be conjectured that it holds
for any affine Weyl group of simply-laced type. The cells in affine D4 have been
explicitly described by Shi in [63], so the conjecture may not be difficult to verify. It
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Fig. 5 The Shi arrangement for type A2. See [58, Page 102]. Each region has been labeled with its
sign type. See Example 2.4

is known that any left-cell in the lowest or highest two-sided cell of any irreducible
affine Weyl group forms a single admissible sign type; see Shi [61, 62]. We thank
Jian-Yi Shi for this information.

By a dominant region of the Shi arrangement, we mean a connected component
of the hyperplane arrangement complement V \ ⋃

H∈Shi�
H that is contained in

the dominant chamber. Both the formula for the number of regions in the whole
arrangement and for the number of dominant regions are intriguing and will be
discussed in the next section.

3 Enumeration

The Shi regions have been counted multiple times. We discuss four different
approaches to enumerating them.



A Survey of the Shi Arrangement 87

3.1 The Number of Shi Regions, Part 1

Shi concentrated on the admissible sign types in Chapter 7 of his book [58], where
he introduced the arrangement for type A.

He enumerates them for type A by considering the alcove closest to the origin
in each region. We’ll call this the minimal alcove of the region and denote it AR

if the region is R. Shi called such an alcove the shortest alcove [58, Section 7.3].
He characterized AR using left descents. Left descents are key to the definition of
cells, so it is not surprising that they appear in the description of minimal alcoves.
Basically, an alcove is minimal if any reflection which brings it closer to the origin
flips it out of the region.

Example 3.1. See Fig. 6. Let w = s1s2s1s0. This w has two left descents, s1 and
s2, and both s1w = s2s1s0 and s2w = s1s2s0 are in different regions the minimal
permutation w. On the other hand, w = s1s2s0 is not minimal and indeed �(s1w) <

�(w) and s1w = s2s0 is in the same region as w.

Every alcove corresponds to an affine permutation. We’ll call the affine permu-
tations whose alcoves are minimal minimal permutations. Shi showed that the col-
lection of alcoves corresponding to the inverses of minimal permutations is exactly
a scaled version of the fundamental alcove. See Fig. 6. Thus to calculate the number
of regions in his newfound arrangement, he calculated the number of alcoves in this
scaled fundamental alcove. He calculated something a bit more general: if the fun-
damental alcove is expanded by the positive integer m, then it is made up of mdim(V )

alcoves. The alcoves corresponding to the inverses of minimal permutation land in
the fundamental alcove scaled by n + 1, which showed that there are (n + 1)n−1

regions in the Shi arrangement of type A. The expression (n + 1)n−1 pops up fre-
quently in combinatorics and algebra; see [35] for their connection to q, t-Catalan
numbers, for example.
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Fig. 6 On the left, the minimal alcove of each Shi region is shaded. The dominant ones are shaded
yellow, the rest gray. We’ve labeled the alcoves by the corresponding affine permutation, where we
use i for si for space reasons. The alcoves corresponding to the inverses are drawn on the right
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Shi’s enumeration of the regions is perhaps more complicated than the others
described here. However, his discovery that the inverses of the minimal permutations
correspond to a simplex is worth the price of admission. The minimal alcoves have
been useful in other enumeration; see [12, 28], for example. For another example,
Hohlweg, Nadeau, and Williams, in [39], generalize the Shi arrangement to any
Coxeter group (and beyond!) and conjecture that the inverses of the analogues of
minimal permutations form a convex body. See also Sommers [66]where the simplex
was generalized to what is now called the Sommers region. Thomas and Williams
[75] show that the set of alcoves in this region, and by extension the Shi regions,
exhibit the cyclic sieving phenomenon.

In [60], Shi generalized sign types to other affine Weyl groups. He defined sets
analogous to (2.1) for other types. The hyperplane arrangements were still given by
Definition 2.3, but now he considered root systems other than type A. He used the
map ζ on alcoves and described the sign types which arose and again characterized
the element in each region with the minimal number of hyperplanes separating it
from the origin. As above, we identify elements w ∈ W with A0w and refer to w as
minimal if its alcove is minimal. The fact that

⋃

w minimal

A0w
−1

is a simplex is not just a type A phenomenon. Shi proved it for other affine Weyl
groups and used it to prove that there are (h + 1)n regions, where h is the Coxeter
number of the system.

Shi counted the number of regions in the dominant chamber for affine Weyl
groups in [64]. He calls the admissible sign types corresponding to regions in the
dominant chamber ⊕-sign types. For types A, B, C , and D, he finds a bijection from
⊕-sign types to filters in the root poset for �+. Here is a technical detail: Shi finds
the bijection to the positive coroots (�+)∨, which we won’t define, then mentions
that it has the same type as �+ except when �+ has type B and C . He deals with
types B and C separately. We will continue using �+. He further maps the filters
to subdiagrams of certain Young diagrams; see Sect. 1.2.3. For example, for type
A, the subdiagrams are those of partitions whose diagrams fit inside the staircase
shape. In the exceptional cases, he enumerates increasing subsets directly. He shows
the ⊕-sign types for affice Weyl groups are enumerated by the Catalan numbers,
although Shi does not mention them.

A few more words are in order on this important bijection to filters in the root
poset. The key proposition, from Section 1.2 of [64], follows (using roots instead of
coroots).

Proposition 3.2. Assume that X = (Xα)α∈�+ is a �+-tuple with Xα ∈ {+,©}.
Then X is an ⊕-sign type if and only if the following condition on X holds: if
α,β ∈ �+ satisfy β > α and Xα = +, then Xβ = +.

We’ll use type A as an example. In the set GA in (2.1), there are five triples
which contain only © and +, but there are eight which are possible. The condition



A Survey of the Shi Arrangement 89

in Proposition 3.2 rules the other three out, proving sufficiency. For necessity, Shi
uses induction to reduce to the rank two case and shows that the five ⊕-sign types
in G satisfy the condition.

3.2 Interlude

We’ll need these standard definitions for Sects. 3.3 and 3.4. See [70] for the definitions
of the rank function ρ and Möbius function μ of a poset.

Definition 3.3. [70] Let P be a finite graded poset with 0̂. Let ρ be its rank function
and n the rank of P . Define the characteristic polynomial χP(x) of P by

χP(x) =
∑

t∈P

μ(0̂, t)xn−ρ(t).

Definition 3.4. [70] Let A be a hyperplane arrangement in a vector space V and
let L(A) be the set of all nonempty intersections of hyperplanes in A. Include V
itself, by considering it as the intersection over the empty set. Order L(A) by reverse
inclusion, so that 0̂ is V .

See Fig. 7 for an example of the poset of intersections.
If the intersection of all the hyperplanes inA is nonempty, then L(A) is a lattice.

The intersection of all hyperplanes in Shi� is empty and L(Shi�) will only be a
meet semi-lattice. It is finite and graded by ρ(t) = n − dim(t), where n = dim(V ).
The characteristic polynomial of an arrangement is

χA(x) =
∑

t∈L(A)

μ(0̂, t)xn−ρ(t)

x1 = x2 = x3 x1 = x2 = x3 + 1 x1 = x2 + 1 = x3 x1 − 1 = x2 = x3 x1 − 1 = x2 = x3 + 1 x1 = x2 − 1 = x3

x1 = x2 x1 = x2 + 1 x1 = x3 x1 = x3 + 1 x2 = x3 x2 = x3 + 1

V

+2 +2 +1 +1 +2 +1

−1 −1 −1 −1 −1 −1

+1

Fig. 7 The poset of intersections for type A2. For example, the node labeled x1 = x2 = x3 + 1
represents Hα1,0 ∩ Hα2,0 ∩ Hα3,1. See [37, Page 36]. The numbers in the circle above or below each
element is the Möbius function of the interval from the element to V = 0̂. The Poincaré polynomial
is P�A2

(x) = (1 + 3x)2
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and the Poincaré polynomial is

PA(x) =
∑

t∈L(A)

μ(0̂, t)(−x)ρ(t).

The Poincaré polynomial is a rescaled version of the characteristic polynomial.
The characteristic polynomial is invaluable for studying hyperplane arrangements,

thanks to a theorem of Zaslavsky [76, 77]. See also Stanley’s notes on hyperplanes
[69]. In Sect. 1.3, we defined r(A) and b(A) be the number of regions and number
of bounded regions of the arrangement A.

Theorem 3.5 ([77]).LetA be an arrangement in an n-dimensional real vector space.
Then

r(A) = (−1)nχA(−1) = PA(1)

b(A) = (−1)rankAχA(1) = PA(−1).

3.3 The Number of Shi Regions, Part 2

Headley [37, 38] calculated the Poincaré polynomial PShi� of the Shi arrangement
for an irreducible root system. He found a recursion for its coefficients, which we
will now present.

Let Shi� be the subarrangement of Shi� consisting of all hyperplanes which
contain the origin. For Y ∈ L(Shi�), letWY be the group generated by the reflection
through all the hyperplanes containing Y . For a polynomial p(t), let [t k]p(t) be the
coefficient of t k in p(t).

Lemma 3.6 ([38]). For Y ∈ L(Shi�), let WY,1 × · · ·WY,m be the decomposition
of WY into irreducible Coxeter groups. Let Si = ShiWY,i be the Shi arrangement
associated to the Coxeter group WY,i . Then

[t k]PShi�(t) = [t k]
∑

Y∈L(Shi�):rank(Y )=k

PS1(t) · · · PSm (t).

Headley uses induction on the number of generators to determine every coefficient
except the leading one. For this, he relies on Shi’s enumeration and the relationship
between the Poincaré polynomial and the number of regions. His analysis is done
case by case for each Coxeter type. His theorem is

Theorem 3.7. Let � be an irreducible crystallographic root system, with Coxeter
number h and rank n. Then

PShi�(t) = (1 + ht)n.
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In type A, the argument for calculating the coefficients is simple enough to repeat:
he matches an element Y of the intersection poset L( ˆShi�) with the set partition
B = (B1, . . . , Bm) of [n + 1] by

Y = ∩{xi − x j = 0 : i, j are in the same block of B}.

In this case,WY is isomorphic to A|B1|−1 × · · · × A|Bm |−1 and rank(Y ) = n + 1 − m.
Therefore, by induction and Lemma 3.6,

[t k]PShi�(t) =
∑

Partitions of [n + 1] into n + 1 − k blocks

|B1||B1|−1 · · · |Bn+1−k ||Bn+1−k |−1.

(3.1)
In his thesis [37], he used Lagrange inversion to calculate

[t k]PShi� = (n + 1)k
(

n

n − k

)

.

Later, in [38], he recognized the sum in (3.1) to be the number of labeled forests on
n + 1 vertices of n + 1 − k trees and used [51]. In both his thesis and later paper,
he showed that the coefficient of t k in PShi�(t) and (1 + (n + 1))n are the same for
1 ≤ k ≤ n − 1. Then since the degree of PShi�(t) is n and since PShi�(1) = (n + 2)n

by Shi’s result, he showed

PShi�(t) = (1 + (n + 1)t)n = (1 + ht)n (3.2)

in An .

3.4 The Number of Shi Regions, Part 3

Crapo and Rota [23, Chapter 16] described the critical problem: let S be a set of
points in an n-dimensional vector space Vn over the field Fq with q elements. The set
S must not contain the origin. Find the minimum number c of projective hyperplanes
H1, . . . , Hc with the property that the intersection H1 ∩ . . . Hc ∩ S is null. They
were able to solve the problem using the poset of intersections and characteristic
polynomial.

Athanasiadis [8] turned Crapo and Rota’s theorem around and used it to calcu-
late the characteristic polynomial of subspace arrangements. Blass and Sagan [18]
had previously used a similar idea, but not for all subspaces and not for the Shi
arrangement. We present first the the Crapo and Rota theorem, then describe how
Athanasiadis used it to get his hands on the characteristic polynomial for the Shi
arrangements for irreducible crystallographic root systems.
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Theorem 3.8 ([23]). The number of linearly ordered sequences (L1, L2, . . . , Lk)

of k linear functionals in Vn which distinguish the set S is given by p(qk)where p(v)

is the characteristic polynomial of the geometric lattice spanned by the set S.

Athanasiadis needed to count the number of n-tuples (x1, . . . , xn) ∈ F
n
q which

satisfy xi 	= x j and xi 	= x j + 1 for i < j . The argument is simple (and lovely)
enough in type An−1 for the full Shi arrangement that we reproduce it here. See also
[70].

We first solve a related problem. Find the number of ways there are to place n
labeled balls in q unlabeled boxes, where

(1) the boxes are in a circle,
(2) there is never more than one ball in a box, and
(3) if i < j , then ball i is not placed in the box immediately following, in the

clockwise direction, the box holding ball j .

There will be q − n empty boxes, so first place them in a circle. There is one
way to do that. There are now q − n spaces between the empty boxes, where the
boxes holding the balls will go. By cyclic symmetry, there is one way to place the
box holding the 1-ball. Then there are (q − n)n−1 ways to place the rest of the boxes
holding balls in the empty spaces. It is enough to pick the space between empty boxes:
to avoid violating condition (3), the boxes between a consecutive pair of empty boxes
must placed in increasing order of the labels on the balls inside. That is, our final
answer to the related problem is (q − n)n−1.

Now back to counting n-tuples. We are essentially done, if we think of each n-
tuple representing a distribution of n labeled balls into a circle of q labeled boxes,
where the distribution satisfies conditions (2) and (3). We place the ball labeled i in
box xi . We need only label the boxes, and there are q ways to do this. Thus there are
q(q − n)n−1 n-tuples which satisfy xi 	= x j and xi 	= x j + 1 for i < j and we have
that the characteristic polynomial is χL(Shin) = q(q − n)n−1.

Crapo and Rota’s finite field method has since been used to calculate other char-
acteristic polynomials. See Armstrong [5], Armstrong and Rhoades [7], and Ardila
[3], for example. See Athanasiadis [13] for reciprocity results for the characteristic
polynomial for the Shi arrangement.

3.5 The Number of Shi Regions, Part 4

Pak and Stanley, in [67], give a bijection from Shi regions (type A) to parking
functions, which refines (3.2). It is proved to be a bijection in [69, Lecture 6]. A
parking function of length n is a tuple of nonnegative integers (p1, . . . , pn) such
that when rearranged in nondecreasing order and relabeled as b1 ≤ b2 ≤ · · · ≤ bn ,
then bi ≤ i − 1. Parking functions generalize inversion vectors of permutations. Pak
and Stanley recursively defined the label λ(R) of a region R. We use the description
given in [69, Lecture 6].
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Let R0 be the fundamental alcove A0. Set λ(R0) = (0, · · · , 0). Suppose we have
labeled the region R and its label λ(R) is (a1, . . . , an).

• If the regions R and R′ are separated by the single hyperplane H with the equation
xi − x j = 0, i < j , and if R and R0 lie on the same side of H , then λ(R′) =
(a1, . . . , ai−1, ai + 1, ai+1 . . . , a j−1a j , a j+1, . . . , an).

• If the regions R and R′ are separated by the single hyperplane H with the equation
xi − x j = 1, i < j , and if R and R0 lie on the same side of H , then λ(R′) =
(a1, . . . ai−1, ai , ai+1 . . . , a j−1, a j + 1, a j+1, . . . , an).

The bijection generalizes thewell-known bijection frompermutations to inversion
vectors [70, Chapter 1]. Although the map λ is simply stated, the proof that it is a
bijection is not simple. To show that the labeling is a bijection, Stanley encodes each
region as a permutation and antichain pair. He builds the inverse map step-by-step
from the parking functions to the pairs. The summary by Armstrong [5, Theorem 3]
of the proof that the Pak–Stanley map is bijective is particularly good. Recall that
the filters/antichains/ideals in the root poset for type A correspond to partitions in a
staircase, and define the non-inversions of a permutation w to be the pairs (i, j) such
that i < j and w(i) < w( j). Then the proof can be summarized as showing that the
Shi regions are in bijection with pairs (w, I) where w ∈ Sn and I is an ideal in the
root poset �+ such that the minimal elements of I, which are labels in the valleys
of the Dyck path corresponding to I, are non-inversions of w (Fig. 8).

(2, 0, 1)

(2, 1, 0)

(2, 0, 0)

(1, 0, 0)

(1, 0, 1)

(1, 0, 2)

(1, 1, 0)

(0, 1, 0)

(0, 0, 0)

(0, 0, 1)

(0, 0, 2)

(1, 2, 0) (0, 2, 0)

(0, 2, 1)

(0, 1, 1) (0, 1, 2)

Fig. 8 The Shi regions labeled by parking functions, using the Pak–Stanley labeling. A label is
nondecreasing if and only if the region is in the dominant region
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The Pak and Stanley bijection from regions to parking functions (m = 1) case
can be composed with a bijection from trees to parking functions. The number of
regions R for which i hyperplanes separate R from the region R0 is equal to the
number of trees on the vertices 0, . . . , n with

(n
2

) − i inversions. The pair (i, j),
where 1 ≤ i < j , is an inversion for T if the vertex j lies on the unique path in T
from 0 to i . See [67, Theorem 5.1].

We mention a few papers which build on the Pak–Stanley bijection. Duertes and
Guedes de Oliveira, for example, further analyze this bijection in [25]. Rincón [56]
extends the Pak–Stanley labeling to the poset of faces of the Shi arrangement. See
also Sect. 5.

3.6 More

Believe it or not, there are still other wonderful proofs concerning the number of
regions.

For example, Athanasiadis and Linusson [14] defined a bijection, different from
Pak and Stanley’s, from parking functions to the Shi regions (type A). Theirs gives
a simple proof of the number of regions. Their bijection was generalized to type C
by Mészáros in [50]. In [7, Section 5.2] there is another proof of the formula for
the number of regions, using Armstrong’s and Rhoades’ ceiling diagrams, which we
define in Sect. 3.7. The ceiling diagrams are related to the diagrams Athanasiadis
and Linusson used. Armstrong, Reiner, and Rhoades [6] define nonnesting parking
functions using the root poset and permutations from the finite Weyl group and label
the Shi regions with these. Their definition can also be used for types which are not
crystallographic. Other, more recent and more general bijections include [16, 40] for
example.

3.7 The Ish and the Shi

We’ll start off by writing the q, t-Catalan polynomial combinatorially:

Cn(q, t) =
∑

π

qarea(π)tbounce(π), (3.3)

where the sum is over all Dyck paths of length n. The (q, t)-Catalan polynomials
are remarkable generating functions coming from representation theory. They have
been intensely studied since their introduction by Garsia and Haiman in [30]. See
Haglund’s monograph [35, Chapter 3] for more information. There are the same
number of dominant Shi regions as there are Dyck paths, and one of Armstrong’s
results in [5] (and the onewe’ll describe) was to transfer the statistics area and bounce
to dominant regions. His statistics are actually for all regions. The statistic shi will
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(3, 1)

(3, 0)

(2, 0)

(1, 0)

(2, 1)

(3, 2)

(2, 0)

(1, 0)
(0, 0)

(1, 1)
(2, 2)

(3, 2) (2, 1)
(3, 1)

(2, 1)

q3 q2t
qt2

qt t3
(3, 3)

Fig. 9 The Ish arrangement forn = 3 is on the left. TheShi arrangement is on the right,where region

R is labeled by the pair (shi(R), ish(R)). The dominant regions are also labeled by q(32)−shi(R)t ish(R).

The sum of the monomials is C3(q, t) = q3 + q2t + qt + qt2 + t3

correspond to the statistic area and shi(R) is defined as the number of hyperplanes
which must be crossed on a trip to the region R from R0 = A0. The statistic ish
is defined using a second hyperplane arrangement, the Ish arrangement Ishn . It is
defined for type A and is a deformation of theCoxeter arrangement. Let� be the set of
roots for type A, so αi = εi − εi+1 as in Sect. 1.1.1. Denote αi + αi+1 + · · · + αn−1

by α̃i . Then the definition of the Ish arrangement is

Ishn = Coxn ∪ {Hα̃ j ,k |1 ≤ j ≤ n − 1, k ∈ {1, 2, . . . , n − j}}
= Coxn ∪ {x j − xn = k|k ∈ {1, . . . , n − j}, 1 ≤ j ≤ n − 1}.

The ish statistic is defined on Shi regions using the hyperplanes in Ishn . Let R be
region of the arrangement Shin with minimal alcove AR . There is a unique w ∈ ̂Sn

such that AR = A0w. The affine permutation w has a unique factorization w I · wI

[17], where wI ∈ Sn and w I is a minimal length coset representative, which we
won’t define. What is important for us is that A0w

I is an alcove in the dominant
chamber since w I is a minimal length coset representative. Then ish(R) = ish(AR)

is the number of hyperplanes in Ishn which must be crossed in traveling from A0 to
Aw I (Fig. 9).

Each dominant Shi region R corresponds to a Dyck path πR . Armstrong showed
that

(n
2

) − shi(R) = area(πR) and ish(R) = bounce(πR) Notice that the ish and shi
statistics are defined on all regions, not just the dominant ones. Armstrong was able
to show they agree with bounce and area on all diagonally labeled Dyck paths. See
[35, Chapter 5] and [5, Section 3].

Armstrong and Rhoades concentrated on properties of the Ish arrangement, espe-
cially its uncanny similarities to the Shi arrangement, in [7]. Their definition of the
arrangement changes just a bit: replace x j − xn = i by x1 − xn− j+1 = n − i + 1.
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Their main theorem is for deleted versions (more general) of the arrangements (see
Sect. 6), but we’ll stick with the full arrangements. That is, G is the complete graph
in this survey. We need to define a few terms before we can state the main theorem.
The wall H of a region R is called a ceiling if it does not contain the origin and if
the origin and R are not separated by H (they lie in the same half-space of H ). The
regions of both Ishn and Shin are convex, so every region has a recession cone:

R(R) = {v ∈ V : v + R ⊆ R}.

The cone is closed under nonnegative linear combinations and has a dimension. The
dimension ofR(R) is called the degrees of freedom of R. It’s worth mentioning that
the region R is bounded if and only ifR(R) = {0}.

A simplified version of their main theorem can now be stated:

Theorem 3.9 ([7]). Let c and d be nonnegative integers. The Ishn and Shin have
the same

(1) characteristic polynomial,
(2) number of dominant regions with c ceilings, and
(3) number of regions with c ceilings and d degrees of freedom.

We are not presenting their theorem in its full generality, and as written here, (1)
was proved in [5].

Wewant to define the ceiling diagrams for the Shi arrangement because they show
the properties of the corresponding region so clearly. We will also need variations
on the root poset, which they use to prove Theorem 3.9. First the definition of the
Shi ceiling diagram of a region R. Suppose the region is in the chamber Dw, where
D is the dominant chamber and w ∈ Sn . Then we define the set partition σR : there
is an arc from i to j , i < j , in the diagram of σR if and only if the hyperplane
xw(i) − xw( j) = 1 is a ceiling of R. We draw the Shi ceiling diagram (w,σR) by
placing the arc diagram for σR above w(1), w(2), . . . , w(n). See Example 3.10.
Armstrong and Rhoades show that σR is a nonnesting set partition. The number of
arcs is c. What about d? Let d ′ be the number of k, 1 ≤ k ≤ n − 1 where there is no
arc covering the space between k and k + 1; that is, the number of k where for which
there is no i < j such that i ≤ k < j and there is an arc from i to j . For example,
d ′ = 0 for the set partition in Fig. 2 and d ′ = 1 for the set partition 12|35|4. Then set
d = d ′ + 1. Additionally, the recession cone R(R) can be read from the diagram.

There is still a key point: for a fixed w ∈ Sn , both the regions and the ceiling
diagrams are in bijection with antichains in �+(w). The poset �+(w) is the first
variation on the root poset:

�+(w) = {xw(i) − xw( j) = 1 : w(i) < w( j)}.

The elements of �+(w) are the affine hyperplanes in the Shi arrangement which
intersect Dw. The partial order on the hyperplanes is given by

xw(i ′) − xw( j ′) = 1 ≤ xw(i) − xw( j) = 1
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s1s2

R2

1 3 2

s2
R1

1 2 3 e

s1

s2s1

s1s2s1

Fig. 10 The Shi arrangement for A2. The chamber (D)w is labeled by w

x1 − x3 = 1

x1 − x2 = 1 x2 − x3 = 1

x1 − x3 = 1

x1 − x2 = 1

Fig. 11 On the left, the poset �+(e). The poset �+(s2) is on the right

if w(i) ≤ w(i ′) < w( j ′) ≤ w( j). The partial order is defined so that ceilings of any
Shi region R, R ∈ Dw, are the maximal elements of an order ideal. The number c
shows up as the number of these maximal elements.

We’ll need the second variation on �+, �+(w), for discussing the Ish arrange-
ment:

�+(w) = {x1 − x j = i : w−1(i) < w−1( j)}.

Its elements are the Ish hyperplanes that intersect wD and its partial order is chosen
so that the ceilings of any Ish region R, R ∈ wD, are minimal elements of a filter,
and c for the region is the number of these minimal elements.

Example 3.10. This example refers to Figs. 10 and 11. In Fig. 10, the chamber Dw

is labeled by w ∈ S3. We’ve picked two Shi regions to consider in this example-the
ones we have labeled R1 and R2.
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R1 is in the chamber Dw for w = e, the identity. There are three hyperplanes
of the form xi − x j = 1 which intersect Dw and the poset �+(w) is on the left in
Fig. 11. The hyperplane x2 − x3 = 1 is a ceiling for R1 and the region is also labeled
with its ceiling diagram in Fig. 10.

The region R2 is in the chamber Dw forw = s2 and poset�+(s2) is on the right in
Fig. 11. The poset �+(s2) has three ideals, corresponding to the three Shi regions in
Ds2. Our region R2 has ceiling x1 − x3 = xw(1) − xw(2) = 1 and we have placed the
arc diagram for the partition 12|3 above w(1)w(2)w(3) to build the ceiling diagram.

The relationship between the filters and the regions is bijective in the Ish case,
just as between ideals and regions in the Shi case. The posets �+(w) and �+(w)

are dual to each other when w is the identity permutation e. The final step in the
proof of Theorem 3.9, part (3), is simply to send an order ideal in �+(e) to the
corresponding filter in �+(e). Since the maximal elements in the ideal become the
minimal elements in the filter, c is preserved. There are also ceiling diagrams for the
Ish arrangement, but we won’t define them.

To prove Theorem 3.9, part (3), Armstrong and Rhoades used ceiling partitions,
which are set partitions of [n]. We now define a simplified version of them. First
suppose R is a Shi region. The ceiling partition πR has an arc from i to j , i < j ,
if and only if the hyperplane xi − x j = 1 is a ceiling of R. Next suppose we have
an Ish region R. Its ceiling partition has an arc from i to j , i < j , if and only if
x1 − x j = i is a ceiling of R. The definition of the ceiling partition does not depend
on the chamber of R for either arrangement. Surprisingly, the distribution of the set
partitions is the same for the Ish and Shi arrangements.

Theorem 3.11 ([7]). Let A be either the Ish or the Shi arrangement. Let π be a
partition of [n] with k blocks and let 1 ≤ d ≤ k.

(1) The number of regions of A with ceiling partition π is

n!
(n − k + 1)! .

(2) The number of regions ofAwith ceiling partition π and d degrees of freedom is

d(n − d − 1)!(k − 1)!
(n − k − 1)!(k − d)! .

To obtain the number of regions with c ceilings and d degrees of freedom, thereby
proving Theorem 3.9, part (3), sum the expression in Theorem 3.11, part (2), over
all partitions π with k = n − c blocks.

For space reasons, we cannot include the arguments here for Theorems 3.9
and 3.11. This is a shame, because we thereby don’t present evidence for their
observation [7]:

The Ish arrangement is something of a “toy model” for the Shi arrangement (and other
Catalan objects). That is, for any property P that Shin and Ishn share, the proof that Ishn
satisfies P is easier than the proof that Shin satisfies P .
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Many of the theorems of [7] are proved bijectively by Leven, Rhoades, andWilson
in [47].

3.8 Extended Shi Arrangement

In [54], Postnikov and Stanley introduced the extended Shi arrangement of type
An−1:

Shimn = {Hα,k | α ∈ �+,−m + 1 ≤ k ≤ m}.

This kind of extension is sometimes denoted by Fuss, as in Fuss-Catalan [4]. Up
until now, we have been discussing m = 1. Postnikov and Stanley show that Shimn
has (mn + 1)n−1 regions. They fixm, set fn = r(Shimn ) to be the number of regions,
and show that the exponential generating function

f =
∑

n≥0

fn
xn

n!

satisfies
f = ex f

m
.

The extended Shi arrangement is a special case (a = m, b = m + 1) of what they
named truncated affine arrangements; see [54, Section 9] for more details. The
dominant regions of them-Shi are the same as the dominant regions of them-Catalan.

Many of the other enumerative treats of the Shi arrangement generalize well to the
extended Shi arrangement. For example, Stanley [68] labeled them-Shi regions with
m-parking functions of length n using an extended version of the bijection described
here in Sect. 3.5. Stanley defined m-parking functions of length n. He replaced the
condition that “bi ≤ i − 1” in the definition of parking function (see Sect. 3.5) by
“bi ≤ m(i − 1).” If we set d(R) = area(R) (see Sect. 3.7), then Stanley’s bijection
showed [68, Corollary 2.2] that

∑

R

qd(R) =
∑

(p1,...,pn)

q p1+···+pn , (3.4)

where the sum on the left is over all regions in Shimn and the sum on the right is over
all m-parking functions of length n (Fig. 12).

In 2004, Athanasiadis wrote two papers on the extended Catalan arrangement for
crystallographic �, concentrating on the dominant regions. The Catalan arrange-
ment has more hyperplanes than the Shi arrangement, but it has the same dominant
regions, so we record his results here in terms of the m-Shi arrangement. We’ll need
a definition. The Narayana numbers (type A) are given by [53]
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Fig. 12 The Shi23
arrangement. There are
49 = (2 · 3 + 1)2 regions

Nn,k = 1

k + 1

(

n

k

)(

n − 1

k

)

.

They refine the Catalan numbers by counting the Dyck paths of length n with k
peaks. In other words, Cn = ∑n−1

k=0 Nn,k . Athanasiadis

(1) generalized and extended the Narayana numbers, finding what they enumerate
in terms of dominant m-Shi regions;

(2) counted the number of m-Shi regions in the dominant chamber, generalizing
Shi’s result described in Sect. 3.1; and

(3) used co-filtered chains of ideals in the root poset to describe the dominantm-Shi
regions.

We will describe (3) in a bit more depth. Let �+ = I0 ⊇ I1 ⊇ I2 ⊇ · · · ⊇ Im be a a
decreasing chain I of ideals in �+, set Ii = Im for all i > m, and set Ji = �+ \ Ii .
The chain I is a co-filtered chain of ideals of length m if

(1) (Ii + I j ) ∩ �+ ⊆ Ii+ j and
(2) (Ji + Jj ) ∩ �+ ⊆ Ji+ j

is true for all indices i, j ≥ 1 with i + j ≤ m. The coordinates of the chain are

kα(I) = max{k1 + k2 + · · · + k − r : α = β1 + · · · + βr with βi ∈ Iki for all i}.

Athanasiadis showed that

kα(I) + kβ(I) ≤ kα+β(I) ≤ kα(I) + kβ(I) + 1 (3.5)

whenever α,β,α + β ∈ �+. Equation (3.5) generalizes Shi’s bijection between fil-
ters in the root poset and dominant Shi regions (see Sect. 3.1). Finally, to define the
fundamental m-Shi region associated to I, he sets RI to be the set of points x ∈ V
which satisfy
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(1) 〈α | x〉 > k, if α ∈ Ik and
(2) 0 < 〈α | x〉 < k, if α ∈ Jk , for 0 ≤ k ≤ m. The coordinates of the ideal are then

the coordinates of a region.

Certain elements in an ideal are called indecomposable. These elements correspond
to the walls of RI which separate RI from R0, and take the place of peaks in Dyck
paths when defining the Narayana numbers in terms of Shi regions.

Here we mention a few other enumerative results concerning the regions of the
extended Shi arrangement. Any fixed hyperplane in the m-Shi arrangement is dis-
sected into regions by the other hyperplanes in the arrangements. Fishel, Tzanaki,
and Vazirani enumerate the number of regions for certain fixed hyperplanes in type
A in [27]. Fishel, Kallipoliti, and Tzanaki [26] defined a bijection between dominant
regions of the m-Shi arrangement in type An and dissections of an m(n + 1) + 2-
gon.These dissections represent facets of them-generalized cluster complex. In 2008,
Sivasubramanian [65] gave combinatorial interpretations for the coeffiencients of a
two-variable version of Stanley’s distance enumerator (3.4) in type A for m = 1.
Forge and Zaslavsky study the integral points in [m]m that do not lie in any hyper-
plane of the arrangement [29]. Thiel resolves a conjecture of Armstrong [4, Conjec-
ture 5.1.24] on the distribution of floors and ceilings in the dominant regions of the
m-Shi arrangements for all types. See Sect. 3.7 for the definition of ceiling.

4 Connections

4.1 Decompositions Numbers and the Shi Arrangement

The dominant regions make an appearance in the study of decomposition numbers
for certain Hecke algebras. To describe this appearance, we’ll first need a host of
combinatorial definitions, then we’ll indicate briefly how these arose from algebra,
and finally we’ll relate this back to the Shi arrangement. We thank Matthew Fayers
for not only pointing out this connection, but carefully explaining it.

4.1.1 Combinatorics

Here we define n-cores, review some well-known facts about them, and review the
abacus construction, which will be useful for us. Details can be found in [42].

The (k, l)-hook of an integer partition λ consists of the box in row k and column
l of λ, all the boxes to the right of it in row k together with all the nodes below it
and in column l. The hook length hλ

(k,l) of this box is the number of boxes in the
(k, l)-hook. Let n be a positive integer. An n-core is a partition λ such that n � hλ

(k,l)
for all boxes λ. An n-regular partition has no (nonzero) n parts which equal each
other. For example, (7, 6, 6, 6) is not 3-regular. We’ll sometimes use p or e instead
of n, depending on the context. The definition is the same (Fig. 13).
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Fig. 13 The Young diagram
of the partition
λ = (5, 2, 1, 1, 1). The
hooklengths are the entries in
the boxes of its Young
diagram. The partition λ is a
4-core but not a 5-core
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Fig. 14 On the left, the
beads are placed on the
positions labeled by the first
column hook-lengths of
λ = (5, 2, 1, 1, 1). On the
right is an equivalent abacus,
where all bead positions have
been shifted by C = −1
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The β-numbers of the partition λ are the hook lengths from its first column. The
β-numbers can be displayed on an abacus: a p-abacus is a diagram with p runners,
labeled 0, 1, . . . , p − 1. Runner i has positions labeled by integers pj + i , for all
j ∈ Z.Wemake a p-abacus for λ by placing a bead at position βk , for each β-number
βk of λ and at all negative positions. We say two p-abaci are equivalent if we can
change one to the other by moving the bead at position i to position i + C for some
C ∈ Z and for all positions i where there is a bead. The positive integer p is arbitrary
for now, but will be related to the characteristic of a field when we see abaci in their
algebraic context. See the 4-abacus in Fig. 14.

We can give an equivalent description of p-core partitions: a partition λ is an
p-core if and only if whenever there is a bead at position j of its p-abacus, there is
also a bead at position j − p [42].

Suppose we have a partition which is not an p-core. Then there is at least one
bead at a position j of its p-abacus which can be pushed up into the vacant position
j − p. This gives us the p-abacus of another partition. We can repeat this until no
beads can be pushed up, at which point we have the p-abacus of an p-core. The final
partition γ is called the p-core of λ and the number of beads we moved in called
the p-weight of λ. With a little work, which we won’t do, it is possible to show that
|λ| = |γ| + wp.

The last combinatorial ingredient we need are residues for the boxes of a partition.
Let n be a positive integer.We call the box in row i , column j a k-box if ( j − i) mod n
is equal to k.
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Fig. 15 The beads are
placed on a 4-abacus on the
positions labeled by the first
column hook-lengths of
λ = (5, 2, 1, 1, 1). The
partition λ is not a 5-core,
since there are gaps on the
5-abacus. If we push the
beads in positions 5 and 9 up
to fill in the gaps, we obtain
the 5-abacus of the empty
partition

-10 -9 -8 -7 -6

-5 -4 -3 -2 -1

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

Fig. 16 The Young diagram
of the partition
λ = (5, 2, 1, 1, 1). The
entries are the residues
modulo 4

0 1 2 3 0

3 0

2

1

0

4.1.2 Algebra

It is time to say a few words about how the combinatorics from the last section relate
to algebra (Fig. 15).

Roughly speaking, the p-regular partitions of n index the irreducible modules Dλ

of FSn , where p is the characteristic of the field F . The p-blocks are the equivalence
classes of a certain equivalence relation on the irreducible modules. By Nakayama’s
celebrated conjecture, and Brauer and Robinson’s theorem, two irreducibles Dλ and
Dμ belong to the same p-block if and only λ and μ have the same p-core. Thus
each p-block is labeled by a p-core and p-weight w. The p-weight keeps track of
the difference between the p-core labeling a block and the partitions in the block:
the p-core is a partition of n − pw. The weights are nonnegative integers. We will
assume w is at least one, because the blocks where w = 0 are singletons consisting
of the p-core (Fig. 16).

Scopes [57] investigated the classes of p-blocks under Morita equivalence. She
characterized families of Morita equivalent p-blocks using the p-core and p-weight
which label p-blocks. Suppose B is p-block for FSn labeled byweightw and p-core
γ. Let k be an integer at least as large as w, and suppose that in a p-abacus for γ,
there is a runner i which has k more beads in positive positions than runner (i − 1)
has. Now move k beads from runner i to runner i − 1 in such a p-abacus for γ. This
new abacus determines another p-core, say γ̄. See Fig. 17. The operation changes
the size of the partition: |γ| − k = |γ̄|. We are glossing over details here involving
the β-numbers. Let B̄ be the block of FSn−k labeled by w and γ̄. Scopes took the
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Fig. 17 On the left, the
abacus for γ = (6, 3, 1, 1, 1),
on the right, the abacus for
γ̄ = (5, 2, 1, 1, 1). We have
moved k = 2 beads from
runner 2 to runner 1
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transitive closure of the relation B ∼ B̄ and showed that within an equivalence class,
the p-blocks have the same decomposition matrix, among other results.

Richards was studying the decomposition numbers for the Hecke algebra; see
Sect. 2.1 for at least the definition. He used the classes from the Scopes equivalence
on e-cores, where e depends on the characteristic p of the field and the element q used
in the definition of the Hecke algebra. He called the classes families. Richards was
interested in these families because the blocks of the Hecke algebras forSn and for
Sn−k corresponding to γ and γ̄ respectively have essentially the same decomposition
numbers [55].

Richards wanted to count such families. He built the following pyramid
{uav}0≤u<v≤e−1 for an e-core γ based on γ’s e-abacus. Note the similarity in shape to
admissible sign types and to the arrangement of roots in a staircase shape diagram in
Fig. 2. For i = 0, 1, . . . , e − 1, let p′

i be the position of the first free space on runner
i . Arrange these e numbers in ascending order and relabel as p0 < p1 < · · · < pe−1.
If 0 ≤ u < v ≤ e − 1, then pu − pv is a positive integer not divisible by e. We may
use any e-abacus for γ; it doesn’t affect the set of differences. Richards defined the
pyramid of numbers by

au v =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

w − 1 if 0 < pv − pv < e

w − 2 if e < pv − pv < 2e
...

1 if (w − 2)e < pv − pv < (w − 1)e

0 if (w − 1)e < pv − pv

where w is the weight. Richards proved that two e-cores are in the same family if
and only if they have the same pyramid and that there are exactly

1

e

(

ew

e − 1

)

families. What’s more, he characterized the triangles of numbers which form a pyra-
mid.
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To show the connection to the Shi arrangement, we transform au v into ãu v by
au v + ãu v = w − 1. Then Richard’s Proposition 3.4 becomes

Proposition 4.1 ([55]). Let e ≥ 2 and w > 0, and for 0 ≤ u < v < e − 1 let 0 ≤
ãu v ≤ w − 1. Then the ãu v form a pyramid if and only if for all 0 ≤ u < t < v ≤
e − 1,

ãu v =
{

ãu t + ãt v or ãu t + ãt v + 1 if both of these have all entries no bigger thanw − 1

w − 1 otherwise.

Please see Example 4.2 for the calculation of a few pyramids from cores.
Let’s examine the case e = 3 and w = 2. There are five families. We choose five

3-cores {∅, (1), (2), (1, 1), (3, 1, 1)} and calculate their pyramids:

∅
0

0 0
1

0 0
1

0 1
1

1 0
1

1 1

The pyramids are all different, so we have found all the families. If we look back at
the set G in Sect. 2.2 and consider the subset where all entries are either + or ©, we
see a similarity to the pyramids (replace + with 1). This is true in general. Richard’s
proposition is the type A version of (3.5) from Sect. 3.8. The pyramid is also an
admissible sign type for a dominant m-Shi region of type A, where m = w − 1.

4.1.3 Geometry

We’ll just say a few more words about the geometry here. Richard’s pyramids have
connected the core partitions to regions. We’ll describe Lascoux’s [46] well-known
bijection between n-cores and certain elements of ̂Sn , and by extension, between
n-cores and alcoves in the dominant chamber. Please see Lapointe’s and Morse’s
paper [45] for details. We describe the bijection, as another way of seeing why core
partitions pop up here. An n-core partition may have several removable boxes of a
given residue or it may have several addable boxes of a given residue, but it will
never have both addable and removable boxes of the same residue. Given an n-core
partition λ and the generators s0, s1, . . . , sn−1 of ̂Sn , let si (λ) be the partition where
all boxes of residue i have been removed (added) if there are removable (addable)
boxes. Any n-core partition can be expressed as w(∅). See Fig. 18 and Example 4.2.
We associate the n-core w(∅) with the alcove A0w.

We mention that Fishel and Vazirani mapped partitions which are both n and
nm + 1 cores to dominant regions in the m-Shi arrangment of type An−1 in [28]
using abacus diagrams and the root lattice.

Example 4.2. First, we construct the two pyramids for the partition (4, 2), one
each for w = 2 and w = 3. From Fig. 19, we see that (p′

0, p
′
1, p

′
2) = (p0, p1, p2) =
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∅

Fig. 18 The dominant chamber for A2 with 3-cores. The thick solid lines are hyperplanes from the
1-Shi arrangement, the dashed ones are added to create the 2-Shi arrangement

Fig. 19 On the left, a
3-abacus diagram for (4, 2).
On the right, a diagram for
(3, 1). The right abacus is the
result of moving two beads
in the left abacus, as
described in Sect. 4.1.2

-6 -5 -4

-3 -2 -1

0 1 2

3 4 5

6 7 8

-6 -5 -4

-3 -2 -1

0 1 2

3 4 5

6 7 8

(0, 1, 8). When w = 2, the pyramid is ( a0 2, a0 1, a1 2) = (0, 1, 0) and when w = 3,
it is ( a0 2, a0 1, a1 2) = (0, 2, 0). We also calculate the coordinates/admissible sign
type of the region containing (4, 2)’s alcove. For m = 1 (w = 2), ( ã0 2, ã0 1, ã1 2) =
(1, 0, 1) and for m = 2 (w = 3), ( ã0 2, ã0 1, ã1 2) = (2, 0, 2). Additionally,

s0s2s1s0(∅) = s0s2s1( 0 ) = s0s2( 0 1 ) = s0( 0 1 2
2

) = 0 1 2 0
2 0

,

where the entries in the boxes are their residues mod 3. We have placed (4, 2) in the
alcove corresponding to s0s2s1s0. See Fig. 18.

Consider the 1-Shi region containing (4, 2)’s alcove. The minimal alcove of this
region is labeled with the 3-core (2). To reach this region from A0, we must cross
only one translate each of Hθ,1 and Hα2,0, and no translates of Hα1,0. This is reflected
in ã0 2 = 1, ã1 2 = 1, and ã0 1 = 0 respectively. Next, we consider the 2-Shi region
containing (4, 2)’s alcove. This region, whose minimal element alcove is labeled by
(4, 2) itself, is separated from the fundamental alcove by two translates for each of
Hθ,1 and Hα2,0, and no translates of Hα1,0, reflected in the m = 2 pyramid for (4, 2).
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We repeat the calculations for the 3-core (3, 1), whose 3-abacus is on the right in
Fig. 19. We calculate

s2s1s0(∅) = s2s1( 0 ) = s2( 0 1 ) = 0 1 2
2

,

so we have placed (3, 1) in the alcove corresponding to s2s1s0. The w = 2 pyramid
for (3, 1) is ( a0 2, a0 1, a1 2) = (0, 1, 0), the same as the pyramid for (4, 2), indicating
that its alcove will be in the same 1-Shi region as the alcove labeled by (4, 2). Its
w = 3 pyramid is ( a0 2, a0 1, a1 2) = (0, 2, 1), which is not the same as the w = 3
pyramid for (4, 2), and indeed, their alcoves are in different 2-Shi regions.

Lastly, we mention that the action of moving beads as described in Sect. 4.1.2
corresponds to flipping the alcove containing the core of the original abacus over a
hyperplane, to the alcove containing the core obtained through the bead move.

4.2 Finite Automata and Reduced Expressions

Headley used the Shi arrangement to build an automaton which recognizes reduced
expressions. A languageL is a subset of the set B∗ of words in a given finite alphabet
B. For us, the alphabet will be the set S of a Coxeter group W and the language will
be reduced expressions.

A finite state automaton is a finite directed graph, with one vertex designated as
the initial state S0 and a subset of vertices as final states, and with every edge labeled
by an element of B. We call the vertices states. A word w ∈ L is accepted by the
automaton if the sequence of edge labels along some directed path starting at S0 and
ending at a final state is equal to w.

Headley was not the first nor the last to construct an automaton to accept reduced
words; see Björner and Brenti [17], Hohlweg, Nadeau, and Williams [39], and Gun-
nells [33], for instance. However, Headley realized that if si2si3 · · · sik is reduced, then
the fundamental alcove A0 and A0si2si3 · · · sik lie on the same side of the hyperplane
fixed by si1 if and only if si1si2si3 · · · sik is reduced. He built his automaton on this
observation. The key lemma is

Lemma 4.3. [37] Let W be an irreducible affine Weyl group with root system �.
Let R be a region of the Shi arrangement. If R and A0 lie on the same side of the
hyperplanes fixed by s ∈ S, then Rs lies in a single region.

The states of his automaton are the regions of the Shi arrangement. The funda-
mental alcove A0, which is also a Shi region, is the initial state. All states are final.
Let s ∈ S, and let R be a region. If R and A0 are on the same side of the hyperplane
fixed by s ∈ S, then let R′ be the region containing Rs and place an arrow from R
to R′, labeled by s. If R and A0 are not on the same side of the hyperplane, then
R has no outgoing arrow labeled by s. Headley not only showed that the language
accepted by this automaton is the set of all reduced words, he showed that if W is
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Fig. 20 Headley’s automaton based on the Shi arrangement. It accepts reduced words in ̂S3. Each
state is labeled with the affine permutation corresponding to the minimal alcove of the region. We
use i instead of si . Solid arrows represent an edge labeled by s0 and dashed (respectively dotted)
edges represent edges labeled s1 (respectively s2). See Example 4.4

the affine symmetric group, the automaton has the minimal number of states. There
were actually two automata in Headley’s thesis. The first produced a nice generating
function, but it has more states.

Example 4.4. This example refers to Fig. 20. The path

e
0−→ 0

2−→ 02
1−→ 21

0−→ 10
1−→ 101

2−→ 1012

represents the expression s0s2s1s0s1s2, which is reduced. Since s0s1s0s1 is not
reduced, there is no path which starts at e and follows solid, dashed, solid, dashed
arrows.
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4.3 More Connections

This connection is to the filters in �+, not to the Shi arrangement directly. In [20–
22], Cellini and Papi investigate ad-nilpotent ideals in a Borel subalgebra. They
associate each ideal to a filter in �+ and also to an element of the affine Weyl
group. Very roughly speaking, they use the Cartan decomposition L = H ⊕ N and
N = ⊕

α∈�+ Lα and the definition of an ad-nilpotent ideal as an ideal contained in
N to define the antichain

�I = {α ∈ �+ : Lα ⊆ I }

which defines a filter. See also Suter [73]. Dong extends Cellini and Papi’s work from
Borel subalgebras to parabolic subalgebras in [24].He uses deleted Shi arrangements,
which we don’t address in this survey. Panyushev [52] developes combinatorial
aspects of the theory of ad-nilpotent ideals, giving a geometric interpretationfor the
number of generators of an ideal, for example.

Gunnells and Sommers study Dynkin elements, which we won’t define, in [34].
They define N -regions, which turn out to be unions of Shi regions. A simplified
version of their main theorem is that if x is the point of minimal Euclidean length in
the closure of an N -region, then 2x is a Dynkin element.

5 Further Developments

We briefly mention a few recent results. In [31], Gorsky, Mazin, and Vazirani devel-
oped “rational slope” versions of much of what has been discussed here. A tuple
(b1, . . . , bn) of nonnegative integers is called an M/n-parking function if the Young
diagram with row lengths equal to b1, . . . , bn arranged in decreasing order fits above
the diagonal in an n × M rectangle. We’ve stated it a bit differently than in Sects. 3.5
and 3.8, but if we let M = n + 1 and M = mn + 1 respectively and reverse the order
of the tuple, we obtain the same functions. Gorsky, Mazin, and Vazirani defined M-
stable permutations to take the place of minimal permutations of Shi regions and
generalized the Pak–Stanley bijection, as well as another map defined by Anderson
[2] in her study of core partitions. They conjectured their generalization of the Pak–
Stanley map is injective for all relatively prime M and n. In 2017, McCammond,
Thomas, and Williams [49] proved the conjectures in [31]. Additionally, Gorsky,
Mazin, and Vazirani connect their maps to the combinatorics of q, t-Catalan polyno-
mials. Sulzgruber [72] built on [31] by finding the coordinates of the M-stable per-
mutations, generalizing (3.5). Thiel [74] extended their work to other types, among
other results.

As mentioned in Sect. 3 Hohlweg, Nadeau, and Williams generalized the Shi
arrangement to anyCoxeter group, using n-small roots, and then to indefinite Coxeter
systems. They also investigated automata.
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6 Themes We Haven’t Included

We give a short and incomplete list of topics we have not discussed.

(1) The Shi arrangement is free. Either see original article by Athanasiadis [9] or
his excellent summary [10]. Abe, Suyama, and Tsujie [1] show that the Ish
arrangement is free.

(2) In graphical arrangements or deleted arrangements, some of the hyperplanes
have been removed. We survey only the complete Shi arrangement.

(3) We have no discussion of the connections to the torus Q̌/(1 + mh)Q̌, where
Q̌ is the coroot lattice of a root system, (mh + 1)Q̌ is its dilate, and h is the
Coxeter number of the root system. See Athanasiadis [12] or Haiman [36] for
more information.

(4) The enumeration of bounded regions has nice results, which we have not dis-
cussed. See Athanasiadis and Tzanaki [15], for example and Sommers [66].
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Variations on a Theme of Schubert
Calculus

Maria Gillespie

Abstract In this tutorial, we provide an overview of many of the established com-
binatorial and algebraic tools of Schubert calculus, the modern area of enumerative
geometry that encapsulates a wide variety of topics involving intersections of linear
spaces. It is intended as a guide for readers with a combinatorial bent to under-
stand and appreciate the geometric and topological aspects of Schubert calculus, and
conversely for geometric-minded readers to gain familiarity with the relevant com-
binatorial tools in this area. We lead the reader through a tour of three variations on
a theme: Grassmannians, flag varieties, and orthogonal Grassmannians. The orthog-
onal Grassmannian, unlike the ordinary Grassmannian and the flag variety, has not
yet been addressed very often in textbooks, so this presentation may be helpful as an
introduction to type B Schubert calculus. This work is adapted from the author’s lec-
ture notes for a graduate workshop during the Equivariant Combinatorics Workshop
at the Center for Mathematics Research, Montreal, June 12–16, 2017.

1 Introduction

Schubert calculus was invented as a general method for solving linear intersection
problems in Euclidean space. One very simple example of a linear intersection prob-
lem is the following: How many lines pass through two given points in the plane?

It is almost axiomatically true that the answer is 1, as long as the points are distinct
(otherwise it is∞). Likewise, we can ask howmany points are contained in two lines
in the plane. The answer is also usually 1, though it can be 0 if the lines are parallel,
or ∞ if the lines are equal.

In higher dimensions, the answers may change: in three-dimensional space, there
are most often zero points of intersection of two given lines. One can also consider
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more complicated intersection problems involving subspaces of Euclidean space.
For instance, how many planes in 4-space contain a given line and a given point?
Generically, the answer will be 1, but in degenerate cases (when the point is on the
line) may be ∞.

It seems that the answers to such problems are often 1, 0, or ∞, but this is not
always the case. Here is the classic example of Schubert calculus, where the answer
is generically 2:

Question 1.1. How many lines intersect four given lines in three-dimensional
space?

Hermann Schubert’s nineteenth-century solution to this question1 would have
invoked what he called the “Principle of Conservation of Number” as follows. Sup-
pose the four lines l1, l2, l3, l4 were arranged so that l1 and l2 intersect at a point P ,
l2 and l3 intersect at Q and none of the other pairs of lines intersect and the planes
ρ1 and ρ2 determined by l1, l2 and l3, l4, respectively, are not parallel. Then ρ1 and
ρ2 intersect at another line α, which necessarily intersects all four lines. The line β
through P and Q also intersects all four lines, and it is not hard to see that these are
the only two in this case.

Schubert would have said that since there are two solutions in this configuration,
there are two for every configuration of lines for which the number of solutions is
finite, since the solutions can be interpreted as solutions to polynomial equations
over the complex numbers. The answer is indeed preserved in this case, but the lack
of rigor in this method regarding multiplicities led to some errors in computations in
harder questions of enumerative geometry.

The following is an example of a more complicated enumerative geometry prob-
lem, which is less approachable with elementary methods.

Question 1.2. How many k-dimensional subspaces of Cn intersect each of k · (n −
k) fixed subspaces of dimension n − k nontrivially?

Hilbert’s 15th problem asked to put Schubert’s enumerativemethods on a rigorous
foundation. This led to the modern day theory known as Schubert calculus.

The main idea, going back to Question 1.1, is to let Xi be the space of all lines
L intersecting li for each i = 1, . . . , 4. Then the intersection X1 ∩ X2 ∩ X3 ∩ X4 is
the set of solutions to our problem. Each Xi is an example of a Schubert variety, an
algebraic and geometric object that is essential to solving these types of intersection
problems.

1See [49] for Schubert’s original work, or [45] for a modern exposition on Schubert’s methods.
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1.1 “Variations on a Theme”

This tutorial on Schubert calculus is organized as a theme and variations.2 In particu-
lar, after briefly recalling some of the necessary geometric background on projective
spaces in Sect. 2 (which may be skipped or skimmed over by readers already familiar
with these basics), we begin in Sect. 3 (the ‘Theme’) with the foundational ideas of
Schubert calculus going back to Schubert [49]. This includes a rigorous development
of Schubert varieties in the Grassmannian, the set of all k-dimensional subspaces of
a fixed n-dimensional space, and a more careful geometric analysis of the elemen-
tary intersection problems mentioned in the introduction. We also establish the basic
properties of the Grassmannian. Much of this background material can also be found
in expository sources such as [22, 28, 39], and much of the material in the first few
sections is drawn from these works.

In Variation 1 (Sect. 4), we present the general formulas for intersecting complex
Schubert varieties and show how it relates to calculations in the cohomology of the
Grassmannian as well as products of Schur functions. Variation 2 (Sect. 5) repeats
this story for the complete flag variety (in place of the Grassmannian), with the
role of Schur functions replaced by the Schubert polynomials. Finally, Variation 3
(Sect. 6) explores Schubert calculus in the “Lie type B” Grassmannian, known as the
orthogonal Grassmannian.

There are countless more known variations on the theme of classical Schubert
calculus, including Grassmannians in the remaining Lie types, partial flag varieties,
and Schubert varieties over the real numbers. There is also much that has yet to be
explored.We conclude with an overview of some of these potential further directions
of study in Sect. 7.

2 Background on Projective Space

The notion of projective space helps clean up many of the ambiguities in the ques-
tion above. For instance, in the projective plane, parallel lines meet, at a “point at
infinity”.3 It also is one of the simplest examples of a Schubert variety (Fig. 1).

One way to define projective space over a field k is as the set of lines through the
origin in one higher dimensional space as follows.

Definition 2.1. The n-dimensional projective space Pn
k over a field k is the set of

equivalence classes in kn+1 \ {(0, 0, . . . , 0)} with respect to the relation ∼ given by
scalar multiplication, that is,

(x0, x1, . . . , xn) ∼ (y0, y1, . . . , yn)

2A play on words that references the shared surname with musical composer Franz Schubert, who
also lived in Germany in the nineteenth century.
3Photograph of the train tracks downloaded from edupic.net.
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Fig. 1 Parallel lines meeting
at a point at infinity

if and only if there exists a ∈ k \ {0} such that axi = yi for all i . We write (x0 :
x1 : · · · : xn) for the equivalence class in Pk containing (x0, . . . , xn), and we refer to
(x0 : x1 : · · · : xn) as a point in Pk in homogeneous coordinates.

Note that a point in P
n
k is a line through the origin in kn+1. In particular, a line

through the origin consists of all scalar multiples of a given nonzero vector.
Unless we specify otherwise, we will always use k = C and simply write Pn for

P
n
C
throughout these notes.

Example 2.2. In the “projective plane” P
2, the symbols (2 : 0 : 1) and (4 : 0 : 2)

both refer to the same point.

It is useful to think of projective space as having its own geometric structure, rather
than just as a quotient of a higher dimensional space. In particular, a geometry is often
defined as a set along with a group of transformations. A projective transformation
is a map f : Pn → P

n of the form

f (x0 : x1 : · · · : xn) = (y0 : y1 : · · · : yn)

where for each i ,
yi = ai0x0 + ai1x1 + · · · ainxn

for some fixed constants ai j ∈ C such that the (n + 1) × (n + 1) matrix (ai j ) is
invertible.

Notice that projective transformations are well defined on P
n because scaling all

the xi variables by a constant c has the effect of scaling the y variables by c as well.
This is due to the fact that the defining equations are homogeneous: every monomial
on both sides of the equation has a fixed degree d (in this case d = 1).
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2.1 Affine Patches and Projective Varieties

There is another way of thinking of projective space: as ordinary Euclidean space
with extra smaller spaces placed out at infinity. For instance, in P1, any point (x : y)
with y �= 0 can be rescaled to the form (t : 1). All such points can be identified with
the element t ∈ C, and then there is only one more point in P

1, namely (1 : 0). We
can think of (1 : 0) as a point “at infinity” that closes up the affine line C1 into the
“circle” P1. Thought of as a real surface, the complex P

1 is actually a sphere.
Similarly, we can instead parameterize the points (1 : t) by t ∈ C

1 and have (0 : 1)
be the extra point. The subsets given by {(1 : t)} and {(t : 1)} are both called affine
patches of P1, and form a cover of P1, from which we can inherit a natural topology
on P

1 from the Euclidean topology on each C
1. In fact, the two affine patches form

an open cover in this topology, so P1 is compact.
As another example, the projective plane P2 can be written as the disjoint union

{(x : y : 1)} � {(x : 1 : 0)} � {1 : 0 : 0} = C
2 �C

1 �C
0,

which we can think of as a certain closure of the affine patch {(x : y : 1)}. The other
affine patches are {(x : 1 : y)} and {(1 : x : y)} in this case.

We can naturally generalize this as follows.

Definition 2.3. The standard affine patches of Pn are the sets

{(t0 : t1 : · · · : ti−1 : 1 : ti+1 : · · · : tn)} ∼=C
n

for i = 0, . . . , n.

An affine variety is usually defined as the set of solutions to a set of polynomials
in kn for some field k. For instance, the graph of y = x2 is an affine variety in R

2,
since it is the set of all points (x, y) for which f (x, y) = y − x2 is zero.

In three-dimensional space, we might consider the plane defined by the zero locus
of f (x, y, z) = x + y + z, that is, the set of solutions to f (x, y, z) = 0. Another
example is the line x = y = z defined by the common zero locus of f (x, y, z) =
x − y and g(x, y, z) = x − z.

Recall that a polynomial is homogeneous if all of its terms have the same total
degree. For instance, x2 + 3yz is homogeneous because both terms have degree 2,
but x2 − y + 1 is not homogeneous.
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Definition 2.4. A projective variety is the common zero locus in P
n of a finite set

of homogeneous polynomials f1(x0, . . . , xn), . . . , fr (x0, . . . , xn) in P
n . We call this

variety V ( f1, . . . , fr ). In other words,

V ( f1, . . . , fr ) = {(a0 : · · · : an) | fi (a0 : · · · : an) = 0 for all i}.

Remark 2.5. Note that we need the homogeneous condition in order for projective
varieties to be well defined. For instance, if f (x, y) = y − x2 then f (2, 4) = 0
and f (4, 8) �= 0, but (2 : 4) = (4 : 8) in P

1. So the value of a nonhomogeneous
polynomial on a point in projective space is not, in general, well defined.

The intersection of a projective variety with the i th affine patch is the affine variety
formed by setting xi = 1 in all of the defining equations. For instance, the projective
variety in P2 defined by f (x : y : z) = yz − x2 restricts to the affine variety defined
by f (x, y) = y − x2 in the affine patch z = 1.

We can also reverse this process. The homogenization of a polynomial f (x0, . . . ,
xn−1) in n variables using another variable xn is the unique homogeneous polynomial
g(x0 : · · · : xn−1 : xn) with deg(g) = deg( f ) for which

g(x0 : · · · : xn−1 : 1) = f (x0, . . . , xn−1).

For instance, the homogenization of y − x2 is yz − x2. If we homogenize the equa-
tions of an affine variety, we get a projective variety which we call its projective
closure.

Example 2.6. The projective closure of the parabola defined by y − x2 − 1 = 0 is
the projective variety in P3 defined by the equation yz − x2 − z2 = 0. If we intersect
this with the y = 1 affine patch, we obtain the affine variety z − x2 − z2 = 0 in the
x, z variables. This is the circle x2 + (z − 1

2 )
2 = 1

4 , and so parabolas and circles are
essentially the same object in projective space, cut different ways into affine patches.

As explained in more detail in Problem 2.3 below, there is only one type of
(nondegenerate) conic in projective space.

Remark 2.7. The above example implies that if we draw a parabola on a large, flat
plane and stand at its apex, looking out to the horizon we will see the two branches of
the parabola meeting at a point on the horizon, closing up the curve into an ellipse.4

2.2 Points, Lines, and m-Planes in Projective Space

Just as the points of Pn are the images of lines in Cn+1, a line in projective space can
be defined as the image of a plane in kn+1, and so on. We can define these in terms
of homogeneous coordinates as follows.

4Unfortunately, we could not find any photographs of parabolic train tracks.
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Definition 2.8. An (n − 1)-plane or hyperplane in P
n is the set of solutions (x0 :

· · · : xn) to a homogeneous linear equation

a0x0 + a1x1 + · · · + anxn = 0.

A k-plane is an intersection of n − k hyperplanes, say ai0x0 + ai1x1 + · · · + ainxn =
0 for i = 1, . . . , n − k, such that the matrix of coefficients (ai j ) is full rank.

Example 2.9. In the projective plane P
n , the line l1 given by 2x + 3y + z = 0

restricts to the line 2x + 3y + 1 = 0 in the affine patch z = 1. Notice that the line l2
given by 2x + 3y + 2z = 0 restricts to 2x + 3y + 2 = 0 in this affine patch, and is
parallel to the restriction of l1 in this patch. However, the projective closures of these
affine lines intersect at the point (3 : −2 : 0), on the z = 0 line at infinity.

In fact, any two distinct lines meet in a point in the projective plane. In general,
intersection problems are much easier in projective space. See Problem 2.3 below to
apply this to our problems in Schubert calculus.

2.3 Problems

2.1. Transformations of P1: Show that a projective transformation onP1 is uniquely
determined by where it sends 0 = (0 : 1), 1 = (1 : 1), and ∞ = (1 : 0).

2.2. Choice of n + 2 points stabilizes Pn: Construct a set S of n + 2 distinct points
in Pn for which any projective transformation is uniquely determined by where
it sends each point of S. What are necessary and sufficient conditions for a set
of n + 2 distinct points in P

n to have this property?
2.3. All conics in P

2 are the same: Show that, for any quadratic homogeneous poly-
nomial f (x, y, z) there is a projective transformation that sends it to one of x2,
x2 + y2, or x2 + y2 + z2. Conclude that any two “nondegenerate” conics are
the same up to a projective transformation.

(Hint: Any quadratic form can be written as xAxT where x = (x, y, z) is the
row vector of variables and xT is its transpose, and A is a symmetric matrix, with
A = AT . It can be shown that a symmetric matrix A can be diagonalized, i.e.,
written as BDBT for some diagonal matrix D. Use the matrix B as a projective
transformation to write the quadratic form as a sum of squares.)

2.4 Schubert Calculus in Projective Space: The question of how many points are
contained in two distinct lines in C

2 can be “projectivized” as follows: if we
ask instead how many points are contained in two distinct lines in P

2, then the
answer is always 1 since parallel lines now intersect, a much nicer answer!
Write out projective versions of Questions 1.1 and 1.2.What do they translate to
in terms of intersections of subspaces of one higher dimensional affine space?
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3 Theme: The Grassmannian

Not only does taking the projective closure of our problems in Pn make things easier,
it is also useful to think of the intersection problems as involving subspaces of Cn+1

rather than k-planes in P
n . The definition of the Grassmannian below is analogous

to our first definition of projective space.

Definition 3.1. The Grassmannian Gr(n, k) is the set of all k-dimensional sub-
spaces of Cn .

As in projective spaces, we call the elements of Gr(n, k) the “points” of Gr(n, k),
even though they are defined as entire subspaces ofCn .Wewill see soon that Gr(n, k)
has the structure of a projective variety, making this notation useful.

Every point of the Grassmannian can be described as the span of some k indepen-
dent row vectors of length n, which we can arrange in a k × n matrix. For instance,
the matrix ⎡

⎣
0 −1 −3 −1 6 −4 5
0 1 3 2 −7 6 −5
0 0 0 2 −2 4 −2

⎤
⎦

represents a point in Gr(7, 3). Notice that we can perform elementary row operations
on the matrix without changing the point of the Grassmannian it represents. We will
use the convention that the pivots will be in order from left to right and bottom to
top.

Exercise 3.2. Show that the matrix above has reduced row echelon form:
⎡
⎣
0 0 0 0 0 0 1
0 0 0 1 ∗ ∗ 0
0 1 ∗ 0 ∗ ∗ 0

⎤
⎦ ,

where the ∗ entries are certain complex numbers.

We can summarize our findings as follows.

Fact 3.3. Each point of Gr(n, k) is the row span of a unique full-rank k × n matrix
in reduced row echelon form.

The subset of the Grassmannian whose points have a particular reduced row
echelon form constitutes a Schubert cell. Notice that Gr(n, k) is a disjoint union of
Schubert cells.

3.1 Projective Variety Structure

The Grassmannian can be viewed as a projective variety by embedding Gr(n, k) in
P(nk)−1 via the Plücker embedding. To do so, choose an ordering on the k-element
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subsets S of {1, 2, . . . , n} and use this ordering to label the homogeneous coordinates
xS of P(nk)−1. Now, given a point in the Grassmannian represented by a matrix M ,
let xS be the determinant of the k × k submatrix determined by the columns in the
subset S. This determines a point in projective space since row operations can only
change the determinants up to a constant factor, and the coordinates cannot all be
zero since the matrix has rank k.

For example, in Gr(4, 2), the matrix

[
0 0 1 2
1 −3 0 3

]

has Plücker coordinates given by the determinants of all the 2 × 2 submatrices formed
by choosing two of the columns above. We write xi j for the determinant formed

columns i and j , so for instance, x24 = det

(
0 2

−3 3

)
= 6. If we order the coor-

dinates (x12 : x13 : x14 : x23 : x24 : x34) then the image of the above point under the
Plücker embedding is (0 : −1 : −2 : 3 : 6 : 3).

One can show that the image is a projective variety in P(nk)−1, cut out by homo-
geneous quadratic relations in the variables xS known as the Plücker relations. See
[17], pg. 408 for details.

3.2 Schubert Cells and Schubert Varieties

To enumerate the Schubert cells in the Grassmannian, we assign to the matrices of
the form ⎡

⎣
0 0 0 0 0 0 1
0 0 0 1 ∗ ∗ 0
0 1 ∗ 0 ∗ ∗ 0

⎤
⎦

a partition, that is, a nonincreasing sequence of nonnegative integers λ = (λ1, . . . ,

λk), as follows. Cut out the k × k staircase from the upper left corner of the matrix,
and let λi be the distance from the edge of the staircase to the 1 in row i . In the
example shown, we get the partition λ = (4, 2, 1). Notice that we always have λ1 ≥
λ2 ≥ · · · ≥ λk .

0
0
0

1
0
0

∗
0
0

0
1
0

∗
∗
0

∗
∗
0

0
0
1

Definition 3.4. The size of a partition λ, denoted |λ|, is ∑
i λi , and its length,

denoted l(λ), is the number of nonzero parts. The entries λi are called its parts.
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Remark 3.5. With this notation, Schubert cells in Gr(n, k) are in bijection with the
partitions λ for which l(λ) ≤ k and λ1 ≤ n − k.

Definition 3.6. The Young diagram of a partition λ is the left-aligned partial grid
of boxes in which the i th row from the top has λi boxes.

For example, the Young diagram of the partition (4, 2, 1) that came up in the
previous example is shown as the shaded boxes in the diagram below. By identifying
the partition with its Young diagram, we can alternatively define λ as the complement
in a k × (n − k) rectangle of the diagram μ defined by the right-aligned shift of the
∗ entries in the matrix:

∗
∗

∗
∗

∗

Since the k × (n − k) rectangle is the bounding shape of our allowable partitions,
we will call it the ambient rectangle.

Definition 3.7. For a partition λ contained in the ambient rectangle, the Schubert
cell �◦

λ is the set of points of Gr(n, k) whose row echelon matrix has corresponding
partition λ. Explicitly,

�◦
λ = {V ∈ Gr(n, k) | dim(V ∩ 〈e1, . . . , er 〉) = i for n − k + i − λi ≤ r ≤ n − k + i − λi+1}.

Here en−i+1 is the i th standard unit vector (0, 0, . . . , 0, 1, 0, . . . , 0) with the 1 in
the i th position, so e1 = (0, 0, . . . , 1), e2 = (0, 0, . . . , 1, 0), and so on. The notation
〈e1, . . . , er 〉 denotes the span of the vectors e1, . . . , er .

Remark 3.8. The numbers n − k + i − λi are the positions of the 1’s in the matrix
counted from the right.

Since each ∗ can be any complex number, we have �◦
λ = C

k(n−k)−|λ| as a set, and
so

dim(�◦
λ) = k(n − k) − |λ|.

In particular, the dimension of the Grassmannian is k(n − k).
We are now in a position to define Schubert varieties as closed subvarieties of

the Grassmannian.

Definition 3.9. The standard Schubert variety corresponding to a partition λ,
denoted �λ, is the set

�λ = {V ∈ Gr(n, k) | dim(V ∩ 〈e1, . . . , en−k+i−λi 〉) ≥ i}.
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Remark 3.10. In the topology on the Grassmannian, as inherited from projective
space via the Plücker embedding, the Schubert variety �λ is the closure �λ

◦ of the
corresponding Schubert cell. We will explore more of the topology of the Grassman-
nian in Sect. 4.

Note that we have dim(�λ) = dim(�◦
λ) = k(n − k) − |λ| as well.

Example 3.11. Consider the Schubert variety � in P
5 = Gr(6, 1). The ambi-

ent rectangle is a 1 × 5 row of squares. There is one condition defining the points
V ∈ � , namely dim(V ∩ 〈e1, e2, e3, e4〉) ≥ 1, where V is a one-dimensional sub-
space of C6. This means that V is contained in 〈e1, . . . , e4〉, and so, expressed in
homogeneous coordinates, its first two entries (in positions e5 and e6) are 0.

Thus, each point of � can be written in one of the following forms:

(0 : 0 : 1 : ∗ : ∗ : ∗)

(0 : 0 : 0 : 1 : ∗ : ∗)

(0 : 0 : 0 : 0 : 1 : ∗)

(0 : 0 : 0 : 0 : 0 : 1)

It follows that � can be written as a disjoint union of Schubert cells as follows:

� = �◦ � �◦ � �◦ � �◦ .

In fact, every Schubert variety is a disjoint union of Schubert cells. See the problems
at the end of this section for details.

We may generalize this construction to other bases than the standard basis
e1, . . . , en , or more rigorously, using any complete flag. A complete flag is a chain
of subspaces

F• : 0 = F0 ⊂ F1 ⊂ · · · ⊂ Fn = C
n

where each Fi has dimension i . Then we define

�λ(F•) = {V ∈ Gr(n, k) | dim(V ∩ Fn−k+i−λi ) ≥ i}

and similarly for �◦
λ.

Example 3.12. The Schubert variety ��(F•) ⊂ Gr(4, 2) consists of the two-
dimensional subspaces V of C4 for which dim(V ∩ F2) ≥ 1. Under the quotient
map C4 → P

3, this is equivalent to space of all lines in P3 that intersect a given line
in at least a point, which is precisely the variety we need for Question 1.1.
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3.3 A Note on Flags

Why are chains of subspaces called flags? Roughly speaking, a flag on a flagpole
consists of:

• A point (the top of the pole),
• A line passing through that point (the pole),
• A plane passing through that line (the plane containing the flag), and
• Space to put it in.

Mathematically, this is the data of a complete flag in three dimensions. However,
higher-dimensional beings would require more complicated flags. So in general,
it is natural to define a complete flag in n-dimensional space C

n to be a chain of
vector spaces Fi of each dimension from 0 to n, each containing the previous, with
dim(Fi ) = i for all i . A partial flag is a chain of subspaces in which only some of
the possible dimensions are included.

3.4 Problems

3.1. Projective space is a Grassmannian: Show that every projective space Pm is
a Grassmannian. What are n and k?

3.2. Schubert cells in P
m : What are the Schubert cells in Pm? Express your answer

in homogeneous coordinates.
3.3. Schubert varieties inPm :What are the Schubert varieties inPm , thought of as a

Grassmannian? Why are they the closures of the Schubert cells in the topology
on P

m?
3.4. Schubert varieties versus Schubert cells: Show that every Schubert variety is

a disjoint union of Schubert cells. Describe which Schubert cells are contained
in �λ in terms of partitions.

3.5. Extreme cases: Describe �∅ and �B where B is the entire ambient rectangle.
What are their dimensions?

3.6. Intersecting Schubert Varieties: Show that, by choosing four different flags
F (1)• , F (2)• , F (3)• , F (4)• , Question 1.1 becomes equivalent to finding the intersec-
tion of the Schubert varieties

��(F (1)
• ) ∩ ��(F (2)

• ) ∩ ��(F (3)
• ) ∩ ��(F (4)

• ).

3.7. A Variety of Varieties: Translate the simple intersection problems of lines
passing through two points, points contained in two lines, and so on into prob-
lems about intersections of Schubert varieties, as we did for Question 1.1 in
Problem 3.4 above. What does Question 1.2 become?

3.8. More complicated flag conditions: In P
4, let 2-planes A and B intersect in a

point X , and let P and Q be distinct points different from X . Let S be the set
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of all 2-planes C that contain both P and Q and intersect A and B each in a
line. Express S as an intersection of Schubert varieties in Gr(5, 3), in each of
the following cases:

(a) When P is contained in A and Q is contained in B;
(b) When neither P nor Q lie on A or B.

4 Variation 1: Intersections of Schubert Varieties
in the Grassmannian

In the previous section, we saw how to express certain linear intersection problems
as intersections of Schubert varieties in a Grassmannian. We now will build up the
machinery needed to obtain a combinatorial rule for computing these intersections,
known as the Littlewood–Richardson rule.

Both the geometric and combinatorial aspects of the Littlewood–Richardson rule
are fairly complicated to prove, and we refer the reader to [22] for complete proofs.
In this exposition, we will focus more on the applications and intuition behind the
rule.

TheLittlewood–Richardson rule is particularly nice in the case of zero-dimensional
intersections. In particular, given a list of generic flags F (i)• in C

n for i = 1, . . . , r ,
let λ(1), . . . ,λ(r) be partitions with

∑
|λi | = k(n − k).

Then the intersection ⋂
�λi (F (i)

• )

is zero-dimensional, consisting of exactly cB
λ(1),...,λ(r) points of Gr(n, k), where B is

the ambient rectangle and cB
λ(1),...,λ(r) is a certainLittlewood–Richardson coefficient,

defined in Sect. 4.6.
When we refer to a “generic” choice of flags, we mean that we are choosing from

an open dense subset of the flag variety. This will be made more precise in Sect. 5.
In general, the Littlewood–Richardson rule computes products of Schubert classes

in the cohomology ring of theGrassmannian, described in Sect. 4.4 below, which cor-
responds with (not necessarily zero-dimensional) intersections of Schubert varieties.
To gain intuition for these intersections, we follow [22] and first simplify even further,
to the case of two flags that intersect transversely.



128 M. Gillespie

4.1 Opposite and Transverse Flags, Genericity

Two subspaces of Cn are said to be transverse if their intersection has the “expected
dimension”. For instance, two two-dimensional subspaces of C3 are expected to
have a one-dimensional intersection; only rarely is their intersection two-dimensional
(when the two planes coincide). More rigorously:

Definition 4.1. Two subspaces V and W of Cn are transverse if

dim(V ∩ W ) = max(0, dim(V ) + dim(W ) − n).

Equivalently, if codim(V ) is defined to be n − dim(V ), then

codim(V ∩ W ) = min(n, codim(V ) + codim(W )).

Exercise 4.2. Verify that the two definitions above are equivalent.

We say two flags F (1)• and F (2)• are transverse if every pair of subspaces F (1)
i and

F (2)
j are transverse. In fact, a weaker condition suffices:

Lemma 4.3. Two complete flags F•, E• ⊂ C
n are transverse if and only if Fn−i ∩

Ei = {0} for all i .
Proof Sketch. The forward direction is clear. For the reverse implication, we can take
the quotient of both flags by the one-dimensional subspace E1 and induct on n. �

Define the standardflag F• to be theflag inwhich Fi = 〈e1, . . . , ei 〉, and similarly
define the opposite flag E• by Ei = 〈en, . . . , en−i+1〉. It is easy to check that these
flags F• and E• are transverse. Furthermore, we shall see that every pair of transverse
flags can be mapped to this pair, as follows. Consider the action of GLn(C) on C

n

by standard matrix multiplication, and note that this gives rise to an action on flags
and subspaces, and subsequently on Schubert varieties as well.

Lemma 4.4. For any pair of transverse flags F ′• and E ′•, there is an element g ∈ GLn

such that gF ′• = F• and gE ′• = E•, where F• and E• are the standard and opposite
flags.

The proof of this lemma is left as an exercise to the reader (see the Problems
section below). The important corollary is that to understand the intersection of
the Schubert varieties �λ(F ′•) and �μ(E ′•), it suffices to compute the intersection
�λ(F•) ∩ �λ(E•) and multiply the results by the appropriate matrix g.

So, when we consider the intersection of two Schubert varieties with respect to
transverse flags, it suffices to consider the standard and opposite flags F• and E•.
We use this principle in the duality theorem below, which tells us exactly when the
intersection of �λ(F•) and �μ(E•) is nonempty.
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4.2 Duality Theorem

Definition 4.5. Two partitions λ = (λ1, . . . ,λk) and μ = (μ1, . . . ,μk) are comple-
mentary in the k × (n − k) ambient rectangle if and only if λi + μk+1−i = n − k
for all i . In this case we write μc = λ.

In other words, if we rotate the Young diagram of μ and place it in the lower right
corner of the ambient rectangle, its complement is λ. Below, we see that μ = (3, 2)
is the complement of λ = (4, 2, 1) in Gr(7, 3).

∗
∗

∗
∗

∗

Theorem 4.6 (Duality Theorem). Let F• and E• be transverse flags in C
n, and

let λ and μ be partitions with |λ| + |μ| = k(n − k). In Gr(n, k), the intersection
�λ(F•) ∩ �μ(E•) has 1 element if μ and λ are complementary partitions, and is
empty otherwise. Furthermore, if μ and λ are any partitions with μk+1−i + λi >

n − k for some i then �λ(F•) ∩ �μ(E•) = ∅.
We can use a reversed form of row reduction to express the Schubert varieties

with respect to the opposite flag, and then the Schubert cells for the complementary
partitions will have their 1’s in the same positions, as in the example below. Their
unique intersection will be precisely this matrix of 1’s with 0’s elsewhere.

⎡
⎣
0 0 0 0 0 0 1
0 0 0 1 ∗ ∗ 0
0 1 ∗ 0 ∗ ∗ 0

⎤
⎦

⎡
⎣

∗ 0 ∗ 0 ∗ ∗ 1
∗ 0 ∗ 1 0 0 0
∗ 1 0 0 0 0 0

⎤
⎦

We now give a more rigorous proof below, which follows that in [22] but with a
few notational differences.

Proof. We prove the second claim first: if for some i we have μk+1−i + λi > n − k
then �λ(F•) ∩ �μ(E•) is empty. Assume for contradiction that there is a subspace
V in the intersection. We know dim(V ) = k, and also

dim(V ∩ 〈e1, e2, . . . , en−k+i−λi 〉) ≥ i, (1)

dim(V ∩ 〈en, en−1, . . . , en+1−(n−k+(k+1−i)−μk+1−i )〉) ≥ k + 1 − i.

Simplifying the last subscript above, and reversing the order of the generators, we
get

dim(V ∩ 〈ei+μk+1−i , . . . , en−1, en〉) ≥ k + 1 − i. (2)

Notice that i + μk+1−i > n − k + i − λi by the condition μk+1−i + λi > n − k,
so the two subspaces we are intersecting with V in Eqs. (1) and (2) are disjoint. It
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follows that V has dimension at least k + 1 − i + i = k + 1, a contradiction. Thus,
�λ(F•) ∩ �μ(E•) is empty in this case.

Thus, if |λ| + |μ| = k(n − k) and λ and μ are not complementary, then the inter-
section is empty as well, since the inequality μk+1−i + λi > n − k must hold for
some i .

Finally, suppose λ and μ are complementary. Then Eqs. (1) and (2) still hold,
but now n − k + i − λi = i + μn+1−i for all i . Thus dim(V ∩ 〈ei+μn+1−i 〉) = 1 for
all i = 1, . . . , k, and since V is k-dimensional it must equal the span of these basis
elements, namely

V = 〈e1+μn , e2+μn−1 , . . . ek+μn+1−k 〉.

This is the unique solution. �

Example 4.7. We now can give a rather high-powered proof that there is a unique
line passing through any two distinct points in Pn . As before, we work in one higher
dimensional affine space and consider 2-planes in C

n+1. Working in Gr(n + 1, 2),
the two distinct points become two distinct one-dimensional subspaces F1 and E1

of Cn+1, and the Schubert condition that demands the two-dimensional subspace V
contains them is

dim(V ∩ F1) ≥ 1, dim(V ∩ E1) ≥ 1.

These are the Schubert conditions for a single-part partition λ = (λ1) where (n +
1) − 2 + 1 − λ1 = 1. Thus λ1 = n − 1, and we are intersecting the Schubert vari-
eties

�(n−1)(F•) ∩ �(n−1)(E•)

where F• and E• are any two transverse flags extending F1 and E1.Notice that (n − 1)
and (n − 1) are complementary partitions in the 2 × (n − 1) ambient rectangle (see
Fig. 2), so by the Duality Theorem there is a unique point of Gr(n + 1, 2) in the
intersection. The conclusion follows.

4.3 Cell Complex Structure

In order to prove themore general zero-dimensional Littlewood–Richardson rule and
compute the Littlewood–Richardson coefficients, we need to develop more heavy
machinery. In particular, we need to understand the Grassmannian as a geometric
object and compute its cohomology, an associated ring in which multiplication of

Fig. 2 Two complimentary
partitions of size n − 1 filling
the n − 1 × 2 rectangle
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certain generators will correspond to intersection of Schubert varieties. (See [27] for
more details on all of the material in this section.)

The term Schubert cell comes from the notion of a cell complex (also known as a
CW complex) in algebraic topology. An n-cell is a topological space homeomorphic
to the open ball |v| < 1 in Rn , and its associated n-disk is its closure |v| ≤ 1 in Rn .

To construct a cell complex, one starts with a set of points called the 0-skeleton
X0, and then attaches 1-disks D via continuous boundary maps from the boundary
∂D (which consists of two points) to X0. The result is a 1-skeleton X1.

This can then be extended to a 2-skeleton by attaching 2-disks D via maps from
the boundary ∂D (which is a circle) to X1. In general, the n-skeleton Xn is formed
by attaching a set of n-disks to Xn−1 along their boundaries.

More precisely, to form Xn from Xn−1, we start with a collection of n-disks Dn
α

and continuous attaching maps ϕα : ∂Dn
α → Xn−1. Then

Xn = Xn−1 � ⊔
α Dn

α

∼
where ∼ is the identification x ∼ ϕα(x) for x ∈ ∂Dn

α. The cell complex is X =⋃
n X

n , which may be simply X = Xn if the process stops at stage n. By the con-
struction, the points of X0 along with the open i-cells associated with the i-disks in
Xi for each i are disjoint and cover the cell complex X . The topology is given by
the rule that A ⊂ X is open if and only if A ∩ Xn is open in Xn for all n, where the
topology on Xn is given by the usual Euclidean topology on R

n .

Example 4.8. The real projective plane P
2
R
has a cell complex structure in which

X0 = {(0 : 0 : 1)} is a single point, X1 = X0 � {(0 : 1 : ∗)} is topologically a circle
formed by attaching a 1-cell to the point at both ends, and then X2 is formed by
attaching a 2-cell R2 to the circle such that the boundary wraps around the 1-cell
twice. This is because the points of the form (1 : xt : yt) as t → ∞ and as t → −∞
both approach the same point in X1, so the boundary map must be a 2-to-1 mapping.

Example 4.9. The complex projective planeP2
C
has a simpler cell complex structure,

consisting of starting with a single point X0 = {(0 : 0 : 1)}, and then attaching a 2-
cell (a copy ofC = R

2) like a balloon to form X2. A copy ofC2 = R
4 is then attached

to form X4.

The Schubert cells give a cell complex structure on the Grassmannian. For a
complete proof of this, see [53], section 3.2. We sketch the construction below.

Define the 0-skeleton X0 to be the zero-dimensional Schubert variety �((n−k)k ).
Define X2 to be X0 along with the 2-cell (since we are working over C and not R)
given by �◦

((n−k)k−1,n−k−1), and the attaching map given by the closure in Gr(n, k).
Note that the partition in this step is formed by removing a single corner square from
the ambient rectangle.

Then, X4 is formed by attaching the two four-cells given by removing two
outer corner squares in both possible ways, giving either �◦

((n−k)k−2,n−k−1,n−k−1) or
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�◦
((n−k)k−1,n−k−2). We can continue in this manner with each partition size to define

the entire cell structure, X0 ⊂ X2 ⊂ · · · ⊂ X2k(n−k).

Example 4.10. We have

Gr(4, 2) = �◦ � �◦ � �◦ � �◦ � �◦ � �◦
∅,

forming a cell complex structure in which X0 = �◦ , X2 is formed by attaching

�◦ , X4 is formed by attaching �◦ � �◦ , X6 is formed by attaching �◦ , and X8

is formed by attaching �◦
∅.

4.4 Cellular Homology and Cohomology

For a CW complex X = X0 ⊂ · · · ⊂ Xn , define

Ck = Z
#k-cells,

the free abelian group generated by the k-cells B(k)
α = (D(k)

α )◦.
Define the cellular boundary map dk+1 : Ck+1 → Ck by

dk+1(B
(k+1)
α ) =

∑
β

degαβ · B(k)
β ,

where degαβ is the degree of the composite map

∂B(k+1)
α → Xk → B(k)

β .

The first map above is the cellular attaching map from the boundary of the closure of
the ball B(k+1)

α to the k-skeleton, and the second map is the quotient map formed by
collapsing Xk \ B(k)

β to a point. The composite is a map from a k-sphere to another
k-sphere, which has a degree, whose precise definition we omit here and refer the
reader to [27], section 2.2, p. 134.As one example, the 2-to-1 attachingmap described
in Example 4.8 for P2

R
has degree 2.

It is known that the cellular boundary maps make the groups Ck into a chain
complex: a sequence of maps

0 → Cn
dn−→ Cn−1

dn−1−−→ Cn−2 → · · · → C1
d1−→ C0 → 0

for which di ◦ di+1 = 0 for all i . This latter condition implies that the image of the
map di+1 is contained in the kernel of di for all i , and so we can consider the quotient
groups
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Hi (X) = ker(di )/im(di+1)

for all i . These quotients are abelian groups called the cellular homology groups of
the space X .

Example 4.11. Recall that P2
C
consists of a point, a 2-cell, and a 4-cell. So, its

cellular chain complex is:

· · · → 0 → 0 → 0 → Z → 0 → Z → 0 → Z → 0

and the homology groups are H0 = H2 = H4 = Z, H1 = H3 = 0.
On the other hand, in P2

R
, the chain complex looks like:

0 → Z → Z → Z → 0

where the first map Z → Z is multiplication by 2 and the second is the 0 map, due to
the degrees of the attaching maps. It follows that H2 = 0, H1 = Z/2Z, and H0 = Z.

We can now define the cellular cohomology by dualizing the chain complex
above. In particular, define

Ck = Hom(Ck,Z) = {group homomorphisms f : Ck → Z}

for each k, and define the coboundary maps d∗
k : Ck−1 → Ck by

d∗
k f (c) = f (dk(c))

for any f ∈ Ck and c ∈ Ck . Then the coboundary maps form a cochain complex,
and we can define the cohomology groups to be the abelian groups

Hi (X) = ker(d∗
i+1)/im(d∗

i )

for all i .

Example 4.12. The cellular cochain complex for P2
C
is

0 → Z → 0 → Z → 0 → Z → 0 → 0 → 0 → · · ·

and so the cohomology groups are H 0 = H 2 = H 4 = Z, H 1 = H 3 = 0.

Finally, the direct sum of the cohomology groups

H∗(X) =
⊕

Hi (X)

has a ring structure given by the cup product ([27], p. 249), which is the dual of
the “cap product” ([27], p. 239) on homology and roughly corresponds to taking
intersection of cohomology classes in this setting.
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In particular, there is an equivalent definition of cohomology on theGrassmannian
known as the Chow ring, in which cohomology classes in H∗(X) are equivalence
classes of algebraic subvarieties under birational equivalence. (See [21], Sections
1.1 and19.1.) In otherwords, deformations under rational families are still equivalent:
in P

2, for instance, the family of algebraic subvarieties of the form xy − t z2 = 0
as t ∈ C varies are all in one equivalence class, even as t → 0 and the hyperbola
degenerates into two lines.

The main fact we will be using under this interpretation is the following, which
we state without proof. (See [22], Section 9.4 for more details.)

Theorem 4.13. The cohomology ring H∗(Gr(n, k)) has a Z-basis given by the
classes

σλ := [�λ(F•)] ∈ H 2|λ|(Gr(n, k))

for λ a partition fitting inside the ambient rectangle. The cohomology H ∗(Gr(n, k))
is a graded ring, so σλ · σμ ∈ H 2|λ|+2|μ|(Gr(n, k)), and we have

σλ · σμ = [�λ(F•) ∩ �μ(E•)]

where F• and E• are the standard and opposite flags.

Note that σλ is independent of the choice of flag F•, since any two Schubert
varieties of the same partition shape are rationally equivalent via a change of basis.

We can now restate the intersection problems in terms of multiplying Schubert
classes. In particular, if λ(1), . . . ,λ(r) are partitions with

∑
i |λ(i)| = k(n − k), then

σλ(1) · · ·σλ(r) ∈ Hk(n−k)(Gr(n, k))

and there is only one generator of the top cohomology group, namely σB where B
is the ambient rectangle. This is the cohomology class of the single point �B(F•)
for some flag F•. Thus the intersection of the Schubert varieties �λ(1) (F (1)• ) ∩ · · · ∩
�λ(r) (F (r)• ) is rationally equivalent to a finite union of points, the number of which
is the coefficient cB

λ(1),...,λ(r) in the expansion

σλ(1) · · ·σλ(r) = cBλ(1),...,λ(r)σB .

For a sufficiently general choice of flags, the cB
λ(1),...,λ(r) points in the intersection are

distinct with no multiplicity.
In general, we wish to understand the coefficients that we get upon multiplying

Schubert classes and expressing the product back in the basis {σλ}of Schubert classes.
Example 4.14. In Problem 3.4, we saw that Question 1.1 can be rephrased as com-
puting the size of the intersection

��(F (1)
• ) ∩ ��(F (2)

• ) ∩ ��(F (3)
• ) ∩ ��(F (4)

• )
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for a given generic choice of flags F (1)• , . . . , F (4)• . By the above analysis, we can
further reduce this problem to computing the coefficient c for which

σ� · σ� · σ� · σ� = c · σ

in H∗(Gr(4, 2)).

4.5 Connection with Symmetric Functions

We can model the cohomology ring H∗(Gr(n, k)) algebraically as a quotient of the
ring of symmetric functions. We only cover the essentials of symmetric function
theory for our purposes here, and refer the reader to Chapter 7 of [51], or the books
[38] or [48] for more details, or to [22] for the connection between H∗(Gr(n, k))
and the ring of symmetric functions.

Definition 4.15. The ring of symmetric functions �C(x1, x2, . . .) is the ring of
bounded-degree formal power series f ∈ C[[x1, x2, . . .]]which are symmetric under
permuting the variables, that is,

f (x1, x2, . . .) = f (xπ(1), xπ(1), . . .)

for any permutation π : Z+ → Z+ and deg( f ) < ∞.

For instance, x21 + x22 + x23 + · · · is a symmetric function of degree 2.
The most important symmetric functions for Schubert calculus are the Schur

functions. They can be defined in many equivalent ways, from being characters of
irreducible representations of Sn to an expression as a ratio of determinants. We use
the combinatorial definition here and start by introducing some common terminology
involving Young tableaux and partitions.

Definition 4.16. A skew shape is the difference ν/λ formed by cutting out the
Young diagram of a partition λ from the strictly larger partition ν. A skew shape is
a horizontal strip if no column contains more than one box.

Definition 4.17. A semistandard Young tableau (SSYT) of shape ν/λ is a way
of filling the boxes of the Young diagram of ν/λ with positive integers so that the
numbers are weakly increasing across rows and strictly increasing down columns.
An SSYT has content μ if there are μi boxes labeled i for each i . The reading word
of the tableau is the word formed by concatenating the rows from bottom to top.

The following is a semistandard Young tableau of shape ν/λ and content μwhere
ν = (6, 5, 3), λ = (3, 2), and μ = (4, 2, 2, 1). Its reading word is 134223111.

1 1 1
2 2 3

1 3 4
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Definition 4.18. Let λ be a partition. Given a semistandard Young tableau T of
shape λ, define xT = xm1

1 xm2
2 · · · where mi is the number of i’s in T . The Schur

function for a partition λ is the symmetric function defined by

sλ =
∑
T

xT

where the sum ranges over all SSYT’s T of shape λ.

Example 4.19. For λ = (2, 1), the tableaux

1 1
2

1 2
2

1 1
3

1 2
3

1 3
2 · · ·

are a few of the infinitely many SSYT’s of shape λ. Thus we have

sλ = x21 x2 + x1x
2
2 + x21 x3 + 2x1x2x3 + · · · .

It is well known that the Schur functions sλ are symmetric and form a vector space
basis of �(x1, x2, . . .) as λ ranges over all partitions. The key fact that we will need
is that they allow us to understand the cohomology ring H∗(Gr(n, k)), as follows.

Theorem 4.20. There is a ring isomorphism

H∗(Gr(n, k))∼= �(x1, x2, . . .)/(sλ|λ �⊂ B)

where B is the ambient rectangle and (sλ|λ �⊂ B) is the ideal generated by the Schur
functions. The isomorphism sends the Schubert class σλ to the Schur function sλ.

This is a pivotal theorem in the study of the Grassmannian, since it allows us to
compute in the cohomology ring simply by working with symmetric polynomials.
In particular, multiplying Schur functions corresponds to multiplying cohomology
classes, which in turn gives us information about intersections of Schubert varieties.

As an approach to prove Theorem 4.20, note that sending σλ to sλ is an iso-
morphism of the underlying vector spaces, since on the right-hand side we have
quotiented by the Schur functions whose partition does not fit inside the ambient
rectangle. So, it remains to show that this isomorphism respects the multiplications
in these rings, taking cup product to polynomial multiplication.

An important first step is the Pieri Rule. For Schur functions, this tells us how to
multiply a one-row shape by any other partition:

s(r) · sλ =
∑

ν/λ horz. strip of size r

sν .

We wish to show that the same relation holds for the σλ’s, that is, that
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σ(r) · σλ =
∑

ν/λ horz. strip of size r

σν,

where the sum on the right is restricted to partitions ν fitting inside the ambient
rectangle. Note that we do not need this restriction for general Schur functions, but
in the cohomology ringwe are considering the quotient by partitions not fitting inside
the ambient rectangle, so the two expansions above are not exactly the same.

Note that, by theDualityTheorem,we canmultiply both sides of the above relation
by σμc to extract the coefficient of σμ on the right-hand side. So, the Pieri Rule is
equivalent to the following restatement:

Theorem 4.21 (Pieri Rule). Let λ and μ be partitions with |λ| + |μ| = k(n − k) −
r . Then if F•, E•, and H• are three sufficiently general flags then the intersection

�λ(F•) ∩ �μ(E•) ∩ �(r)(H•)

has 1 element if μc/λ is a horizontal strip, and it is empty otherwise.

Sketch of Proof. We can set F• and E• to be the standard and opposite flags and H•
a generic flag distinct from F• or E•. We can then perform a direct analysis similar
to that in the Duality Theorem. See [22] for full details. �

Algebraically, the Pieri rule suffices to show the ring isomorphism, because the
Schur functions s(r) and corresponding Schubert classes σ(r) form an algebraic set
of generators for their respective rings. Therefore, to intersect Schubert classes we
simply have to understand how to multiply Schur functions.

4.6 The Littlewood–Richardson Rule

The combinatorial rule for multiplying Schur functions, or Schubert classes, is called
the Littlewood–Richardson Rule. To state it, we need to introduce a few new
notions.

Definition 4.22. A word w1w2 · · ·wn (where each wi ∈ {1, 2, 3, . . .}) is
Yamanouchi (or lattice or ballot) if every suffix wkwk+1 · · ·wn contains at least
as many letters equal to i as i + 1 for all i .

For instance, the word 231211 is Yamanouchi, because the suffixes 1, 11, 211,
1211, 31211, and 231211 each contain at least as many 1’s as 2’s, and at least as
many 2’s as 3’s.

Definition 4.23. A Littlewood–Richardson tableau is a semistandard Young
tableau whose reading word is Yamanouchi.

Exercise 4.24. The example tableau in Fig. 3 is not Littlewood–Richardson. Why?
Can you find a tableau of that shape that is?
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Fig. 3 An example of a
skew Littlewood–Richardson
tableau

1 1 1
2 2 3

1 3 4

Definition 4.25. Asequence of skew tableaux T1, T2, . . . forma chain if their shapes
do not overlap and

T1 ∪ T2 ∪ · · · ∪ Ti

is a partition shape for all i .

We can now state the general Littlewood–Richardson rule.Wewill refer the reader
to [22] for a proof, as the combinatorics is quite involved.

Theorem 4.26. We have

sλ(1) · · · · · sλ(m) =
∑

ν

cν
λ(1),...,λ(m)sν

where cν
λ(1),...,λ(m) is the number of chains of Littlewood–Richardson tableaux of con-

tents λ(i) with total shape ν.

It is worth noting that in many texts, the following corollary is the primary focus,
since the above theorem can be easily derived from the m = 2 case stated below.

Corollary 4.27. We have
sλsμ =

∑
ν

cν
λμsν

where cν
λμ is the number of Littlewood–Richardson tableaux of skew shape ν/λ and

content μ.

Proof. By Theorem 4.26, cν
λμ is the number of chains of two Littlewood–Richardson

tableaux of content λ and μ with total shape ν. The first tableau of content λ is
a straight shape tableau, so by the Yamanouchi reading word condition and the
semistandard condition, the top row can only contain 1’s. Continuing this reasoning
inductively, it has only i’s in its i th row for each i . Therefore, the first tableau in the
chain is the unique tableau of shape λ and content λ.

Thus, the second tableau is a Littlewood–Richardson tableau of shape ν/λ and
content μ, and the result follows. �

As a consequence of Theorems 4.26 and 4.20, in H∗(Gr(n, k)) we have

σλ(1) · · · · · σλ(m) =
∑

ν

cν
λ(1),...,λ(m)σν
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where now the sum on the right is restricted to partitions ν fitting inside the ambient
rectangle. Note that by the combinatorics of the Littlewood–Richardson rule, the
coefficients on the right are nonzero only if |ν| = ∑ |λ(i)|, and so in the case of a
zero-dimensional intersection of Schubert varieties, the only possible ν on the right-
hand side is the ambient rectangle B itself. Moreover, �B(F•) is a single point of
Gr(n, k) for any flag F•. The zero-dimensional Littlewood–Richardson rule follows
as a corollary.

Theorem 4.28 (Zero-Dimensional Littlewood–Richardson Rule). Let B be the k ×
(n − k) ambient rectangle, and let λ(1), . . . ,λ(m) be partitions fitting inside B such
that |B| = ∑

i |λ(i)|. Also let F (1)• , . . . , F (m)• be any m generic flags. Then

cBλ(1),...,λ(m) := |�λ(1) (F (1)
• ) ∩ · · · ∩ �λ(m) (F (m)

• )|

is equal to the number of chains of Littlewood–Richardson tableaux of contents
λ(1), . . . ,λ(m) with total shape equal to B.

Example 4.29. Suppose k = 3 and n − k = 4. Let λ(1) = (2, 1), λ(2) = (2, 1),
λ(3) = (3, 1), and λ(4) = 2. Then there are five different chains of Littlewood–
Richardson tableaux of contents λ(1), . . . ,λ(4) that fill the k × (n − k) ambient rect-
angle, as shown in Fig. 4. Thus cB

λ(1),...,λ(4) = 5.

Example 4.30. We can now solve Question 1.1. In Example 4.14, we showed that
it suffices to compute the coefficient c in the expansion

σ� · σ� · σ� · σ� = c · σ

in H∗(Gr(4, 2)). This is the Littlewood–Richardson coefficient c(2,2)
�,�,�,�. This is

the number of ways to fill a 2 × 2 ambient rectangle with a chain of Littlewood–
Richardson tableaux having one box each.

Since such a tableau can only have a single 1 as its entry, we will label the entries
with subscripts indicating the step in the chain to distinguish them. We have two
possibilities, as shown in Fig. 5. Therefore the coefficient is 2, and so there are 2
lines passing through four generic lines in P4.

In Example 4.30, we are in the special case in which each Littlewood–Richardson
tableau in the chain has only one box, and so the only choice we have is the ordering

1 1 1 1
2 2 1 1
1 2 1 1

1 1 1 1
2 1 1 1
2 2 1 1

1 1 1 1
2 1 2 2
1 1 1 1

1 1 1 1
2 2 1 2
1 1 1 1

1 1 1 1
2 1 1 2
2 1 1 1

Fig. 4 The five chains of Littlewood–Richardson tableaux of contents λ(1) = (2, 1), λ(2) = (2, 1),
λ(3) = (3, 1), and λ(4) = 2 filling an ambient 3 × 4 rectangle
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11 12
13 14

11 13
12 14

Fig. 5 The two tableaux chains used to enumerate the Littlewood–Richardson coefficient that
answers Question 1.1

of the boxes in a way that forms a chain. We can, therefore, simply represent such a
tableau by its indices instead, and the two tableaux of Fig. 5 become

1 2
3 4 and

1 3
2 4 .

The two tableaux above are characterized by the property that the entries 1, 2, 3, 4
are used exactly once and the rows and columns are strictly increasing. Such a tableau
is called a standard Young tableaux.

Definition 4.31. A standard Young tableau of shape λ with |λ| = n is an SSYT
of shape λ in which the numbers 1, 2, . . . , n are each used exactly once.

There is a well-known explicit formula, known as the Hook length formula, for
the number of standard Young tableaux of a given shape, due to Frame, Robinson,
and Thrall [18]. To state it we need the following definition.

Definition 4.32. For a square s in a Young diagram, define the hook length

hook(s) = arm(s) + leg(s) + 1

where arm(s) is the number of squares strictly to the right of s in its row and leg(s)
is the number of squares strictly below s in its column.

Theorem 4.33 (Hook length formula.) The number of standard Young tableaux of
shape λ is

|λ|!∏
s∈λ hook(s)

.

For example, if λ = (2, 2) then we have 4!
3·2·2·1 = 2 standard Young tableaux of

shape λ, which matches our answer in Example 4.30.

4.7 Problems

4.1. Prove Lemma 4.4: For any transverse flags F ′• and E ′•, there is some g ∈ GLn

such that gF ′• = F• and gE ′• = E•, where F• and E• are the standard and
opposite flags.
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4.2. It’s all Littlewood–Richardson:Verify that the Duality Theorem and the Pieri
Rule are both special cases of the Littlewood–Richardson rule.

4.3. An empty intersection: Show that

�(1,1)(F•) ∩ �(2)(E•) = ∅

in Gr(4, 2) for transverse flags F• and E•. What does this mean geometrically?
4.4. A nonempty intersection: Show that

�(1,1)(F•) ∩ �(2)(E•)

is nonempty in Gr(5, 2). (Hint: intersecting it with a certain third Schubert
variety will be nonempty by the Littlewood–Richardson rule.) What does this
mean geometrically?

4.5. Problem 3.4 revisited: In P4, suppose the 2-planes A and B intersect in a point
X , and P and Q are distinct points different from X . Show that there is exactly
one plane C that contains both P and Q and intersect A and B each in a line as
an intersection of Schubert varieties in Gr(5, 3), in each of the following cases:

(a) When P is contained in A and Q is contained in B;
(b) When neither P nor Q lie on A or B.

4.6. That’s a lot of k-planes: Solve Question 1.2 for a generic choice of flags as
follows.

(a) Verify that the problem boils down to computing the coefficient of s((n−k)k )

in the product of Schur functions sk(n−k)
(1) .

(b) Use the Hook Length Formula to finish the computation.

5 Variation 2: The Flag Variety

For the content in this section, we refer to [39], unless otherwise noted below.
The (complete) flag variety (in dimension n) is the set of all complete flags inCn ,

with a Schubert cell decomposition similar to that of the Grassmannian. In particular,
given a flag

V• : V0 ⊂ V1 ⊂ · · · Vn = C
n,

we can choose n vectors v1, . . . , vn such that the span of v1, . . . , vi is Vi for each i ,
and list the vectors vi as row vectors of an n × n matrix. We can then perform certain
row reduction operations to form a different ordered basis v′

1, . . . , v
′
n that also span

the subspaces of the flag, but whose matrix entries consist of a permutation matrix
of 1’s, all 0’s to the left and below each 1, and arbitrary complex numbers in all other
entries.
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For instance, say we start with the flag in three dimensions generated by the
vectors (0, 2, 3), (1, 1, 4), and (1, 2,−3). The corresponding matrix is

⎛
⎝
0 2 3
1 1 4
1 2 −3

⎞
⎠ .

We start by finding the leftmost nonzero element in the first row and scale that row
so that this element is 1. Then subtract multiples of this row from the rows below it
so that all the entries below that 1 are 0. Continue the process on all further rows:

⎛
⎝
0 2 3
1 1 4
1 2 −3

⎞
⎠ →

⎛
⎝
0 1 1.5
1 0 2.5
1 0 −6

⎞
⎠ →

⎛
⎝
0 1 1.5
1 0 2.5
0 0 1

⎞
⎠

It is easy to see that this process does not change the flag formed by the initial row
spans and that any two matrices in canonical form define different flags. So, the flag
variety is a cell complex consisting of n! Schubert cells indexed by permutations.
For instance, one such open set in the five-dimensional flag variety is the open set
given by all matrices of the form

⎛
⎜⎜⎜⎜⎝

0 1 ∗ ∗ ∗
1 0 ∗ ∗ ∗
0 0 0 0 1
0 0 1 ∗ 0
0 0 0 1 0

⎞
⎟⎟⎟⎟⎠

We call this cell X◦
45132 because 4, 5, 1, 3, 2 are the positions of the 1’s from the

right-hand side of the matrix in order from top to bottom. More rigorously, we define
a Schubert cell as follows.

Definition 5.1 Let w ∈ Sn be a permutation of {1, . . . , n}. Then the Schubert cell
of w is defined by

X◦
w = {V• ∈ Fln : dim(Vp ∩ Fq) = #{i ≤ p : w(i) ≤ q} for all p, q}

where F• is the standard flag generated by the unit vectors en+1−i . In the matrix form
above, the columns are ordered from right to left as before.

Note that, as in the case of the Grassmannian, we can choose a different flag F•
with respect to which we define our Schubert cell decomposition, and we define
X◦

w(F•) accordingly.
The dimension of a Schubert cell Xw is the number of ∗’s in its matrix, that is, the

number of entries above and right of the pivot 1 in its row and column. Themaximum
number of ∗’s occurs when the permutation is w0 = n(n − 1) · · · 321, in which case
the dimension of the open set Xw0 is n(n − 1)/2 (or n(n − 1) over R). In general,



Variations on a Theme of Schubert Calculus 143

it is not hard to see that the number of ∗’s in the set Xw is the inversion number
inv(w). This is defined to be the number of pairs of entries (w(i), w( j)) of w which
are out of order, that is, i < j and w(i) > w( j). Thus we have

dim(X◦
w) = inv(w).

Example 5.2 The permutationw = 45132 has seven inversions. (Can you find them
all?) We also see that dim(X◦

w) = 7, since there are seven ∗ entries in the matrix.

Another useful way to think of inv(w) is in terms of its length.

Definition 5.3 Define s1, . . . , sn−1 ∈ Sn to be theadjacent transpositions in the sym-
metric group, that is, si is the permutation interchanging i and i + 1. Then the length
of w, written �(w), is the smallest number k for which there exists a decomposition

w = si1 · · · sik .

Lemma 5.4 We have �(w) = inv(w) for any w ∈ Sn.

We will leave the proof of this lemma as an exercise to the reader in the Problems
Section.

5.1 Schubert Varieties and the Bruhat Order

By using the Plücker embeddings Gr(n, k) ↪→ P(nk)−1 for each k, we can embed
Fln into the larger projective space P

2n−1 whose entries correspond to the Plücker
coordinates of each of the initial k × n submatrices of a given element of the flag
variety. This makes Fln a projective subvariety of P2n−1 (see [22] for more details),
which in turn gives rise to a topology on Fln , known as the Zariski topology. Now,
consider the closures of the sets X◦

w in this topology.

Definition 5.5 The Schubert variety corresponding to a permutation w ∈ Sn is

Xw = X◦
w.

As in the Grassmannian, these Schubert varieties turn out to be disjoint unions
of Schubert cells. The partial ordering in which Xw = �v≤wX◦

v is called the Bruhat
order, a well-known partial order on permutations. We will briefly review it here,
but we refer to [10] for an excellent introduction to Bruhat order.

Definition 5.6 The Bruhat order ≤ on Sn is defined by v ≤ w if and only if, for
every representation of w as a product of l(w) transpositions si , one can remove
l(w) − l(v) of the transpositions to obtain a representation of v as a subword in the
same relative order.
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Example 5.7 The permutation w = 45132 can be written as s2s3s2s1s4s3s2. This
contains s3s2s3 = 14325 as a (non-consecutive) subword, and so 14325 ≤ 45132.

5.2 Intersections and Duality

Now suppose we wish to answer incidence questions about our flags: which flags
satisfy certain linear constraints? As in the case of the Grassmannian, this boils down
to understanding how the Schubert varieties Xw intersect.

We start with the Duality Theorem for Fln . Following [22], it will be convenient
to define dual Schubert varieties as follows.

Definition 5.8 Let E• be the standard and opposite flags, and for shorthand we let
Xw = Xw(F•) and

Yw = Xw0·w(E•)

where w0 = n(n − 1) · · · 1 is the longest word. The set Yw is often called a dual
Schubert variety.

Notice that

dim(Yw) = inv(w0 · w) = n(n − 1)/2 − inv(w)

since if w′ = w0 · w then w′(i) = n + 1 − w(i) for all i .

Theorem 5.9 (Duality Theorem, V2.). If l(w) = l(v), we have Xw ∩ Yv = ∅ ifw �=
v and |Xw ∩ Yv| = 1 if w = v. Furthermore, if l(w) < l(v) then Xw ∩ Yv = ∅.

The proof works similarly to the Duality Theorem in the Grassmannian. In par-
ticular, with respect to the standard basis, the dual Schubert variety Yw is formed by
the same permutation matrix of 1’s as in Xw, but with the 0 entries below and to the
right of the 1’s (and ∗ entries elsewhere). For instance, we have

X45132 =

⎛
⎜⎜⎜⎜⎝

0 1 ∗ ∗ ∗
1 0 ∗ ∗ ∗
0 0 0 0 1
0 0 1 ∗ 0
0 0 0 1 0

⎞
⎟⎟⎟⎟⎠

, Y45132 =

⎛
⎜⎜⎜⎜⎝

∗ 1 0 0 0
1 0 0 0 0
0 0 ∗ ∗ 1
0 0 1 0 0
0 0 0 1 0

⎞
⎟⎟⎟⎟⎠

and their intersection contains only the permutation matrix determined by w =
45132.
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5.3 Schubert Polynomials and the Cohomology Ring

In order to continue our variation on the theme, it would be natural at this point to
look for a Pieri rule or a Littlewood–Richardson rule. But just as the cohomology
ring of the Grassmannian and the Schur functions made those rules more natural, we
now turn to Schubert polynomials and the cohomology ring H∗(Fln) over Z.

This ring has a natural interpretation as a quotient of a polynomial ring. In
particular, letting σw be the cohomology class of Yw, we have σw ∈ H 2i (Fln)
where i = inv(w). For the transpositions si , we have σsi ∈ H 2(Fln). The elements
xi = σsi − σsi+1 for i ≤ n − 1 and xn = −σsn−1 gives a set of generators for the coho-
mology ring, and in fact

H∗(Fln) = Z[x1, . . . , xn]/(e1, . . . , en) =: Rn

where e1, . . . , en are the elementary symmetric polynomials in x1, . . . , xn . (See [22]
or [6].)

The ring Rn is known as the coinvariant ring and arises in many geometric and
combinatorial contexts. Often defined over a field k rather than Z, its dimension as
a k-vector space (or rank as a Z-module) is n!. There are many natural bases for Rn

of size n!, such as the monomial basis given by

{xa11 · · · xann : ai ≤ n − i for all i}

(see, for instance [23]), the harmonic polynomial basis (see [5], Section 8.4) and
the Schubert basis described below. There are also many famous generalizations
of the coinvariant ring, such as the Garsia–Procesi modules [23] and the diagonal
coinvariants (see [5], Chapter 10), which are closely tied to the study of Macdonald
polynomials in symmetric function theory [38].

The Schubert polynomials form a basis of Rn whose product corresponds to the
intersection of Schubert varieties. To define them, we require a divided difference
operator.

Definition 5.10. For any polynomial P(x1, . . . , xn) ∈ Z[x1, . . . , xn], we define

∂i (P) = P − si (P)

xi − xi+1

where si (P) = P(x1, . . . , xi−1, xi+1, xi , xi+2, . . . , xn) is the polynomial formed by
switching xi and xi+1 in P .

We can use these operators to recursively define the Schubert polynomials.

Definition 5.11. We define the Schubert polynomials Sw for w ∈ Sn by:

• Sw0 = xn−1
1 xn−2

2 · · · x2n−2xn−1 where w0 = n(n − 1) · · · 21 is the longest permu-
tation,
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• Ifw �= w0, find aminimal factoriation of the formw = w0 · si1 · · · · sir is aminimal
factorization of its form, that is, a factorization for which �(w0 · si1 · · · · si p ) =
n − p for all 1 ≤ p ≤ r . Then

Sw = ∂ir ◦ ∂ir−1 ◦ · · · ◦ ∂i1(Sw0)

Remark 5.12. One can show that the operators ∂i satisfy the two relations below.

• Commutation Relation: ∂i∂ j = ∂ j∂i for any i, j with |i − j | > 1,
• Braid Relation: ∂i∂i+1∂i = ∂i+1∂i∂i+1 for any i .

Since these (along with s2i = 1) generate all relations satisfied by the reflections
si (see chapter 3 of [10]), the construction in Definition 5.11 is independent of the
choice ofminimal factorization. Note also that ∂2

i = 0, so the requirement ofminimal
factorizations is necessary in the definition.

The Schubert polynomials’ image in Rn not only form a basis of these cohomology
rings, but the polynomials themselves form a basis of all polynomials in the following
sense. The Schubert polynomials Sw are well defined for permutations w ∈ S∞ =⋃

Sm for which w(i) > w(i + 1) for all i ≥ k for some k. For a fixed such k, these
Schubert polynomials form a basis for Z[x1, . . . , xk].

One special case of the analog of the Pieri rule for Schubert polynomials is known
as Monk’s rule.

Theorem 5.13 (Monk’s rule).We have

Ssi ·Sw =
∑

Sv

where the sum ranges over all permutations v obtained from w by:

• Choosing a pair p, q of indices with p ≤ i < q for which w(p) < w(q) and for
any k between p and q, w(k) is not between w(p) and w(q),

• Defining v(p) = w(q), v(q) = w(p) and for all other k, v(k) = w(k).

Equivalently, the sum is over all v = w · t where t is a transposition (pq) with
p ≤ i < q for which l(v) = l(w) + 1.

Interestingly, there is not a known “Littlewood–Richardson rule” that generalizes
Monk’s rule, and this is an important open problem in Schubert calculus.

OpenProblem 5.14. Find a combinatorial interpretation analogous to the
Littlewood–Richardson rule for the positive integer coefficients cw

u,v in the expan-
sion

Su ·Sv =
∑

cw
u,v Sw,

and therefore for computing the intersection of Schubert varieties in Fln.

Similar open problems exist for other partial flag varieties, defined in the next
sections.
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5.4 Two Alternative Definitions

There are two other ways of defining the flagmanifold that are somewhat less explicit
but more generalizable. The group GLn = GLn(C) acts on the set of flags by left
multiplication on its ordered basis. Under this action, the stabilizer of the standard
flag F• is the subgroup B consisting of all invertible upper triangular matrices. Notice
that GLn acts transitively on flags via change-of-basis matrices, and so the stabilizer
of any arbitrary flag is simply a conjugation gBg−1 of B. We can, therefore, define
the flag variety as the set of cosets in the quotient GLn /B, and define its variety
structure accordingly.

Alternatively, we can associate to each coset gB in GLn /B the subgroup gBg−1.
Since B is its own normalizer in G (gBg−1 = B iff g ∈ B), the cosets in GLn /B
are in one-to-one correspondence with subgroups conjugate to B. We can, therefore,
define the flag variety as the set B of all subgroups conjugate to B.

5.5 Generalized Flag Varieties

The notion of a “flag variety” can be extended in an algebraic way starting from the
definition as GLn /B, to quotients of other matrix groups G by certain subgroups
B called Borel subgroups. The subgroup B of invertible upper triangular matrices
is an example of a Borel subgroup of GLn , that is, a maximal connected solvable
subgroup. It is connected because it is the product of the torus (C∗)n and

(n
2

)
copies of

C.We can also show that it is solvable,meaning that its derived series of commutators

B0 := B,

B1 := [B0, B0],
B2 := [B1, B1],

...

terminates. Indeed, [B, B] is the set of all matrices of the form bcb−1c−1 for b and c in
B. Writing b = (d1 + n1) and c = (d1 + n2) where d1 and d2 are diagonal matrices
and n1 and n2 strictly upper triangular, it is not hard to show that bcb−1c−1 has all
1’s on the diagonal. By a similar argument, one can show that the elements of B2

have 1’s on the diagonal and 0’s on the off-diagonal, and B3 has two off-diagonal
rows of 0’s, and so on. Thus, the derived series is eventually the trivial group.

In fact, a well-known theorem of Lie and Kolchin [31] states that all solvable
subgroups ofGLn consist of upper triangularmatrices in some basis. This implies that
B is maximal as well among solvable subgroups. Therefore, B is a Borel subgroup.

The Lie–Kolchin theorem also implies that all the Borel subgroups in GLn are
of the form gBg−1 (and all such groups are Borel subgroups). That is, all Borel
subgroups are conjugate. It turns out that this is true for any semisimple linear
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algebraic group G, that is, a matrix group defined by polynomial equations in the
matrix entries, such that G has no nontrivial smooth connected solvable normal
subgroups.

Additionally, any Borel subgroup in a semisimple linear algebraic group G is its
own normalizer. By an argument identical to that in the previous section, it follows
that the groups G/B are independent of the choice of Borel subgroup B (up to
isomorphism) and are also isomorphic to the set B of all Borel subgroups of G as
well. Therefore, we can think of B as an algebraic variety by inheriting the structure
from G/B for any Borel subgroup B.

Finally, we can define a generalized flag variety as follows.

Definition 5.15. The flag variety of a semisimple linear algebraic group G to be
G/B where B is a Borel subgroup.

Some classical examples of such linear algebraic groups are the special linear
group SLn , the special orthogonal group SOn of orthogonal n × n matrices, and the
symplectic group SP2n of symplectic matrices. We will explore a related quotient of
the special orthogonal group SO2n+1 in Sect. 6.

We now define partial flag varieties, another generalization of the complete flag
variety. Recall that a partial flag is a sequence Fi1 ⊂ · · · ⊂ Fir of subspaces of C

n

with dim(Fi j ) = i j for all j . Notice that a k-dimensional subspace of Cn can be
thought of as a partial flag consisting of a single subspace Fk .

It is not hard to show that all partial flag varieties, the varieties of partial flags
of certain degrees, can be defined as a quotient G/P for a parabolic subgroup P ,
namely a closed intermediate subgroup B ⊂ P ⊂ G. The Grassmannian Gr(n, k),
then, can be thought of as the quotient ofGLn by the parabolic subgroup S = Stab(V )

where V is any fixed k-dimensional subspace of Cn . Similarly, we can start with a
different algebraic group, say the special orthogonal group SO2n+1, and quotient by
parabolic subgroups to get partial flag varieties of other types.

5.6 Problems

5.1. Reflection length equals inversion number: Show that l(w) = inv(w) for any
w ∈ Sn .

5.2. Practice makes perfect: Write out all the Schubert polynomials for permuta-
tions in S3 and S4.

5.3. Braid relations:Verify that the operators ∂i satisfy the braid relations as stated
in Remark 5.12.

5.4. The product rule for Schubert calculus: Prove that ∂i (P · Q) = ∂i (P) · Q +
si (P) · ∂i (Q) for any two polynomials P and Q.

5.5. Divided difference acts on Rn: Use the previous problem to show that the
operator ∂i maps the ideal generated by elementary symmetric polynomials to
itself, and hence, the operator descends to a map on the quotient Rn .
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5.6. Schubert polynomials as a basis:Prove that ifw ∈ S∞ satisfiesw(i) > w(i +
1) for all i ≥ k then Sw ∈ Z[x1, . . . , xk]. Show that they form a basis of the
polynomial ring as well.

6 Variation 3: The Orthogonal Grassmannian

In the previous section,we saw thatwe can interpret theGrassmannian as a partial flag
variety.We can generalize this construction to other matrix groupsG, hence, defining
Grassmannians in other Lie types. We will explore one of these Grassmannians as
our final variation.

Definition 6.1. The orthogonal Grassmannian OG(2n + 1, k) is the quotient
SO2n+1/P where P is the stabilizer of a fixed isotropic k-dimensional subspace V .
The term isotropic means that V satisfies 〈v,w〉 = 0 for all v,w ∈ V with respect
to a chosen symmetric bilinear form 〈, 〉.

The isotropic condition, at first glance, seems very unnatural. After all, how could
a nonzero subspace possibly be orthogonal to itself? Well, it is first important to
note that we are working over C, not R, and the bilinear form is symmetric, not
conjugate-symmetric. In particular, suppose we define the bilinear form to be the
usual dot product

〈(a1, . . . , a2n+1), (b1, . . . , b2n+1)〉 = a1b1 + a2b2 + · · · + a2n+1b2n+1

in C2n+1. Then in C3, the vector (3, 5i, 4) is orthogonal to itself: 3 · 3 + 5i · 5i + 4 ·
4 = 0.

While the choice of symmetric bilinear form does not change the fundamental
geometry of the orthogonal Grassmannian, one choice in particular makes things
easier to work with in practice: the “reverse dot product” given by

〈(a1, . . . , a2n+1), (b1, . . . , b2n+1)〉 =
2n+1∑
i=1

aib2n+1−i .

In particular, with respect to this symmetric form, the standard complete flag F• is an
orthogonal flag, with F⊥

i = F2n+1−i for all i . Orthogonal flags are precisely the type
of flags that are used to define Schubert varieties in the orthogonal Grassmannian.

Note that isotropic subspaces are sent to other isotropic subspaces under the action
of the orthogonal group: if 〈v,w〉 = 0 then 〈Av, Aw〉 = 〈v,w〉 = 0 for any A ∈
SO2n+1. Thus the orthogonal Grassmannian OG(2n + 1, k), which is the quotient
SO2n+1/Stab(V ), can be interpreted as the variety of all k-dimensional isotropic
subspaces of C2n+1.
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6.1 Schubert Varieties and Row Reduction in OG(2n + 1, n)

Just as in the ordinary Grassmannian, there is a Schubert cell decomposition for
the orthogonal Grassmannian. The combinatorics of Schubert varieties are particu-
larly nice in the case of OG(2n + 1, n) in which the orthogonal subspaces are “half
dimension” n. (See the introduction of [54] or the book [26] for more details.)

In Gr(2n + 1, n), the Schubert varieties are indexed by partitions λ whose Young
diagram fit inside the n × (n + 1) ambient rectangle. Suppose we divide this rect-
angle into two staircases as shown below using the blue cut, and only consider the
partitions λ that are symmetric with respect to the reflective map taking the upper
staircase to the lower.

∗
∗
∗
∗∗

∗
∗

∗
∗

∗
∗∗

We claim that the Schubert varieties of the orthogonal Grassmannian are indexed
by the shifted partitions formed by ignoring the lower half of these symmetric
partition diagrams. We define the ambient triangle to be the half of the ambient
rectangle above the staircase cut.

Definition 6.2. A shifted partition is a strictly decreasing sequence of positive
integers, λ = (λ1 > . . . > λk). We write |λ| = ∑

λi . The shifted Young diagram
of λ is the partial grid in which the i th row contains λi boxes and is shifted to the
right i steps. Below is the shifted Young diagram of the shifted partition (3, 1), drawn
inside the ambient triangle from the example above.

Definition 6.3. Let F• be an orthogonal flag inC2n+1, and letλ be a shifted partition.
Then the Schubert variety Xλ(F•) is defined by

Xλ(F•) = {W ∈ OG(2n + 1, n) : dim(W ∩ Fn+1+i−λi
) ≥ i for i = 1, . . . , n}

where λ is the “doubled partition” formed by reflecting the shifted partition about
the staircase.

In other words, the Schubert varieties consist of the isotropic elements of the
ordinary Schubert varieties, giving a natural embedding OG(2n + 1, n) → Gr(2n +
1, n) that respects the Schubert decompositions:



Variations on a Theme of Schubert Calculus 151

Xλ(F•) = �λ(F•) ∩ OG(2n + 1, n).

To get a sense of how this works, consider the example of λ = (3, 1) and λ =
(4, 3, 1) shown above, in the case n = 4. The Schubert cell �◦

λ
in Gr(9, 4) looks like

1 ∗
1
0

∗
∗

∗
∗

1
0
0

∗
∗
∗

1
0
0
0

∗
∗
∗
∗

0
0
0 0

0
0

0
0

0
0

0
0 0 0

Now, which of these spaces are isotropic? Suppose we label the starred entries as
shown, omitting the 0 entries:

1 a
1 f

b

g

c

1 j

h
d

1 l
k
i
e

1
2
3
4

We will show that the entries l, j, k, h, i, e are all uniquely determined by the
values of the remaining variables a, b, c, d, f, g. Thus, there is one isotropic subspace
in this cell for each choice of values a, b, c, d, f, g, corresponding to the “lower half”
of the partition diagram we started with, namely

l
k
i
e

j

h
d

g

c
f

ba

To see this, let the rows of the matrix be labeled 1, 2, 3, 4 from top to bottom as
shown, and suppose its row span is isotropic. Since row 1 and 4 are orthogonal with
respect to the reverse dot product, we get the relation

l + a = 0,

which expresses l = −a in terms of a.
Rows 2 and 4 are also orthogonal, which means that

b + k = 0,

so we can similarly eliminate k. From rows 2 and 3, we obtain f + j = 0, which
expresses j in terms of the lower variables. We then pair row 3 with itself to see that
h + g2 = 0, eliminating h, and finally pairing 3 with 4 we have i + gc + d = 0, so
i is now expressed in terms of lower variables as well.
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Moreover, these are the only relations we get from the isotropic condition—any
other pairings of rows give the trivial relation 0 = 0. So in this case the Schubert
variety restricted to the orthogonal Grassmannian has half the dimension of the
original, generated by the possible values for a, b, c, d, f, g.

6.2 General Elimination Argument

Why does the elimination process work for any symmetric shape λ? Label the steps
of the boundary path of λ by 1, 2, 3, . . . from SW to NE in the lower left half, and
label them from NE to SW in the upper right half, as shown:

1
2

3

4
5

1

23
4

5

Then the labels on the vertical steps in the lower left half give the column indices of
the 1’s in the corresponding rows of the matrix. The labels on the horizontal steps in
the upper half, which match these labels by symmetry, give the column indices from
the right of the corresponding starred columns from right to left.

1
1 ∗

∗

1 ∗
∗
∗

∗
∗
∗

1 ∗
∗
∗
∗

∗
∗
∗
∗

1
2 3 5

235

This means that the 1’s in the lower left of the matrix correspond to the opposite
columns of those containing letters in the upper right half. It follows that we can use
the orthogonality relations to pair a 1 (which is leftmost in its row) with a column
entry in a higher or equal row so as to express that entry in terms of other letters
to its lower left. The 1 is in a lower or equal row in these pairings precisely for the
entries whose corresponding square lies above the staircase cut. Thus, we can always
express the upper right variables in terms of the lower left, as in our example above.
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Fig. 6 The tableau above is
a shifted semistandard
tableau of shape λ/μ where
λ = (6, 4, 2, 1) and
μ = (3, 2), and content
(5, 2, 1). Its reading word is
3111′21′12′

3

1′ 1 2′

1′ 2
1 1

6.3 Shifted Tableaux and a Littlewood–Richardson Rule

The beauty of shifted partitions is that somuch of the original tableaux combinatorics
that goes into ordinary Schubert calculus works almost the same way for shifted
tableaux and the orthogonalGrassmannian.Wedefine these notions rigorously below.

Definition 6.4. A shifted semistandard Young tableau is a filling of the boxes of a
shifted skew shape with entries from the alphabet {1′ < 1 < 2′ < 2 < 3′ < 3 < · · · }
such that the entries are weakly increasing down columns and across rows, and such
that primed entries can only repeat in columns, and unprimed only in rows.

The reading word of such a tableau is the word formed by concatenating the
rows from bottom to top. The content of T is the vector content(T ) = (n1, n2, . . .),
where ni is the total number of (i)s and (i ′)s in T . See Fig. 6 for an example.

In this setting, there are actually two analogs of “Schur functions” that arise from
these semistandard tableaux. They are known as the Schur P-functions and Schur
Q-functions.

Definition 6.5. Let λ/μ be a shifted skew shape. Define ShSTQ(λ/μ) to be the set
of all shifted semistandard tableaux of shape λ/μ. Define ShSTP(λ/μ) to be the set
of those tableaux in which primes are not allowed on the staircase diagonal.

Definition 6.6. The Schur Q-function Qλ/μ is defined as

Qλ/μ(x1, x2, . . .) =
∑

T∈ShSTQ(λ/μ)

xwt(T )

and the Schur P-function Pλ/μ is defined as

Pλ/μ(x1, x2, . . .) =
∑

T∈ShSTP (λ/μ)

xwt(T ).

The Schur Q-functions, like ordinary Schur functions, are symmetric functions
with unique leading terms, spanning a proper subspace of �. In addition, they have
positive product expansions
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QμQν =
∑

2�(μ)+�(ν)−�(λ) f λ
μνQλ

for certain positive integers f λ
μν . It is easy to see that this is equivalent to the rule

PμPν =
∑

f λ
μνPλ.

Here the coefficients f λ
μν are precisely the structure coefficients for the cohomology

ring of the orthogonal Grassmannian. In particular, if we extend them to generalized
coefficients by

Pμ(1) · · · · · Pμ(r) =
∑

f λ
μ(1)···μ(r) Pλ,

we have the following theorem due to Pragacz [44].

Theorem 6.7. A zero-dimensional intersection Xμ(1) ∩ · · · ∩ Xμ(r) has exactly
f T
μ(1)···μ(r) points, where T is the ambient triangle.

Stembridge [52] first found a Littlewood–Richardson-type rule to enumerate these
coefficients. The rule is as follows.

Definition 6.8. Let T be a semistandard shifted skew tableau with the first i or
i ′ in reading order unprimed, and with reading word w = w1 · · · wn . Let mi ( j) be
the multiplicity of i among wn− j+1, . . . , wn (the last j entries) for any i and for
any j ≤ n. Also let pi ( j) be the multiplicity of i ′ among w1, . . . , w j . Then T is
Littlewood–Richardson if and only if

• Whenever mi ( j) = mi+1( j) we have wn− j �= i + 1, (i + 1)′, and
• Whenever mi (n) + pi ( j) = mi+1(n) + pi ( j) we have w j+1 �= i, (i + 1)′.

Notice that this definition implies that mi ( j) ≥ mi+1( j) for all i and j , which
is similar to the usual Littlewood–Richardson definition for ordinary tableaux. An
alternative rule that only requires reading through the word once (rather than once
in each direction, as in the definition of mi above) is given in [25].

6.4 Problems

6.1. Show that, if λ is a partition that is not symmetric about the staircase cut, the
intersection �◦

λ(F•) ∩ OG(2n + 1, n) is empty.
6.2. How many isotropic 3-planes in C7 intersect six given 3-planes each in at least

dimension 1?
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7 Conclusion and Further Variations

In this exposition, we have only explored the basics of the cohomology of the Grass-
mannian, the complete flag variety, and the orthogonal Grassmannian. There are
many other natural directions one might explore from here.

First and foremost, we recommend that interested readers next turn to Fulton’s
book entitled Young Tableaux [22] for more details on the combinatorial aspects of
Schubert calculus and symmetric functions, including connections with representa-
tion theory. Other books that are a natural next step from this exposition are those
of Manivel [39], Kumar on Kac–Moody groups and their flag varieties [33], and
Billey–Lakshmibai on smoothness and singular loci of Schubert varieties [9].

In some more specialized directions, the flag varieties and Grassmannians in
other Lie types (as briefly defined in Sect. 6) have been studied extensively. The
combinatorics of general Schubert polynomials for other Lie types was developed by
Billey andHaiman in [8] and also byFomin andKirillov in typeB [20].Combinatorial
methods for minuscule and cominuscule types is presented in [54].

It is also natural to investigate partial flag varieties between the Grassmannian and
Fln . Buch, Kresch, Purbhoo, and Tamvakis established a Littlewood–Richardson rule
in the special case of two-step flag varieties (consisting of the partial flags having just
two subspaces) in [13], and the three-step case was very recently solved by Knutson
and Zinn-Justin [30]. Coskun provided a potential alternative approach in terms of
Mondrian tableaux, with a full preliminary answer for partial flag varieties in [15],
and for the two-row case in [16].

Other variants of cohomology, such as equivariant cohomology and K-theory,
have been extensively explored for the Grassmannian and the flag variety as well.
An excellent introduction to equivariant cohomology can be found in [2, 12] is a
foundational paper on the K -theory of Grassmannians. The K -theoretic analog of
Schubert polynomials are calledGrothendieck polynomials, first defined by Lascoux
and Schutzenberger [36].

Another cohomological variant is quantum cohomology, originally arising in
string theory and put onmathematical foundations in the 1990s (see [32, 46]). Fomin,
Gelfand, and Postnikov [19] studied a quantum analog of Schubert polynomials and
their combinatorics. Chen studied quantum cohomology on flag manifolds in [14],
and the case of equivariant quantum cohomology has been more recently explored
by Anderson and Chen in [3] and Bertiger, Milićević, and Taipale in [7]. In [41,
42], Pechenik and Yong prove a conjecture of Knutson and Vakil that gives a rule
for equivariant K -theory of Grassmannians. The list goes on; there are many coho-
mology theories (in fact, infinitely many, in some sense) all of which give slightly
different insight into the workings of Grassmannians and flag varieties.

It is worth noting that Young tableaux are not the only combinatorial objects that
can be used to describe these cohomology theories. Knutson, Tao, and Woodward
developed the theory of puzzles in [29], another such combinatorial object which
often arises in the generalizations listed above.
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On the geometric side,Vakil [56] discovered a “geometric Littlewood–Richardson
Rule” that describes an explicitway todegenerate an intersectionofSchubert varieties
into a union of other Schubert varieties (not just at the level of cohomology). This, in
some sense, more explicitly answers the intersection problems described in Sect. 1.

Another natural geometric question is the smoothness and singularities of Schu-
bert varieties. Besides the book by Billey and Lakshmibai mentioned above [9], this
has been studied for the full flag variety by Lakshmibai and Sandya [35], in which
they found a pattern avoidance criterion on permutations w for which the Schubert
variety Xw is smooth. Related results on smoothness in partial flag varieties and other
variants have been studied by Gasharov and Reiner [24], Ryan [47], andWolper [57].
Abe and Billey [1] summarizedmuch of this workwith a number of results on pattern
avoidance in Schubert varieties.

Real Schubert calculus (involving intersection problems in real n-dimensional
space R

n) is somewhat more complicated than the complex setting, but there are
still many nice results in this area. For instance, a theorem of Mukhin, Tarasov, and
Varchenko in [40] states that for a choice of flags that are each maximally tangent at
some real point on the rational normal curve, the intersections of the corresponding
complex Schubert varieties have all real solutions. An excellent recent overview of
this area was written by Sottile in [50].

Relatedly, one can study the positive real points of the Grassmannian, that is,
the subset of the Grassmannian whose Plücker coordinates have all positive (or
nonnegative) real values. Perhaps one of the most exciting recent developments is
the connectionwith scattering amplitudes in quantumphysics, leading to the notion of
an amplituhedron coming from a positive Grassmannian. An accessible introduction
to the main ideas can be found in [11], and for more in-depth study, the book [4] by
Arkani-Hamed et al. In [43], Postnikov, Speyer, and Williams explore much of the
rich combinatorial foundations of the positive Grassmannian.

Finally, there are also many geometric spaces that have some similarities with
the theory of Grassmannians and flag varieties. Hessenberg varieties are a family of
subvarieties of the full flag variety determined by stability conditions under a chosen
linear transformations (see Tymoczko’s thesis [55], for instance). Lee studied the
combinatorics of the affine flag variety in detail in [37]. The book k-Schur functions
and affine Schubert calculus by Lam, Lapointe, Morse, Schilling, Shimozono, and
Zabrocki [34] gives an excellent overview of this area, its connections to k-Schur
functions, and the unresolved conjectures on their combinatorics.
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Combinatorics of the Diagonal
Harmonics

Angela Hicks

Abstract The Shuffle Theorem, recently proven by Carlsson and Mellit, states that
the bigradedFrobenius characteristic of the diagonal harmonics is equal to aweighted
sumof parking functions. In this introduction to the topic, we discuss the theorem and
connections between it and the well-known Macdonald polynomials. Furthermore,
we describe important combinatorial bijections which imply various restatements of
the theorem and play an important role in its proof. Finally, we briefly discuss the
proof and describe various generalizations of the theorem.

The diagonal harmonics are a simply defined vector space of polynomials in the
variables Xn = {x1, · · · , xn} and Yn = {y1, · · · , yn}:
Definition (Diagonal harmonics).

DHn = { f (Xn, Yn) ∈ C[Xn, Yn] :
∑

i=1n
∂rxi ∂

s
yi f (Xn, Yn) = 0 for all r, s ≥ 0, r + s > 0},

with a naturalSn action which permutes the Xn and Yn variables simultaneously by
acting on their indices. As a vector space,DHn has proven to be a nontrivial puzzle to
mathematicians, with questions like “What is its dimension?” inspiring new tools in
algebraic combinatorics. Haiman [33] proved, using tools from algebraic geometry,
that

dim(DHn) = (n + 1)(n−1).

This suggested that perhaps one could supplement complex calculations about DHn

by finding a concrete family of combinatorial objects of size (n + 1)(n−1) which
can be used as a combinatorial model for algebraic properties of DHn . The Shuffle
Theorem, recently proven by Carlsson and Mellit [12], does exactly this, tying the
combinatorics of parking functions to DHn in a precise way.
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In what follows, we begin with a brief discussion of parking functions and their
early appearance in the literature, followed by additional information on Macdonald
polynomials meant to give context for the Shuffle Theorem and why it has been of
historic interest. In Sect. 2, we carefully state the Shuffle Theorem and review the
relevant definitions required to understand it. In Sect. 3, we describe from several
perspectives a couple of important maps on the parking functions which lead to
combinatorial restatements of the Shuffle Theorem. These maps, which occur at
key points in the proof of the Shuffle Theorem and its generalization, have several
dramatically different characterizations within the literature, and its our hope that by
giving them and their various descriptions in one place, we’ll make the connection
between the older and newer literature more accessible. In Sect. 4, we give some
necessarily vague (limited by our abbreviated text) indication of the final proof of
the Shuffle Theorem. Finally, in Sect. 5 we give information about how the Shuffle
Theorem has been generalized. We would be remiss if we did not immediately
mention two well-written texts in this area which cover most of these topics and
many more in much greater detail; both Haglund [28] and Bergeron [7] are excellent
starting places for additional details, although they were written before the proof of
the Shuffle Theorem was completed.

1 Background

Parking functions show up in a number of guises, from their initial inception as an
idealized data storage method popular in theoretical computer science, to probability
where their various statistics have ties to surprising distributions (see Yan [59] for
a summary), and to algebraic combinatorics (our primary interest), where they are
used to explore the representation theory of the diagonal harmonics via the Shuffle
Theorem.

In their simplest form, parking functions are a subset of (Z/nZ)n; here we follow
the convention that we use {1, 2, · · · , n} (but not 0) for the names of the equivalence
classes. Think of

π = (π1, . . . ,πn)

as giving the preferences of a list of drivers, so that the i th driver wants to park in
space πi . The drivers proceed (one by one) to park in n spaces, with the first driver
parking in his preferred space π1. The i th driver does the same, unless his preferred
space πi is already occupied by a previous driver, in which case he proceeds to the
next open space. If we imagine that there are exactly n spaces, π is a parking function
if and only if every driver is able to park. We call the set of parking functions on n
spaces PFn .

It’s easy to see that if any two drivers want to park in space n, π will fail to be
a parking function since only n − 2 drivers will consider parking in the first n − 1
spaces, and thus one such space will be empty. Expanding the idea slightly, it must
be that if π is in PFn , for all 1 ≤ j ≤ n,
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#{i : πi ≤ j} ≥ j.

Remarkably this is a necessary and sufficient condition for π ∈ (Z/nZ)n to be a
parking function, and one often sees parking functions defined this way directly:

Definition (Parking Function). π = (π1,π2, · · · ,πn) in (Z/nZ)n is a parking func-
tion (i.e., is in PFn) if for 1 ≤ j ≤ n, #{i : πi ≤ j} ≥ j.

Thus, for example, (5, 2, 1, 4, 2) is a parking function, but (5, 2, 1, 5, 2) is not.

1.1 Parking Functions in Enumerative Combinatorics

Pyke [47] was the first to define parking functions, using somewhat different moti-
vation and language than our definition above. The language of cars on a one way
street is due to Konheim and Weiss [38] who described them while working for
IBM Research. Their colorful (if not politically correct) story of “dutiful” husbands
driving down a one way street until their “cantankerous” wives order them to park
was the beginning of an analysis of a basic hashing technique, where information is
stored on a disk at a specified location, unless that location is already in use. Com-
puter science literature refers to this as “linear probing in a successful search” (as,
for example, in Knuth [37]), and in this language, there is a lot known about the
enumeration of parking functions according to various statistics. Pollak (as relayed
by Foata and Riordan [13]) gives the best-known proof of the size of PFn:

Theorem 1. |PFn| = (n + 1)n−1.

Proof. Consider a street with n + 1 spaces (so π is in (Z/(n + 1)Z)n), where those
spaces are set out along a circular street, so that if the i th driver finds parking spots πi

through spots n + 1 occupied, he circles back to the beginning of the street to continue
his hunt at the first spot. In this scenario, every π “parks” and since there is one
more space than the number of cars, we have exactly one space that remains empty.
Moreover, if we consider the resulting sequence of parked cars whenwe start with the
preferenceπ andwhenwe start with the preferenceπ + (1, . . . , 1) ∈ (Z/(n + 1)Z)n ,
the latter is a rotation of the former by exactly one space (with the empty space rotating
similarly). Thus for any π,

{π + k(1, . . . , 1) : k ∈ Z/(n + 1)Z}

can be thought of as an equivalence class of functions whose resulting parked cars
are the same up to rotation; it is clearly size (n + 1). Moreover, π in this setup
is a parking function if and only if when drivers park according to π, the empty
parking space is at n + 1. Thus the parking functions make particularly nice repre-
sentatives of each class and there must be (n+1)n

(n+1) = (n + 1)n−1 parking functions as
desired. �
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A number of other families of objects are in bijection with parking functions: the
OEIS entry for an = (n + 1)n−1 includes, in addition to parking functions, spanning
trees on the labeled complete graph on n vertices, the number of edge-labeled rooted
trees on n nodes, the number of ways of expressing an n cycle as an a product of
n − 1 transpositions, as well as a number of others [54].

1.2 Symmetric Function Background

Parking functions play an interesting role in symmetric function theory andSn rep-
resentation theory. Statistics on parking functions historically led to the development
of a combinatorial formula for one of the important families of symmetric function
bases: the Macdonald polynomials.

In the following, we use �n for the vector space generated by homogeneous
symmetric functions of degree n over a field K, {mλ}λ�n for the monomial basis,
{eλ}λ�n for the elementary basis, {hλ}λ�n for the homogeneous basis, {pλ}λ�n for
the power sum basis, and {sλ}λ�n for the Schur basis. Stanley [55] and Sagan [51]
contain definitions of all these bases for the unfamiliar reader.

We use � for dominance order on partitions, so that λ � μ if for all i , λ1 + · · · +
λi ≤ μ1 + · · · + μi . If we usemi (λ) for the multiplicity of i in λ (i.e.,mi (λ) = #{ j :
λ j = i}), then recall the Hall inner product can be defined by:

〈pλ, pμ〉 = zλ1λ=μ,

where zλ = ∏
i i

mi (λ)mi (λ)! and 1X is the standard indicator function that is 1 if X
is true and 0 if X is false. With these definitions in hand, then recall that one can
uniquely define the Schur functions {sλ}λ�n by their following properties:

(1) (Orthonormality.) 〈sλ, sμ〉 = 1λ=μ.
(2) (Triangularity.) sλ = ∑

μ�λ Kλ,μmλ where Kλ,λ = 1.

Recall that Schur function expansions are important in our understanding of the
image of the Frobenius characteristic map. For a given class function φ ofSn , recall
that

Fchar(φ) := 1

n!
∑

μ

z−1
μ φ(μ)pμ.

The irreducible representations of Sn are indexed by partitions, and the Frobenius
map takes such an irreducible representation to a Schur function indexed by the same
partition. Thus everySn module has an associated Schur positive polynomial, and in
reverse, when a polynomial is Schur positive, it is reasonable to search for a natural
associated Sn module. Sagan [51] gives a nice introduction to these facts for the
unfamiliar reader.
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1.3 Macdonald Polynomials

Beyond the above five bases for �n , a basis of particular importance is
{Pλ[X; q, t]}λ�n , which we now call the Macdonald polynomials. (We now work
in K[q, t].) Macdonald [44] originally defined them as a q, t analogue of the Schur
basis. In particular, he began with a q, t analogue of the Hall inner product:

〈pλ, pμ〉q,t = zλ

∏

i

(1 − qλi )

(1 − tλi )
1λ=μ.

Then Pλ[X; q, t] is uniquely defined by:

(1) (Orthogonality.) 〈Pλ[X; q, t], Pμ[X; q, t]〉q,t = cλ1λ=μ.
(2) (Triangularity.)

Pλ[X; q, t] =
∑

μ�λ

dλ,μ(q, t)mμ,

where dλ,λ(q, t) = 1.

Replacing t or q in Pλ[X; q, t] with various integer values (usually 0, 1, or a limit)
gives a number of famous symmetric function bases, from the Schur functions them-
selves (at t = q = 0) and monomials (t = 1) to the Hall–Littlewood, the Jack, the
Askey–Wilson, and the Koornwinder polynomials. In short, Macdonald polynomials
encode information about most of the important bases of the symmetric functions.

Although Pλ[X; q, t] is referred to as a Macdonald polynomial, strictly speak-
ing it is a symmetric function, with coefficients which are rational functions in q
and t ; Macdonald also defined Jλ[X; q, t] = cλ(q, t)Pλ[X; q, t]which is a different
rescaled version of Pλ[X; q, t] using a combinatorially defined constant cλ(q, t),
chosen such that Jλ[X; q, t] has coefficients which are polynomial in q and t . (See
Macdonald [44, 8.1].) Macdonald’s Schur Positivity Conjecture (seeMacdonald [44,
8.18]) stated that Jλ[X; q, t] was “almost” Schur positive: expressing Jλ[X; q, t] in
terms of a closely related t-analogue of the Schurs {sμ(x; t)}μ�n gave coefficients
that are polynomials in q and t with positive integral coefficients. More precisely,
{sμ[X; t]}μ�n differs from {sμ}μ�n by a simple homomorphism: let φ be the multi-
plicative homomorphism that for all nonnegative integers, k sends the power sum pk
to pk(1 − t k). Then

sλ[X; t] := φ(sλ) = sλ[X (1 − t)],

where the last term gives the same expression using plethystic notation. See Loehr
and Remmel [43] for complete details on the notation.

Garsia suggested several different manipulations of the Macdonald polynomials,
applying the inverse homomorphism (and flipping the powers of t– sending t → 1

t
and multiplying by a power of t) defining two new families of polynomials.
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Hλ [X; q, t] := Jλ

[
X

1 − t
; q, t

]

and
H̃λ [X; q, t] := tn(μ)Hλ [X; q, 1/t] ,

where n(μ) is just the highest power of t in Hλ [X; q, t] . All the above-mentioned
families of polynomials from the Pλ[X; q, t] to the H̃λ[X; q, t] are referred to by
various authors as “the Macdonald polynomials,” although their chosen notation—
using P , J or H̃—generally differentiates them.

The modified Macdonald polynomials are in fact Schur positive, as Macdonald’s
Schur Positivity Conjecture. Garsia and Haiman [17] gave a combinatorially defined
polynomial�λ for each partition of λ of n. In particular, for a Ferrer’s diagram of the
partition λ drawn in French notation, with its southwest corner at the origin, Garsia
and Haiman take the set {(p1, q1), · · · , (pn, qn)} of southwest corners of each cell
in the diagram. (Thus in particular, (0, 0) will correspond to the bottom left cell.)
Then, they define

�λ = det ‖x p j

i y
q j

i ‖i, j=1,··· ,n .

See Fig. 1 for an example when λ = (3, 2). Garsia and Haiman then considered the
linear span of all the partial derivatives of the �λ, which we will denote L[∂x∂y�λ].
Moreover, they showed that if for all λ, the dimension of L[∂x∂y�λ] is n!, then the
Frobenius image of L[∂x∂y�λ] is H̃λ[X; q, t], and thus, the modified Macdonald
polynomials are Schur positive. The statement about the dimension is thewell-known
n! Conjecture, which was proved almost a decade later in Haiman [32]. His proof
thus implied that the coefficient of qi t j in H̃λ[X; q, t] is the Frobenius character of
the subspace ofL[∂x∂y�λ] of total degree i in the x variables and j in the y variables,
and moreover, that Macdonald’s Schur Positivity Conjecture is true. While Haglund
et al. [30] gives a combinatorial formula (as opposed to an indirect definition via
triangularities) for the modified Macdonald polynomials, there is great interest in a
general formula the modified Macdonald–Kostka coefficients

K̃μ,λ(q, t) :=
〈
H̃λ [X; q, t] , sμ

〉
.

At the time of publication, the most complete results in this direction are presented
in Assaf [4].

2 The Diagonal Harmonics

A closely related space to L[∂x∂y�λ] is the diagonal harmonics; recall that as men-
tioned above:

Definition (Diagonal harmonics).
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Fig. 1 Computing �3,2

DHn = { f (Xn, Yn) ∈ C[Xn, Yn] :
∑

i=1n
∂rxi ∂

s
yi f (Xn, Yn) = 0 for all r, s ≥ 0, r + s > 0}.

Theorem 2. If μ � n, then L[∂x∂y�μ] is a subspace of DHn.

Proof. Let Mμ be the matrix whose determinant is �μ, and let (M)i, j denote the
(i, j)th minor of Mμ. Let ∂

∂k (a,b) = ∂
∂xak

∂
∂ybk

. ∂
∂k (a,b)�μ is clearly 0 if (a, b) is not a cell

which occurs in μ, so we assume (a, b) = (pl, ql) for some l in {1, · · · , n}.
n∑

k=1

∂

∂k(pl , ql)
�μ =

n∑

k=1

∂

∂k(pl, ql)
det ‖x p j

i y
q j

i ‖i, j=1,··· ,n

=
n∑

k=1

∂

∂k(pl, ql)

n∑

j=1

(−1) j+k x
p j

k y
q j

k (Mμ)
j,k

=
n∑

j=1

n∑

k=1

(−1) j+k

(
∂

∂k(pl, ql)
x
p j

k y
q j

k

)
(Mμ)

j,k

For a fixed j , the final summation is also the determinant of a matrix calculated
using expansion by minors, in particular Mμ with the j th column replaced by the
given partial derivatives. Moreover, the j th column is either identically 0 or a scalar
multiple of another column in Mμ corresponding to a cell in the Ferrer’s diagram of
μ which is south and west. Thus for every j , the determinant is 0.

Haiman [33] computed the dimension of both DHn and L[∂x∂y�λ] using similar
techniques from algebraic geometry, in particular employing the Hilbert scheme of
points in the plane, using amethod of approach first sketched by Procesi years before.
As will be discussed in more detail below, eigenoperators of the modifiedMacdonald
polynomials play a key role in the symmetric function theory used to study the larger
space of diagonal harmonics.

The bigraded Frobenius characteristic of the diagonal harmonics has had a con-
jectured combinatorial formula since the 1990s (before any combinatorial formula
was suggested for theMacdonald polynomials), although the proof wasn’t completed
until two decades later. Let DHa,b

n give the submodule of DHn that is total degree
a in the ‘x’ variables and b in the ‘y’ variables. Then we can define the bigraded
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Frobenius characteristic as

DHn[X; q, t] :=
∑

a,b

taqb FcharDHa,b
n .

The Shuffle Theorem, first conjectured by Haglund et al. [30], was proved recently
by Carlsson and Mellit [12], building on the previous work of Haiman [33]:

Theorem 3 (The Shuffle Theorem).

DHn[X; q, t] =
∑

π∈PFn

tarea(π)qdinv(π)Fides(π). (1)

In the following, we’ll discuss the definitions of area, dinv, and ides. FS is Gessel’s
fundamental quasisymmetric function. Fundamental quasisymmetric functions are
often represented with the subscript S a composition of n, but as elsewhere in the
literature on parking functions, it will be simpler to assume the subscript S is a subset
of {1, 2, · · · , n − 1} and not a composition of n. There is, of course, a standard
bijection between the two, which can be employed to switch from one convention to
the other.

It’s worth noting that that even in the literature written after its proof, Theorem3
is still often referred to as “The Shuffle Conjecture.” More details are contained in
Sect. 4 about its proof.

Researchers routinely picture parking functions more diagrammatically to com-
pute the statistics appearing in the right side of the theorem. As first suggested by
Adriano Garsia, parking functions are viewed in an n × n lattice with:

(1) A Dyck path—north and east steps from the bottom left to top right which stay
(weakly) above the line x = y.

(2) Labels (or “cars”)—the numbers 1 to n, each occurring exactly once to the right
of a north step, so that they are increasing from bottom to top within a column.

To see that this definition matches our first definition, starting from such a diagram,
define π = (π1, · · · ,πn) such that πi = j if a j is in the i th column of the lattice
diagram. The Dyck path condition is equivalent to the rule that we must have at least
k cars less than or equal to k for all 1 < k < n. The increasing column condition
defines a fixed ordering of the cars within a given column, which all had the same
preferred spot. (Without this or a similar an ordering, themapwould not be bijective.)
See Fig. 2 for an example.

Startingwith a parking function represented in a lattice,we then have the following
definition.

Definition (area).The area of a parking functionπ is the number of complete squares
between the Dyck path of π and the main diagonal and will be denoted area(π).

Example 1. The area of the parking function in Fig. 2 is (adding it by row) 0 + 0 +
1 + 2 + 1 + 0 + 1 + 0 + 0 = 5.
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Fig. 2 A lattice diagram of
the parking function
(8, 9, 2, 6, 2, 4, 1, 2, 6) in
PF9 as drawn in a lattice
diagram

7
3
5
8

6
4
9

1
2

We refer to a diagonal of the parking function as the cells along a line y = x + b
for some 0 ≤ b < n.

Definition (dinv).Aprimary diagonal inversion is a pair of cars in the same diagonal,
with the smaller further southwest. A secondary diagonal inversion is a pair of cars
in two adjacent diagonals, with the smaller car in the lower diagonal (with lower
y-intercept), but northeast of the larger car in the higher diagonal. The dinv of a
parking function π is the number of primary and secondary diagonal inversions and
will be denoted dinv(π).

Example 2. In Fig. 2, the pair {5, 9} is a primary diagonal inversion, but {1, 4} is
not a primary inversion since the larger car (4) is further southwest. Similarly, {4, 5}
makes a secondary inversion, but {8, 9} does not (because of the relative positions of
the smaller and larger car) nor would any choice of car number that could be placed in
the cells currently containing {4, 8} (since the cells aren’t on adjacent diagonals) nor
do {3, 9} (where the smaller car on the lower diagonal is not northeast of the larger
car.) The dinv of the parking function in Fig. 2 is 14, including the pairs: {3, 4}, {1, 2},
{1, 9}, {2, 9}, {1, 6}, {2, 6},{6, 9},{4, 6},{1, 5},{2, 5}, {5, 9}, {4, 5}, {5, 6}, and {6, 8}.
We’ve bolded the southwest car in each pair, for reasons which will be more apparent
later.

If two cells are positioned so that they could create a diagonal inversion if the two
numbers contained within them are in the “correct” order (as, for example, in Fig. 2
both the pair {3, 4}, which makes an diagonal inversion and {1, 4}, which does not),
then the cells are called attacking.

Definition (word).We read the word of a parking function by reading along diago-
nals from highest to lowest, within a diagonal reading from right to left.
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Fig. 3 These three parking
functions have weights
t F{1},F{∅}, and qF{1},
respectively 1

2
2

1
1

2

In particular, note that the word of a parking function is a permutation inSn and
thus has a well-defined inverse.

Definition (ides). The i-descent set of a permutation is defined to be the descent
set of the inverse of a permutation, that is, the set of i in a permutation such that
i + 1 occurs before i . The i-descent set of a parking function is the descent set of the
inverse of the word of a parking function.

Example 3. The word of the parking function in Fig. 1 is [1, 2, 3, 4, 5, 6, 7, 8, 9].
It’s i-descent set is {1, 3, 4, 5, 7}.
Example 4. There are three parking functions of size 2, pictured in Fig. 3. Comput-
ing their weights, we get that

DH2[X; q, t] = t F{1} + F∅ + qF{1} = (t + q)s(1,1) + s(2).

Thus by the Shuffle Theorem, DH2 contains a submodule of degree 0 that is isomor-
phic to the trivial representation of S2 and two submodules, one of degree 1 in the
x variables and one of degree 1 in the y variables, that are isomorphic to the signed
representation.

While these statistics (particularly dinv) may not seem particularly natural, their
discovery was important not just to the Shuffle Theorem, but also to the combi-
natorics of the Macdonald polynomials. As in the Shuffle Theorem, combinatorial
interpretations of Macdonald Polynomials require two statistics, one of which (maj)
is relatively natural, and another (inv) whose discovery was motivated by dinv in
parking functions. Haglund [27] describes the process by which he first defined inv,
which is a more complicated statistic than dinv, from dinv on parking functions.

2.1 Shuffles and the q, t Catalan

For convenience, we name the sum in the right-hand side of (1). Let

�n(X; q, t) :=
∑

π∈PFn

tarea(π)qdinv(π)Fides(PF).

�n(X; q, t) is a positive sum of LLT polynomials, which are Schur positive poly-
nomials developed in Lascoux et al. [39] and Leclerc and Thibon [40]. While the
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original definition of LLT polynomials (in terms of a statistic on ribbon tableaux)
does not generally “look” very similar to parking functions, work in Schilling et al.
[52], simplified independently by Haiman and Michelle Bylund, gives an equivalent
definition which is used in Haglund et al. [30] to show that�n(X; q, t) is Schur pos-
itive. Since in particular �n(X; q, t) (as a sum of LLT polynomials) is symmetric,
it makes sense to consider the Hall inner product of �n(X; q, t) with hk1 · · · hks . Let

Sh(k1, · · · , ks ) = {1, · · · , k1} �� {k1 + 1, · · · , k1 + k2} �� · · · �� {k1 + · · · ks−1 + 1, · · · , k1 + k2 + · · · + ks }

give the set of shuffles (words with 1, · · · , k1 occurring relatively in increasing order,
as are {k1 + 1, · · · , k1 + k2} and so on). Then basic symmetric function theory gives:

〈�n(X; q, t), hk1 · · · hks 〉 =
∑

π∈PFn
word(π)∈Sh(k1,··· ,ks )

tarea(π)qdinv(π)

and motivates the name of the Shuffle Theorem. Similarly,

〈�n(X; q, t), en〉 =
∑

π∈PFn
word(π)=(n,n−1,··· ,1)

tarea(π)qdinv(π).

If we restrict ourselves to this case, since the word is completely determined, we
can just leave the car numbers off entirely from the diagram; the result for each such
parking function is a unique Dyck path. Note that this implicitly defines the dinv
and area of a Dyck path, with the area being the sum of the cells below the path as
before and the dinv simplifying, since the conditions on the relative size of the cars
are always fulfilled, to the number of attacking cells. Since Dyck paths are counted
by Catalan numbers, this motivates the name used to describe this case: the q, t-
Catalan Theorem, which was first proved by Garsia and Haglund [16]. Historically,
dinv (and before that bounce, as described below) was developed first on Dyck paths,
not on parking functions. Since we describe the Shuffle Theorem here first, and then
give the q, t- Catalan case as a specialization, our presentation here is in the reverse
order of the historical development, where the Catalan case was generalized to the
Shuffle Theorem.

3 Alternate Formulations of the Shuffle Conjecture: The ζ
Map and the � Map

One map that is particularly important to the proof of the Shuffle Theorem is the ζ
map, which shows �n(X; q, t) can equivalently be computed as a sum over “diag-
onally labeled Dyck paths”—a variant on parking functions. A second map, the �

map, which when restricted to Dyck paths agrees with the ζ map, proves a particular
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symmetry of the parking functions and leads to a natural generalization of the shuffle
conjecture.

3.1 The ζ Map on Dyck Paths

There are several equivalent formulations of the ζ map on Dyck paths. Perhaps the
simplest (although not the original) definition comes from the language of sweep
maps in Armstrong et al. [3]. Here, as elsewhere, we find it convenient to picture
a Dyck path as not in an n × n grid, but an n × (n + 1) grid, with the Dyck path
remaining above the diagonal from the bottom left corner to the top right (so that the
diagonal is tilted just slightly clockwise to “break ties”). There are the same Catalan
number of such paths in either grid, with “Dyck paths” in the n × (n + 1) grid being
created from ones in the standard square grid by adding a final east step.

We will need an ordering on each of the individual north and east steps in a Dyck
path. Such an ordering will be defined by studying the south end of a north step and
the west end of an east step; that is, our ordering on the steps is based on the position
of the first point we would touch each step if we were to trace along the path from
bottom left to top right.

Draw π as a Dyck path in n × (n + 1) grid. Then create a new path ζ(π) by
sweeping the main diagonal upward, and recording the new north and east steps as
a new path as they (or rather their south and west endpoints) are encountered.

While this description does not make it “obvious,” ζ is a bijection from the Dyck
paths of size n to itself. Moreover, it has a predictable effect on the statistics of the
Dyck paths; in particular if π has area a and dinv b, ζ(π) has area b and bounce a,
where bounce is a third statistic on Dyck paths (viewed on the n × n grid.)

Definition. To compute the bounce of a Dyck path π, trace a new Dyck path, called
the “bounce path,” starting at the point (0, 0) and moving upward:

(1) Turn right when you hit the west endpoint of any east step of π.
(2) Resume an upward path after intersecting the line x = y.

Repeat these two steps until the path goes from (0, 0) to (n, n).
Finally, if the bounce path intersects the line x = y at the points

(0, 0), (n − i1, n − i1), · · · , (n − ik, n − ik), (n, n),

then by definition
bounce(π) := i1 + · · · + ik .

Example 5. In Fig. 4, the Dyck path on the right has bounce 1 + 6 + 8 = 15

Using this definition and Dn for the set of Dyck paths of size n, as related in
Haglund and Loehr [29, pg.9], we thus have
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Fig. 4 π and ζ(π). The diagonal line is slightly tilted in the preimage as it occurs in the definition
of the sweep map and emphasized the extra east step, but kept the diagonal line x = y in the image,
as it occurs in the included description of ζ−1. The dashed line gives the bounce path. The numbers
along the right correspond to after how many bounces the given row was crossed by the bounce
path, but also indicate the diagonal containing the preimage of that north steps in the Dyck path on
the left

Theorem 4 (Garsia, Haglund, Haiman).

∑

π∈Dn

tarea(π)qdinv(π) =
∑

π∈Dn

tbounce(π)qarea(π). (2)

A nice detail of the bijection is that area under the bounce path of ζ(π) corresponds
to primary diagonal inversions in π and area under ζ(π) but above the bounce path
corresponds to secondary inversions. Extending this observation slightly gives the
inverse map, most easily stated as onto the set of parking functions with word [n, n −
1, · · · , 1]. (In the image, ζ(π), it’s useful to consider adding the number from bottom
to top to get a parking function. In π = ζ−1(ζ(π)), we’ll find the result has word,
as read along the diagonals, [n, n − 1, · · · , 1].) In particular, if the i th north step
(number from the bottom) in ζ(π) was in a row crossed after the bounce path’s
j th return to the line x = y (noting that the first step or more will thus be assigned
the number 0, since the bounce path has not yet “returned”), then i was in the j th
diagonal of π. (As a quick exercise to check for understanding, the interested reader
may wish to check that the sum of such j must sum to the bounce of ζ(π), so that
bounce(ζ(π)) = area(π), as the sum of the diagonals containing each car.) Since π
originally corresponded to a Dyck path, the cars in any diagonal should be placed
in increasing order from southwest to northeast. The resulting diagonal inversions
in π (the primary diagonal inversions) account for area under the bounce path. We
still need to account for the relative order of cars (and in particular which occurs
in which row) in distinct diagonals. In particular, this is uniquely determined by the
prescription that in π, car i is southwest of j smaller cars in the next lower (southeast)
diagonal if in ζ(π), there are j cells in the i th row that were above the bounce path.
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Fig. 5 π and ζ(π). Note that for any corner in ζ(π) like the one marked with a ∗, the car below the
corner is smaller than the car to the right of the corner

Example 6. The ‘∗’ in π and the ‘@’ in ζ(π) in Fig. 4 correspond to the same cell.
(Note that the ‘∗’ is in the first cell that is read in the reading word of π and thus
would be labeled n = 9, while the ‘@’ occurs in the 9th row from the bottom.) The
single north step in π northeast of ‘∗’ is exactly one diagonal lower, so it corresponds
to a secondary inversion. It thus corresponds to a single cell above the bounce path
in ζ(π) in the row containing ‘@’, in particular the cell containing ‘@’ itself.

3.2 ζ on the Parking Functions

There are two well-known alternate characterizations of �n[X; q, t], both which
extend ζ. We start with the summation tied to the bijection (again) called ζ in the
literature. The image of ζ on parking functions is not a parking function. The image
does not seem to have a standard name in the literature; we’ll refer to it here as the
diagonally labeled Dyck paths (DLDn). The diagonally labeled Dyck paths are also
represented in a lattice diagram, which again contains a Dyck path. Each Dyck path
contains a permutation of n; this time the numbers (which we will here still call cars)
are placed along the main diagonal. Rather than an increasing column condition, the
only restriction on the values of the cars in DLDn is based on certain corners in the
Dyck path. In particular, if the underlying path contains an east step followed by a
north step, the car below the east step must be smaller than the car to the right of the
north step.

Example 7. See the right side of Fig. 5 for an example.

Definition. For π ∈ PFn , we define ζ(π) as:

• First, if D is the Dyck path in π, create ζ(D).
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• Add cars to the diagonal of ζ(D) from northeast to southwest, labeling the cells
with the reading word of π.

The result is ζ(π).

Example 8. See Fig. 5 for an example.

The bijectivity of ζ on parking functions follows simply from the bijectivity of
ζ on the Dyck paths. Moreover, we can again define statistics in the image which
correspond to area and dinv in the preimage. Since area is constant on Dyck paths
and we have defined ζ on Dyck paths to send area to bounce, it is clear that one such
statistics should be the bounce of the path in ζ(π). The dinv of a parking function
is mapped under ζ to the area of the result only when every attacking pair of cars
in π creates a diagonal inversion, i.e., when the parking function has reading word
n, n − 1, · · · , 1 and thus corresponds to a Dyck path. We need a new statistic, area’
which is less than or equal to area.

Definition. The area’ of π ∈ DLDn is the number of cells c between the Dyck path
and the main diagonal such that the car below c is smaller than the car to the right
of c.

Example 9. In the diagonally labeled path on the right of Fig. 5,

({3, 4}, {4, 5}, {4, 6}, {1, 2}, {1, 5}, {1, 6}, {1, 9}, {2, 5}, {2, 6}, {2, 9}, {5, 6}, {5, 9}, {6, 9}, {6, 8})

all contribute to the area’ of 14. Note that these pairs are exactly the pairs that create
dinv in the parking function on the left. The underlying Dyck path on the right has
bounce 5, which corresponds to the area of 5 on the left.

Finally, we have the theorem:

Theorem 5 (Haglund and Loehr [29]).

∑

π∈PFn

tarea(π)qdinv(π) =
∑

π∈DLDn

tbounce(π)qarea′(π). (3)

3.3 � on the Parking Functions

Unlike ζ,� is a map fromPFn to itself. This generalization leads naturally to rational
parking functions and suggested a parallel story to the diagonal harmonics in other
types. We’ll describe it two ways, once as a combinatorial generalization of ζ on
Dyck paths as described above and once as a composition of two bijections to a set
of intermediate objects (a particular subset of affine permutations).
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3.3.1 A Direct Combinatorial Description

Since all the attacking cells in a Dyck path create diagonal inversions but only some
of them create diagonal inversions in a parking function, it’s reasonable to suspect
theremight be a generalization of bounce that generally lowers the statistic depending
on the location of cars and is equidistributed with area of the parking functions. In
fact, such a statistic exists and is referred to in the literature as pmaj. While it can
no longer be pictured using the geometry of a bouncing ball, when π ∈ PFn has car
labels increasing from the bottom row to the top row, pmaj(π) is the same as the
bounce of the underlying Dyck path. (As remarked previously, a close look at the
inverse map described in Sect. 3.1 shows that we were implicitly injecting the Dyck
paths into the parking functions in twoways: in the preimage of ζ, we considered them
as parking functions with word [n, n − 1, · · · , 1] but in the image, we considered
parking functions with cars increasing from the bottom row to the top.) One way we
might have equivalently described bounce is by a recursive procedure, starting by
assigning any north step/car in the first column bounce 0. We then assigned bounce
to cars in increasingly higher amounts. After assigning bounce i , by returning to the
line x = y, we count the number of cars already assigned bounce i or less. If that
number is j , we then assigned bounce i + 1 to cars which are:

• in the j + 1th column or less and
• have not yet been assigned bounce.

We then repeat the process, this time assigning bounce i + 2. Pmaj can be assigned
similarly, but we should expect that some cars will be assigned a pmaj earlier in the
procedure (and thus a lower pmaj) on the basis of their value.

Formally, for a parking function π, the procedure for assigning pmaj is:

• Assign every car in the first column a pmaj of 0. Set p (which we’ll use to keep
track of the current pmaj we assign) and k (the number of cars assigned a pmaj of
at least p − 1) to 0.

• For every car c not yet assigned pmaj, count the number of larger cars already
assigned pmaj exactly p, call it j . If c is in column k + j + 1 or less, assign c the
pmaj p. (It’s best to work with the cars c in decreasing order of size, although one
can equivalently repeat this step until no new cars are able to be added.)

• Increase p to p + 1, and increase k to include the number of cars added in the
previous step.

• Repeat (2) and (3) until all the cars are assigned a pmaj.

We will use pmaj(c,π) for the pmaj of the car c in the parking function π.

Definition (pmaj). The pmaj of a parking function π (pmaj(π)) is the sum of the
pmaj assigned to each car.

Example 10. Consider the parking function on the right of Fig. 6. Car 7 is imme-
diately assigned a pmaj of 0 since it’s in the first column. Cars 9 and 8 are larger
than 7 and so are not assigned pmaj (because they aren’t in the (0 + 0 + 1)st or first
column). Similarly, 6 and 5 aren’t in the (0 + 1 + 1)th or second column. However,
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car 1 2 3 4 5 6 7 8 9 car
area 0 0 0 0 1 1 0 2 1 pmaj
dinv 1 0 1 0 5 4 0 1 2 area

Fig. 6 π (repeated here from Fig. 2) and �(π)

4 and 3 are both in the 2nd column (and less than 7), so they are both assigned a pmaj
of 0. Next, 3, 4, 7 (which have already been assigned pmaj this round) are all greater
than 1 and 2, which are in the 4th column, so since 0 + 3 + 1 ≥ 4 and 0 + 4 + 1 ≥ 4,
2 and 1, respectively, are assigned pmaj 0. This ends the cars with pmaj 0.

Next, we’ve assigned five cars pmaj 0, so any unassigned car in the 6th column or
less has pmaj 1, including cars 5, 6, and 9. Moreover, once car 9 is assigned a pmaj
of 1, we compare the sum of the five previously assigned cars and the one larger car
than 8 (the 9) which was recently assigned a pmaj of 1. Since 5 + 1 + 1 < 8, we
cannot assign 8 a pmaj of 1.

In a final assignment, we may use the eight cars assigned pmaj one or zero to
justify a pmaj of 2 for car 8.

The observant reader may notice that the diagonal containing c in the parking
function on the left of Fig. 6 is in every case the pmaj of c in �(π). This is not a
coincidence, but rather the starting place of the map we’ll use to define �. We’ve
implicitly assigned pmaj to each car; we’ll do the same for area (in two ways, once
for the preimages and once for the images) and dinv. The resulting assignments will
be equidistributed and used to define the bijection.

For π in the preimage of �, first assign the area of car c (area(c,π)) as the number
of complete squares weakly to the right of c and left of the line x = y (i.e., the
diagonal of the car c). Next, we must decide which of the two cars in a dinv pair
should be assigned the diagonal inversion. We will find it useful to assign the dinv
of a car c (dinv(c,π)) as the number of diagonal inversion pairs containing c and in
which c is the further southwest of the pair. In particular, this means that a primary
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diagonal inversion is assigned to the smaller of two cars, but a secondary inversion
is assigned to the larger car.

Example 11. In Example2, we’ve bolded the cars which are being assigned dinv in
each pair of diagonal inversions in the left of Fig. 6.

For �(π), we’ve already described the assignment of pmaj. Although the area of
the parking function is defined the same way on each side, we need to assign area to
individual cars differently in the image. In particular, the area of a particular car is
closely tied to our assignment of pmaj and how many columns right c can move and
still have the same pmaj. In particular, here we assign

areap(c, �(π))

= #{d| pmaj(d, �(π)) < pmaj(c, �(π)) + #{d > c| pmaj(d, �(π)) = pmaj(c, �(π))}
− column(c, �(π)) + 1.

where column(c, �(π)) gives the column containing c (as usual numbering from left
to right). Then

area(�(π)) =
n∑

c=1

areap(c, �(π)),

since if we sum over cars first sorting by their pmaj (small to large) then by
car (large to small), we will find #{d| pmaj(d, �(π)) < pmaj(c, �(π))} + #{d >

c| pmaj(d, �(π)) = pmaj(c, �(π))} gives us the sequence 0, 1, 2, · · · , n − 1 which
sums to the number of cells strictly above themain diagonal in the lattice.Meanwhile
− column(c, �(π)) + 1, summed over all cars c, is the number of cells above the
Dyck path (usually called the coarea), so the sum of all terms is the area between the
path and the diagonal as claimed.

Recursive procedures detailed in Haglund and Loehr [29] and Loehr [42] show,
using slightly different language, that the assignment of the diagonal and dinv of every
car (area(c,π) and dinv(c,π), respectively, for every car c) in this way uniquely
defines a parking function. In particular, if for a particular parking function π,
ac = area(c,π) and bc = dinv(c,π), then only π has area sequence (a1, a2, · · · , an)
and dinv sequence (b1, b2, · · · , bn). Similarly, they give a recursion on parking func-
tions using the area and pmaj statistic which shows that a parking function π′ is
uniquely defined by the sequences (pmaj(c,π′))nc=1 and (areap(c,π′))nc=1. More-
over, they show that if π had area sequence (a1, a2, · · · , an) and dinv sequence
(b1, b2, · · · , bn), then there exists (uniquely by the previous comment) a parking
functionπ′ with pmaj sequence (a1, a2, · · · , an) and areap sequence (b1, b2, · · · , bn).
We define �(π) = π′. Thus we have the theorem:

Theorem 6 (Loehr [42]).

∑

π∈PFn

tarea(π)qdinv(π) =
∑

π∈PFn

tpmaj(π)qarea(π). (4)
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Since the left-hand side of (4) is exactly 〈�n(X; q, t), en1〉, we have the following
corollary:

Corollary 1.
〈�n(X; q, 1), en1〉 = 〈�n(X; 1, q), en1〉.

The symmetry of the x1, · · · , xn and y1, · · · , yn makes it obvious that the Shuffle
Theorem implies �n(X; q, t) = �n(X; t, q), but the corollary above is the closest
any direct combinatorial proof has come to proving the symmetry.

3.3.2 Affine Permutations, Hyperplanes, and an Alternate Description
of �

While the above description of� was historically identified first and gives a great deal
of information about the three historically studied statistics on the parking functions,
there is another description of� as the composition of twobijections. These bijections
were originally defined as bijections from parking functions to regions of the Shi
hyperplane arrangement, but can be more explicitly defined in terms of a subset of
affine permutations which are in bijection with these regions. Much of this work is
first stated in Armstrong [1] and Armstrong and Rhoades [2]. We base this section
on the more general bijections in Gorsky et al. [22], adding a few minor changes
documented below, and will return to the more general bijections later.

Definition (affine symmetric group). Recall that the affine symmetric group S̃n can
be identified with bijections w : Z → Z subject to the restrictions:

(1) For all integers x , w(x) = w(n + x).
(2)

∑n
i=1 w(i) = n(n+1)

2 .

Multiplication in the group is then composition of functions.

The affine permutations are generally represented using window notation
[w(1), · · · , w(n)]. Affine permutations are generated by s0, · · · , sn−1 where:

s0 = [0, 2, 3, 4, · · · , n − 1, n + 1]
s1 = [2, 1, 3, 4, · · · , n − 1, n]
s2 = [1, 3, 2, 4, · · · , n − 1, n]

...

sn−1 = [0, 1, 2, 3, 4, · · · , n, n − 1].

S̃n can be equivalently defined by relations on these generators:

(1) s2i = 1.
(2) si s j = s j si for i − j �= ±1 mod n.
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(3) si s j si = s j si s j for i − j = ±1 mod n.

Definition (m-restricted).Callw ∈ S̃n m-restricted if for all i < j ,w(i) − w( j) �=
m. Denote the set of m restricted affine permutations mS̃n .

Then to define the bijection Ã : PFn ↔ n+1S̃n (similar to a map of Athanasiadis
and Linusson [5] but here given in the language of Gorsky et al. [22]), we start with
an assignment of “rank” to each of the cars. (In fact, it’s easiest to assign a rank to
each square in the lattice diagram, although we only care about the rank of the cells
containing cars.) We assign rank according to the following convention:

(1) The bottom left cell has rank 0.
(2) Every step northward corresponds to an increase in rank of n + 1.
(3) Every eastward step corresponds to a decrease in rank of n.

(Note that the choice of rank of the bottom left cell is arbitrary, and there are different
conventions depending on the author.)

Example 12. By this convention, looking at the cars in the parking function on the
left of Fig. 6, car 7 has a rank of 0. The empty cell above 7 has a rank of 0 + 10 = 10,
so the cell containing car 3 has a rank of 10 − 9 = 1. The following chart gives the
ranks for all the cars in the parking function:

car 1 2 3 4 5 6 7 8 9
rank 7 8 1 5 11 13 0 21 15

To create Ã(π):

• Create a list of the ranks of each car in π (ordered by the cars):

w = [rank(1), rank(2), · · · , rank(n)].

• w as created will generally not be an affine permutation since
∑n

i=1 w(i) �= n(n+1)
2 .

Rescale w (adding 1
n

(
n(n+1)

2 − ∑n
i=1 w(i)

)
to each term in the window).

The result of the rescaling is Ã(π).

Example 13. 7 + 8 + 1 + 5 + 11 + 13 + 0 + 21 + 15 = 81 is the sumof the ranks
of the cars in the parking function on the left of Example6. Since our final permutation
w should sum to 45, we need to subtract 36/9 = 4 from each rank to get the final
permutation. Thus Ã(π) = [3, 4,−3, 1, 7, 9,−4, 17, 11].
Remark. For this algorithm to work, it is necessary that the rescaling factor to
be an integer. To see this is indeed the case, note that every cell in a row of a
parking function has the same rank modulo n, no two rows contain ranks of the same
modulus, and finally that each car is in a different row of the parking function. All
of this is guaranteed by the fact that n and n + 1 are coprime. Why do we only get
n + 1 restricted affine permutations? Cars with ranks that are exactly n + 1 apart
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correspond to cars that are in the same column, and thus if w(i) − w( j) = n + 1,
car i must be in the cell directly above car j and thus (by the column increasing
condition) must correspond to a larger car.

Next, we define a second (much simpler) bijection P̃S :n+1 S̃n ↔ PFn , where
the result is a parking function in one-line notation (or equivalently the i th term gives
the column of the i th car). In particular, for 1 ≤ i ≤ n, we can define the

P̃S(w)i := 1 + #{ j > i |0 < w(i) − w( j) < n + 1}.

It is important for this definition that we keep track of bounded inversions involving
indices j that are outside the window.

Example 14. Continuing the previous example, notice that

P̃S ◦ Ã(π) = P̃S([3, 4,−3, 1, 7, 9,−4, 17, 11])

is the parking function (4, 4, 2, 2, 3, 3, 1, 8, 4), which corresponds exactly to the
parking function on the right-hand side of Fig. 6. For example, the 5th term in the
resulting parking function is 3. This corresponds to the inversions between the 5th
term inw and the 12th and 16th. Note that this does not include an inversion between
the 5th and the 7th, since 7 − (−4) = 11 > 9 + 1.

Our map Ã is closely related to the map A in Gorsky et al. [22]. Letting inv
gives the inverse map on affine permutations, we’ve given a combinatorially simpler
version (from this perspective at least) by defining Ã = inv ◦A−1. Similarly our
following map P̃S = PS ◦ inv in the language of the same paper, a map which
they briefly refer to as SP . Gorsky et al. [22] state that PS ◦ A−1 is equal to ζ
when restricted to the Dyck paths (a statement which is essentially due in this case
to Armstrong [1]). It’s not hard to see that PS ◦ A−1 = P̃S ◦ Ã nor that if we look
at the resulting map on all parking functions, the result is actually �.

Both Ã and P̃S (at least in this classical case) can be closely identified with
classical maps from alcoves in a certain hyperplane arrangement, called the Shi
arrangement, to the parking functions.

Definition. Let Hk
i, j gives the hyperplane defined by xi − x j = k restricted to

V = {x ∈ R
n|x1 + · · · + xn = 0}.

Then, the affine braid arrangement is the set of hyperplanes

B̃n = {Hk
i, j : 0 < i < j ≤ n, k ∈ Z}.

The Shi arrangement is the set of hyperplanes

Sn = {Hk
i, j : 0 < i < j ≤ n, k ∈ {0, 1}}.
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[−2, 2, 6]

[0, 1, 5]
�

s0

s1

s2

Fig. 7 Shi arrangement, with alcoves labeled by 4 restricted affine permutations of 3

Alcoves (connected regions bounded by the hyperplanes) in B̃n are in bijection
with affine permutations of size n; alcoves in Sn are in bijection with only those
permutations which are n + 1 restricted. The “fundamental alcove” satisfying

x1 > x2 > · · · > xn > x1 − 1

corresponds to the identity permutation [1, 2, 3, · · · , n]. From there, new alcoves
are labeled by reflection across H 1

1,n , corresponding to multiplication on the left
by s0, and H 0

i,i+1,corresponding to multiplication on the left by si . (Some sources,
including Gorsky et al. [22], but not Armstrong [1] biject Sn to the n + 1 bounded
affine permutations, which are the inverse of the n + 1 restricted permutations. In
this context, one must label the regions by the same method, except that reflections
across hyperplanes correspond to multiplication on the right, not the left.) If we
then compose this labeling with Ã, we get one labeling of the alcoves of the Shi
arrangement by parking functions. This labeling is quite similar (but not identical
to) the labeling of Athanasiadis and Linusson [5] of the Shi arrangement by parking

functions. Similarly, we can label the regions by composing our labeling with P̃S−1
.

The result (in this case) is better known as the Pak-Stanley labeling Stanley [56]. The
region where x1 > · · · > xn is labeled by increasing partitions corresponds under the
Pak-Stanley labeling to Dyck paths.

Example 15. See Fig. 7 for a concrete example of the labeling.
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4 Proof of the Shuffle Theorem

As is perhaps not surprising for a theorem two decades in the making, many
researchers have played important roles in its proof, and we highlight a few of these
results, including those results particularly important to the ultimate proof of the
Shuffle Theorem.

Afirst key result, leading to the Shuffle Theorem, is the following result inHaiman
[33]:

Theorem 7. Let DHn[X; q, t] give the bigraded Frobenius characteristic of the
diagonal harmonics. Then

DHn[X; q, t] = ∇en.

The operator∇ here is an eigenoperator of theMacdonald H̃μ[X; q, t]first defined
by François Bergeron. (See Bergeron et al. [9] for an extended discussion of the
operator.) If μ′ is the conjugate partition of μ, and

n(μ) =
k∑

i=1

μi (i − 1),

then ∇ is defined by

∇ H̃μ[X; q, t] = tn(μ)qn(μ′) H̃μ[X; q, t].

Haiman’s proof of Theorem7 is involved, requiring background both in algebraic
geometry (relating to the Hilbert scheme of points in the plane) and algebraic com-
binatorics; parts of the proof were suggested earlier by Procesi and the formula was
first conjectured in Garsia and Haiman [14].

Once Theorem7 had been established, attention turned to establishing that

∇en = �n[X; q, t], (5)

with the ultimate goal of showing, using Theorem7, that the Frobenius characteristic
of the diagonal harmonics was a weighted sum of parking functions. Progress toward
the proof began to follow the same general steps:

(1) On the symmetric function side, several refinements of en were identified, includ-
ing en = ∑

k En,k in Garsia and Haglund [15], and en = ∑
α|=n Cα in Haglund

et al. [24], which after application of ∇, appeared to have nice Schur function
expansions.

(2) Simultaneously, on the combinatorial side, a subset of the parking functionswere
identified which corresponded to the symmetric function refinement.

(3) Finally, an inner product with a product of elementary and complete homoge-
neous symmetric functions was taken with both the symmetric function and
combinatorial refinement and the resulting polynomials were shown to be equal.
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On the combinatorial side, such an inner product just restricts the parking func-
tions to those whose words were a certain type of shuffle.

Results of this sort were offered as evidence for the Shuffle Theorem, since they
implied that some coefficients in the expansion of ∇en and �n[X; q, t] in various
symmetric function bases were the same, and the ultimate goal was to complete the
process for an arbitrary length product of h’s (or e’s), thereby proving (5).

Besides the previously mention proof of the q, t Catalan, the first paper of the
type was Haglund [26], who showed that

〈∇en, eahb〉 =
〈

∑

π∈PFn

tarea(π)qdinv(π)Fides(PF), eahb

〉

by refining the conjecture to identify those parking functions with k cars on the main
diagonal.

The results were improved with a conjecture of Haglund et al. [24]:

∇Cα =
∑

π∈PFn
touch(π)=α

tarea(π)qdinv(π)Fides(PF). (6)

Here Cα is a symmetric function created by the modified Hall–Littlewood vertex
operators and touch(π) is the “touch composition” of a parking function.

Definition (touch composition). In particular, split the cars of π into an ordered set
partition, adding cars by row and starting a new set every time the Dyck path returns
to the main diagonal. The size of the sets gives a composition of n.

Example 16. In Fig. 2, the composition of the parking function on the left is
[1, 4, 2, 1, 1], counting the sets ({7}, {3, 5, 8, 6}, {4, 9}, {1}, {2}).

Using (6), recursions were found in Hicks [35], Garsia et al. [18], and Garsia
et al. [19] which demonstrated the conjecture was true after taking various inner
products, but there seemed to be no hope of extending this method of attack to prove
the conjecture, without further refinement.

Recently, Carlsson and Mellit [12] announced a proof of the Shuffle Theorem.
Their 35 page proof was expounded on in a 60 page, nearly self contained, series of
lecture notes Haglund and Xin [25]. As the length of these both suggest, the proof
is quite involved. Moreover, while the mathematics is a combination of symmetric
function manipulation and bijective combinatorics, many of the details are quite
technical. To the interested reader with background in algebraic combinatorics, we
suggest Haglund and Xin [25] as a worthy resource. The proof requires a number of
plethystic manipulations; beyond the lecture notes, the uninitiated reader may wish
to consult Loehr and Remmel [43] for a better understanding of the useful notation.
We make the following observations about the proof for the reader interested in a
few of the details.
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Carlsson and Mellit’s proof picks up where Haiman’s proof left off, in that they
show:

Theorem 8 (Carlsson and Mellit [12]).

∇en = �n[X; q, t].

In fact, their proof refines and expands the conjecture of Haglund, Morse, and
Zabrocki stated in (6) above. Carlsson and Mellit do not work directly with the
right-hand side of (6) but rather with its image under the ζ map. Additionally, they
use the opposite ordering of cars everywhere, so that columns are decreasing from
bottom to top, the relative car size conditions on dinv are reversed as are the corner-
based restrictions in DLDn , etc. Since they work after applying the ζ map, they first
must find an analogue of touch composition in the image of ζ; their definition of
touch′ is (by necessity) considerably more complicated than touch. They call the
image of the right-hand side of (6) under ζ, Dα(q, t), and their proof directly shows
then that Dα(q, t) = ∇Cα.

As with previous progress on the Shuffle Conjecture, a key idea in the proof
is that further refining the conjecture makes it easier to prove. Carlsson and Mellit
specifically identify symmetric function operators which give theweighted sumof all
parking functions with a given Dyck path, further identifying even partial Dyck paths
in some well-defined sense. In particular, they identify the set of DLDn with a given
path, and define “raising and lowering” operators (d+ and d−), which correspond in
the symmetric functions to adding an east or a north step to a partial path. Expressing
Dα(q, t) more cleanly in terms of these operators applied to a recursively defined
polynomial (i.e., rather than as a sum of Dyck paths) leads to an expression that they
show can be rewritten as ∇Cα; the mechanics of showing this equivalence is quite
involved, involving a careful analysis of a number of operators and relations, and is
not “just” a string of equalities.

5 Extensions of the Shuffle Theorem

Several natural extensions of the Shuffle Theorem are areas of active research. In
this final section, we’ll briefly describe several of these and give references for more
complete details.

5.1 Rational Shuffle Theorem

One of the better known and more natural extensions of the Shuffle Theorem is
the Rational Shuffle Theorem. From the perspective of algebraic combinatorics, the
conjecture can be motivated from a natural extension of the � map as given in terms
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of affine permutations and hyperplane arrangements. Gorsky et al. [22] show that
P̃S and Ã can naturally be extended to the set of not just n + 1 restricted affine
permutations, but the set of m restricted permutations when m and n are relatively
coprime. The resulting parking function image or preimage naturally becomes the
set of so called rational parking functions, PFm/n which can similarly be pictured
as occurring in m × n lattices containing paths of north and east steps which remain
above the line y = n/mx . Again, one can determine the area of π ∈ PFm/n as the
number of squares below the path and strictly above y = (n/m)x . Moreover, dinv(π)

can be defined as area(�(π)). A slight complication in this definition is that P̃S , when
it was defined, was not known to be bijective for allm, n, but recent work of Thomas
and Williams [57] suggests this is at least the case when π is a parking function
with reading word [n, n − 1, · · · , 1]. Moreover an equivalent (if far less elegant)
definition for dinv can be worked out directly on π, as was first defined in Hikita
[36] and was simplified in Hicks and Leven [34]. Together this suggests one could
consider a combinatorial sum of weighted rational parking functions:

�m,n[X; q, t] =
∑

π∈PFm/n

tarea(π)qdinv(π)Fides(π),

with some natural statistics generalizing those in the classical case. A reasonable
question is whether one should study the sum (i.e., whether the sum is of independent
interest). By expanding our attention from the Shuffle Theorem to this more general
polynomial, a number of interesting additional connections become apparent. Hikita
first investigated �m,n[X; q, t] as the Frobenius image of a module arising naturally
from the study of affine Springer fibers. Moreover, in Gorsky and Negut [20] a
conjectured symmetric function is identified, leading to a natural analogue of the
Shuffle Theorem:

Theorem 9 (Rational Shuffle Theorem).

Qm,n(−1)n = �m,n[X; q, t].

A convincing reason to investigate Qm,n(−1)n is its conjectured connections to irre-
ducible modules in the rational Cherednik algebra as explained in Gorsky et al. [21]
and its proven connections (see both Gorsky et al. [21] and Oblomkov et al. [46]) to
knot invariants of the torus, where Qm,n(−1)n gives a concrete way of computing
the “superpolynomial knot invariant” (which generalizes the well-known HOMFLY
polynomial) for torus knots. For the combinatorial audience, we suggest Haglund
[23] for an overview of these connections, Bergeron et al. [10] and Bergeron et al.
[11] for a clear statement of the conjecture, an explicit definition of Qm,n(−1)n , and
what is known when m and n are not relatively coprime, and finally Mellit [45], for
his recently released proof of the conjecture.
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5.2 Additional Conjectures and Theorems Related to ∇

TheMacdonald eigenoperator∇ first appeared in the context of the Shuffle Theorem,
applied naturally to en . Since then, experiments have shown that ∇ applied to many
natural symmetric function basis elements is Schur positive; the result has been
additional nice combinatorial formulas, currently either proven or conjectured. A
nice summary of most of these conjectures occurs in Loehr and Warrington [41],
although several nice works inspired by recent developments on the Shuffle Theorem
occurred after its publication, including for example Sergel [53] and Wilson [58].

Additionally, it seems that∇ itself has an interesting generalization, as first defined
in Bergeron et al. [9]. Recall that ∇ is defined by

∇ H̃μ[X; q, t] = tn(μ)qn(μ′) H̃μ[X; q, t].

Next, if μ is a partition of k, tn(μ)qn(μ′) is equal to ek[Bμ], where Bμ is a weighted
sum of cells in the Ferrer’s diagram of μ and [·] indicates plethystic substitution.
Then several works have examined a new family of eigenoperators of the modified
Macdonald polynomials also defined in Bergeron et al. [9] for a general symmetric
function f by:

� f H̃μ[X; q, t] = f [Bμ]H̃μ[X; q, t].

It follows that ∇ f = �ek f if f is a homogeneous symmetric function of degree k.
Interestingly, for various natural choices of f ,� f en appears to still be Schur positive,
with Haglund et al. [31] giving one of the best-known conjectures in this area for a
combinatorial interpretation of the polynomial and Rhoades [49] and Romero [50]
providing evidence for it. In some cases (such as Rhoades andWilson [48]), there are
conjectured modules whose bigraded Frobenius characteristics are believed to give
a representation theoretic interpretation for the symmetric function as well. There is
not yet one known combinatorial perspective for studying either ∇ f or � f en as f
varies over the symmetric function bases.

Several additional generalizations of the diagonal harmonics can be found in
Bergeron [6], which examines generalizing theSn action to a finite complex reflec-
tion group and working with an arbitrary number of sets of variables to define a new
family of spaces generalizing the diagonal harmonics. The work shows the resulting
spaces have Frobenius characteristics with some nice common properties, but does
not give a general analogue of the Shuffle Theorem. Bergeron and Préville-Ratelle
[8] specifically examine the case of three sets of variables with a simultaneous Sn

action and conjecture a natural analogue of the Shuffle Theorem, although without
proposing a necessary third statistic. Since the closely related Hilbert scheme of
points in the plane is no longer smooth for more than two sets of variables, Haiman
[33] comments that the algebraic geometric techniques used to explore the diagonal
harmonics do not readily generalize to the case of additional sets of variables.

Acknowledgements The author would like to express her gratitude for the many helpful remarks
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On Positivity of Ehrhart Polynomials

Fu Liu

Abstract Ehrhart discovered that the function that counts the number of lattice
points in dilations of an integral polytope is a polynomial. We call the coefficients
of this polynomial Ehrhart coefficients and say a polytope is Ehrhart positive if
all Ehrhart coefficients are positive (which is not true for all integral polytopes).
The main purpose of this chapter is to survey interesting families of polytopes that
are known to be Ehrhart positive and discuss the reasons from which their Ehrhart
positivity follows. We also include examples of polytopes that have negative Ehrhart
coefficients and polytopes that are conjectured to be Ehrhart positive and pose a few
relevant questions.

1 Introduction

A polyhedron in the D-dimensional Euclidean spaceRD is the solution set of a finite
set of linear inequalities:

P =
⎧
⎨

⎩
x ∈ R

D :
D∑

j=1

ai, j x j ≤ bi for i ∈ I

⎫
⎬

⎭
,

where ai, j ∈ R, bi ∈ R, and I is a finite set of indices. A polytope is a bounded
polyhedron. Equivalently, a polytope in R

D can also be defined as the convex hull
of finitely many points in RD. We assume readers are familiar with basic definitions
such as faces and dimensions of polytopes as presented in [108]. In this paper, the
letter d usually denotes the dimension of a polytope and D denotes the dimension
of the ambient space. For majority of the examples presented here, we either have
d = D or d = D − 1.
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A lattice point or an integral point is a point in ZD. Counting lattice points inside
polytopes is a fundamental and useful step in many mathematical analyses. A lot of
combinatorial structures can be counted as lattice points of polytopes. For example,
matchings on graphs [63], t-designs [74], (semi-)magic squares [10, Chapter6], and
linear extensions of posets [102] are all of this form. Counting lattice points not
only appears in combinatorial problems, it also appears, for instance, in the context
of representation theory [52, 89], algebraic geometry [37], statistics [34, 36], and
number theory [7, 75].

One approach to study the question of computing the number of lattice points in
a polytope P is to consider a more general counting problem: For any nonnegative
integer t, let t P := {tx : x ∈ P} be the t th dilation of P , and then consider the
function

i(P, t) := |t P ∩ Z
D|,

which counts the number of lattice points in t P. We say two polytopes P and Q
are unimodularly equivalent1 if there exists an affine transformation from the affine
hull aff(P) of P to the affine hull aff(Q) of Q that induces a bijection from lattice
points in aff(P) to lattice points in aff(Q). Such an affine transformation is called
a unimodular transformation. It is easy to see that if two polytopes P and Q are
unimodularly equivalent, then i(P, t) = i(Q, t).

An integral polytope (or a lattice polytope) is a polytope whose vertices are lattice
points. In the 1960s, Eugène Ehrhart [35] discovered that the function i(P, t) has
nice properties when P is an integral polytope.

Theorem 1.1 (Ehrhart). For any integral d-polytope P, the function i(P, t) is
always a polynomial (with real coefficients) of degree d in t.

Thus, we call i(P, t) the Ehrhart polynomial of an integral polytope P , and the
coefficients of i(P, t) the Ehrhart coefficients of P. Note that Ehrhart’s theorem can
be extended to rational polytopes with the concept of a quasi-polynomial; however,
we will focus on integral polytopes in this chapter.

There is muchwork on the Ehrhart coefficients of integral polytopes. In the 1990s,
many people studied the problem of counting lattice points inside integral (or more
generally rational) polytopes [17, 22, 50, 80, 85] by using the theory of toric varieties.
Although explicit formulas for coefficients of Ehrhart polynomials can be deduced
from these results, they are often quite complicated. Only three coefficients of i(P, t)
have simple known forms for arbitrary integral polytopes P: The leading coefficient
is equal to the normalized volume of P , the second coefficient is one half of the sum
of the normalized volumes of facets, and the constant term is always 1.

Although these three coefficients can be described in terms of volumes (recall 1
is the normalized volume of a point) and thus are positive, it is not true that all the
coefficients of i(P, t) are positive. (The first counterexample comes up in dimension
3 known as the Reeve tetrahedron; see Sect. 4.1.) We say a polytope has Ehrhart

1Unimodular equivalence is sometimes called integral equivalence, e.g., in [79].
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positivity or is Ehrhart positive if it has positive Ehrhart coefficients. It is natural to
ask the following question:

Question 1.2. Which families of integral polytopes have Ehrhart positivity?

This turns out to be a challenging question. Even though multiple families of
polytopes have been shown to be Ehrhart positive in the literature, the techniques
involved are (almost) all different. In Sect. 2, we will survey families of polytopes
with the Ehrhart positivity property, discussing different reasons why they have this
property. In particular, as a consequence of the techniques discussed in Sect. 2.4,
one can show that any combinatorial type of rational polytopes can be realized
as an integral polytope that is Ehrhart positive (see Theorem 2.4.8). This result
indicates that Ehrhart positivity is not a combinatorial property. Therefore, it is
desirable to find more geometric methods to prove Ehrhart positivity. In Sect. 3, we
introduce such a tool calledMcMullen’s formula, which we use to give a refinement
of Ehrhart positivity, called α-positivity. We then use this tool to attack the Ehrhart
positivity conjecture of “generalizedpermutohedra,” a family of polytopes introduced
by Postnikov [82], and report partial progress on this conjecture. In Sect. 4, we
include negative results on Question 1.2, presenting examples with negative Ehrhart
coefficients. In particular, we will discuss progress on a question asked and studied
by Hibi, Higashitani, Tsuchiya, and Yoshida [47] on all possible sign patterns of
Ehrhart coefficients (see Sect. 4.2). Note that this question can be considered to be
a refinement of Question 1.2. Finally, in Sect. 5, we include various conjectures on
Ehrhart positivity and pose related questions.

We finish our introduction with the following remark on the coefficients of the
h∗-polynomial, which is closely related to the Ehrhart polynomials.
Remark on h∗-Vector. One method of proving Ehrhart’s theorem (Theorem 1.1) is
by considering the Ehrhart series of a d-dimensional integral polytope P:

EhrP(z) :=
∑

t≥0

i(P, t)zt .

It turns out that Theorem 1.1 is equivalent to the existence of a polynomial h∗
P(z) of

degree at most d such that h∗
P(1) �= 0 and

EhrP(z) = h∗
P(z)

(1 − z)d+1
.

See [94, Chapter 4] for a statement for the above equivalence result and a proof for
Ehrhart’s theorem.

We call h∗
P(z) the h∗-polynomial of P , and the vector (h∗

0, h
∗
1, . . . , h

∗
d), where

h∗
i is the coefficient of z

i in h∗
P(z), the h∗-vector of P. One can recover the Ehrhart

polynomial of a d-dimensional integral polytope P easily from its h∗-vector:
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i(P, t) =
d∑

j=0

h∗
j

(
t + d − j

d

)

. (1.1)

It is a well-known result due to Stanley that the entries in h∗-vectors are all nonneg-
ative integers [93] in contrast to the fact that Ehrhart coefficients could be negative.
As a consequence, positivity is not such an interesting question for h∗-polynomials.
Nevertheless, active research has been conducted in other directions.

The most natural question probably is: For each d, can we give a complete charac-
terization for all possible h∗-vector of d-dimensional integral polytopes? For d = 2,
the answer was first provided in 1976 by Scott [90] known as Scott’s condition.
However, for d ≥ 3, the question is wide open. A lot of work has been done in
the literature on searching for inequalities and equalities satisfied by h∗-vectors.
Most of them were discovered by Hibi [43–46] and Stanley [93, 99] in the 1990s
using commutative algebra and combinatorial methods. In 2009, Stapledon [103]
contributes more inequalities using the idea of degree and codegree of a polytope.
Known equalities on h∗-vectors include

d∑

i=0

h∗
i = d!Vol(P), h∗

0 = 1, h∗
1 = i(P) − (d + 1), h∗

d = |relint(P) ∩ Z
D|.
(1.2)

Please see [9, 103] for lists of known inequalities. Recently, instead of focusing on
inequalities satisfied by all polytopes, much work has been done on finding inequal-
ities for polytopes under certain constraints. For example, Treutlein [105] shows
that the necessary statement of Scott’s condition holds for any integral polytope
whose h∗-polynomial is of degree at most 2, i.e., h∗

i = 0 for all i > 2.Most recently,
Balletti and Higashitani [5] improve the result further to any integral polytope whose
h∗-polynomial satisfies h∗

3 = 0.
Another question that comes up a lot in the context of h∗-vector is the uni-

modality question. A sequence of real numbers c0, c1, . . . , cd is unimodal if there
exists 0 ≤ j ≤ d such that c0 ≤ c1 ≤ · · · ≤ c j ≥ c j+1 ≥ · · · ≥ cd . It is well known
that a nonnegative sequence is unimodal if it has “no internal zeros” and is “log-
concave,” and furthermore, log-concavity follows from another property called “real-
rootedness.” Please see surveys by Stanley [98] and Brenti [16] on log-concave and
unimodal sequences, and a survey by Brändén [13] with a more general discussion
on unimodality, log-concavity, and real-rootedness. Recently, Braun [14] wrote a
survey on unimodality problem of the h∗-vector of integral polytopes, discussing a
wide range of tools (including but not limited to the techniques mentioned in the
aforementioned surveys) to attack this problem. Finally, we would like to remark
that even though Ehrhart coefficients and h∗-vectors are related by (1.1), there is no
general implication between Ehrhart positivity and h∗-unimodality [60].
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2 Polytopes with Ehrhart Positivity

In the literature, there are multiple interesting families of polytopes shown to be
Ehrhart positive using very different techniques. In this section, we put together a
collection of such families, separating them into four categories based on the reasons
why they are Ehrhart positive. However, wemake no attempt to give a comprehensive
account of all families with this property. We also note that as the leading coefficient
of i(P, t) is the volume of P, one can often extract a formula for volume from
descriptions for Ehrhart polynomials we give below. However, we will focus only
on results on Ehrhart polynomials here and omit related formulas for volumes.

In this chapter, we use bold letters to denote both vectors and points in R
D.

For example, ei denotes both the i th vector in the standard basis and the point
(0, . . . , 0, 1, 0, . . . , 0) where 1 is in the i th position.

For convenience, we use N to denote the set of nonnegative integers, and P the
set of positive integers.

2.1 Products of Positive Linear Polynomials

In this part, we present families of polytopes whose Ehrhart polynomials can be
described explicitly, which can be shown to have positive coefficients using the
following naive lemma.

Lemma 2.1.1. Suppose a polynomial f (t) is either

(a) a product of linear polynomials with positive coefficients, or
(b) a sum of products of linear polynomials with positive coefficients.

Then f (t) has positive coefficients.

We start with the two simplest families of polytopes: unit cubes and standard
simplices, whose Ehrhart polynomials fit into situation (a) of Lemma 2.1.1, and thus
Ehrhart positivity follows. As these are the first examples of Ehrhart polynomials in
this chapter, and the computations are straightforward, we include all the details. For
most of the remaining examples we discuss in this paper, we only state the results
without providing detailed proofs.

2.1.1 Unit Cubes

The d-dimensional unit cube, denoted by �d , is the convex hull of all points in R
d

with coordinates in {0, 1}, i.e.,

�d := conv{x = (x1, x2, . . . , xd) ∈ R
d : xi = 0 or 1 for i = 1, 2, . . . , d}.
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It is easy to verify that the unit cube is the solution set to the following linear system
of inequalities:

�d = {x = (x1, x2, . . . , xd) ∈ R
d : 0 ≤ xi ≤ 1 for i = 1, 2, . . . , d},

Then for any t ∈ N,

t�d = {x = (x1, x2, . . . , xd) ∈ R
d : 0 ≤ xi ≤ t for i = 1, 2, . . . , d}.

Thus,

t�d ∩ Z
d = {x = (x1, x2, . . . , xd) ∈ Z

d : 0 ≤ xi ≤ t for i = 1, 2, . . . , d}.

For each i, the number of integers xi such that 0 ≤ xi ≤ t is t + 1. Thus,

i(�d , t) = (t + 1)d .

2.1.2 Standard Simplices

The d-dimensional standard simplex, denoted by �d , is the convex hull of all the
elements in the standard basis e1, e2, . . . , ed+1 of Rd+1 :

�d := conv{e1, e2, . . . , ed+1}.

One checks that �d can also be defined by the following linear system:

d+1∑

j=1

x j = 1, and xi ≥ 0 for i = 1, 2, . . . , d + 1.

Hence, for any t ∈ N,

t�d =
⎧
⎨

⎩
x = (x1, x2, . . . , xd+1) ∈ R

d+1 :
d+1∑

j=1

x j = t, and xi ≥ 0 for i = 1, 2, . . . , d + 1

⎫
⎬

⎭
,

and

t�d ∩ Z
d+1 =

⎧
⎨

⎩
x = (x1, x2, . . . , xd+1) ∈ Z

d+1 :
d+1∑

j=1

x j = t, and xi ≥ 0 for i = 1, 2, . . . , d + 1

⎫
⎬

⎭
.

Hence, i(�d , t) counts the number of nonnegative integer solutions to

x1 + x2 + · · · + xd+1 = t.
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This is a classic combinatorial problem which is the same as counting the number of
weak compositions of t into d + 1 parts (see [94, Page 18]), and the answer is given
by

i(�d , t) =
(
t + d

d

)

.

As we mentioned above, Ehrhart positivity of unit cubes and standard simplices
follows from situation (a) of Lemma 2.1.1. Next, we present two families of examples
with Ehrhart polynomials in the form of situation (b) of Lemma 2.1.1.

2.1.3 Pitman-Stanley Polytopes

Let a = (a1, . . . , ad) ∈ N
d . The following polytope is introduced and studied by

Pitman and Stanley [79]:

PSd(a) :=
⎧
⎨

⎩
x ∈ R

d : xi ≥ 0 and
i∑

j=1

x j ≤
i∑

j=1

ai , for i = 1, 2, . . . , d

⎫
⎬

⎭
,

and hence we call it a Pitman-Stanley polytope.
Pitman and Stanley gave an explicit formula [79, Formula (33)] for computing the

number of lattice points inPSd(a), fromwhich a formula for the Ehrhart polynomial

of PSd(a) immediately follows. Recall
((

x
y

))
= (x+y−1

y

)
.

Theorem 2.1.2 (Pitman-Stanley). Let

Id :=
⎧
⎨

⎩
i = (i1, i2, . . . , id ) ∈ N

d :
d∑

j=1

i j = d, and
k∑

j=1

i j ≥ k for k = 1, 2, . . . d − 1

⎫
⎬

⎭
.

Then the Ehrhart polynomial of PSd(a) is given by

i(PSd(a), t) =
∑

i∈Id

((
a1t + 1

i1

)) d∏

k=2

((
akt

ik

))

. (2.1)

For each i , both
((

a1t+1
i1

))
and

((
ak t
ik

))
are products of linear polynomials in t with

positive coefficients, so it follows from Lemma 2.1.1/(b) that any Pitman-Stanley
polytope PSd(a) is Ehrhart positive.

Pitman-Stanley polytopes are contained in two different more general families
of polytopes: flow polytopes and generalized permutohedra. For each of these two
bigger families of polytopes, formulas for Ehrhart polynomials of some subfamily
have been derived, generalizing Formula (2.1). We present results on flow polytopes
in the next part below, while the results on generalized permutohedra are postponed
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to Sect. 3.1.2 as part of a general discussion on the Ehrhart positivity conjecture of
generalized permutohedra in Sect. 3.

2.1.4 Subfamilies of Flow Polytopes

Let G be a (loopless) directed acyclic connected graph on [n + 1] = {1, 2, . . . , n +
1} such that each edge {i, j} with i < j is always directed from i to j . Hence, we
denote the edge by (i, j) to indicate the orientation. For any a = (a1, a2, . . . , an) ∈
N

n, we associate to it another vector

ā :=
(

a1, . . . , an,−
n∑

i=1

ai

)

. (2.2)

An ā- f low on G is a vector f = ( f (e))e∈E(G) ∈ (R≥0
)E(G)

such that for i =
1, 2, . . . , n, we have

∑

e=(g,i)∈E(G)

f (e) + ai =
∑

e=(i, j)∈E(G)

f (e),

that is, the netflow at vertex i is ai . Note these conditions imply that the netflow at
vertex n + 1 is −∑n

i=1 ai . The flow polytope FG(ā) associated to G and the integer
netflow ā is the set of all ā-flows f on G.

Example 2.1.3. Let GPS
d be the graph on [d + 1] with edge set

{(i, i + 1), (i, d + 1) : i = 1, 2, . . . , d}.

Baldoni and Vergne [3, Example 16] show that FG
PS
d

(ā) is unimodularly equivalent
to the Pitman-Stanley polytope PSd(a).

For each edge e = (i, j) of G, we associate to it the positive type An root α(e) =
α(i, j) = ei − e j . For any b ∈ Z

n+1, the Kostant partition function KPG evaluated
at b is

KPG(b) := #

⎧
⎨

⎩
f = ( f (e))e∈E(G) ∈ N

E(G) :
∑

e∈E(G)

f (e)α(e) = b

⎫
⎬

⎭
.

It is straightforward to verify that for a ∈ N
n,

KPG(ā) = |FG(ā) ∩ Z
E(G)|,

i.e., KPG(ā) counts the number of lattice points in the flow polytope FG(ā). In the
literature, various groups of people [3, 55, 70, 84] obtained formulas for Kostant
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partition functions or equivalently the number of lattice points in flow polytopes. As
a consequence, we can easily obtain formulas for the Ehrhart polynomial of FG(ā).

Theorem 2.1.4 (Lidskii, Postnikov-Stanley, Baldoni-Vergne, Mészáros-Morales).
Suppose G is a connected graph on the vertex set [n + 1], with m edges directed
i → j if i < j , and with at least one outgoing edge at vertex i for i = 1, . . . , n. Let
outk (and ink , respectively) denote the outdegree (and the indegree, respectively) of
vertex k in G minus 1.

Then for any a = (a1, . . . , an) ∈ N
n, the Ehrhart polynomial of FG(ā) is given

by

i(FG(ā), t)

=
∑

j

n∏

k=1

(
akt + outk

jk

)

· KPG( j1 − out1, j2 − out2, . . . , jn − outn, 0), (2.3)

=
∑

j

n∏

k=1

((
akt − ink

jk

))

· KPG( j1 − out1, j2 − out2, . . . , jn − outn, 0), (2.4)

where each summation is over all weak compositions j = ( j1, . . . , jn) of m − n that
are ≥ (out1, . . . , outn) in dominance order.

We remark that Lidskii [55] gives a formula for computing Kostant partition func-
tions associated to the complete graph Kn+1, which yields Formula (2.3) above with
G = Kn+1. Postnikov and Stanley [84, unpublished] were the first to discover For-
mula (2.3) for arbitrary graphs G using the Elliott-MacMahon algorithm. Baldoni
and Vergne [3] give a proof for both formulas in Theorem 2.1.4 using residue com-
putation. Most recently, Mészáros and Morales [70] recover Baldoni-Vergne’s result
by extending ideas of Postnikov and Stanley on the Elliott-MacMahon algorithm and
polytopal subdivisions of flow polytopes.

Formula (2.4) is useful in obtaining positivity results since

((
akt − ink

jk

))

=
(
akt − ink + jk − 1

jk

)

is a product of linear polynomials in t with positive coefficients as long as ink = 0 or
−1.Also, note thatKPG( j1 − out1, j2 − out2, . . . , jn − outn, 0) is nonnegative and
i(FG(ā), t) �= 0. The following result immediately follows from Lemma 2.1.1/(b).

Corollary 2.1.5. Assume the hypotheses of Theorem 2.1.4. Assume further that for
each vertex i ∈ [n] = {1, 2, . . . , n}, the indegree of i is either 0 or 1. Then the flow
polytope FG(ā) is Ehrhart positive.

We remark that the graph GPS
d defined in Example 2.1.3 satisfies the hypothesis

of the above corollary. Hence, Ehrhart positivity of the Pitman-Stanley polytope is a
special case of Corollary 2.1.5.
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2.2 Roots with Negative Real Parts

In this part, we show examples with Ehrhart positivity using the following lemma.
We use Re(z) to denote the real part of a complex number z.

Lemma 2.2.1. Let p(t) be a polynomial in t with real coefficients. If the real part
Re(r) is negative for every root r of p(t), then all the coefficients of p(t) are positive.

Proof. Let a > 0. If −a < 0 is a real root of p(t), then t + a is a factor of p(t). If
−a + bi is a complex root of p(t) for some b ∈ R, then −a − bi must be a root of
p(t) as well, which implies that

(t + a − bi)(t + a + bi) = (t2 + 2at + a2 + b2)

is a factor of p(t).Hence, p(t) is a product of factors with positive coefficients. Thus,
our conclusion follows. �

We say that a polynomial (with real coefficients) is negative-real-part-rooted or
NRPR if all of its roots have negative real parts. The above lemma implies that if
i(P, t) is NRPR, then P is Ehrhart positive. Ehrhart polynomials of unit cubes and
standard simplices are all trivially NRPR, as they factor into linear polynomials
with positive real coefficients. Hence, we would like to rule them out and are only
interested in examples of Ehrhart polynomials that are nontrivially NRPR.

It turns out that the following theorem which establishes a connection between
roots of the h∗-polynomial and roots of the Ehrhart polynomial of a polytope is very
useful.

Theorem 2.2.2 ([88], Theorem 3.2 of [101]). Let P be a d-dimensional integral
polytope, let k be the degree of the polynomial h∗

P(z) (so 0 ≤ k ≤ d), and suppose
that every root of h∗

P(z) lies on the circle {z ∈ C : |z| = 1} in the complex plane.
Then there exists a polynomial f (t) of degree k such that

i(P, t) = f (t) ·
d−k∏

i=1

(t + i),

and every root of f (t) has real part −(1 + (d − k))/2.

We say a polytope P is h∗-unit-circle-rooted if the h∗-polynomial h∗
P(z) of P

has all of its roots on the unit circle of the complex plane. Below we introduce three
families of polytopes and show that each polytope P in these families is h∗-unit-
circle-rooted. Therefore, Ehrhart positivity for these families follows from Theorem
2.2.2 and Lemma 2.2.1.

2.2.1 Cross-Polytopes

The d-dimensional cross-polytope, denoted by ♦d , is a polytope in Rd defined by
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♦d := conv{±e1,±e2, . . . ,±ed},

or equivalently by the following linear system:

±x1 ± x2 ± · · · ± xd ≤ 1.

Hence, i(♦d , t) counts the number of integer solutions to

|x1| + |x2| + · · · |xd | ≤ t.

Counting the number of integer solutions with exactly k nonzero xi ’s for k =
0, 1, 2, . . . , d, we obtain that

i(♦d , t) =
d∑

k=0

2k
(
d

k

)(
t

k

)

.

Unfortunately, it is not clear whether the above expression expands positively in
powers of t . We compute its Ehrhart series instead. First, notice that i(♦d , t) counts
the number of integer solutions to

|x1| + |x2| + · · · |xd | + y = t.

Hence,
i(♦d , t) =

∑
f (a1) f (a2) . . . f (ad) g(b),

where the summation is over all weak compositions (a1, . . . , ad , b) of t into d + 1
parts, g(b) = 1 for all b ≥ 0 and f (a) = 1 ifa = 0 and f (a) = 2 ifa > 0.Therefore,

∑

t≥0

i(♦d , t)z
t =

d∏

i=1

(
∑

ai≥0

f (ai )z
ai

)

·
∑

b≥0

zb =
(
1 + z

1 − z

)d

· 1

1 − z
= (1 + z)d

(1 − z)d+1
.

Thus, (1 + z)d is the h∗-polynomial of the cross-polytope ♦d . Hence, ♦d is h∗-unit-
circle-rooted and thus is Ehrhart positive.

2.2.2 Certain Families of �(1,q)

Let q = (q1, q2, . . . , qd) ∈ P
d be a sequence of positive integers. For each such a

vector q, we define a simplex

�(1,q) := conv

{

e1, e2, . . . , ed ,−
d∑

i=1

qi ei

}

.
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In [29], Conrads studied simplices of this form and showed that �(1,q) is reflexive if
and only if

qi divides 1 +
d∑

j=1

q j , for i = 1, 2, . . . , d.

Recently, Braun, Davis, and Solus studied�(1,q) in their investigation of a conjecture
by Hibi and Ohsugi, and they provided a number-theoretic characterization of the
h∗-polynomial of �(1,q) [15, Theorem 2.5].

Theorem 2.2.3 (Braun-Davis-Solus). The h∗-polynomial of �(1,q) is

h∗ (�(1,q), z
) =

q1+q2+···+qd∑

b=0

zω(b), (2.5)

where

ω(b) := b −
d∑

i=1

⌊
qib

1 + q1 + · · · + qd

⌋

.

Formula (2.5) allows us to compute the h∗-polynomial for �(1,q) with special
choices of q easily.We give two examples below in which�(1,q) satisfies the hypoth-
esis of Theorem 2.2.2 with k = d.

Example 2.2.4 (Standard reflexive simplices). Ifwe choose q = 1 = (1, 1, . . . , 1) ∈
P
d , then�(1,q) is the d-dimensional standard reflexive simplex. Note that in this case,

wehave thatq1 + q2 + · · · + qd = d.Furthermore, for eachb ∈ {0, 1, 2, . . . , d},one
can verify that w(b) = b. Hence,

h∗ (�(1,1), z
) =

d∑

b=0

zb = 1 + z + z2 + · · · + zd .

Example 2.2.5 (Payne’s construction). In [78], Payne constructed reflexive sim-
plices that do not have unimodal h∗-vectors. His construction is equivalent to the
simplices�(1,q) with the following choices of q :Given r ≥ 0, s ≥ 3 and k ≥ r + 2,
let d = r + sk and

q = (q1, q2, . . . , qd) = (1, 1, . . . , 1
︸ ︷︷ ︸
sk−1 times

, s, s, . . . , s
︸ ︷︷ ︸
r+1 times

).

Applying Theorem 2.2.3, one can obtain

h∗ (�(1,q), z
) = (1 + zk + z2k + · · · + z(s−1)k)(1 + z + z2 + · · · + zk+r ).
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Polytopes in both Examples 2.2.4 and 2.2.5 are h∗-unit-circle-rooted. Hence, they
are Ehrhart positive. We remark that the Ehrhart positivity of �(1,q) considered in
Example 2.2.5 was first proved by the author and Solus [60, Theorem 3.2].

2.2.3 One Family of Order Polytopes

Given a finite poset (partially ordered set) P , the order polytope, denoted by O(P),
is the collection of functions x ∈ R

P satisfying

• 0 ≤ xa ≤ 1, for all a ∈ P, and
• xa ≤ xb, if a ≤ b in P.

The order polytope O(P) was first defined and studied by Stanley [102]. Here we
consider a family of order polytopes constructed from a certain family of posets.

Let Pk be the ordinal sum of k copies of 2 element antichains; equivalently, Pk is
the poset on the 2k-element set {ai, j : i = 1, 2 and j = 1, 2, . . . , k} satisfying

ai, j ≤ ai ′, j ′ if and only if j < j ′ or (i, j) = (i ′, j ′).

For any t ∈ N, the t th dilation tO(Pk) ofO(Pk) is the collection of x = (xi, j : i =
1, 2 and j = 1, 2, . . . , k) ∈ R

2k satisfying

0 ≤ xi, j ≤ t, and xi, j ≤ xi ′, j ′ if j < j ′.

Hence, i(O(Pk), t) counts the number of integer solutions x satisfying the above two
conditions. Note that each solution gives a weak composition (y1, z1, y2, . . . , yk, zk,
yk+1) of t into 2k + 1 parts, where

y j =min(x1, j , x2, j ) − max(x1, j−1, x2, j−1), for j = 1, 2, . . . , k + 1,

z j =max(x1, j , x2, j ) − min(x1, j , x2, j ) = |x1, j − x2, j |, for j = 1, 2, . . . , k,

and by convention let max(x1,0, x2,0) = 0 and min(x1,k+1, x2,k+1) = t. Thus,

i(O(Pk), t) =
∑

g(y1) f (z1)g(y2) f (z2) . . . f (zk)g(yk+1),

where the summation is over all weak compositions of t into 2k + 1 parts, g(y) = 1
for all y ≥ 0, and f (z) = 1 if z = 0 and f (z) = 2 if z > 0. Therefore, similar to the
calculation for cross-polytopes, we obtain

∑

t≥0

i(O(Pk), t)z
t = (1 + z)k

(1 − z)2k+1
.

Thus, the h∗-polynomial ofO(Pk) is (1 + z)k . By Lemma 2.2.1 and Theorem 2.2.2,
the order polytope O(Pk) is Ehrhart positive.
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Remark 2.2.6. Stanley also defined a “chain order” polytope C(P) for each poset
P [102, Definition 2.1] and showed that C(P) is unimodularly equivalent to O(P)

[102, Theorem 3.2/(b)], from which it follows that i(C(P), t) = i(O(P), t).
Therefore, the conclusions we draw above for the order polytope O(Pk) all hold

for the chain polytope C(Pk).

It turns out that the polytopes studied in Sects. 2.2.1 and 2.2.2 are “reflexive”
polytopes, and the order polytopes studied in Sect. 2.2.3 are “Gorenstein” polytopes.
These are not coincidences as we will discuss below.

Connection to Reflexivity and Gorensteinness. An integral polytope P in R
D is

reflexive (up to lattice translation) if the origin is in the interior of P and its dual

P∨ := { y ∈ (RD)∗ : 〈 y, x〉 ≤ 1 ∀x ∈ P}

is also an integral polytope, where (RD)∗ is the dual space of RD.

It follows from the Macdonald Reciprocity Theorem [64] that if an integral poly-
tope P is reflexive, then the roots of i(P, t) are symmetrically distributedwith respect
to the line {z ∈ C : Re(z) = −1/2} in the complex plane. Bey, Henk, and Wills
show that the converse is true if we include polytopes that are unimodularly equiv-
alent to reflexive polytopes [12, Proposition 1.8]. Recently, Hegedüs, Higashitani,
and Kasprzyk, in their study of roots of Ehrhart polynomials of reflexive polytopes,
give the following result [41, Lemma 1.2].

Lemma 2.2.7 (Hegedüs-Higashitani-Kasprzyk).A d-dimensional integral polytope
P is reflexive (up to unimodular transformation) if and only if the summation of the
d roots of i(P, t) equals to −d/2.

Reflexive polytopes are special cases of a more general family of polytopes:
Gorenstein polytopes. Recall that the codegree of P is defined to be

codeg(P) := dim(P) + 1 − deg
(
h∗
P(z)

)
.

It is (again) a consequence of theMacdonaldReciprocityTheorem [64] that codeg(P)

is the smallest positive integer s such that sP contains a lattice point in its interior
(see, e.g., [48]). A Gorenstein polytope is an integral polytope P of codegree s such
that sP is a reflexive polytope. The work [95] of Stanley gives a nice characterization
for the h∗-polynomials of Gorenstein polytopes: A d-dimensional integral polytope
P is a Gorenstein polytope if and only if its h∗-polynomial is symmetric; that is, if
h∗
P(z) =∑k

i=0 h
∗
i z

i with h∗
k �= 0, then h∗

i = h∗
k−i for i = 0, 1, 2, . . . , k. Using this,

one can easily see that all the examples discussed in Sects. 2.2.1–2.2.3 are Gorenstein
polytopes.

We now restate Lemma 2.2.7 in terms of Gorenstein polytopes.
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Lemma 2.2.8. Ad-dimensional integral polytope P isGorenstein (up to unimodular
transformation) if and only if the summation of the d roots of i(P, t) equals to−sd/2
for some positive integer s.

Furthermore, if the above condition holds, the integer s is the codegree of P.

Proof. The conclusion of the lemma follows from the observation that a number t0
is a root of i(P, t) if and only if t0/s is a root of i(sP, t).

Corollary 2.2.9. Suppose P is a d-dimensional polytope that is h∗-unit-circle-
rooted. Then P is a Gorenstein polytope (up to unimodular transformation).

Moreover, if the degree of the h∗-polynomial h∗
P(z) is d, then P is reflexive.

Proof. Let k be the degree of h∗
P(z). By Theorem2.2.2, among all the roots of

i(P, t), k of them have real parts −(1 + (d − k))/2, and the other (d − k) roots are
−1,−2, . . . ,−(d − k). As i(P, t) is a polynomial with real coefficients, the sum of
roots of i(P, t) is the sum of the real parts of roots of i(P, t), which is

−(1 + (d − k))/2 · k +
d−k∑

i=1

(−i) = −1

2
d(d − k + 1).

Then the conclusions follow from Lemma 2.2.8. �

Therefore, when an integral polytope P is h∗-unit-circle-rooted, we not only get
Ehrhart positivity for P but can also conclude that P is a Gorenstein polytope of
codegree d − k + 1, where k is the degree of the h∗-polynomial of P.

2.3 Coefficients with Combinatorial Meanings

2.3.1 Zonotopes

In this part, we introduce a special family of polytopes, zonotopes, whose Ehrhart
coefficients can be described combinatorially. As a consequence, Ehrhart coefficients
of a zonotope are not only positive but also positive integers.

The Minkowski sum of two polytopes (or sets) P and Q is

P + Q := {x + y : x ∈ P, y ∈ Q.}.

Let v1, v2, . . . , vn ∈ Z
D be a set of integer vectors. The zonotope Z(v1, v2, . . . , vn)

associated with this set of vectors is the Minkowski sum of intervals [0, vi ], where
[0, vi ] is the line segment from the origin to vi . Hence,

Z(v1, . . . , vn) :=
n∑

i=1

[0, vi ] =
{

n∑

i=1

civi : 0 ≤ ci ≤ 1 for i = 1, 2, . . . , n

}

.
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In [92, Theorem 2.2], Stanley gives a combinatorial description for the Ehrhart coef-
ficients of zonotopes.

Theorem 2.3.1 (Stanley). The coefficient of tk in i(Z(v1, . . . , vn), t) is equal to

∑

X

h(X),

where X ranges over all linearly independent k-subsets of {v1, . . . , vn}, and h(X) is
the greatest common divisor of all k × k minors of the matrix whose column vectors
are elements of X.

The main ingredient for the proof of the above theorem is that Z(v1, . . . , vn) can
be written as a disjoint union of half-open parallelepipedCX ranging over all linearly
independent subsets X = {v j1 , . . . , v jk } of {v1, . . . , vn}, where CX is generated by
ε1v j1 , . . . , εiv jk for certain choices of ε1, . . . , εk ∈ {−1, 1}. (see [92, Lemma 2.1].)
The theorem then follows from the fact that the number of lattice points in the half-
open parallelepiped CX is the volume of CX , which can be calculated by h(X).

The simplest examples of zonotopes are unit cubes considered in Sect. 2.1.1. We
may recover the Ehrhart polynomial of a unit cube using Theorem2.3.1. However, a
more interesting example is the regular permutohedron.

Example 2.3.2. The regular permutohedron, denoted by �d , is the convex hull of
all permutations in Sd+1; that is,

�d := conv{(σ(1),σ(2), . . . ,σ(d + 1)) ∈ R
d+1 : σ ∈ Sd+1}.

It is straightforward to check that �d is a translation of the zonotope

∑

1≤i< j≤d+1

[0, e j − ei ].

For any subset X of �d := {e j − ei : 1 ≤ i < j ≤ d + 1}, we let GX be the graph
on vertex set [d + 1] and {i, j} (with i < j) is an edge if and only if e j − ei ∈ X.

Then it follows from matroid theory that X is linearly independent if and only if GX

is a forest on [d + 1]. (Recall that a forest is a collection of trees or equivalently is
an acyclic graph.) Furthermore, if X is linearly independent, then GX is a forest of
d + 1 − |X | trees, and h(X) (described in Theorem 2.3.1) is 1.

Therefore, we conclude that the coefficient of t k in i(�d , t) counts the number of
forests on [d + 1] that contain exactly d + 1 − k trees. Therefore, we can compute,
for example,

i(�3, t) = 16t3 + 15t2 + 6t + 1.
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2.3.2 Positivity of a Generalized Ehrhart Polynomial

The polynomialwe discuss in this part is not exactly anEhrhart polynomial.However,
it is closely related to the result on zonotopes we have presented in the last part, and
thus is included here. Galashin, Hopkins, McConville, and Postnikov, in their study
of root system chip firing [38], considered the following lattice points counting
problem: Given an integral polytope P and a set of integer vectors v1, v2, . . . , vn,

describe the number of lattice point in

P + v1 + v2 + · · · + vn = P + Z(v1, . . . , vn).

Extending Stanley’s idea of decomposing zonotopes into half-open parallelepiped,
they show [38, Proof of Theorem 16.1] that P + Z(v1, . . . , vn) can be written as
disjoint union of sets in the form of F + CX where F is an open face of P andCX is a
half-open parallelepiped determined by a linearly independent set X of {v1, . . . , vn}.
Theorem 2.3.3 (Galashin-Hopkins-McConville-Postnikov). Suppose P is an inte-
gral polytope in R

D and v1, . . . , vn ∈ Z
D is a set of integer vectors. Let Z =

Z(v1, . . . , vn). For any t = (t1, . . . , tn) ∈ Nn, we define tZ = Z(t1v1, . . . , tnvn).

Then there exists a polynomial L(t) = L(t1, . . . , tn) in n variables with nonnegative
integer coefficients such that |(P + tZ) ∩ Z

D| = L(t).
In particular, if we take t = (t, t, . . . , t), then

|(P + tZ) ∩ Z
D| = |(P + tZ) ∩ Z

D| = L(t, t, . . . , t)

is a polynomial in t of degree dim(Z) with positive integer coefficients.

Note that the second part of the above theorem was not explicitly stated in [38,
Theorem 16.1], but it was a consequence of the techniques used in its proof.

One sees that if we choose P to be the origin, then the above theorem recovers
the Ehrhart positivity of zonotopes. However, in contrast with Stanley’s results, no
explicit formulas were given in [38] for the positive/nonnegative integer coefficients
asserted in Theorem 2.3.3. Recently, Hopkins and Postnikov [49] analyzed tech-
niques used in [38] further and provided the desired explicit formula, completing the
generalization of Theorem 2.3.1.

Theorem 2.3.4 (Hopkins-Postnikov). The homogeneous degree k part of the poly-
nomial L(t) assumed by Theorem 2.3.3 is given by

∑

X

| quotX (P) ∩ quotX (ZD)| · h(X) ·
∏

vi∈X
ti ,

where X ranges over all linearly independent k-subsets of {v1, . . . , vn}, quotX :
R

D → R
D/span

R
(X) is the canonical quotient map, and h(X) is the greatest com-

mon divisor of all k × k minors of the matrix whose column vectors are elements
of X.
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2.4 Higher Integrality Conditions

In this part, we will introduce families of polytopes whose Ehrhart coefficients are
always volumes of certain projections of the original polytopes and are hence positive.

2.4.1 Cyclic Polytopes

We start with a well-known family of polytopes: cyclic polytopes. Themoment curve
in Rd is defined by

νd : R → R
d , x �→ νd(u) = (u, u2, . . . , ud).

Let U = {u1, . . . , un}< be a linear ordered set. Then the cyclic polytope Cd(U ) =
Cd(u1, . . . , un) is the convex hull of n > d distinct points νd(ti ), 1 ≤ i ≤ n, on the
moment curve:

Cd(U ) := conv{νd(u1), νd(t2), . . . , νd(un)}.

Cyclic polytopes form an interesting family of polytopes. For instance, its facets are
determined by the Gale evenness condition [108, Theorem 0.7], and the number of
i-dimensional faces of Cd(U ) (where |U | = n) is the upper bound for the number of
i-dimensional faces of all d-dimensional polytopes with n vertices [66].

The following theorem on the Ehrhart polynomial of integral cyclic polytopes
was initially conjectured in [9] by Beck, De Loera, Develin, Pfeifle, and Stanley and
then proved in [57] by the author.

Theorem 2.4.1 (L.). For any d-dimensional integral cyclic polytope P = Cd(U ) ⊂
R

d , we have that

i(P, t) = Vold(P)td + i(π(P), t) =
d∑

k=0

Volk
(
π(d−k)(P)

)
t k, (2.6)

where π(d−k) : Rd → R
k is the map that ignores the last d − k coordinates of a point,

and Volk(Q) is the volume of Q in the k-dimensional space Rk .

The first step of the proof is to reduce the problem to simplices by using trian-
gulations. For the simplex case, we consider the set obtained by removing the lower
envelope of Cd(U ) (with |U | = d + 1), and we decompose this set into d! signed
(convex) half-open sets Sσ , each of which corresponds to a permutation σ in the sym-
metric groupSd . One important feature of this decomposition is that the number of
lattice points in each piece Sσ can be expressed in a simple formula involving the
permutation σ, which makes it possible to compute the summation of all d! terms.
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Fig. 1 Examples of higher integrality conditions

2.4.2 k-Integral Polytopes

Since the work in [57], the author generalized the family of integral cyclic polytopes
to a bigger family of integral polytopes, “lattice-face polytopes,” and showed that
their Ehrhart polynomials are also in the simple form of (2.6) [56, 58]. Later in [59],
the author improved her results by introducing a notion of “higher integrality,” which
we will detail below.

Recall that a lattice point is also called an integral point. A point can be considered
as a 0-dimensional affine space. We first extend this concept of integrality to higher-
dimensional affine spaces: An �-dimensional affine space W in Rd is integral if

π(d−�)(W ∩ Z
d) = Z

�.

Note that this definition with � = 0 is consistent with the original definition of an
integral point.

Example 2.4.2 (lines inR2).See the left side of Fig. 1 for examples of 1-dimensional
affine space in R

2. The black lines are integral, while the red lines are not integral.
For the slanted red line, say L1, we have π(2−1)(L1 ∩ Z

2) ∼= Z/4Z. For the vertical
red line, say L2, we have π(2−1)(L2 ∩ Z

2) ∼= Z
0.

Note that in the above example, even though L1 is not integral, after the projection,
we still get a 1-dimensional lattice, which has the same dimension as L1. In this case,
we say L1 is in general position. On the contrary, L2 is not in general position.

Definition 2.4.3. Suppose 0 ≤ k ≤ d. A d-dimensional polytope P is k-integral if
for any face F of P of dimension less than or equal to k, the affine hull aff(F) of F
is integral.

In particular, when k = d, we call P a fully integral polytope.

Remark 2.4.4. With the above definition, lattice-face polytopes, introduced in [56,
58], can be defined as polytopes that can be triangulated into fully integral simplices,
which is a property any (integral) cyclic polytope has. Therefore, any cyclic polytope
or lattice polytope is fully integral.
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The main result in [59] is a complete description for the Ehrhart coefficients of a
k-integral polytope in terms of volumes of projections and Ehrhart polynomials of
slices.

Definition 2.4.5. For any y ∈ π(d−k)(P), we define the slice of P over y, denoted
by πd−k( y, P), to be the intersection of P with the inverse image of y under π(d−k).

Recall that [t k] f (t) denotes the coefficient of t k of a polynomial f (t).

Theorem 2.4.6 (L.). If P is a k-integral polytope, then

[t�]i(P, t) =
{
Vol(πd−�(P)) if 0 ≤ � ≤ k,

[t�−k]
(∑

y∈π(d−k)(P)∩Zk i(πd−k( y, P), t)
)

if k + 1 ≤ � ≤ d.

Therefore, if P is fully integral, the Ehrhart polynomial of P is in the form of (2.6),
and thus P is Ehrhart positive.

Because both cyclic polytopes and lattice-face polytopes are fully integral polytopes,
the above theorem generalizes results in [56–58].

The following is an example showing how to use Theorem 2.4.6 to obtain the
Ehrhart polynomial of a 1-integral polytope.

Example 2.4.7 (Example of Theorem 2.4.6). Consider the 3-dimensional polytope

P = conv{(0, 0, 0), (4, 0, 0), (3, 6, 0), (2, 2, 2)} ⊂ R
3,

which is illustrated on the right side of Fig. 1. One checks that P is 1-integral. Clearly
π(2)(P) = [0, 4] and π(3)(P) = 0. By the first part of Theorem 2.4.6,

[t1]i(P, t) = Vol1([0, 4]) = 4, and [t0]i(P, t) = Vol0(0) = 1.

For the higher Ehrhart coefficients of P , we need to compute the Ehrhart polyno-
mials of slices of P over lattice points in π(2)(P) = [0, 4]. In the picture, the three
shaded triangles are the slices of P over the lattice points 1, 2, and 3. The slices of P
over lattice points 0 and 4 are the single points (0, 0, 0) and (4, 0, 0), respectively.
We calculate the Ehrhart polynomials of all five slices, by summing which up we
obtain 8t2 + 10t + 5. Then the second part of Theorem 2.4.6 says that

[t3]i(P, t) = 8 and [t2]i(P, t) = 10.

Therefore,
i(P, t) = 8t3 + 10t2 + 4t + 1.

Recall that the face poset of a polytope P is the set of all faces of P ordered
by inclusion. We say two polytopes have the same combinatorial type if they have



On Positivity of Ehrhart Polynomials 209

the same face poset. As a by-product of the study of Ehrhart polynomials of full-
integral polytopes, we can also show that Ehrhart positivity is independent from
combinatorial types of polytopes [56].

Theorem 2.4.8 (L.). For any rational polytope P, there exists a polytope P ′ with
the same face lattice such that P ′ satisfies the higher integrality condition and thus
is Ehrhart positive.

Sketch of proof. First, by choosing appropriate bases for our underlying lattice Zd ,

we may assume that the affine hull of any face of P is in general position.
Next, for any s = (s1, . . . , sd) ∈ Z

d and x ∈ R
d , we define

s � x = (s1x1, s2x2, . . . , sd xd).

So s is an operator onRd that dilates points with different scalars at different coordi-
nates. We observe that for any �-dimensional affine space W ⊂ R

d that is in general
position, there exist (positive) integer scalars c1, . . . , c� such that for any s ∈ Z

d
�=0,

if cmsm divides sm+1 for each m ∈ {1, 2, . . . , �}, then

s � W := {s � w : w ∈ W }

is integral. For example, for the slanted red line L1 appeared in Example2.4.2, one
checks that whenever s = (s1, s2) satisfies 4s1 divides s2, the affine space s � L1 is
integral. Hence, we can choose c1 = 4.

Since P has finitely many faces, we can apply the above operations inductively
on dimensions of faces to obtain a full-integral polytope P ′ that actually defined as
s � P for some s ∈ Z

d
�=0. �

Remark 2.4.9. There are a lot of properties of polytopes people study other than
Ehrhart positivity, such as “normality,” “integer decomposition property” (or IDP),
and “existence of a (regular) unimodular triangulation.” For the majority of them,
even if you start with a polytope P that does not have a certain property, dilating
P with a large enough scalar often yields a polytope with the desired property (see,
e.g., [19, 30, 39]). Clearly, simple dilations would not change the answer to the
Ehrhart positivity question for any polytope. After all, i(kP, t) = i(P, kt). Hence,
the Ehrhart coefficients of a dilation of P have exactly the same sign pattern as
Ehrhart coefficients of P.

However, our proof of Theorem 2.4.8 says that dilating in different directions with
different scalars can change a non-Ehrhart-positive polytope to a Ehrhart-positive
one.
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3 McMullen’s Formula and Positivity of Generalized
Permutohedra

The main purpose of this section is to study the Ehrhart positivity conjecture for
generalized permutohedra. After reviewing previously known results supporting this
conjecture, we introduce McMullen’s formula, which is a formula for computing
the number of lattice points inside polytopes. This provides us a way of attacking
the question of Ehrhart positivity by reducing the problem to “α-positivity.” We
then discuss the author’s joint work [24, 27] with Castillo on the Ehrhart positivity
conjecture of generalized permutohedra using this approach.

3.1 Motivation and Evidence

In this part, we discuss the motivation for considering the Ehrhart positivity con-
jecture of generalized permutohedra and prior work by Postnikov which provides
evidence for this conjecture. We start by formally defining generalized permutohe-
dra, the main family of polytopes we study in this section. Whenever we talk about
generalized permutohedra, we have D = d + 1.

3.1.1 Definition and First Positivity Conjecture

Given a strictly increasing sequence α = (α1,α2, . . . ,αd+1) ∈ R
d+1, we define the

usual permutohedron associated with α as

Perm(α) := conv
(
(απ(1),απ(2), · · · ,απ(d+1)) : π ∈ Sd+1

)

In particular, if α = (1, 2, . . . , d + 1), we obtain the regular permutohedron �d

considered in Example 2.3.2. In [82], Postnikov defined generalized permutohedra
to be polytopes that can be obtained from usual permutohedra by moving vertices
while preserving all edge directions. (Note that in this definition, edges are allowed
to degenerate, and hence vertices can collapse.)

In [31], De Loera, Haws, and Koeppe study the Ehrhart polynomials of matroid
base polytopes, and conjecture those all have positive coefficients. However, it turns
out that every matroid base polytope is a generalized permutohedron [1, Section2].
In [24, 27], Castillo and the author generalize the conjecture of De Loera et al. to all
integral generalized permutohedra:

Conjecture 3.1.1 (Castillo-L.). All integral generalized permutohedra are Ehrhart
positive.
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Indeed, due to Postnikov’s work, a big family of generalized permutohedra is
already known to be Ehrhart positive, which provides a strong evidence to the above
conjecture. We describe his work below.

3.1.2 Ehrhart Positivity of Type-Y Generalized Permutohedra

In [82], Postnikov considersMinkowski sums of dilated simplices: For any nonempty
subset I ⊆ [d + 1], define the simplex

�I := conv{ei : i ∈ I }.

Let y = (yI : ∅ �= I ⊆ [d + 1]) ∈ (R≥0
)2d+1−1

be a vector indexed by nonempty
subsets of [d + 1] with nonnegative entries. We define the polytope

PY
d ( y) :=

∑

∅�=I⊆[d+1]
yI�I

as the Minkowski sum of the simplices �I dilated by the factor yI . Postnikov shows
that PY

d ( y) is always a generalized permutohedron [82, Proposition 6.3]; however,
not every generalized permutohedron can be expressed as PY

d ( y) for some y [82,
Remark 6.4]. Therefore, we call PY

d ( y) a type-Y generalized permutohedron.
Postnikov then reformulates the construction of PY

d ( y) using bipartite graphs: Let
G be a subgraph of the bipartite graph Kc,d+1 without isolated vertices. Label the
vertices of G on the left by l1, l2, . . . , lc and vertices on the right by r1, r2, . . . , rd+1.

For each 1 ≤ j ≤ c, we let

I Gj = {i ∈ [d + 1] : {l j , ri } is an edge of G}.

For any (y1, y2, . . . , yc) ∈ (R≥0
)c

, we define the polytope

PG(y1, . . . , yc) :=
c∑

j=1

y j�
G
I j .

Remark 3.1.2. It is clear that PG(y1, y2, . . . , yc) is the type-Y generalized permuto-
hedron PY

d ( y) where yI =∑ j :I j=I y j . Conversely, the type-Y generalized permu-

tohedron PY
d ( y) is the polytope PG( y) where G is the subgraph of K2d+1−1,d+1 such

that left vertices of G are indexed by nonempty subsets I of [d + 1], and the left
vertex lI is adjacent to the right vertex ri if and only if i ∈ I.

In [82, Section11], Postnikov defines the “trimmed generalized permutohedron”
as the “Minkowski difference” of PG(y1, . . . , yc) and the simplex �[d+1]. By pro-
viding a formula for the number of lattice points in a trimmed generalized permu-
tohedron, he obtains a formula for the number of lattice points in PG(y1, . . . , yc)
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[82, Theorem 11.3], which leads to an expression for the Ehrhart polynomial of
PG(y1, . . . , yc) as a summation over G-draconian sequences.

Definition 3.1.3 (Definition 9.2 in [82]). A sequence of nonnegative integers g =
(g1, g2, . . . , gc) is a G-draconian sequence if

∑c
j=1 g j = d and for any subset

{ j1, . . . , jk} ⊆ [c], we have |I Gj1 ∪ · · · ∪ I Gjk | ≥ g j1 + · · · + g jk + 1.

Theorem 3.1.4 (Postnikov). Suppose G is a subgraph of Kc,d+1 without isolated
vertices such that I G1 = [d + 1]. Let y1, . . . , yc ∈ N. Then the Ehrhart polynomial
of PG(y1, . . . , yc) is given by

i(PG(y1, y2, . . . , yc), t) =
∑

g

((
y1t + 1

g1

)) c∏

k=2

((
ykt

gk

))

,

where the summation is over all G-draconian sequences g = (g1, . . . , gc).

Similar to the results discussed in Sects. 2.1.3 and 2.1.4, it follows from Lemma
2.1.1/(b) that the Ehrhart polynomial described in the above theorem has positive
coefficients. Thus, by Remark 3.1.2, we immediately have the following:

Corollary 3.1.5. Any integral type-Y generalized permutohedron is Ehrhart posi-
tive.

Note that as we pointed out above, type-Y generalized permutohedra do not
contain all generalized permutohedra. Thus, Conjecture 3.1.1 does not follow from
the above result.

Example 3.1.6 (Pitman-Stanley polytopes again). Let G be a subgraph of Kd+1,d+1

where for each j ∈ [d + 1], the left vertex l j is adjacent to right vertices r j , r j+1, . . . ,

rd+1. Then for any y = (y1, . . . , yd+1) ∈ N
d+1,

PG( y) = PG(y1, . . . , yd+1) =
d+1∑

j=1

y j�[ j,d+1],

where [ j, d + 1] = { j, j + 1, . . . , d + 1}. It follows from Proposition 6.3 of [82]
that the inequality description of this polytope is

PG ( y) =
⎧
⎨

⎩
x ∈ R

d+1 : xi ≥ 0 and
i∑

j=1

x j ≤
i∑

j=1

y j for i = 1, 2, . . . , d − 1, and
d+1∑

j=1

x j =
d+1∑

j=1

y j

⎫
⎬

⎭
.

It is easy to see the map π : Rd+1 → R
d that ignores the last coordinate of a point

induces a unimodular transformation from PG( y) to the Pitman-Stanley polytope
PSd (̂ y) considered in Sect. 2.1.3, where ŷ = (y1, y2, . . . , yd).

One can also check that the G-draconian sequences for the graph G given in this
example are those g = (g1, . . . , gd+1) ∈ N

d+1 satisfying
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d∑

j=1

g j = d, gd+1 = 0, and
k∑

j=1

g j ≥ k for k = 1, 2, . . . , d − 1.

Hence, it can be verified that Theorem 2.1.2 is a special case of Theorem 3.1.4.

The family of type-Y generalized permutohedra not only includes the Pitman-
Stanley polytope as we have seen in the example above, but also includes associa-
hedra, cyclohedra, and more (see [82, Section8]). However, it follows from work by
Ardila, Benedetti, and Doker that type-Y generalized permutohedra do not contain
all matroid base polytopes [1, Proposition 2.3 and Example 2.6]. Therefore, Corol-
lary 3.1.5 does not settle either Conjecture 3.1.1 or the Ehrhart positivity conjecture
on matroid base polytopes by De Loera et al. [31].

3.2 McMullen’s Formula, α-Positivity, and a Reduction
Theorem

The goal of this part is to introduceMcMullen’s formula and discuss why it is a good
tool to show Ehrhart positivity of a family of polytopes constructed from a fixed
projective fan when an α-construction satisfies certain valuation properties. (We
will discuss in Sect. 3.3 that generalized permutohedra form a family of polytopes
constructed from the Braid fan. Hence, the techniques introduced here are relevant
to our question.)

Throughout the rest of this section, we let V be a subspace of RD and V ∗ be the
dual space of V . For any polytope P , we use the notation lin(P) to denote the linear
space obtained by shifting the affine span aff(P) of P to the origin.

3.2.1 Cones

We need the concepts of cones, particularly feasible cones and normal cones, before
we start our discussion.

A (polyhedral) cone is the set of all nonnegative linear combinations of a finite
set of vectors. A cone is pointed if it does not contain a line.

Definition 3.2.1. Suppose P is a polytope satisfying lin(P) ⊆ V .

(i) The feasible cone of P at F is:

fcone(F, P) := {u ∈ V : x + δu ∈ P for sufficiently small δ} ,

where x is any relative interior point of F. (It can be checked that the definition
is independent of the choice of x .)
The pointed feasible cone of P at F is
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fconep(F, P) = fcone(F, P)/lin(F).

(ii) Given any face F of P , the normal cone of P at F with respect to V is

nconeV (F, P) := {u ∈ V ∗ : 〈u, p1〉 ≥ 〈u, p2〉, ∀ p1 ∈ F, ∀ p2 ∈ P
}
.

Therefore, nconeV (F, P) is the collection of linear functionals u in V ∗ such
that u attains maximum value at F over all points in P.

The normal fan �V (P) of P with respect to V is the collection of all normal
cones of P .

Normal cones and pointed feasible cones are related by polarity.

Definition 3.2.2. Let K ⊆ V ∗ be a cone, and let W be the subspace of V ∗ spanned
by K . (So W ∗ is a quotient space of V .) The polar cone of K is the cone

K ◦ = { y ∈ W ∗ : 〈x, y〉 ≤ 0, ∀x ∈ K }.

Lemma 3.2.3 (Lemma 2.4 of [24]). Suppose P is a polytope satisfying lin(P) ⊆ V
and F is a face of P. Then (nconeV (F, P))◦ is a pointed cone, and is invariant under
the choice of V . So we may omit the subscript V and just write (ncone(F, P))◦.
Furthermore,

ncone(F, P)◦ = fconep(F, P).

3.2.2 McMullen’s Formula and a Refinement of Positivity

In 1975 Danilov asked, in the context of toric varieties, whether it is possible to
construct a function α such that for any integral polytope P , we have

|P ∩ Z
D| =

∑

F : a face of P
α(F, P) nvol(F), (3.1)

where α(F, P) depends only on the normal cone of P at F, and nvol(F) is the
volume of F normalized to the lattice aff(F) ∩ Z

D.

McMullen [67] was the first to confirm the existence of (3.1) in a nonconstructive
way. Hence, we refer to the above formula as McMullen’s formula. Pommersheim
and Thomas [81] provide a canonical construction based on choices of flags. Berline
and Vergne [11] give a construction in a computable way. Most recently, Ring and
Schürmann [87] give another construction forMcMullen’s formula based on a choice
of fundamental cells.

Before discussing a specific construction, even the existence of McMullen’s for-
mula has interesting consequences. In fact, it was one of the ingredients used in
proving the results on higher integrality conditions discussed in Sect. 2.4.2. More
importantly, it provides another proof for Ehrhart’s theorem (Theorem 1.1) as well
as a refinement of Ehrhart positivity. Note that pointed feasible cones do not change
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Fig. 2 Different α-constructions

when we dilate a polytope. Thus, applying McMullen’s formula to t P and rearrang-
ing coefficients, we obtain a formula for the function i(P, t) :

i(P, t) =
dim P∑

k=0

(
∑

F :k-dimensional face ofP

α(F, P)nvol(F)

)

· t k .

Hence, i(P, t) is a polynomial in t of degree dim P, and the coefficient of t k in
i(P, t) is given by

[t k]i(P, t) =
∑

F :k-dimensional face ofP

α(F, P)nvol(F). (3.2)

Example 3.2.4. Setting k = 0 in (3.2), we obtain

[t0]i(P, t) =
∑

v:vertex ofP

α(v, P)nvol(v).

Note that [t0]i(P, t) is the constant term of the Ehrhart polynomial of P, which is
known to be 1 for any integral polytope P. Furthermore, the normalized volume of
any vertex is 1. Hence, the above equation becomes

∑

v:vertex of P

α(v, P) = 1.

See Fig. 2 for α-values of the vertices of the triangle P = conv((0, 0), (2, 0), (2, 1))
arising from different constructions.

Since nvol(F) is a positive number, it follows from (3.2) that α-values refine
Ehrhart coefficients. We say a polytope P is α-positive for k-faces if α(F, P) is
positive for all k-dimensional faces F of P and say P isα-positive if allα’s associated
to P are positive. The following result immediately follows from expression (3.2).

Lemma 3.2.5. Suppose α is a solution to McMullen’s formula. Let P be an integral
polytope. For a fixed k, if P is α-positive for k-faces, then the coefficient of tk in the
Ehrhart polynomial i(P, t) of P is positive.

Hence, if P is α-positive, then P is Ehrhart positive.
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3.2.3 BV-Construction and the Reduction Theorem

At the first glance, α-positivity, being a refinement of Ehrhart positivity, is a more
difficult question to consider. However, for α-constructions that satisfy certain prop-
erties, studying α-positivity instead does not necessarily make the problem harder.
Berline andVergne [11] give such anα-construction, of whichwe give a quick review
below. Recall that the indicator function of a set A ⊆ V is the function [A] : V → R

defined as [A](x) = 1 if x ∈ A, and [A](x) = 0 if x /∈ A. The algebra of rational
cones, denoted by C(V ), is the vector space over Q spanned by the indicator func-
tions [C] of all rational cones C ⊂ V . We consider C(V ) a subspace of the vector
space of all functions on V . Hence, in general, the indicators [C] of rational cones
do not form a basis of C(V ) since there are many relations among them.

Theorem 3.2.6 (Berline-Vergne). There exists a function� from the set of indicator
functions [C] of rational cones C in V to R with the following properties:

(P1) � induces a valuation on the algebra of rational cones in V , i.e., � induces a
linear transformation from C(V ) to R.

(P2) If a cone C contains a line, then �([C]) = 0.
(P3) � is invariant under orthogonal unimodular transformation, thus, is symmet-

ric about coordinates, that is, invariant under rearranging coordinates with
signs.

(P4) Setting
α(F, P) := �([fconep(F, P)]), (3.3)

gives a solution to McMullen’s formula.

We refer to Berline-Vergne construction of � and α as BV-construction and BV-α-
valuation, respectively. If α is the BV-α-valuation, we use the terminology BV-α
-positivity instead of α-positivity.

Properties (P1) and (P2) are the “certain valuation properties” we mentioned at
the beginning of Sect. 3.2. The following Reduction Theorem lays out a consequence
of these two properties.

Theorem 3.2.7 (Castillo-L., Reduction Theorem [24]). Suppose � is a function
from the set of indicator functions of rational cones C in V to R such that properties
(P1) and (P2) hold, and suppose α is defined as in (3.3).

Let P and Q be two polytopes such that lin(P) and lin(Q) are both subspaces
of V . Assume the normal fan �V (P) of P with respect to V is a refinement of the
normal fan �V (Q) of Q with respect to V .

Then for any fixed k, if P isα-positive for k-faces, then Q isα-positive for k-faces.

One important implication of the Reduction Theorem is that we can reduce the
problemofα-positivity of a family of polytopes constructed froma fan to the problem
of α-positivity of a single polytope in the family.
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Definition 3.2.8. Let � be a projective fan in V ∗, i.e., a fan that is a normal fan of
some polytope. Let Poly(�) be the set of polytopes Q whose normal fan �V (Q)

with respect to V coarsens �.

Corollary 3.2.9. Assume the hypothesis on � and α in Theorem 3.2.7. Let � be a
projective fan in V ∗, and let P be a polytope such that�V (P) = �.Thenα-positivity
(for k-faces) of P implies α-positivity (for k-faces) of Q for any Q ∈ Poly(�).

Assume further that α is a solution to McMullen’s formula. Then for any integral
polytope Q ∈ Poly(�), α-positivity for k-faces of P implies the coefficient of tk in
i(Q, t) is positive. Hence, α-positivity of P implies Ehrhart positivity of Q.

Proof. The first part follows directly from the Reduction Theorem, and the second
assertion follows from the first part and Lemma 3.2.5.

Therefore, even though provingα-positivity is more difficult than proving Ehrhart
positivity for an individual polytope, it could be easier if we consider a family of
polytopes Poly(�) associated to a fixed projective fan �, as we only need to prove
α-positivity for one polytope in the family. Finally, because the BV-construction
satisfies properties (P1), (P2), and (P4), all the results discussed above apply to the
BV-construction or the BV-α-valuation. These ideas are illustrated by Example 3.3.3
below.

3.3 Positivity of Generalized Permutohedra

In this part, we apply the Reduction Theorem to reduce our first conjecture—
Conjecture 3.1.1—to a conjecture on α-positivity of regular permutohedra. Then
we report partial progress made on both conjectures by using McMullen’s formula
with BV-α-valuation [24, 27].

3.3.1 Second Positivity Conjecture

Postnikov, Reiner, and Williams give several equivalent definitions for generalized
permutohedra, one of which uses concepts of normal fans [83, Proposition 3.2].
Recall that the Braid fan, denoted by Brd , is the complete fan in R

d+1 given by the
hyperplanes xi − x j = 0 for all i �= j .

Proposition 3.3.1 (Postnikov-Reiner-Williams). A polytope P in V = R
d+1 is a

generalized permutohedron if and only if its normal fan �V (P) with respect to V is
refined by the Braid fan Brd .

Using the notation we give in Definition 3.2.8, the above result precisely says that
the family of generalized permutohedra inRd+1 is Poly(Brd).Furthermore, it follows
from [82, Proposition 2.6] that any usual permutohedron in R

d+1 has the Braid fan
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Fig. 3 Examples for Corollary 3.2.9

Brd as its normal fan. In particular, the normal fan of the regular permutohedron �d

is Brd . In [24], Castillo and the author use these results together with the Reduction
Theorem and its consequence (i.e., Corollary 3.2.9) to reduce Conjecture 3.1.1 to the
following conjecture:

Conjecture 3.3.2 (Castillo-L.). Every regular permutohedron �d is BV-α-positive.

The following example demonstrates how Corollary 3.2.9 works and why
Conjecture 3.1.1 can be reduced to Conjecture 3.3.2.

Example 3.3.3. Let P, Q1, Q2, and Q3 be the 2-dimensional polytopes together
with their normal fans shown in Fig. 3. One notices that P is the regular permuto-
hedron �2 whose normal fan is Br2, and each Qi is a generalized permutohedron
whose normal fan coarsens Br2.

All the BV-α-values of the six vertices of P are 1/6.Since Q1 has the same normal
fan as P , all of its six vertices also have the same BV-α-values. Now the normal fan
of Q2 coarsens that of P. In particular, if we let v be the vertex on the bottom-left
of Q2, then the normal cone ncone(v, Q2) of Q2 at v is the union of the normal
cones of P at two of its vertices. It is a consequence of the “valuation properties”
(P1) and (P2) that the BV-α-values α(v, Q2) is the sum of the BV-α-values of these
two vertices of P. Therefore, as shown in the figure, α(v, Q2) = 1/6 + 1/6 = 1/3.
One sees that similar phenomenon happens for the polytope Q3.

The above discussion shows that even if we did not know the BV-α-values of
vertices of P, because each BV-α-value arising from Qi is a summation of a subset
of BV-α-values of vertices of P, BV-α-positivity of vertices of the regular per-
mutohedron P = �2 would imply BV-α-positivity of vertices of the generalized
permutohedron Qi and thus would imply the constant Ehrhart coefficient of Qi is
positive.

Conjecture 3.3.2 was the main conjecture studied in [24], and partial progress was
made on proving it, which gave us corresponding partial results on Conjecture 3.1.1.

3.3.2 Partial Results

The first approach of attacking Conjecture 3.3.2 is to directly compute BV-α-
valuations. In order to do that, we need to compute the BV-construction �. One
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obvious benefit of considering Conjecture 3.3.2 instead of Conjecture 3.1.1 is that
in each dimension there is only one regular permutohedron, and thus there are a
limited number of BV-α-values or �-values to be computed, especially for small d.

Therefore, by explicit computation, we obtain the following result.

Theorem 3.3.4 (Castillo-L.). For d ≤ 6, the regular permutohedron �d is BV-α-
positive. Therefore, all the integral generalized permutohedra (including matroid
base polytopes) of dimension at most 6 are Ehrhart positive.

Next, instead of focusing on all the coefficients of Ehrhart polynomials, we study
certain special coefficients. Note that the first, second, and last Ehrhart coefficients
are always positive, so we only consider other Ehrhart coefficients. Correspondingly,
we need to know how to compute the BV-construction�(C) of conesC of dimension
2, 3, . . . , d − 1.The computation of the function� is carried out recursively. Hence,
it is quicker to compute � for lower-dimensional cones. As a result, the value of
α(F, P) is easier to compute if F is a higher-dimensional face.

In general, the computation of �(C) is quite complicated. However, when C is a
unimodular cone, computations are greatly simplified. In dimensions 2 and 3, with
the help of Maple code provided by Berline and Vergne, simple closed expression
for � of unimodular cones can be obtained [24, Lemmas 3.9 and 3.10]. Applying
these formulas to �d , we obtain the second partial result toward Conjectures 3.3.2
and 3.1.1:

Theorem 3.3.5 (Castillo-L.). For any d, and any face F of �d of codimension 2 or
3, we have α(F,�d) is positive, where α is the BV-α-valuation.

Hence, the third and fourth Ehrhart coefficients of any integral generalized per-
mutohedron (including matroid base polytopes) are positive.

Finally, the last partial result presented in [24] is the following:

Lemma 3.3.6 (Castillo-L.). For any d ≤ 500, and any edge E of �d , we have
α(E,�d) is positive, where α is the BV-α-valuation.

Hence, the linear Ehrhart coefficient of any integral generalized permutohedron
(including matroid base polytopes) of dimension at most 500 is positive.

Aswe have discussed above, in order to compute the BV-α-values for an edge of a
d-dimensional polytope, we have to compute the �-value of a (d − 1)-dimensional
cone, which is extremely difficult for large d if we use Berline-Vergne algorithm
directly. Therefore, we use a completely different strategy. Recall Property (P3) of
the BV-construction, which says that � is symmetric about coordinates. Note that
the regular permutohedron �d is a polytope with much symmetry. So a lot of BV-α-
values of�d coincide. In particular, we can separate edges of�d into to

⌈
d
2

⌉
groups,

where edges in each group share the same BV-α-values.

(Idea of Proof for Lemma 3.3.6). If we know the α-values for a give polytope P,

Eq. (3.2) gives us a way to compute the Ehrhart coefficients. However, we can also
use (3.2) in the other direction: Suppose we know the linear coefficient of i(P, t),
Eq. (3.2) gives us an equation for α-values arising from edges of P :
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∑

E :edge of P
α(E, P)nvol(E) = [t1]i(P, t).

The α-values for the regular permutohedron also appear in other generalized
permutohedra as all of them are in the family Poly(Brd). Therefore, if we can find⌈
d
2

⌉
“independent” generalized permutohedra forwhichwe know their linear Ehrhart

coefficients, then we can set up a
⌈
d
2

⌉× ⌈ d2
⌉
linear system for the

⌈
d
2

⌉
α-values

arising from edges of �d . Solving the system, we obtain all these α-values. See [24,
Example 3.15] for an example of how we can solve a linear system to find α’s.

Recall that Postnikov gives explicit formulas for the Ehrhart polynomials of type-
Y generalized permutohedra (see Theorem 3.1.4). Among all the nontrivial Ehrhart
coefficients, the linear terms can be easily described. Using these, we were able
to set up, for each d, a desired linear system which is actually triangular. Solving
the system for d ≤ 500, we confirmed positivity of all

⌈
d
2

⌉
α’s arising from edges

of �d . �
Equivalence Statements. In addition to the partial results discussed above, two
equivalent statements to Conjecture 3.3.2 were discovered. The first states that Con-
jecture 3.3.2 holds if and only if the mixed lattice point valuation on hypersimplices
is positive [24, Corollary 5.6].

The second equivalent statement is in terms of Todd classes. The BV-construction
gives one way to write the Todd class of the permutohedral variety in terms of the
toric invariant cycles. We can show that if there is any way of writing such class as
a positive combination of such cycles, then the BV-α-valuation is one of them. (See
[25, Proposition 7.2] or [23].)

4 Negative Results

In this section, we will discuss examples and constructions of polytopes with neg-
ative Ehrhart coefficients. We start in Sect. 4.1 with the well-known Reeve tetrahe-
dra, a family of 3-dimensional polytopes with negative linear Ehrhart coefficients.
Constructions given in Sect. 4.2 were motivated by a refinement of Question 1.2,
considering all possible sign patterns of Ehrhart coefficients. Examples studied in
Sects. 4.3 and 4.4 provide negative answers to Question 1.2 for different families
of polytopes (such as smooth polytopes and order polytopes), which will be sum-
marized in Sect. 4.5. Finally in Sect. 4.6, we give negative examples addressing the
question of whether Minkowski summation preserves Ehrhart positivity.

As mentioned before, due to the fact that the first, second, and last Ehrhart coef-
ficients are always positive, given a d-dimensional polytope P, we need to ask the
positivity question only for the coefficients of td−2, td−3, . . . , t1 in i(P, t). We call
these coefficients the middle Ehrhart coefficients of P.
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4.1 Reeve Tetrahedra

For d ≤ 2, there are no middle Ehrhart coefficients. Hence, possible examples with
negative Ehrhart coefficients can appear only in dimension 3 or higher. The first
example comes in dimension 3 : The Reeve tetrahedron Tm is the polytope with
vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), and (1, 1,m), where m is a positive integer. Its
Ehrhart polynomial is

i(Tm, t) = m

6
t3 + t2 + 12 − m

6
t + 1.

One sees that the linear coefficient is 0 when m = 12 and is negative when m ≥ 13.

4.2 Possible Sign Patterns

Motivated by the example of Reeve tetrahedra, Hibi, Higashitani, Tsuchiya, and
Yoshida study possible sign patterns of middle Ehrhart coefficients and ask the fol-
lowing question:

Question 4.2.1 (Question 3.1 of [47]). Given a positive integer d ≥ 3 and integers
1 ≤ i1 < · · · < iq ≤ d − 2, does there exist a d-dimensional integral polytope P
such that the coefficients of t i1, . . . , t iq of i(P, t) are negative, and the remaining
coefficients are positive?

The following is the main result in [47] providing a partial answer to
Question 4.2.1.

Theorem 4.2.2 (Hibi-Higashitani-Tsuchiya-Yoshida). Let d ≥ 3. The following
statements are true.

(a) There exists an integral polytope P of dimension d such that all of its middle
Ehrhart coefficients are negative.

(b) For each 1 ≤ k ≤ d − 2, there exists an integral polytope P of dimension d
such that [t k]i(P, t) is negative and all the remaining Ehrhart coefficients are
positive.

The proof of both parts of the theorem is by construction. We will briefly discuss
the construction for Theorem 4.2.2/(a) and refer interested readers to the original
paper [47] for the other construction.
Sketch of proof for Theorem 4.2.2/(a). Let Ln := [0, n], which is a 1-dimensional
polytope, and its Ehrhart polynomial is i(Ln, t) = nt + 1.Define the polytope P (d)

m to
be the direct product of (d − 3) copies of Ld−3 and one copy of the Reeve tetrahedron
Tm . Then P (d)

m is a d-dimensional polytope with Ehrhart polynomial

i
(
P(d)
m , t

)
= i(Ld−3, t)

d−3 · i(Tm , t) = ((d − 3)t + 1)d−3 ·
(
m

6
t3 + t2 + 12 − m

6
t + 1

)

.
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Fig. 4 From 3�2 to
Q2(3, 1)

chisel 4 vertices−−−−−−−−−−→
at distance 1

The coefficients of the Ehrhart polynomial of P (d)
m can be explicitly described, from

which one can show that all middle Ehrhart coefficients are negative for sufficiently
large m. �

In addition to Theorem 4.2.2, Hibi et al. also show that answer to Question 4.2.1
is affirmative for d ≤ 6 [47, Proposition 3.2]. Note that for d ≤ 6, there are at most
3 middle Ehrhart coefficients. Later, Tsuchiya (private communication) improved
their result showing that any sign pattern with at most 3 negatives is possible for the
middle Ehrhart coefficients. Unfortunately, it is not currently clear how to extend the
techniques used to prove this result to attack the question of whether any sign pattern
with 4 negatives can occur. So Question 4.2.1 is still wide open.

4.3 Smooth Polytopes

A d-dimensional integral polytope P is called smooth (or Delzant) if each vertex is
contained in precisely d edges, and the primitive edge directions form a lattice basis
of Zd . In [18, Question 7.1], Bruns asked whether all smooth integral polytopes are
Ehrhart positive. In [26], Castillo, Nill, Paffenholz, and the author show the answer
is false by presenting counterexamples in dimensions 3 and higher. The main ideas
we used was chiseling cubes and searching for negative BV-α-values.

The first set of examples we construct is as follows: For positive integers a > 2b,
we let Qd(a, b) be the polytope obtained by chiseling all vertices of a�d at distance
b. (See Fig. 4 for an example.) Using inclusion-exclusion and the fact that the BV-α-
values of cubes and standard simplices can be obtained easily due to property (P3),
we obtain explicit formulas for all BV-α-values arising from Pd(a, b), which we
use to search for negative BV-α-values. The first negative values appear at d = 7,
suggesting that we might have a negative Ehrhart coefficient in Q7(a, b). By direct
computation, we are able to show that for some choices of (a, b), e.g., (5, 2), the
polytope Qd(a, b) has a negative linear Ehrhart coefficient for any d ≥ 7. Therefore,
we have the following result [26, Proposition 1.3]:

Proposition 4.3.1 (Castillo-L.-Nill-Paffenholz). Let Nd be the normal fan of
Qd(a, b). For d ≤ 6, any d-dimensional smooth integral polytope with normal fan
Nd is Ehrhart positive. For each d ≥ 7, there exists a d-dimensional smooth integral
polytope with normal fan Nd whose linear Ehrhart coefficient is negative.
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Remark 4.3.2. The polytope Qd(a, b) is not only a smooth polytope, but also a
“type-B generalized permutohedron.” The generalized permutohedra considered in
Sect. 3 are of type A as the corresponding normal fan, Brd , is constructed from
the type A root system. As a consequence, a polytope P is a (type-A) generalized
permutohedron if and only if each edge direction of P is of the form of ei − e j for
some i �= j . Similarly, we can define a polytope P in R

d is a type-B generalized
permutohedron if each edge direction of P is in the form of ei ± e j for some i �= j
or of the form ±ei for some i. It is then straightforward to verify that Qd(a, b) is a
type-B generalized permutohedron.

Using the idea of iterated chiseling cubes, we then improve the dimension range
of our counterexamples from d ≥ 7 to d ≥ 3. (See [26, Section2] for details.)

Theorem 4.3.3 (Castillo-L.-Nill-Paffenholz). For each d ≥ 3, there exists a
d-dimensional smooth integral polytope P such that all of its middle Ehrhart coef-
ficients are negative.

Note that the above theorem is a stronger version than part (a) of Theorem 4.2.2.
Even though the original purpose of the paper [26] was to answer Bruns’ question,
in the process of searching for a counterexample, we obtained a separate result
answering a different question. For positive integers a > b, we let Pd(a, b) be the
polytope obtained by chiseling one vertex off a�d at distance b. It is clear that
Pd(a, b) share the same BV-α-values with Qd(a, b). Hence, it has negative BV-α-
values at d ≥ 7. However, it turns out any d-dimensional integral polytope P that
has the same normal fan as Pd(a, b) is Ehrhart positive [26, Lemma 3.9].

Corollary 4.3.4 (Castillo-L.-Nill-Paffenholz).For eachd ≥ 7, there exists a smooth
projective fan �, such that its associated BV-α-values contains negative values, but
any smooth integral polytope in Poly(�) is Ehrhart positive.

Therefore, BV-α-positivity is strictly stronger than Ehrhart positivity.

Finally, we studied a weaker version of Brun’s question by requiring the smooth
polytopes to be reflexive.More precisely,we askedwhether all smooth reflexive poly-
topes have positive Ehrhart coefficients. Unfortunately, the answer to this question
is still negative.

In fixed dimension d, there are only finitely many reflexive polytopes up to uni-
modular transformations. Because of their correspondence to toric Fano manifolds,
smooth reflexive polytopes were completely classified up to dimension 9 [62, 76].
We used polymake [2] to verify that up to dimension 8 all of them are Ehrhart
positive, but in dimension 9 the following counterexample came up [26]:
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Example 4.3.5. Let P be the polytope in R
9 defined by

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 −1

−1 −1 −1 −1 0 0 0 0 4
0 0 0 0 −1 −1 −1 −1 −4

⎞

⎟
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⎟
⎟
⎠
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⎝
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⎟
⎟
⎠

≤
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⎞
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⎟
⎟
⎟
⎟
⎟
⎟
⎠

Using polymake [2], one can check that this polytope is smooth and reflexive with
Ehrhart polynomial

i(P, t) = 12477727/18144t9 + 12477727/4032t8 + 9074291/1512t7 + 630095/96t6

+ 19058687/4320t5 + 117857/64t4 + 3838711/9072t3 + 11915/1008t2

− 6673/630t + 1,

which has a negative linear coefficient.

4.4 Stanley’s Example

In answering an Ehrhart positivity question posted on mathoverflow, Stanley gave
the following example [100]:

Example 4.4.1. Let Qk be the poset with one minimal element covered by k other
elements. The Ehrhart polynomial of the order polytope O(Qk) is

i(O(Qk), t) =
t+1∑

i=1

i k .

One can compute that

[t1]i(O(Q20), t) = −168011/330 < 0.

Hence, the linear Ehrhart coefficient of O(Qk) is negative when k = 20.

Based on Stanley’s example, the author and Tsuchiya studied the Ehrhart posi-
tivity question on polytopes O(Qk) for every k and gave a complete description of
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Fig. 5 Qk and its
corresponding planar
graph G

which Ehrhart coefficients ofO(Qk) are negative [61]. The following theorem is an
immediate consequence to this description.

Theorem 4.4.2 (L.-Tsuchiya). The order polytope O(Qk) (defined in Example
4.4.1) is Ehrhart positive if and only if k ≤ 19.

Stanley’s example and its extension are very interesting as O(Qk) belongs to a
lot of different families of polytopes. First of all, it is an order polytope and thus is
a (0, 1)-polytope.

Recall that aGorenstein polytope of codegree s is an integral polytope such that sP
is reflexive. It follows from a result by Hibi [42] that an order polytope is Gorenstein
if and only if the underlying poset is pure; i.e., all maximal chains have the same
length. Clearly, Qk is pure. Thus, O(Qk) is a Gorenstein polytope.

Finally, Mészáros, Morales, and Striker proved a result observed by Postnikov
establishing a connection between flow polytopes of planar graphs and order poly-
topes [72, Theorem 3.8]. Using this connection, Morales (private communication)
observes that the order polytopeO(Qk) is unimodularly equivalent to the flow poly-
tope FG(1, 0, . . . , 0,−1), where G is the black graph on k + 1 vertices in Fig. 5.
(Note the red part of the figure is Qk .)

4.5 Non-Ehrhart-Positive Families

For each of the families listed below, it is not true that all the integral polytopes in
the family are Ehrhart positive.

(i) Smooth polytopes.
(ii) Type- B generalized permutohedra.
(iii) (0,1)-polytopes.
(iv) Order polytopes.
(v) Chain polytopes.

(vi) Flow polytopes.

(vii) Gorenstein polytopes.

(viii) Reflexive polytopes.

(ix) Smooth reflexive polytopes.

Furthermore, non-Ehrhart-positive examples were constructed for family (i) for
each dimension d ≥ 3, for family (ii) for each dimension d ≥ 7, and for families
(iii), (iv), (v), (vi), (vii), and (viii) for each dimension d ≥ 21.
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Proof. The conclusion for (i) and (ii) follows from Theorem 4.3.3, Proposition 4.3.1,
and Remark 4.3.2. Notice that the order polytope O(Qk) considered in Sect. 4.4 has
dimension k + 1. Then the conclusion for (iii), (iv), (vi), and (vii) follows directly
from discussion in Sect. 4.4. Next, (v) follows from (iv) and Remark 2.2.6, and
(viii) follows from (vii), the connection between Gorenstein polytopes and reflexive
polytopes and the fact that Ehrhart positivity is invariant under dilating operations.
Finally, (ix) follows from Example 4.3.5.

4.6 Minkowski Sums

Recall that in Sect. 3.1.2, we learned that the type-Y generalized permutohedrawhich
are defined to be Minkowski sums of dilated standard simplices are Ehrhart positive.
Noticing that standard simplices are Ehrhart positive (see Sect. 2.1.2), we asked the
following question in the first version of this survey:

Is it true that if two integral polytopes P and Q are Ehrhart positive, then their
Minkowski sum P + Q is Ehrhart positive?

Tsuchiya (private communication) constructed a fewexamples,whichgave anegative
answer to the above question, shortly after it was posted. Below are two of his
examples.

Example 4.6.1. Let P be the 3-dimensional simplex with vertices

(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0),

and Q the 1-dimensional polytope with vertices

(0, 0, 0, 0), (1, 19, 19, 20).

It is easy to see that both P and Q are Ehrhart positive. However, one can check that
P + Q is a 4-dimensional polytope with Ehrhart polynomial

i(P + Q, t) = 10/3t4 + 7/6t3 − 1/3t2 + 17/6t + 1,

which has a negative quadratic coefficient.

Example 4.6.2. Let P be the 5-dimensional simplex with vertices

(0, 0, 0, 0, 0), (1, 0, 0, 0, 0), (0, 1, 5, 15, 16), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1),

and Q the 5-dimensional simplex with vertices

(0, 0, 0, 0, 0), (1, 0, 0, 0, 0), (1, 1, 15, 15, 16), (0, 0, 1, 0, 0), (0, 1, 0, 0, 0), (0, 0, 0, 0, 1).
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Since P is unimodularly equivalent to the standard 5-simplex, it is Ehrhart positive.
Moreover, the Ehrhart polynomial of Q is

i(Q, t) = 1/8t5 + 5/12t4 + 17/24t3 + 19/12t2 + 13/6t + 1,

which also has positive coefficients.
However, P + Q is a 5-dimensional polytope with Ehrhart polynomial

i(P + Q, t) = 3007/40t5 + 359/24t4 − 255/24t3 + 193/24t2 + 89/20t + 1,

which has a negative coefficient.

Notice that the polytopes given in Example 4.6.1 satisfy dim(P) + dim(Q) =
dim(P + Q), and those in Example 4.6.2 satisfy dim(P) = dim(Q) = dim(P +
Q). These are the two extreme situations in terms of dimensions. Therefore, even
with some restrictions on the dimensions of P , Q, and P + Q, the answer to the
question above is false.

5 Further Discussion

5.1 Ehrhart Positivity Conjectures

We list several families of polytopes that are conjectured to be Ehrhart positive.

5.1.1 Base-r Simplices

Recall the definition of �(1,q) given in Sect. 2.2.2. For any positive integer r ∈ P,

we let qr := (r − 1, (r − 1)r, (r − 1)r2, . . . , (r − 1)rd−1) ∈ P
d and then define the

base-r d-simplex to be
B(r,d) := �(1,qr ).

Note that if r = 1, we obtain a polytope that is unimodularly equivalent to the
standard d-simplex. The family of base-r d-simplices are introduced by Solus in
his study of simplices for numeral systems [91], in which he shows that the h∗-
polynomial of B(r,d) is real-rooted and thus is unimodal. Based on computational
evidence, Solus makes the following conjecture [91, Section5]:

Conjecture 5.1.1 (Solus). The base-r d-simplex is Ehrhart positive.

We remark that this family of �(1,q) is very different from the ones constructed
by Payne discussed in Example 2.2.5. If r > 1, the base-r simplex B(r,d) always
contains the origin as an interior point, and it follows from (1.2) that the degree of
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h∗-polynomial of B(r,d) is d. Since B(r,d) is not reflexive, by Corollary 2.2.9 the roots
of its h∗-polynomial are not all on the unit circle in the complex plane. Therefore,
the techniques used to prove Ehrhart positivity for Payne’s construction would not
work here.

5.1.2 Birkhoff Polytopes

TheBirkhoff polytope Bn is the convex polytope of n × n doubly stochastic matrices;
that is, the set of real nonnegative matrices with all row and column sums equal to
one. Equivalently, Bn can also be defined as the convex hull of all n × n permuta-
tion matrices. (See [106, Chaps. 5 and 6] for a detailed introduction to Bn.) There
has been a lot of research on computing the volumes and Ehrhart polynomials of
Birkhoff polytopes [8, 21, 32, 77]. The following conjecturewasmade byStanley in a
talk [97]:

Conjecture 5.1.2 (Stanley). Birkhoff polytopes are Ehrhart positive.

By checking the available data [8], the first nine i(Bn, t) have the property that all
the roots have negative real parts. More importantly, Fig. 6 in [9] suggests that the
roots of i(Bn, t) form a certain pattern. Hence, it could be promising to use Lemma
2.2.1 to attack this conjecture.

We also remark that Bn is a Gorenstein polytope (up to lattice translation) of
codegree n. However, with aforementioned data, one can see that Bn is not h∗-unit-
circle-rooted. Hence, we cannot apply Theorem 2.2.2 to show that all roots of i(Bn, t)
have negative real parts.

5.1.3 Tesler Polytopes

For any n × n upper triangular matrix M = (mi, j ), the kth hook sum of M is the
sum of all the elements on the kth row minus the sum of all the elements on the kth
column excluding the diagonal entry:

(mk,k + mk,k+1 + · · · + mk,n) − (m1,k + m2,k + · · · + mk−1,k).

For each a = (a1, . . . , an) ∈ N
n , Mészáros, Morales, and Rhoades [71] define the

Tesler polytope, denoted by Tesn(a), to be the set of all n × n upper triangular
matrices M with nonnegative entries and of hook sum a; i.e., the kth hook sum of
M is ak . The lattice points in Tesn(a) are exactly Tesler matrices of hook sum a.
When a = (1, 1, . . . , 1), these are important objects in Haglund’s work on diagonal
harmonics [40]. Therefore, we call Tesn(1, 1, . . . , 1) the Tesler matrix polytope as
Tesler matrices of hook sum (1, 1, . . . , 1) were the original Tesler matrices defined
by Haglund.

Another interesting example of a Tesler polytope is Tesn(1, 0, . . . , 0), which turns
out to be the Chan-Robbins-Yuen polytope or CRY polytope, a face of the Birkhoff
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polytope. The CRY polytope, denoted by CRYn, is the convex hull of all the n × n
permutation matrices M = (mi, j ) such that mi, j = 0 if i ≥ j + 2; i.e., all entries
below the subdiagonal are zeros. It was initially introduced by Chan, Robbins, and
Yuen in [28], inwhich theymade an intriguing conjecture on a formula for the volume
of CRYn as a product of Catalan numbers. It was since proved by Zeilberger [107],
Baldoni-Vergne [3], and Mészáros [68, 69].

Using theMaple codeprovidedbyBaldoni,Beck,Cochet, andVergne [4],Morales
computed the Ehrhart polynomials of both CRY polytopes and Tesler matrix poly-
topes for small n and made the following conjecture [73].

Conjecture 5.1.3 (Morales).For eachpositive integer n, theCRYpolytopeCRYn =
Tesn(1, 0, . . . , 0) and the Tesler matrix polytope Tesn(1, 1, . . . , 1) are both Ehrhart
positive.

Connection to flow polytopes. Mészáros et al. show in [71, Lemma 1.2] that for
any a ∈ N

n, the Tesler polytope Tesn(a) is unimodularly equivalent to the flow
polytope FKn+1(ā), where Kn+1 is the complete graph on [n + 1] and ā is defined
as in (2.2). Therefore, Tesler polytopes are flow polytopes associated to complete
graphs. Note that the complete graph does not satisfy the hypothesis of Corollary
2.1.5. So Conjecture 5.1.3 does not follow.

5.1.4 Stretched Littlewood-Richardson Coefficients

The Schur functions sλ form a basis for the ring of symmetric functions. (See [96,
Chap.7] for background on symmetric functions.) Therefore, the product of two
Schur functions sλ and sμ can be uniquely expressed as

sλ · sμ =
∑

ν:|ν|=|λ|+|μ|
cν
λ,μsν .

We call the coefficients cν
λ,μ in the above expression the Littlewood-Richardson coef-

ficients or LR coefficients. There are many different ways of computing cν
λ,μ. For

example, it counts the number of semistandard Young tableaux T of shape ν/λ with
content μ such that the reading word of T satisfies the “Yamanouchi word condition”
[65]. One immediate consequence of these descriptions is that the LR coefficients are
nonnegative integers. In this chapter, we use the hive model [20, 53, 54] to describe
the LR coefficients.

A hive of size n is a triangular array of numbers ai, j with 0 ≤ i, j, i + j ≤ n
arranged on a triangular grid consisting of n2 small equilateral triangles. See the left
side of Fig. 6 for how a hive of size 4 should look like. For any adjacent triangles
{a, b, c} and {b, c, d} in the hive, they form a rhombus {a, b, c, d}.The hive condition
for this rhombus is

b + c ≥ a + d. (HC)
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a4,0 a3,1 a2,2 a1,3 a0,4

a3,0 a2,1 a1,2 a0,3

a2,0 a1,1 a0,2

a1,0 a0,1

a0,0

8 8 8 7 5

8 a2,1 a1,2 5

7 a1,1 5

4 3

0

Fig. 6 A hive of size 4

Suppose |ν| = |λ| + |μ| with l(ν), l(λ), l(μ) ≤ n. A Littlewood-Richardson-hive or
LR-hive of type (ν,λ,μ) is a hive {ai, j ∈ N : 0 ≤ i, j, i + j ≤ n}with nonnegative
integer entries satisfying the hive condition (HC) for all of its rhombi, with border
entries determined by partitions ν,λ,μ in the following way: a0,0 = 0 and for each
j = 1, 2, . . . , n,

a j,0 − a j−1,0 = ν j , a0, j − a0, j−1 = λ j , a j,n− j − a j−1,n− j+1 = μk .

With this definition, the LR coefficient cν
λ,μ counts the number of LR-hives of type

(ν,λ,μ). (Note that this is independent from n as long as l(ν), l(λ), l(μ) ≤ n.)
For example, if ν = (4, 3, 1), λ = (3, 2) and μ = (2, 1), then the border of a

corresponding LR-hive of size 4 is shown on the right side of Fig. 6. In fact, the hive
condition will force a2,1 = 8 and a1,2 = 7. So it will be reduced to a hive of size
3. Finally, it follows from the hive condition that 6 ≤ a1,1 ≤ 7. Thus, we have two
LR-hives of this type, and we conclude that c(4,3,1)

(3,2),(2,1) = 2.
From the above description, it is not hard to see that cν

λ,μ counts the number of
lattice points inside a polytope Pν

λ,μ determined by the border condition and the hive
condition. Furthermore, for any positive integer t, the LR coefficient ctνtλ,tμ counts
the number of lattice points inside the t th dilation of Pν

λ,μ :

ctνtλ,tμ = |t Pν
λ,μ ∩ Z

D|.

King, Tollu, and Toumazet studied ctνtλ,tμ, which they call the stretched Littlewood-
Richardson coefficients and made the following conjecture [51, Conjecture 3.1]:

Conjecture 5.1.4 (King-Tollu-Toumazet).For all partitionsλ,μ, ν such that cν
λ,μ >

0, there exists a polynomial f (t) = f ν
λ,μ(t) in t such that f (0) = 1 and f (t) = ctνtλ,tμ

for all positive integers t.
Furthermore, all the coefficients of f (t) are positive.

One notices that if Pν
λ,μ is an integral polytope, then the polynomiality part of

the above conjecture follows from Ehrhart’s theorem. However, in general, Pν
λ,μ is
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a rational polytope, which only implies that ctνtλ,tμ is a quasi-polynomial with some
period. Nevertheless, the assertion of polynomiality in the above conjecture was
established first by Derksen and Weyman [33] using semi-invariants of quivers, and
then by Rassart [86] using Steinberg’s formula [104] and hyperplane arrangements.
Hence, the polynomial asserted inConjecture 5.1.4 can be considered to be anEhrhart
polynomial, and positivity assertion in the conjecture (which is still open) is exactly
an Ehrhart positivity question.

5.2 Other Questions

Many questions related to Ehrhart positivity remain open. We include a few below.

5.2.1 Modified Bruns Question

Aswehavediscussed inSect. 4.3, the answer toBruns’ question ofwhether all smooth
polytopes are Ehrhart positive is negative, where counterexamples are constructed
for each dimension d ≥ 3. Furthermore, we verify, with the help of polymake [2],
that all smooth reflexive polytopes of dimension up to 8 are Ehrhart positive and
that there exists a non-Ehrhart-positive smooth reflexive polytopes of dimension 9.
However, we did not investigate smooth reflexive polytopes of higher dimensions.
Therefore, one can ask:

Question 5.2.1. Does there exist a smooth reflexive polytope of dimension d with
negative Ehrhart coefficients, for any d ≥ 10?

Bruns’ question can be rephrased using the language of fans: For any smooth
projective fan �, is it true that any polytope with normal fan � is Ehrhart positive.
Since the answer is false, a weaker version of this question can be asked:

Question 5.2.2. Is it true that for any smooth projective fan �, there exists one
integral polytope P with normal fan � that is Ehrhart positive?

5.2.2 h∗-Vector for 3-Dimensional Polytopes

Here instead of studying Ehrhart positivity question for families of polytopes in
which dimensions vary, we focus on polytopes with a fixed dimension and ask the
following question:

Question 5.2.3. For each d, how likely is a d-dimensional integral polytope Ehrhart
positive?

Since integral polytopes of dimension at most 2 are always Ehrhart positive, dimen-
sion 3 is a natural starting point.
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Fig. 7 The plot of (h∗
1, h

∗
2) of 3-dimensional polytopes with 1 or 2 interior lattice points

We have mentioned in the introduction that various inequalities for h∗-vectors
have been found. So we may use Formula (1.1) which gives a connection between
the h∗-vector and Ehrhart coefficients together with known inequalities to study
Question 5.2.3. Note that in dimension 3, only the linear Ehrhart coefficient could
be negative. Applying (1.1), we obtain that P is Ehrhart positive (equivalently the
linear Ehrhart coefficient of P is positive) if and only if the h∗-vector (h∗

0, h
∗
1, h

∗
2, h

∗
3)

of P satisfies
11h∗

0 + 2h∗
1 − h∗

2 + 2h∗
3 > 0. (5.1)

In [6], Balletti and Kasprzyk give classifications for 3-dimensional polytopes with 1
or 2 interior lattice points, using which they extract all possible h∗-vectors. Assume
the number of interior lattice points is fixed to be 1 or 2. Applying (1.2), we obtain
h∗
0 = 1 and h∗

3 = 1 or 2. Hence, only h∗
1 and h∗

2 change. Balletti and Kasprzyk then
plot all occurring pairs of (h∗

1, h
∗
2) in [6, Figure5]. The black part of Fig. 7 is their

figure, which wemodify to include a red line representing the inequality (5.1), where
points below the red line arise from polytopes with the Ehrhart positivity property.
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Note that in each part of the figure, the big triangular area is bounded by three known
inequalities for h∗-vectors. It is clear from the figure that these inequalities are far
from optimal. Comparing the red line with the plotted data, one sees that a very high
percentage of data points correspond to Ehrhart-positive polytopes. However, if we
only look at the triangular region (without the data points), then the area below the red
line has a much lower percentage of the region. Therefore, improving the inequality
bounds for h∗-vectorswill be helpful in understanding theEhrhart positivity problem,
in particular, in giving a more accurate answer to Question 5.2.3.
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Recent Trends in Quasisymmetric
Functions

Sarah K. Mason

Abstract This article serves as an introduction to several recent developments in
the study of quasisymmetric functions. The focus of this survey is on connections
between quasisymmetric functions and the combinatorial Hopf algebra of noncom-
mutative symmetric functions, appearances of quasisymmetric functions within the
theory of Macdonald polynomials, and analogues of symmetric functions. Topics
include the significance of quasisymmetric functions in representation theory (such
as representations of the 0-Hecke algebra), recently discovered bases (including ana-
logues of well-studied symmetric function bases), and applications to open problems
in symmetric function theory.

1 Introduction

Quasisymmetric functions first appeared in the work of Stanley [117] and were for-
mally developed in Gessel’s seminal article on multipartite P-partitions [44]. Since
their introduction, their prominence in the field of algebraic combinatorics has con-
tinued to grow. The number of recent developments in the study of quasisymmetric
functions is far greater than would be reasonable to contain in this brief article;
because of this, we choose to focus on a selection of subtopics within the theory of
quasisymmetric functions. This article is skewed toward bases for quasisymmetric
functions which are closely connected to Macdonald polynomials and the combi-
natorial Hopf algebra of noncommutative symmetric functions. A number of very
interesting subtopics are therefore excluded from this article, including Stembridge’s
subalgebra of peak quasisymmetric functions [122] and its associated structure [16,
17, 19, 20, 34, 81], Ehrenborg’s flag quasisymmetric function of a partially ordered
set [34], colored quasisymmetric functions [69, 70], and type B quasisymmetric
functions [25, 68, 100, 101]. This article also does not have the scope to address
connections to probability theory such as riffle shuffles [120], random walks on
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quasisymmetric functions [64], or a number of other fascinating topics. Hopefully
this article will inspire the reader to learn more about quasisymmetric functions and
explore these topics in greater depth.

This article begins with an overview of symmetric functions. There are a num-
ber of excellent introductions to the subject including Fulton [39], Macdonald [87],
Sagan [108], and Stanley [119]. The remainder of Sect. 1 deals with the genesis of
quasisymmetric functions and several important bases. Section 2 discusses the signif-
icance of quasisymmetric functions in algebra and representation theory,while Sect. 3
explores connections to Macdonald polynomials. A number of recently introduced
bases for quasisymmetric functions are described in Sect. 4. Section 5 is devoted to
interactions with symmetric functions.

1.1 Basic Definitions and Background on Symmetric
Functions

Recall that a permutation of the set [n] : = {1, 2, . . . , n} is a bijection from the set
{1, 2, . . . , n} to itself. The group of all permutations of an n-element set is denoted
Sn . Let π = π1π2 · · · πn ∈ Sn denote a permutation written in one-line notation. If
πi > πi+1, then i is a descent of π. If πi > π j and 1 ≤ i < j ≤ n, then the pair (i, j)
is an inversion of π. The sign of a permutation π (denoted (−1)π) is the number of
inversions of π.

Let C[x1, x2, . . . , xn] be the polynomial ring over the complex numbers C on
a finite set of variables {x1, x2, . . . , xn}. A permutation π ∈ Sn acts naturally on
f (x1, x2, . . . , xn) ∈ C[x1, x2, . . . , xn] by

π f (x1, x2, . . . , xn) = f (xπ1 , xπ2 , . . . xπn ).

Definition 1.1. The ring of symmetric functions in n variables (often denoted by�n

or Symn) is the subring of C[x1, x2, . . . , xn] consisting of all polynomials invariant
under the above action for all permutations in Sn.

This notion can be further extended to the ring Sym of symmetric functions in
infinitely many variables. A symmetric function f ∈ Sym is a formal power series
f ∈ C[[X ]] (with infinitelymanyvariables X = {x1, x2, . . .}) such that f (x1, x2, . . .)
= f (xπ1 , xπ2 , . . .) for every permutation of the positive integers.

A partition λ = (λ1,λ2, . . . ,λ�) of a positive integer n is a weakly decreasing
sequence of positive integers which sum to n. The elements λi of the sequence are
called the parts and the number of parts is called the length of the partition (denoted
�(λ)). We write λ � n (or |λ| = n) to denote “λ is a partition of n.”

Each partition λ = (λ1,λ2, . . . ,λ�) of n can be visualized as a Ferrers diagram,
which consists of n squares (typically called cells) arranged into left-justified rows
so that the i th row from the bottom contains λi cells. (Note that we are using French
notation so that we think of the cells as indexed by their position in the coordinate
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Fig. 1 S is the Ferrers
diagram for (5, 4, 2) and P
is a filling of (5, 4, 2)

S = P = 3 1
3 5 5 2
4 1 2 7 9

Fig. 2 T is the composition
diagram for (4, 2, 3) and F
is a filling of (4, 2, 3)

T = F = 4 7 1
2 5
7 5 5 3

plane. This means the cell (i, j) is the cell in the i th column from the left and the
j th row from the bottom. A Ferrers diagram in English notation places the rows so
that the i th row from the top contains λi cells, aligning with matrix indexing.) An
assignment of positive integer entries to each of the cells in the Ferrers diagram of
shape λ is called a filling (see Fig. 1).

A composition α = (α1,α2, . . . ,α�) of a positive integer n is a sequence of
positive integers which sum to n. (It is sometimes necessary to allow 0 to appear
as a part; a weak composition of a positive integer n is a sequence of nonnegative
integers which sum to n.) The elementsαi of the sequence are called the parts and the
number of parts is called the length of the composition. Write α |= n to denote “α is
a composition of n.” The reverse, α∗, of a composition α is obtained by reversing the
order of the entries of α so that the last entry ofα is the first entry ofα∗, the second to
last entry ofα is the second entry ofα∗, and so on. For example, ifα = (4, 1, 3, 3, 2),
then α∗ = (2, 3, 3, 1, 4).

Each composition α = (α1,α2, . . . ,α�) of n can be visualized as a composition
diagram, which consists of n cells arranged into left-justified rows so that the i th row
from the bottom contains αi cells, again using French notation. (At times we will
shift to English notation, but the reader may assume we are using French notation
unless specified otherwise.) An assignment of positive integer entries to each of the
cells in the composition diagram of shape α is called a filling. See Fig. 2 for an
example of a composition diagram and a filling.

The refinement order is a useful partial ordering on compositions. We say α ≺ β
in the refinement ordering if β can be obtained from α by summing adjacent parts of
α. For example, (2, 4, 1, 1, 3) ≺ (2, 5, 4) and (2, 4, 1, 1, 3) ≺ (6, 5) but (2, 5, 4) ⊀

(6, 5) and (6, 5) ⊀ (2, 5, 4).
Let xλ be the monomial xλ1

1 xλ2
2 · · · xλ�

� . For example, if λ = (6, 4, 3, 3, 1), then
xλ = x61 x

4
2 x

3
3 x

3
4 x5. One way to construct a symmetric function is to symmetrize such

a monomial. The monomial symmetric function indexed by λ is

mλ(X) =
∑

xλ1
i1
xλ2
i2

· · · xλ�

i�
,

where the sum is over all distinct monomials with exponents λ1,λ2, . . . ,λ�.
Themonomial symmetric functions {mλ | λ � n} form a basis for the vector space

Symn of degree n symmetric functions. There are many elegant and useful bases for
symmetric functions including three multiplicative bases obtained by describing the
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basis element fn and then setting fλ = fλ1 fλ2 · · · fλ�
. For example, the elementary

symmetric functions {eλ | λ � n} are defined by setting en = m(1n), the complete

homogeneous symmetric functions {hλ | λ � n} are defined by setting hn =
∑

λ�n
mλ,

and the power sum symmetric functions {pλ | λ � n} are obtained by setting pn =
m(n). Notice that the monomial symmetric functions are not multiplicative; that is,
mλ is not necessarily equal to mλ1mλ2 · · ·mλ�

.
Define a scalar product (a bilinear form 〈 f, g〉with values inQ, sometimes referred

to as an inner product) on Sym by requiring that

〈hλ,mμ〉 = δλμ,

where δ is theKronecker delta. Thismeans the complete homogeneous andmonomial
symmetric functions are dual to each other under this scalar product. The power
sums are orthogonal under this scalar product. This means 〈pλ, pμ〉 = δλμzλ, where
zλ = 1m1(m1!)2m2(m2)! · · · kmk (mk !) with mi equal to the number of times the value
i appears in λ. For example,

z(4,4,4,2,1,1) = 122!211!300!433! = 1536.

(Note that n!
zλ

counts the number of permutations of cycle type λ [14, 108].)
Letω : Sym → Symbe the involution on symmetric functions defined byω(en) =

hn . (Note that this impliesω(eλ) = hλ for all partitionsλ.) Thenω(pn) = (−1)n−1 pn .

1.2 Schur Functions

The Schur function basis is one of the most important bases for symmetric functions
due to its deep connections to representation theory and geometry as well as its
combinatorial properties. Schur functions are orthonormal under the scalar product
described above and can be defined in a number of different ways. We begin with a
combinatorial description, for which we will need several definitions.

A filling of a partition diagram λ in such a way that the row entries are weakly
increasing from left to right and the column entries are strictly increasing frombottom
to top is called a semi-standard Young tableau of shape λ (see Fig. 3). The content
of such a filling is the composition α = (α1,α2, . . . ,αk), where αi is the number of
times the entry i appears in the filling. The weight of a semi-standard Young tableau
T is the monomial xT = xα1

1 xα2
2 · · · xαk

k . The set of all semi-standard Young tableaux
of shape λ is denoted SSYT(λ). A semi-standard Young tableau of shape λ in which
each entry from 1 to n (where n = |λ|) appears exactly once is called a standard
Young tableau, and the set of all standard Young tableaux of shape λ is denoted
SYT(λ).
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2
1 1

3
1 1

2
1 2

3
1 2

2
1 3

3
1 3

3
2 2

3
2 3

Fig. 3 Set of all semi-standard Young tableaux of shape (2, 1) whose entries are in the set {1, 2, 3}

Definition 1.2. The Schur function sλ(x1, x2, . . . , xn) is the generating function for
the weights of all semi-standard Young tableaux of shape λ with entries in the set
{1, 2, . . . , n}; that is

sλ(x1, x2, . . . , xn) =
∑

T∈SSYT(λ)

xT .

Here the sum is over all semi-standard Young tableaux whose entries are in the set
[n]. Extend this definition to infinitely many variables by allowing entries from the
set of all positive integers.

Figure 3 shows that

s21(x1, x2, x3) = x21 x2 + x21 x3 + x1x
2
2 + 2x1x2x3 + x1x

2
3 + x22 x3 + x2x

2
3 .

Notice that s(1n) = m(1n) = en , since s(1n) is constructed by filling a vertical col-
umn with positive integers so that no entries repeat, and sn = hn since sn is con-
structed by filling a horizontal row with weakly increasing positive integers. The
Schur functions enjoy a large number of beautiful properties, including the celebrated
Littlewood–Richardson formula for the coefficients appearing in the product of two
Schur functions (which can also be computed algorithmically using the Remmel–
Whitney rule [106]) and the Robinson–Schensted–Knuth Algorithm [75, 110] which
maps bijectively between matrices with finite nonnegative integer support and pairs
(P, Q) of semi-standard Young tableaux of the same shape.

The Schur functions were classically described as quotients involving the Van-
dermonde determinant and can be defined in a number of other ways. One method
of construction that can readily be generalized to other settings is through Bernstein
creation operators.

Theorem 1.3. ([125]) Define an operator Bm : Symn → Symm+n by

Bm :=
∑

i≥0

(−1)i hm+i e
⊥
i ,

where f ⊥ : Sym → Sym is an operator defined by 〈 f g, h〉 = 〈g, f ⊥h〉 for all g, h ∈
Sym. Then for all tuples α ∈ Z

m,

sα = Bα1Bα2 · · ·Bαm (1).
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Note that this method for constructing Schur functions is more general than the
combinatorial method described above, because Bernstein creation operators define
Schur functions indexedby tuples of nonnegative integers (weak compositions) rather
than just partitions.

Schur functions appear in many areas of mathematics beyond combinatorics.
They correspond to characters of irreducible representations of the general linear
group. Their multiplicative structure describes the cohomology of the Grassmannian
of subspaces of a vector space. See the comprehensive texts by Fulton [39] and
Sagan [108] for more details about Schur functions and their roles in combinatorics,
representation theory, and geometry.

1.3 Quasisymmetric Functions

The ring Sym of symmetric functions is contained inside a larger ring of quasisym-
metric functions, denoted by QSym, which can be thought of as all bounded degree
formal power series f on an infinite alphabet x1, x2, . . . such that the coefficient of
xα1
1 xα2

2 · · · xαk
k in f is equal to coefficient of xα1

j1
xα2
j2

· · · xαk
jk

in f for any sequence
of positive integers 1 ≤ j1 < j2 < · · · < jk and any composition (α1,α2, . . . ,αk).
It is often convenient to restrict to n variables so that f ∈ QSymn if and only if the
coefficient of xα1

1 xα2
2 · · · xαk

k in f is equal to the coefficient of xα1
j1
xα2
j2

· · · xαk
jk
in f for

any sequence of positive integers 1 ≤ j1 < j2 < · · · < jk ≤ n and any composition
(α1,α2, . . . ,αk).

For example, the polynomial

f (x1, x2, x3) = x31 x
5
2 + x31 x

5
3 + x32 x

5
3

is in QSym3, as is

g(x1, x2, x3) = x31 x
5
2 + x31 x

5
3 + x32 x

5
3 + x51 x

3
2 + x51 x

3
3 + x52 x

3
3 ,

but
h(x1, x2, x3) = x31 x

5
2 + x31 x

5
3 + x52 x

3
3

is not quasisymmetric in three variables since x32 x
5
3 does not appear, and neither

do x51 x
3
2 and x51 x

3
3 . The quasisymmetric functions in n variables are precisely the

functions invariant under a quasisymmetrizing action of the symmetric group Sn

introduced by Hivert [65, 66].
The origins of quasisymmetric functions first appeared in Stanley’s work on P-

partitions [117]. Gessel introduced the ring of quasisymmetric functions through his
generating functions for Stanley’s P-partitions [44]. (See Gessel [45] for a historical
survey of P-partitions.) To be precise, let [m] be the set {1, 2, . . . ,m} and let X be
an infinite totally ordered set such as the positive integers. A partially ordered set
(or poset), (P,<P), is a set of elements P and a partial ordering ≤P satisfying:
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• reflexivity (∀x ∈ P, x ≤P x),
• antisymmetry (if x ≤P y and y ≤P x , then x = y), and
• transitivity (if x ≤P y and y ≤P z, then x ≤P z).

Write x <P y if x ≤P y and x = y. A P-partition of a poset P with elements [m]
and partial order ≤P is a function f : [m] → X such that:

(1) i <P j implies f (i) is less than or equal to f ( j), and
(1) i <P j and i > j (under the usual ordering on integers) implies f (i) is strictly

less than f ( j).

Each permutation π corresponds to a totally ordered poset Pπ where π1 <π π2 <π

· · · <π πm . It is these permutation posets that are used to construct Gessel’s funda-
mental quasisymmetric functions Fα. To do this, give each Pπ-partition f a weight
x f = ∏

x f (i) and sum the weights over all Pπ-partitions.
For example, let π = 312 (written in one-line notation). Condition (1) implies

that f (3) ≤ f (1) ≤ f (2). Condition (2) implies f (3) < f (1). Therefore, f (3) <

f (1) ≤ f (2), and the following table depicts the Pπ-partitions involving the subset
{1, 2, 3} of X .

f(3) f(1) f(2) x f

1 2 2 x1x22

1 2 3 x1x2x3

1 3 3 x1x23

2 3 3 x2x23

Therefore, the fundamental quasisymmetric function corresponding to
π = (3, 1, 2) and restricted to three variables is

x1x
2
2 + x1x2x3 + x1x

2
3 + x2x

2
3 .

Note that this function depends only on the descent set of π and not on the underlying
permutation; therefore, the indexing set for these generating functions is the set of
all subsets of the set [m − 1] together with the number m to indicate the degrees of
the monomials. We use an ordered pair consisting of a capital letter together with m
when indexing by sets. In this paper, we use Greek letters to denote compositions,
but in other places, such as [43], capital letters are used.

Definition 1.4. ([44]) Let L be a subset of [m − 1]. Then

FL ,m =
∑

i1≤i2≤···≤im
i j<i j+1 if j∈L

xi1xi2 · · · xim
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Every subset L = {L1, L2, . . . , Lk} of the set [m − 1] corresponds to a composi-
tion β(L) = (L1, L2 − L1, · · · ,m − Lk), and therefore, the fundamental quasisym-
metric functions are often indexed by compositions rather than sets. The fundamental
quasisymmetric functions are homogeneous of degree m; the value m is apparent
when the index is a composition α since |α| = m. When the index is given by a
subset, this value m must be specified. For example, if m = 4 then

F{2,3},4(x1, x2, x3, x4) =
∑

i1≤i2<i3<i4

xi1xi2xi3xi4

= x21 x2x3 + x21 x2x4 + x21 x3x4 + x1x2x3x4 + x22 x3x4.

whereas if m = 5 then

F{2,3},5(x1, x2, x3, x4) =
∑

i1≤i2<i3<i4≤i5

xi1xi2xi3xi4xi5

= x21 x2x
2
3 + x21 x2x3x4 + x21 x2x

2
4 + x21 x3x

2
4 + x1x2x3x

2
4 + x22 x3x

2
4 .

The monomial quasisymmetric function, Mα, in infinitely many variables
{x1, x2, . . .} and indexed by the composition α = (α1,α2, . . . ,αk), is obtained by
quasisymmetrizing the monomial xα = xα1

1 xα2
2 · · · xαk

k . That is,

Mα(x1, x2, . . .) =
∑

i1<i2<···<ik

xα1
i1
xα2
i2

· · · xαk
ik

.

This definition can be restricted to finitely many variables by requiring that ik ≤ n.
Note thatmλ = ∑

α̃=λ Mα,where α̃ is the partition obtained by rearranging the parts
of α into weakly decreasing order. Every fundamental quasisymmetric function can
be written as a positive sum of monomial quasisymmetric functions as follows:

Fα =
∑

β�α

Mβ .

The Schur functions decompose into a positive sum of fundamental quasisymmet-
ric functions; to describe this decomposition, we need one additional definition. Each
standard Young tableau T has an associated descent set D(T ) given by i ∈ D(T ) if
and only if i + 1 appears in a higher row of T than i . Then

sλ =
∑

T∈SYT(λ)

FD(T ),|λ|. (1.1)

For example, if λ = (3, 2), then the standard Young tableaux of shape (3, 2)
are shown in Fig. 4, with respective descent sets {3}, {2, 4}, {2}, {1, 4}, and {1, 3}.
Therefore,
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4 5
1 2 3

3 5
1 2 4

3 4
1 2 5

2 5
1 3 4

2 4
1 3 5

Fig. 4 Five standard Young tableau of shape (3, 2)

s3,2 = F{3},5 + F{2,4},5 + F{2},5 + F{1,4},5 + F{1,3},5
= F32 + F221 + F23 + F131 + F122.

Valuable information can be gained about symmetric functions by examining their
expansion into quasisymmetric functions, especially into the fundamental quasisym-
metric functions. For example, a symmetric function is said to be Schur-positive if
it can be written as a positive sum of Schur functions. Schur positivity is important
because of its deep connection to representations of the symmetric group. Assaf’s
recently developed paradigm called dual equivalence [7] provides machinery to
prove that a function is Schur-positive based on its expansion into the fundamentals
and their connection to objects called dual equivalence graphs. The Eulerian qua-
sisymmetric functions [113] are defined as sums of the fundamental quasisymmetric
functions indexed by certain permutation statistics. Eulerian quasisymmetric func-
tions are in fact always symmetric. Their generating functions are deeply connected
to Euler’s exponential generating functions for the Eulerian polynomials. Eulerian
quasisymmetric functions can also be used to refine a number of classical results on
permutation statistics. We will not be able to address these topics in this brief survey
article but encourage the interested reader to see [7, 113] for details.

2 Algebra and Representation Theory

Even before they were formally defined, quasisymmetric functions appeared natu-
rally in algebraic settings. The Leibniz–Hopf algebra is the free associative algebra
over the integers which in fact is isomorphic to the algebra of noncommutative sym-
metric functions, which we shall define in Sect. 2.1. In 1972, Ditters claimed [30,
Proposition 2.2] that the Leibniz–Hopf algebra is a free commutative algebra over
the integers. This statement was later referred to as the Ditters Conjecture due to
an error in the original proof and was then proved by Hazewinkel [60, 62] using
combinatorial techniques and later by Baker and Richter [10] using methods from
algebraic topology. Malvenuto and Reutenauer [90, Corollary 2.2] prove that QSym
is a free module over Sym. In fact, Garsia and Wallach [41] further show that the
quotient QSymn over Symn has dimension n!. Aval and Bergeron [9] prove that the
quotient of Z[x1, x2, . . . , xn] modulo quasisymmetric functions in n variables with
no constant term has Hilbert series

∑
Cntn where Cn is the nth Catalan number (see

also [8] for the case with infinitely many variables). An explicit basis for the quotient
space is given in [79].
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A ⊗ A ⊗ A m⊗id

id⊗m

A ⊗ A

m

A ⊗ A m A
(a) Associativity property

A ⊗ A

mR ⊗ A

u⊗id

s

A ⊗ R

id⊗u

s

A
(b) Unitary property

Fig. 5 Commutative diagrams for algebras

C ⊗ C ⊗ C C ⊗ C
Δ⊗id

C ⊗ C

id⊗Δ

C
Δ

Δ

(a) Coassociativity property

C ⊗ C
id⊗ε

ε⊗id

R ⊗ C C ⊗ R

C

Δ

⊗1

1⊗

(b) Counitary property

Fig. 6 Commutative diagrams for coalgebras (Here ⊗1 applied to an element c ∈ C means c ⊗ 1
and 1⊗ applied to an element c ∈ C means 1 ⊗ c.)

The ring of quasisymmetric functions (QSym) is an important example of a
combinatorial Hopf algebra (discussed in Sect. 2.1). QSym is closely connected to
Solomon’s descent algebra (described in Sect. 2.2) and plays a role in representations
of the 0-Hecke algebra (see Sect. 2.3).

2.1 Combinatorial Hopf Algebras

The following definitions, leading to the description of a combinatorial Hopf algebra,
closely follow the expositions in [47, 85].

Let R be a commutative ringwith an identity element. An associative algebra over
R is an R-module A together with a product (or multiplication) m : A ⊗ A → A
and a unit u : R → A satisfying associativity (m(m(a, b), c) = m(a,m(b, c))) and a
unitary propertywhich implies that the unitmap commuteswith scalarmultiplication.
To be precise, m and u are R-linear maps such that if id is the identity map on A
and s is scalar multiplication, then the diagrams in Fig. 5 commute.

A coalgebra over R is an R-module C together with a coproduct (or comulti-
plication) � : C → C ⊗ C and a counit (or augmentation) ε : C → R satisfying a
coassociativity property and a counitary property so that when the directions of the
arrows in Fig. 5 are reversed, the resulting diagrams (shown in Fig. 6) commute.
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An algebra morphism is a map f : A → A′ from an R-algebra (A,m, u) to
another R-algebra (A′,m ′, u′) such that

f ◦ m = m ′ ◦ ( f ⊗ f ) and f ◦ u = u′.

A bialgebra is an algebra (B,m, u) and coalgebra (B,�, ε) such that � and ε are
algebra homomorphisms. A bialgebra B with coproduct � is said to be graded if it
decomposes into submodules B0,B1, . . . such that

(1) B = ⊕n≥0Bn ,
(2) BiB j ⊆ Bi+ j , and
(3) �(Bn) ⊆ ⊕i+ j=nBi ⊗ B j .

Definition 2.1. A bialgebra (H,m, u,�, ε) is aHopf algebra if there exists a linear
map S : H → H (called the antipode) such that

m ◦ (S ⊗ id) ◦ � = u ◦ ε = m ◦ (id ⊗ S) ◦ �.

AHopf algebraH is said to be connected ifH0 = R.When the ground ring R is in
fact a field K , a character (sometimes called amultiplicative linear functional) of the
Hopf algebraH is an algebra homomorphism fromH to the field K . A combinatorial
Hopf algebra is a graded connected Hopf algebra equipped with a character.

Gessel [44] describes an internal (or inner) coproduct which takes QSymn (qua-
sisymmetric functions of degree n) to QSymn ⊗ QSymn . This internal coproduct
corresponds to the internal coproduct on symmetric functions, taking pn to pn ⊗ pn .
Malvenuto and Reutenauer [90] introduce an outer coproduct on QSym defined on
the monomial quasisymmetric functions by

�(M(β1,β2,...,βk )) =
k∑

i=0

M(β1,...,βi ) ⊗ M(βi+1,...,βk ).

For example,

�(M312) = 1 ⊗ M312 + M3 ⊗ M12 + M31 ⊗ M2 + M312 ⊗ 1.

Restricting this coproduct to symmetric functions takes pn to pn ⊗ 1 + 1 ⊗ pn , and
therefore, this coproduct is different from Gessel’s internal coproduct. Malvenuto
and Reutenauer [90] and Ehrenborg [34] independently discovered the antipode map
on QSym (with respect to the outer coproduct), proving that QSym is a Hopf algebra.
See [61] for a thorough introduction to the Hopf algebra structure of quasisymmetric
functions.

If V is an R-module, let V � := Hom(V, R) be its dual R-module. Under certain
finiteness conditions (which are true for the situations explored in this article), the
duals of Hopf algebras are themselves Hopf algebras. In the language of Hopf alge-
bras and their duality, the Ditters conjecture states that the Leibniz–Hopf algebra is
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dual (as a Hopf algebra over the integers) to a free commutative algebra over the
integers.

The dual to QSym is the ring (or algebra) of noncommutative symmetric func-
tions, denoted NSym. We take a moment to briefly describe some of the structure of
NSym. For a thorough introduction to the topic through the lens of quasideterminants,
see [43]; we typically follow their notation conventions.

NSym can be thought of as a free associative algebra K 〈�1,�2, . . .〉 generated
by an infinite sequence of noncommuting indeterminates (�k)k≥1 over a fixed field
K of characteristic 0. (We usually take K to be C, the complex numbers.) The
noncommutative elementary symmetric functions are the indeterminates �k , and
their generating function is

λ(t) =
∑

k≥0

t k�k,

while thenoncommutative complete homogeneous symmetric functions Sk are defined
by their generating function

σ(t) =
∑

k≥0

t kSk = λ(−t)−1. (2.1)

Note that this mirrors the relationship in Sym between the elementary and com-
plete homogeneous symmetric functions, where if H(t) = ∑

n≥0 hnt
n and E(t) =∑

n≥0 ent
n , then H(t)E(−t) = 1. Both of these basis analogues are multiplicative,

meaning Sα = Sα1Sα2 · · · Sαk and �α = �α1�α2 · · ·�αk for α = (α1,α2, . . . αk).
The Ribbon Schur functions, which form a basis dual to Gessel’s fundamental basis
forQSym, can be defined throughquasideterminants. Twodifferent candidates for the
noncommutative analogue of the power sum symmetric functions will be described
in Sect. 4.2. We use boldface letters for bases of NSym, lowercase letters for bases
of Sym, and uppercase letters for bases of QSym.

The forgetful map, frequently denoted by χ : NSym → Sym, sends the basis ele-
ment Sα to the complete homogeneous symmetric function hα1hα2 · · · hα�(α)

. Essen-
tially, the forgetful map “forgets” that the functions don’t commute. This map can
then be extended linearly to all of NSym and is in fact a surjection (but clearly not a
bijection) onto Sym.

LetC be a category of objects. An object T is a terminal object for the categoryC
if for all objects X ∈ C there exists a unique morphism X → T . Not every category
has a terminal object, but if such a terminal object exists it is necessarily unique.
Aguilar, Bergeron, and Sottile [1] introduce a canonical character ζQ on QSym and
describe what it does to the monomial and fundamental quasisymmetric functions.
Equipped with this character, quasisymmetric functions are the terminal object in
the category of combinatorial Hopf algebras.

Theorem 2.2. ([1]) If H is a combinatorial Hopf algebra with a character ζ, then
there exists a unique homomorphism from (H, ζ) to (QSym, ζQ) such that the homo-
morphism on characters induced by the Hopf algebra homomorphism sends ζ to ζQ.



Recent Trends in Quasisymmetric Functions 251

Theorem 2.2 helps to explain why quasisymmetric functions appear in so many
different contexts throughout algebraic combinatorics. Examples for which the con-
nection is well-understood include Rota’s Hopf algebra of isomorphism classes of
finite graded posets [74] and the chromatic Hopf algebra of isomorphism classes of
finite unoriented graphs [111]. Note that this mirrors the similar result stating that
Sym is the terminal object in the category of cocommutative combinatorial Hopf
algebras [1].

2.2 Solomon’s Descent Algebra

LetZSn be thegroup ringof permutationsSn over the integers and letZS = ⊕n≥0ZSn

be the direct sum of ZSn over all positive integers n. For each σ ∈ Sn let Des(σ) be
the descent set of σ defined by Des(σ) = {i | 1 ≤ i ≤ n − 1,σ(i) > σ(i + 1)}. To
each subset L of {1, 2, . . . , n − 1}, associate an element DL of ZSn as follows:

DL =
∑

Des(σ)=L

σ.

The composition β(L) = (L1, L2 − L1, . . . , n − Lk) (where k = |L|) is frequently
used to index this descent basis. For example, let n = 4 and L = {2}. Then

DL = D(2,2) = 1324 + 1423 + 2314 + 2413 + 3412.

Let �n be the linear span of the elements DL and endow � := ⊕n≥0�n ⊆ ZS
with a ring structure by setting σπ = 0 if σ ∈ Sn and π ∈ Sm such that m = n. �
is called Solomon’s descent algebra. Solomon [116] proves that � is a subalgebra
of ZS. Gessel [44] shows that the algebra dual to the coalgebra QSymn (endowed
with Gessel’s internal coproduct) is isomorphic to Solomon’s descent algebra �n .

The set � (just as a set, not as the descent algebra) also admits a Hopf algebra
structure. That is,Malvenuto and Reutenauer [89, 90] define a product and coproduct
onZS to prove thatZS is a Hopf algebra (called theMalvenuto–Reutenauer algebra)
with� as aHopf subalgebra. (This algebra is in fact isomorphic to the algebra FQSym
of free quasisymmetric functions; see [32] for details.) Malvenuto and Reutenauer
show (Theorem 3.3 in [90]) that� is dual to QSym, with the descent basis {Dα} of�
dual to the basis {Fα}. This means that the product on one of these bases determines
the coproduct on the other, and vice versa. That is, if

FαFβ =
∑

γ|=|α|+|β|
cγ
α,βFγ,

then comultiplication in � is defined by

��(Dγ) =
∑

cγ
α,βDα ⊗ Dβ .
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This duality pairing also implies that the descent basis is isomorphic to the ribbon
Schur basis for noncommutative symmetric functions since the ribbon Schur basis
for NSym is dual to the fundamental basis for QSym.

2.3 Representations of the 0-Hecke Algebra

The representation theoretic significance of the fundamental quasisymmetric func-
tions mirrors that of the Schur functions. We first describe the symmetric function
case for ease of comparison. Recall that the symmetric group Sn can be generated
by adjacent transpositions si = (i, i + 1) for 1 ≤ i ≤ n − 1 satisfying the following
relations:

s2i = 1 for 1 ≤ i ≤ n − 1,

si si+1si = si+1si si+1 for 1 ≤ i ≤ n − 2, and

si s j = s j si for |i − j | ≥ 2.

The Frobenius characteristic map is a map from characters of the symmetric
group Sn to symmetric functions which are homogeneous of degree n. The Schur
functions are the images of irreducible characters.

The 0-Hecke algebra is a C-algebra generated by elements satisfying relations
similar to the relations on the symmetric group generators described above. That is,
Hn(0) is generated by elements T1, T2, . . . , Tn−1 satisfying:

T 2
i = Ti for 1 ≤ i ≤ n − 1,

Ti Ti+1Ti = Ti+1Ti Ti+1 for 1 ≤ i ≤ n − 2, and

TiTj = Tj Ti if |i − j | ≥ 2.

If σ is a permutation inSn with reduced word σ = si1si2 · · · si� , then define Tσ ∈
Hn(0) by

Tσ = Ti1Ti2 · · · Ti� .

The 0-Hecke algebra Hn(0) is a specialization of the Hecke algebra Hn(q) at q = 0.
(See Méliot [93] for further details on the Hecke algebra Hn(q) and its relationship
to the 0-Hecke algebra Hn(0).)

Norton [96] investigates the representation theory of Hn(0) and proves that there
are 2n−1 distinct irreducible representations of Hn(0), indexed by compositions of
n. Let G0(Hn(0)) be the Grothendieck group of finitely generated Hn(0)-modules
and G = ⊕n≥0G0(Hn(0)) be the associated Grothendieck ring. (See Carter [23] for
a thorough account of the representation theory of the 0-Hecke algebra and see
Huang [71–73] for recent connections with flag varieties, the Stanley–Reisner ring,
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and tableaux.) Krob and Thibon [76] prove that G is isomorphic to the ring of qua-
sisymmetric functions via a characteristic mapF : G → QSym called the quasisym-
metric characteristic. Let Lα denote the irreducible representation of Hn(0) corre-
sponding to α. Then F sends Lα to the fundamental quasisymmetric function Fα.

Theorem 2.3. ([31]) The map F , defined by F(Lα) = Fα, is a ring isomorphism
between the Grothendieck group G of finite-dimensional representations of Hn(0)
and the ring of quasisymmetric functions.

The fundamental quasisymmetric functions therefore correspond to characters
of irreducible representations of the 0-Hecke algebra. See Hivert [65, 66] to view
this through the lens of divided difference operators. Similar representation theoretic
interpretations can be ascribed to various other bases for quasisymmetric functions
and will be discussed in the relevant sections.

3 Macdonald Polynomials

The Schur functions are uniquely determined by the following two requirements
described on p. 305 of Macdonald [88].

(1) Let λ be a partition. Then

sλ = mλ +
∑

μ<λ

Kλμmμ,

where μ ≤ λ if and only if μ1 + μ2 + · · · + μ j ≤ λ1 + λ2 + · · · λ j for all j .
(This partial ordering is called the dominance ordering.) Here the coefficients
Kλμ are called the Kostka numbers, or Kostka coefficients.

(2) 〈sλ, sμ〉 = δλμ.

Macdonald [86] generalized this construction to a two-parameter family of func-
tions Pλ = Pλ(q, t) in Q(q, t) characterized by the following two requirements.

(1) Let λ be a partition. Then Pλ = mλ + lower terms in dominance order.
(2) 〈Pλ, Pμ〉q,t = 0 if λ = μ, where

〈pλ, pμ〉q,t = δλμzλ

�(λ)∏

i=1

1 − qλi

1 − tλi
.

Notice that when q = t , the scalar product reduces to 〈pλ, pμ〉q,q = δλμzλ and
so Pλ(q, q) = sλ. Similarly, Pλ(q, 1) = mλ and Pλ(1, t) = eλ′ . (See p. 324 of
Macdonald [88].) Therefore, the Macdonald polynomials are simultaneous gener-
alizations of several different symmetric function bases. Macdonald polynomials
also appear in connection with the Hilbert scheme of n points in the plane [59].
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There are several variations on the original definition of Macdonald polynomials,
including themodifiedMacdonald polynomials, H̃μ, obtained from Pμ by certain sub-
stitutions andmotivated by their connection to the coefficients appearing in the Schur
function expansion of Macdonald polynomials. Haglund conjectured and Haglund,
Haiman, and Loehr proved [50, 51, 54, 55] a combinatorial formula for the Mac-
donald polynomials H̃μ using statistics on fillings of partition diagrams. To describe
this formula, we introduce several pertinent definitions.

Recall that a filling σ : μ → Z
+ is a function from the cells of the diagram of

a partition μ to the positive integers. The reading word of the filling is the word
obtained by reading the entries of the filling from top to bottom, left to right.

The major index and inversion statistic on permutations can be generalized to
statistics on fillings of Ferrers diagrams. Let s be a cell in the partition diagram μ
and let South(s) be the cell immediately below s in the same column as s. Define

Des(σ,μ) = {s ∈ μ | σ(s) > σ(South(s))}.

(No cell in the bottom row of μ can be in Des(σ,μ).) Let leg(s) be the number of
cells above s in the same column as s and let arm(s) be the number of cells to the
right of s in the same row as s. Then

maj(σ,μ) =
∑

s∈Des(σ,μ)

(leg(s) + 1).

Let u, v, w be three cells in the diagram of μ such that u and v are in the same row
of μ with v strictly to the right of u and w = South(u) as shown:

u . . . v

w
.

Any collection of three cells arranged in this way is called a triple. Define an orien-
tation on the cells in a triple of a filling σ of μ by starting with the cell containing the
smallest entry andmoving in a circularmotion from smallest to largest. (If two entries
are equal, the one which appears first in the reading word is considered smaller.) If
the resulting orientation is counterclockwise, the triple is called an inversion triple
(see Fig. 7). Two cells u, v in the bottom row are also considered an inversion triple
if v is strictly to the right of u and σ(u) > σ(v). The total number of inversion triples
in a filling σ of a partition μ is denoted inv(σ,μ).

For example, the filling in Fig. 8 has descent set Des = {(1, 3), (2, 3), (2, 2)},
where cells are indexed by (column, row) to mimic the (x, y) Cartesian coordinates.

Fig. 7 First two triples are
inversion triples; the third
and fourth are not

3 . . . 2
1

2 . . . 1
2

1 . . . 2
2

4 . . . 1
3
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Fig. 8 A filling of the
partition (4, 3, 2) with
reading word 582613371

5 8
2 6 1
3 3 7 1

The major index for this filling is 1 + 1 + 2 = 4 and inv(σ,μ) = 3 + 2 = 5, since
there are three inversion triples in the bottom row and two additional inversion triples.

Theorem 3.1. ([54, 55]) Let μ be a partition of n. Then

H̃μ(X; q, t) =
∑

σ : μ→Z+
xσqinv(σ,μ)tmaj(σ,μ).

Theorem 3.1 provides a straightforward method for computing Macdonald poly-
nomials. This formula could potentially be used to find a product rule for Macdonald
polynomials utilizing tableau constructions, although Yip recently found an elegant
combinatorial rule for multiplying Macdonald polynomials [124] using the alcove
walk model introduced by Ram and Yip [104].

3.1 Quasisymmetric Decomposition of Macdonald
Polynomials

Macdonald polynomials can also be described as sums of fundamental quasisym-
metric functions with coefficients in q and t .

Theorem 3.2. ([52, 54]) Let μ be a partition of n. Then

H̃μ(X; q, t) =
∑

β∈Sn

qinv(β,μ)tmaj(β,μ)FDes(β−1),

where each permutation β in the sum corresponds to the standard filling of μ with
readingwordβ andDes(β−1) is the usual descent set of the permutationβ−1 obtained
by taking the inverse of β.

For example, if μ = (2, 1), the following Table demonstrates that

H̃21(X; q, t) = F3 + (q + t)F21 + (q + t)F12 + qt F111.

This expansion of the Macdonald polynomials into fundamental quasisymmetric
functions paves the way for new approaches to long-standing open questions. For
example, Macdonald [86] conjectured that the coefficients in the expansion of H̃μ

into Schur functions are polynomials in q and t with nonnegative integer coefficients.
Haiman [59] proved this by showing that H̃μ is the bigraded Frobenius character of
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Permutation β 123 132 213 231 312 321
(Reading word of filling)

Filling of μ 1

2 3

1

3 2

2

1 3

2

3 1

3

1 2

3

2 1
inv(β,μ) 0 1 0 1 0 1
maj(β,μ) 0 0 1 0 1 1
β−1 123 132 213 312 231 321
Des(β−1) ∅ 2 1 1 2 1, 2

a doubly gradedSn-module, but this approach did not provide an explicit combina-
torial formula for the coefficients. Assaf’s dual equivalence [6, 7] provides another
potential approach to Schur positivity which makes use of the decomposition of a
symmetric function into fundamental quasisymmetric functions.

The Hall–Littlewood polynomials are a one-parameter specialization of Macdon-
ald polynomials introduced by Littlewood as a symmetric function realization of the
Hall algebra [82]. Several different candidates for quasisymmetric Hall–Littlewood
polynomials have recently been proposed. See Hivert [66] for an analogue in NSym
and its QSym companion, and see Novelli, Thibon, and Williams [97] for a dif-
ferent noncommutative analogue. Connections between these two approaches are
studied in Novelli, Tevlin, and Thibon [98]. See also Haglund, Luoto, Mason, and
van Willigenburg [57] for another quasisymmetric analogue.

3.2 Quasisymmetric Schur Functions

Haglund’s formula (Theorem 3.1) to generate the Macdonald polynomials using
statistics on fillings of partition diagrams is generalized in [56] to fillings of weak
composition diagrams in order to generate the nonsymmetric Macdonald poly-
nomials introduced and initially developed by Cherednik [24], Macdonald [87],
Opdam [99], and Sahi [109].When these polynomials are specialized to q = t = ∞,
the resulting polynomials, called Demazure atoms due to their connections to
Demazure characters, form a basis for all polynomials. The Demazure atoms decom-
pose the Schur functions in a natural way, and their generating diagrams satisfy
a Robinson–Schensted–Knuth-style algorithm [91]. Type A key polynomials [78,
105] are positive sums of Demazure atoms [92]. Summing the Demazure atoms over
all weak compositions which collapse to a fixed composition when their zeros are
removed produces a new collection of quasisymmetric functions, called the qua-
sisymmetric Schur functions, which we now formally define using fillings of com-
position diagrams [57].

Let α be a composition of n. If T is a filling of the composition diagram α
(written in English notation) satisfying the following properties, then T is called a
semi-standard reverse composition tableau, abbreviated SSRCT.

(1) The entries in each row weakly decrease when read from left to right.
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(2) The entries in the leftmost column strictly increasewhen read from top to bottom.
(3) (Triple Rule) If k > j and T (i, k) ≥ T (i + 1, j) (for cells (i, k) and (i + 1, j)),

then (i + 1, k) is a cell in α and T (i + 1, k) > T (i + 1, j). (Here, if there is no
cell at coordinate (i, j), set T (i, j) = 0.)

The set of all semi-standard reverse composition tableaux of shape α is denoted
SSRCT(α). The weight of a semi-standard reverse composition tableau T , denoted
XT , is the product over all i of x#(i)i , where #(i) is the number of times i appears in
T .

Definition 3.3. The quasisymmetric Schur function Sα is defined by

Sα(X) =
∑

T∈SSRCT(α)

XT .

Quasisymmetric Schur functions form a basis for QSym and are closely related
to Schur functions. In fact, the quasisymmetric Schur functions, when summed over
all rearrangements of a given partition, produce the Schur function indexed by this
partition [57]. That is,

sλ =
∑

α̃=λ

Sα,

where α̃ is the partition obtained by arranging the parts of α into weakly decreasing
order.

For example, the four semi-standard reverse composition tableaux of shape (2, 1)
are

1 1
2

, 1 1
3

, 2 1
3

, and 2 2
3

,

producing the quasisymmetric Schur function

S21(x1, x2, x3) = x21 x2 + x21 x3 + x1x2x3 + x22 x3.

The four semi-standard reverse composition tableaux of shape (1, 2) are

1
2 2

, 1
3 2

, 1
3 3

, and 2
3 3

,

producing the quasisymmetric Schur function

S12(x1, x2, x3) = x1x
2
2 + x1x2x3 + x1x

2
3 + x2x

2
3 .

Together these sum to s21(x1, x2, x3); that is,

s21 = S21 + S12.
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The quasisymmetric Schur functions expand positively in the fundamental basis
for QSym. The set of all standard reverse composition tableaux of shape α, abbre-
viated SRCT(α), is the subset of SSRCT(α) consisting of the semi-standard reverse
composition tableaux in which each of the positive integers in the set {1, 2, . . . , |α|}
appears exactly once. Each standard reverse composition tableau T has a descent set
Des(T ) defined by

Des(T ) = {i | i + 1 appears weakly right of i} ⊆ [n − 1].

Theorem 3.4. ([57]) The quasisymmetric Schur function Sα decomposes into the
fundamental basis for quasisymmetric functions as follows:

Sα =
∑

T∈SRCT(α)

FDes(T ),|α|.

For example, the three standard reverse composition tableaux of shape (2, 1, 3)
are

3 1
4
6 5 2

, 2 1
4
6 5 3

, and 2 1
3
6 5 4

.

The descent sets are, respectively, {1, 3, 4}, {2, 4}, and {2, 3}. This implies that

S213 = F{1,3,4},6 + F{2,4},6 + F{2,3},6.

Tewari and van Willigenburg [123] introduce a collection of operators {πi }n−1
i=1

on standard reverse composition tableaux (which satisfy the same relations as the
generators {Ti }n−1

i=1 described in Sect. 2.3) to produce an Hn(0)-action on standard
reverse composition tableaux of size n.

In particular, for T ∈ SRCT(α) for some composition α |= n and 1 ≤ i ≤ n − 1,
entries i and i + 1 are said to be attacking if they are in the same column of T or
they are in adjacent columns of T with i + 1 appearing to the right of i in a strictly
lower row. The operators πi for 1 ≤ i ≤ n − 1 are defined as follows, where si (T )

interchanges the positions of entries i and i + 1.

πi (T ) =

⎧
⎪⎨

⎪⎩

T if i /∈ Des(T ),

0 if i ∈ Des(T ), i and i + 1 are attacking, and

si (T ) if i ∈ Des(T ), i and i + 1 are nonattacking.

Extend these operators to all of Sn by setting πσ = πi1πi2 · · ·πi� when σ =
si1si2 · · · si� is any reduced word for σ. Define a partial order �α on SRCT(α) by
setting T1 �α T2 if and only if πσ(T1) = T2 for some permutation σ ∈ Sn . Extend
�α to a total order�t

α arbitrarily and letVTi be theC-linear span of all Tj ∈ SRCT(α)

such that Tj �t
α Ti .
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Theorem 3.5. ([123]) If T1 ∈ SRCT(α) is the minimal element under the total order
�t

α, then VT1 := S is an Hn(0)-module whose quasisymmetric characteristic is the
quasisymmetric Schur function Sα.

A simple composition is a composition α = (α1,α2, . . . ,α�) such that if αi ≥
α j ≥ 2 and 1 ≤ i < j ≤ �, then there exists an integer k satisfying i < k < j such
that αk = α j − 1.

Tewari and van Willigenburg [123] prove that S is an indecomposable Hn(0)-
module if and only if α is simple. These results lead to the introduction of a new
basis for quasisymmetric functions called the canonical quasisymmetric functions
{Cα}α and a branching rule for the S which is analogous to the classical branching
rule for Schur functions [108].

The product of a quasisymmetric Schur function and aSchur function expands into
the quasisymmetric Schur function basis through a rulewhich refines the Littlewood–
Richardson Rule [58] but a formula for the coefficients appearing in the product of
arbitrary quasisymmetric Schur functions is unknown. See [85] for a thorough intro-
duction to quasisymmetric Schur functions and their closely related counterpart, the
Young quasisymmetric Schur functions. The Young quasisymmetric Schur functions
are obtained from the quasisymmetric Schur functions by a simple reversal of the
indexing composition and the variables, but at times theYoung quasisymmetric Schur
functions are easier toworkwith due to their compatibility with semi-standardYoung
tableaux (rather than reverse semi-standard Young tableaux).

4 Quasisymmetric Analogues of Symmetric Function Bases

Quasisymmetric functions play a major role in answering important questions about
symmetric functions. Analogues in QSym of classical bases for symmetric functions
aid in this pursuit by providing a dictionary to translate between Sym and QSym.
We have already discussed a quasisymmetric analogue of the monomial symmetric
functions as well as two different quasisymmetric analogues of the Schur functions.
We now introduce another natural quasisymmetric analogue of the Schur function
basis as well as a quasisymmetric analogue of the power sum basis.

4.1 Dual Immaculate Quasisymmetric Functions

Berg, Bergeron, Saliola, Serrano, and Zabrocki [12] generalize Bernstein’s creation
operator construction of the Schur functions to obtain a basis for NSym called the
immaculate basis and denoted Iα. The dual basis in QSym, called the dual immac-
ulate quasisymmetric functions, can be generated by fillings of tableaux as follows.

Let F : α → Z
+ be a filling of a composition diagram α with positive integers

such that the sequence of entries in each row (read from left to right) is weakly
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Fig. 9 Four immaculate
tableaux of shape (2, 1, 3)
and weight x1x2x3x24 x5

4 4 5
3
1 2

4 4 5
2
1 3

3 4 4
2
1 5

3 4 5
2
1 4

increasing and the sequence of entries in the leftmost column (read from bottom to
top) is strictly increasing. Then F is said to be an immaculate tableau of shape α.
(Note that since we are using French notation our definition varies slightly from the
definition in [12] but produces the same diagrams modulo a horizontal flip.) The
weight of an immaculate tableau U , denoted xU , is the product over all i of x#(i)i ,
where #(i) is the number of times i appears in U .

Definition 4.1. ([12]) Letα be a composition. The dual immaculate quasisymmetric
function I∗

α is given by

I∗
α =

∑

U

xU ,

where the sum is over all immaculate tableaux of shape α.

For example, the coefficient of x1x2x3x24 x5 in I∗
2,1,3 is 4 since there are four

immaculate tableaux of shape (2, 1, 3) and weight x1x2x3x24 x5. (These immaculate
tableaux are given in Fig. 9.)

The following theoremprovides a formula for the expansion of the Schur functions
into the dual immaculate quasisymmetric functions.

Theorem 4.2. ([12]) Let λ be a partition of length k. Then

sλ =
∑

σ

(−1)σI∗
λσ1+1−σ1,λσ2+2−σ2,...,λσk +k−σk

,

where (−1)σ is the sign of σ and the sum is over all permutations σ ∈ Sk such that
λσi + i − σi > 0 for all 1 ≤ i ≤ k.

For example,
s321 = I∗

321 − I∗
141.

Note that the coefficients are not always nonnegative and further the compositions
indexing the terms appearing in this expansion are not merely rearrangements of
the partition λ as is the case in the quasisymmetric Schur expansion of the Schurs.
However, the beauty of the connection to Schur functions is more readily apparent
in the dual, since applying the forgetful map to an immaculate function produces the
corresponding Schur function. That is, χ(Iα) = sα.

Grinberg recently proved Zabrocki’s conjecture that the dual immaculate qua-
sisymmetric functions can also be constructed using a variation on Bernstein’s cre-
ation operators [46]. The dual immaculate quasisymmetric functions expand into



Recent Trends in Quasisymmetric Functions 261

positive sums of the monomial quasisymmetric functions, the fundamental qua-
sisymmetric functions, and, recently shown in [3], the Young quasisymmetric Schur
functions. The latter expansion is not at all obvious given the very different methods
used to generate these two bases and therefore provides further justification that both
of these families of functions are interesting and natural objects of study.

Like quasisymmetric Schur functions, dual immaculate quasisymmetric functions
correspond to characteristics of certain representations of the 0-Hecke algebra [13],
but for the dual immaculate quasisymmetric functions these representations are inde-
composable. In particular, let Mα be the vector space spanned by all words on the
letters {1, 2, . . . , �(α)} such that the letter j appears α j times. Define an action of
the 0-Hecke algebra on words by

πi (w) =
{

w wi ≥ wi+1

si (w) wi < wi+1,

where si (w) = w1w2 · · ·wi−1wi+1wiwi+2 · · ·wn . Note that this is isomorphic to the
induced representation

IndHn(0)
Hα1 (0)⊗Hα2 (0)⊗···⊗Hα�(α)

(0)(Lα1 ⊗ Lα2 ⊗ · · · ⊗ Lαm ),

where Lk is the one-dimensional representation indexed by the composition (k). A
word w in which the first instance of j appears before the first instance of j + 1 is
called a Y-word. The 0-Hecke action defined above cannot move a j + 1 to the right
of a j , so the subspaceNα ofMα spanned by all words which are not Y-words is a
submodule of Mα.

Theorem 4.3. ([13]) The characteristic of Vα := Mα/Nα is the dual immaculate
quasisymmetric function indexed by α. In other words, F([Vα]) = I∗

α.

Bergeron, Sánchez-Ortega, and Zabrocki found a Pieri rule (first conjectured
in [12] and proved in [18]) for the product of a fundamental quasisymmetric function
and a dual immaculate quasisymmetric function, and much is known about the mul-
tiplication of the immaculate basis. However, multiplication rules in full generality
for the dual immaculate quasisymmetric functions are still largely unknown.

4.2 Quasisymmetric Analogues of the Power Sum Basis

The power sum symmetric functions (defined in Sect. 1.1) are eigenvectors for the
omega involution ω; that is, ω(pλ) = ελ pλ, where ελ = (−1)n−�(λ) [119]. Power
sum symmetric functions are also helpful in computing characters of the symmetric
group via the Murnaghan–Nakayama rule [94, 95].

Malvenuto and Reutenauer [90], through the Hopf algebraic dual, NSym, of
QSym, introduce a quasisymmetric analogue of the power sum symmetric functions,
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also obtained independently by Derksen [29] using a similar process but with a com-
putational error which leads to a different formula. To understand their construction,
we recall several facts about generating functions for symmetric and noncommutative
symmetric functions. The complete homogeneous symmetric functions, elementary
symmetric functions, and power sum symmetric functions (in n variables) can be
defined through their generating functions

H(t) =
∑

d≥0

hd t
d =

n∏

i=1

1

1 − xi t
, E(t) =

∑

k≥0

ek t
k =

n∏

i=1

(1 + xi t), and P(t) =
∑

k≥1

pk
tk

k
.

The relationship between these is given by Newton’s formula:

− d

dt
(E(−t)) = P(t)E(t),

which is equivalent to
d

dt
(H(t)) = H(t)P(t).

In their seminal work on noncommutative symmetric functions, Gelfand, Krob,
Lascoux, Leclerc, Retakh, and Thibon [43] define a noncommutative analogue of
the complete homogeneous symmetric functions (denoted Sk) by describing their
generating function (see Sect. 2.1) and requiring they satisfy the multiplicative prop-
erty.

They then utilize this approach to construct two analogues of the power sums in
NSym by requiring that the generating functions satisfy the appropriate analogues
of Newton’s formula. Noncommutative power sum symmetric functions of the first
kind, denoted �k , are defined by

ψ(t) =
∑

k≥1

t k−1�k,
d

dt
σ(t) = σ(t)ψ(t), and �α = �α1�α2 · · · �α�

,

where σ(t) is as defined in Eq. 2.1. Similarly, noncommutative power sum symmetric
functions of the second kind, denoted �k , are defined by

σ(t) = exp

(
∑

k≥1

t k
�k

k

)
and �α = �α1�α2 · · · �α�

.

Taking the Hopf algebraic duals of these noncommutative power sum bases pro-
duces two different quasisymmetric analogues of power sums. We use � and � as
notation for these to emphasize their relationship with their noncommutative duals.
The dual of the noncommutative power sum basis of the first kind is defined [11] by
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�α = zα

∑

β�α

Mβ

π(α,β)
,

where the ordering used is the refinement partial order (so that α � β if α is
coarser than β) and π(α,β) is given by the following process. First define π(α) =∏�(α)

i=1

∑i
j=1 α j . Then for α a refinement of β, set π(α,β) = ∏�(β)

i=1 π(α(i)), where
α(i) consists of the parts of α that combine to βi .

For example, �312 = (1 · 2 · 3)( 1
3·1·2M312 + 1

3·4·2M42 + 1
3·1·3M33 + 1

3·4·6M6),

which simplifies to

�312 = M312 + 1

4
M42 + 2

3
M33 + 1

12
M6.

Similarly, a formula for quasisymmetric power sums of the second kind is also
given in terms of the monomial quasisymmetric functions.

�α =
∑

α�β

Mβ

f (α,β)
,

where the ordering used is again the refinement partial order, and the function
f (α,β) is given by the following process. Assume β = (β1,β2, . . . ,βk). Write
α as a concatenation α(1)α(2) · · · α(k) of compositions α(i) where α(i) |= βi . Then
f (α,β) = �(α(1))! · · · �(α(k))!.
For example, �312 = (1 · 2 · 3)( 1

1·1·1M312 + 1
2·1M42 + 1

1·2M33 + 1
6M6), which

simplifies to
�312 = 6M312 + 3M42 + 3M33 + M6.

This formula differs from that of Malvenuto and Reutenauer [90] (who use the
notation Pα instead of �α) only by a constant. This constant ensures that the �α

refine the symmetric power sums so that

pλ =
∑

α̃=λ

�α,

which is not true for the Pα.
The reader might wonder about the duals of the elementary and complete homo-

geneous symmetric functions. In fact, the noncommutative complete homogeneous
symmetric functions are dual to the monomial quasisymmetric functions, while the
noncommutative elementary symmetric functions are dual to the “forgotten” basis
for quasisymmetric functions, whose combinatorial structure is largely unknown.

Recall that the fundamental quasisymmetric functions satisfy the following rela-
tionship to monomial quasisymmetric functions:

Fα =
∑

β�α

Mβ,
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whereβ � α againmeans thatβ is a refinement ofα.Hoffman [67] studied a variation
on the fundamental basis called the essential quasisymmetric functions Eα, obtained
by reversing the inequality in the above equation so that

Eα =
∑

β�α

Mβ .

Summing over all coarsenings of α is a natural thing to do because of what the
antipode map does to the monomial quasisymmetric functions:

S(Mα) = (−1)�(α)Eα.

Multiplication in the essential basis follows the same rules (modulo a sign) as mul-
tiplication in the monomial basis.

4.3 The Shuffle Algebra

The shuffle algebra is a Hopf algebra (whose multiplicative structure is given by
an operation called a shuffle) which is in fact isomorphic as a graded Hopf algebra
to QSym (over the rationals). More details on the shuffle algebra and the closely
related concept of Lyndon words can be found in Reutenauer [107], Lothaire [84],
or Grinberg-Reiner [47].

Let A be a totally ordered set, which we will call an alphabet. A word of length n
is an ordered stringw = w1w2 · · · wn of elements of A. Let A∗ be the set of all words
on the alphabet A. For the purposes of this section, we will take the alphabet to be
the positive integers, as is done in [60]. When A is taken to be the positive integers,
the degree (|u|) of a word u in A∗ is the sum of its letters rather than the number
of letters. The shuffle, u �� v, of two words u = u1u2 · · · uk and v = v1v2 · · · v� in
A∗ is the sum of all words in A∗ of length k + � formed from the letters of u and
the letters of v such that for all i , ui appears before ui+1 and vi appears before vi+1.
Multiplicities will occur if a letter appears in both u and v. If a letter appears more
than once within one of the words u or v, simply consider each occurrence as a
distinct letter by applying a different subscript to each appearance of a given letter.
This product is associative and can therefore be extended to the shuffle product of a
finite number of words. (It is called a shuffle because it resembles the interleaving
method used to shuffle a deck of cards.) For example,

23 �� 12 = 2312 + 2132 + 2123 + 1223 + 1223 + 1232.

Shuffles in fact guide the multiplication of quasisymmetric power sums of both
types. Let a j equal the number of parts of size j in α, b j equal the number of parts of
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size j in β, and let α · β denote their concatenation. Define C(α,β) = ∏
j

(a j+b j

a j

)
,

so that C(α,β) = zα·β/(zαzβ).

Theorem 4.4. ([11]) Let α and β be compositions. Then

�α�β = 1

C(α,β)

∑

γ∈α �� β

�γ and �α�β = 1

C(α,β)

∑

γ∈α �� β

�γ .

The shuffle algebra K 〈A〉 (where K is a commutative ring with unit) is the set of
all linear combinations over K of words on an alphabet A, endowed with this shuffle
product. There are a number of distinct proofs that this algebra is isomorphic toQSym,
including those ofHazewinkel [60] andHazewinkel-Gubareni-Kirichenko [63].Note
that Theorem 4.4 in fact implies that the shuffle algebra is isomorphic to QSym. To
see this, distribute the C(α,β) in the first equation in Theorem 4.4 so that:

�α

zα

�β

zβ
=

∑

γ∈α �� β

�γ

zα·β
.

Then map from the shuffle algebra to QSym via the map α �→ �α

zα
. Extend this map

linearly to an isomorphism between the shuffle algebra and QSym.
We now discuss the algebraic structure of QSym. First we shall see that QSym

over the rationals is a polynomial algebra in the quasisymmetric power sums. Then
we describe Hazewinkel’s polynomial generators for QSym over the integers.

Let w ∈ A∗ be a word on the alphabet A. Then a proper suffix of w is a word
v ∈ A∗ such that there exists a nonempty u ∈ A∗ such that w = uv. A prefix of w

is a word u ∈ A∗ such that w = uv. Let ≤A be a total ordering on A∗ defined as
follows. Let u = u1u2 · · · uk and v = v1v2 · · · vm . If u is a prefix of v then u ≤A v.
Otherwise let j be the smallest positive integer such that u j = v j . If u j > v j then
u >A v. Otherwise u <A v.

Definition 4.5. A Lyndon word is a nonempty word w ∈ A∗ such that every
nonempty proper suffix v of w satisfies w <A v. Let L denote the set of all Lyn-
don words.

For example, the words 1324, 1323, and 11213 are Lyndonwords while the words
4132, 3241, 2332, and 2233 are not. The shuffle algebra is freely generated over the
rationals by the Lyndon words.

Theorem 4.6. ([103]) Every element of K 〈A〉 can be uniquely expressed as a poly-
nomial in the Lyndon words. In other words, the shuffle algebra K 〈A〉 is the polyno-
mial algebra in the Lyndon words.

One can think of Theorem 4.6 (commonly known as Radford’s Theorem) as the
statement that for any vector space basis whose elements are indexed by words in
A∗ and whose multiplication is given by shuffles, each basis element can be written
as a polynomial in basis elements indexed by Lyndon words.
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For example, w = 321 is not a Lyndon word, but �321 can be expressed as a
polynomial in quasisymmetric power sums indexed by Lyndon words. That is,

�321 = �1 · �2 · �3 − �23 · �1 − �3 · �12 + �123.

Radford’s theorem implies that quasisymmetric power sums indexed by Lyndon
words form an algebraically independent generating set for QSym over the rationals
(see [11, 47, 90, 107] for further details).

We now describe Hazewinkel’s polynomial generators for QSym, which are
indexed by a subset of Lyndon words. The ring Z[x1, x2, . . . , ] is endowed with
a well-known λ-ring structure via

λi (x j ) =
{
x j i = 1

0 i > 1,

for j = 1, 2, . . . ,. Define a total ordering on compositions called the well-ordering
(weight, length, lexicographic) by:

(1) If |α| > |β|, then α >wll β.
(2) If |α| = |β| and �(α) > �(β), then α >wll β.
(3) If |α| = |β|, �(α) = �(β), and α >lex β, then α >wll β.

For example,
523 >wll 11213 >wll 323 >wll 143.

Hazewinkel proves [62] that applying λn to the monomial quasisymmetric func-
tion indexed by a Lyndon word α produces

λn(Mα) = Mα�n + (smaller),

where α�n denotes concatenation of α with itself n times and (smaller) is a Z-linear
combination of monomial quasisymmetric functions which are wll-smaller than α�n .
For example,

λ2(M(1,2)) = M1212 + some subset of the set V ∪ W ∪ Y,

where
V = {all words with weight ≤ 5},

W = {all words of weight 6 and length ≤ 3},

and
Y = {1122, 1113, 1131}.
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Theorem 4.7. ([62]) Let eLY N be the set of all Lyndon words u = u1u2 · · · um
such that gcd{u1, u2, . . . , um} = 1. Then the set {λn(Mu)}u∈eLY N for all n ∈ N freely
generates the ring of quasisymmetric functions over the integers.

Although the monomial quasisymmetric functions are not multiplicative, The-
orem 4.7 provides a way to construct a multiplicative generating set. Therefore,
QSym is a polynomial algebra over the integers in the set {λn(Mα)}α∈eLY N . Note
that Theorem 4.7 therefore implies the Ditters conjecture.

5 Connections to Symmetric Functions and the Polynomial
Ring

This section discusses several recent developments connecting quasisymmetric func-
tions to important open problems within symmetric functions and the polynomial
ring.We focus our scope to three topics: chromatic quasisymmetric functions, transi-
tions fromQSym to Sym, and liftings of QSym bases to the polynomial ring.We will
unfortunately not be able to address the Eulerian quasisymmetric functions [113],
which are in fact symmetric despite their definition in terms of quasisymmetric func-
tions. See [113] for a wonderful introduction to these fascinating objects of study,
including the important definitions and theorems as well as the research avenues they
introduce.We also regretfully omit the recently developed theory of dual equivalence;
see [7] for information about this new paradigm and how to use it.

5.1 Chromatic Quasisymmetric Functions

Let G = (V, E) be a graph with vertices V and edges E and let S be a subset of the
positive integers P. A proper S-coloring of G is a function κ : V → S such that if
two vertices i and j are adjacent (i.e., {i, j} ∈ E), then i and j are assigned different
colors (i.e., κ(i) = κ( j)). The chromatic number χ(G) is the minimum number of
colors (size of S) necessary to construct a proper S-coloring of G.

It is natural to ask how many proper {1, 2, . . . ,m}-colorings exist for a graph G;
this number is denotedχG(m). It is a nonnegative integerwhenm is a positive integer,
and it is a polynomial called the chromatic polynomial when m is an indeterminant.
Stanley generalized this notion [118] to construct a symmetric function generated
from the set C(G) of all proper P-colorings of G as follows:

XG(x) :=
∑

κ∈C(G)

xκ,
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where x = (x1, x2, . . .) is a sequence of commuting variables and xκ = ∏
v∈V xκ(v).

Notice that plugging in xi = 1 for all i produces the chromatic polynomial XG(1m) =
χG(m). For example, the path P3 on three vertices has chromatic symmetric function

XP3(x1, x2, x3) = x21 x2 + x21 x3 + x22 x3 + x1x
2
2 + x1x

2
3 + x2x

2
3 + 6x1x2x3,

and XP3(1, 1, 1) = 12, the number of proper colorings of P3 with 3 colors.
Recall that if a function has positive coefficients when expanded in a basis B,

then it is said to be B-positive. For example, the elementary symmetric functions are
Schur-positive since

eλ =
∑

μ

Kμ′λsμ,

where Kμ′λ is the number of semi-standard Young tableaux of shape μ′ and content
λ. One significant open question about chromatic symmetric functions relates to
positivity in the elementary basis for symmetric functions. If P is a partially ordered
set, then the incomparability graph of P is the graph inc(P) whose vertices are the
elements of P and whose edges are the pairs of vertices which are incomparable in
P . A poset is called (r + s)-free if no induced subposet is isomorphic to the direct
sum of a chain (totally ordered set) with r elements and a chain with s elements.

Conjecture 5.1. (Stanley-Stembridge Conjecture [118, 121]) If G = inc(P) for
some (3 + 1)-free poset P, then XG(x) is e-positive.

For example, the poset P in Fig. 10 is (3 + 1)-free. The e-expansion for the chro-
matic symmetric function corresponding to its incomparability graph is Xinc(P) =
4e31 + 8e4.

The incomparability graph for a (3 + 1)-free poset is an example of a claw-free
graph. A claw-free graph is a graphwhich does not contain the star graph S3 (depicted
in Fig. 11) as a subgraph. However, not all claw-free graphs are e-positive; Dahlberg,
Foley and van Willigenburg [27] provide a family of claw-free graphs which are not
e-positive.

Gasharov [42] proved that the incomparability graph of a (3 + 1)-free poset is
Schur-positive. Since the elementary symmetric functions are Schur-positive, Schur

a c d a c

b b d

P inc(P )

Fig. 10 A poset P and its incomparability graph
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Fig. 11 Star graph S3 on
four vertices

a b

c d

Fig. 12 A labeling of the
star graph S3 on four vertices

1 2

4 3

positivity would follow immediately from e-positivity. Guay-Paquet [48] proved that
the chromatic symmetric function of a (3 + 1)-free poset is a convex combination
of chromatic symmetric functions of posets which are both (3 + 1)-free and (2 +
2)-free. This reduces the e-positivity conjecture to a subclass of posets with more
structure than posets which are (3 + 1)-free. A natural unit interval order is a poset
P on the set [n] := {1, 2, . . . , n} obtained from a certain type of intervals on the
real line as follows. Let {[a1, a1 + 1], [a2, a2 + 1], . . . , [an, an + 1]} be a collection
of closed intervals of length one such that ai < ai+1 for 1 ≤ i ≤ n − 1. Set i <P j
if ai + 1 < a j . The resulting partially ordered set will always be (3 + 1)-free and
(2 + 2)-free, and in fact, every poset that is both (3 + 1)-free and (2 + 2)-free is a
unit interval order [112].

Shareshian and Wachs recently proposed a new approach to the Stanley–
Stembridge e-positivity conjecture in the form of a refinement of Stanley’s chromatic
symmetric functions. This refinement behaves nicely with respect to unit interval
orders.

Definition 5.2. ([115]) Let G = (V, E) be a graph whose vertex set V is a finite
subset of P. The chromatic quasisymmetric function of G is

XG(x, t) =
∑

κ∈C(G)

tasc(κ)xκ,

where
asc(κ) = |{{i, j} ∈ E | i < j and κ(i) < κ( j)}|.

Notice that the chromatic quasisymmetric function XG(x, t) depends not only on
the isomorphism class of the graph G but also on the labeling of the vertices of G.
Let G be the star graph on four vertices labeled as shown in Fig. 12. Then

XG(x, t) = M31 + M121 + M211 + M1111 + t (M121 + 2M211 + 3M1111)+

+ t2(M121 + 2M211 + M112 + 5M1111) + t3(M121 + 2M112 + M211 + M13 + 6M1111)+

+ t4(M121 + 2M112 + 5M1111) + t5(M121 + M112 + 3M1111) + t6(M1111).
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The chromatic quasisymmetric function reduces to the chromatic symmetric function
by setting t = 1; that is XG(x, 1) = XG(x).

Let ω be the involution map on QSym which sends FS to F[n−1]\S . The image
of XG(x, t) under ω has a natural positive expansion into the fundamental basis
for quasisymmetric functions [115]. Shareshian and Wachs [114] further conjecture
that when G is the incomparability graph of a natural unit interval order, this image
corresponds to a sum of Frobenius characteristics associated to certain Hessenberg
varieties. This conjecture was proved by Brosnan and Chow [22] and, through a
different approach, by Guay-Paquet [49], providing an alternate proof of Schur pos-
itivity.

Theorem 5.3. ([115]) If G is the incomparability graph of a natural unit interval
order, then XG(x, t) is symmetric in the x-variables.

Not every graph whose chromatic quasisymmetric function is symmetric is an
incomparability graph of a natural unit interval order. One interesting open question
is to classify which graphs admit a symmetric chromatic quasisymmetric function.

Several extensions of chromatic quasisymmetric functions have recently emerged,
demonstrating the many different areas this research impacts. Ellzey extends this
paradigm to directed graphs [35]. Haglund andWilson express the integral formMac-
donald polynomials as weighted sums of chromatic quasisymmetric functions [53].
Clearman, Hyatt, Shelton, and Skandera interpret the chromatic quasisymmetric
functions in terms of Hecke algebra traces [26], while Alexandersson and Panova
connect the chromatic quasisymmetric functions to LLT polynomials [2].

5.2 Quasisymmetric Expansions of Symmetric Functions

As quasisymmetric functions become more ubiquitous, many natural expansions of
symmetric functions into quasisymmetric functions (particularly into the fundamen-
tal quasisymmetric functions) are appearing. It is natural to try to use this structure
to answer classical questions about symmetric functions such as Schur positivity.
Egge, Loehr, and Warrington [33] recently introduced a method to convert the qua-
sisymmetric expansion of a symmetric function into the Schur function expansion,
providing a new approach to questions of Schur positivity.

We need several definitions in order to describe the “modified inverse Kostka
matrix” and some interesting applications of this paradigm. A rim-hook is a set of
contiguous cells in a partition diagram such that each diagonal contains at most one
cell. A special rim-hook tableau is a decomposition of a partition diagram into rim-
hooks such that each rim-hook contains at least one cell in the leftmost column of the
diagram. Eğecioğlu and Remmel [36] use special rim-hook tableaux in their formula
for the inverse Kostka matrix, which is the transition matrix from the monomial basis
for symmetric functions to the Schur functions.

The sign of a special rim-hook is (−1)r−1, where r is the number of rows spanned
by the rim-hook. The sign of a special rim-hook tableau is the product of the signs of
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its rim-hooks. A special rim-hook tableau is said to be flat if each rim-hook contains
exactly one cell in the leftmost column of the partition diagram.

Theorem 5.4. ([33]) Let F be a field, and let f be a symmetric function given by
its expansion into the fundamental quasisymmetric functions so that

f =
∑

α|=n

yαFα.

Then the coefficients xλ in the Schur function expansion f =
∑

λ�n
xλsλ are given by

xλ =
∑

α|=n

yαK
∗
n (α,λ),

where K ∗
n (α,λ) is the sumof the signs of all flat special rim-hook tableaux of partition

shape λ and content α.

Theorem 5.4 provides a potential alternative approach to proving that Macdonald
polynomials expand positively into the Schur functions. In particular, recall that
Theorem 3.2 describes a formula for expanding Macdonald polynomials into the
fundamental quasisymmetric functions. Combining this formula with Theorem 5.4
implies that the coefficient of sλ in the Schur function expansion of H̃μ is given by

∑

α�n
K ∗

n (α,λ)

⎛

⎝
∑

β∈{Sn |Des(β−1)=α}
q inv(β,μ)tmaj(β,μ)

⎞

⎠ .

The following example is similar to that appearing in [33]. If μ = (3, 1) and
λ = (2, 2), then there exists a flat special rim-hook tableau for α = (2, 2) and a flat
special rim-hook tableau α = (1, 3). These correspond to

K ∗
4 ((2, 2), (2, 2)) = +1 and K ∗

4 ((1, 3), (2, 2)) = −1

respectively. The permutations w whose inverse descent sets Des(w−1) are {2} are
3412, 3142, 3124, 1324, and 1342. Computing the inv and maj for the fillings of
(3, 1) with these permutations as reading words produces 2q2 + qt + t + q. Simi-
larly, the permutations whose inverse descent sets are {1} are 2341, 2314, and 2134.
Their inv and maj (for fillings of (3, 1)) produce −q2 − q − t . Putting this together,
the coefficient of s22 in H31 is

2q2 + qt + t + q − (q2 + q + t) = q2 + qt.

Notice that negative terms do appear in the K ∗
n (α,λ). This means that in order

to apply this technique to the Schur positivity of Macdonald polynomials problem,
one must find involutions to cancel out the negative terms.



272 S. K. Mason

A further application of this transitionmatrix from the fundamental quasisymmet-
ric functions to Schur functions is to the Foulkes Plethysm Conjecture [38], which
states that sn[sm] − sm[sn] (where the brackets denote a certain type of substitution
called plethysm) is Schur-positive. Loehr and Warrington [83] provide a formula for
the expansion of sμ[sν] into fundamental quasisymmetric functions using a novel
interpretation of the “reading word” of a matrix. The modified inverse Kostka matrix
could then be used to determine the Schur function expansion of sn[sm] − sm[sn],
again with the caveat that involutions are needed to cancel out the negative terms.

Garsia and Remmel recently found a further extension of the Egge, Loehr, War-
rington result. They proved that each fundamental appearing in the fundamental
expansion of a symmetric function can be replaced by the Schur function indexed
by the same composition. Since every such Schur function is either 0 or ±sλ for
some partition λ, this expansion can be simplified to a signed sum of Schur functions
indexed by partitions.

Theorem 5.5. ([40]) Let f be a symmetric function which is homogeneous of degree
n and expands into the fundamental basis for quasisymmetric functions as follows:

f =
∑

α|=n

aαFα.

Then
f =

∑

α|=n

aαsα.

Theorem5.5 alreadyhas anumber of important consequences.Garsia andRemmel
used this approach to formulate a conjecture regarding the modified Hall–Littlewood
polynomials. Leven applied this method to prove an extension of the Shuffle Con-
jecture for the cases m = 2 and n = 2 [80]. Qiu and Remmel considered the cases
of this “Rational Shuffle Conjecture” where m or n equals 3 [102].

5.3 Slide Polynomials and the Quasi-key Basis

Schubert polynomials are an important class of polynomials, first introduced by
Lascoux and Schützenberger [77] to provide a new method for computing intersec-
tion numbers in the cohomology ring of the complete flag variety. Several different
combinatorial formulas for Schubert polynomials have been discovered since their
original introduction as divided difference operators, including but not limited to
reduced decompositions [21, 37] and RC-graphs [15]. Despite the numerous ways
to construct Schubert polynomials, it remains an open problem to provide a com-
binatorial formula for the expansion of a product of Schubert polynomials into the
Schubert basis.
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Assaf and Searles [5] further the study of Schubert polynomials with the intro-
duction of two new families of polynomials, both of which positively refine the
Schubert polynomials. These new families, called the monomial slide polynomials
and the fundamental slide polynomials, exhibit positive structure constants (mean-
ing the coefficients appearing in their products are always positive), whereas the key
polynomials (another family of polynomials refining the Schubert polynomials [28,
78, 105]) have signed structure constants. Although the slide polynomials havemany
interesting applications (to Schubert polynomials and other objects of study in alge-
braic combinatorics), this article focuses on their connections to quasisymmetric
functions.

Remove the zeros from a weak composition γ to obtain a (strong) composition
called the flattening of γ, denoted 	(γ). The monomial slide polynomial Mγ is then
defined by

Mγ(x1, x2, . . . , xn) =
∑

δ≥γ
	(δ)=	(γ)

xδ1
1 xδ2

2 · · · xδn
n ,

where δ ≥ γ if δ dominates γ; that is δ1 + δ2 + · · · + δi ≥ γ1 + γ2 + · · · + γi for all
1 ≤ i ≤ n. The related fundamental slide polynomial Fγ is defined by

Fγ =
∑

δ≥γ
	(δ) refines 	(γ)

xδ1
1 xδ2

2 · · · xδn
n .

For example,

F1032(x1, x2, x3, x4) = x1x
3
3 x

2
4 + x1x

3
2 x

2
4 + x1x

3
2 x

2
3 + x1x2x

2
3 x

2
4 + x1x

2
2 x3x

2
4 + x1x

3
2 x3x4

= M1032 + M1122 + M1212 + M1311.

Each of these families {Mγ}γ and {Fγ}γ (indexed by weak compositions of k) of
polynomials is a Z-basis for polynomials of degree k in n variables.

Assaf and Searles [4] also introduce a related basis, called the quasi-key polyno-
mialsQγ , for the polynomial ring which is analogous to the key polynomials. These
polynomials are positive sums of fundamental slide polynomials and in fact stabi-
lize to the quasisymmetric Schur functions as zeros are prepended to their indexing
compositions. (Prepending m zeros to the composition γ is denoted by 0m × γ.)

Theorem 5.6. ([4]) For any weak composition γ, we have

lim
m→∞Q0m×γ = S	(γ).

Each Schubert polynomial can be written as a positive sum of fundamental slide
polynomials using a new object called a quasi-Yamanouchi pipe dream. While this
definition takes us too far from our current topic, we do take the time to describe a
closely related construction involving the fundamental expansion of Schur functions.
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Recall that the Schur functions decompose into a positive sum of the fundamental
quasisymmetric functions (see Eq. 1.1); this formula can be computed by finding
the descent sets of all standard Young tableaux of a given shape. However, when
the number of variables is less than the number of descents, the corresponding fun-
damental equals 0. Assaf and Searles [5] introduce a class of semi-standard Young
tableaux, called quasi-Yamanouchi tableaux, which dictate precisely which funda-
mentals appear in the decomposition with nonzero coefficient when the variables are
restricted.

Definition 5.7. ([5])A semi-standard Young tableau is said to be quasi-Yamanouchi
if for all i > 1, the leftmost occurrence of i lies weakly left of some appearance of
i − 1. Let QYTn(λ) denote the set of quasi-Yamanouchi tableaux of shape λ whose
entries are in [n].

Theweight of a quasi-Yamanouchi tableau T is given bywt (T ) = ∏
i x

mi
i , where

mi is the number of times the entry i appears in T .

Theorem 5.8. ([5]) The Schur polynomial sλ(x1, . . . , xn) is given by

sλ(x1, . . . , xn) =
∑

T∈QYTn(λ)

Fwt (T )(x1, . . . , xn).

For example, the three quasi-Yamanouchi tableaux of shapeλ = (4, 2) and entries
in {1, 2} are

2 2
1 1 1 1

, 2 2
1 1 1 2

, 2 2
1 1 2 2

,

and therefore, the Schur expansion into fundamentals is

s42(x1, x2) = F4,2(x1, x2) + F3,3(x1, x2) + F2,4(x1, x2).

Note that all the terms appearing on the right-hand side are nonzero, and there is
no need to calculate the descent sets for all nine standard Young tableaux of shape
(4, 2). This is important in the study of Schubert polynomials because although
certain classes of Schubert polynomials are equal to Schur functions, the number
of variables appearing varies based on the indexing permutation. For example, the
Schubert polynomial indexed by the permutation 213 (written in one-line notation)
is equal to the Schur function s1(x1) = x1 while the Schubert polynomial indexed by
the permutation 132 (written in one-line notation) is s1(x1, x2) = x1 + x2. A thor-
ough understanding of precisely the nonzero terms appearing in the quasisymmetric
expansion is therefore crucial to the quest of proving a combinatorial formula for
Schubert multiplication.

This connection to Schubertmultiplication (a long-standing open problem in alge-
braic combinatorics) exemplifies the utility of quasisymmetric functions. Quasisym-
metric functions appear in a number of other important problems which have helped
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to shape the study of algebraic combinatorics including Schur positivity of Mac-
donald polynomials, the Foulkes plethysm conjecture, and the Stanley-Stembridge
conjecture. We hope the reader comes away from this article with a deeper appreci-
ation for the beauty and utility of quasisymmetric functions and a desire to further
explore this exciting and far-reaching avenue of research.
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On Standard Young Tableaux
of Bounded Height

M. J. Mishna

Abstract We survey some recent works on standard Young tableaux of bounded
height. We focus on consequences resulting from numerous bijections to lattice
walks in Weyl chambers.

1 Introduction

Standard Young tableaux are a classic object of mathematics, appearing in prob-
lems from representation theory to bijective combinatorics. Lattice walks restricted
to cones are similarly a fundamental family, and they encode a wide variety of com-
binatorial structures from formal languages to queues. Standard Young tableaux of
bounded height are in bijection with several different straightforward classes of lat-
tice walks. This connection not only elucidates several sources of ubiquity on both
accounts, but facilitates exact and asymptotic enumeration, as well as parameter
analysis. This survey describes the cross developments over the past 30years, and
highlights some open problems. For more background on the tableaux, we recom-
mend the surveys [1, 30] and particularly the article of Stanley [34].

We begin by fixing our notation and conventions. Let λ = (λ1,λ2, . . . ,λt ) be a
partition of n into t parts. We write λ � n and �(λ) = t in this case. The Ferrers
diagram of shape λ is a representation of λ comprised of boxes indexed by pairs
{(i, j) : 1 ≤ i ≤ t; 1 ≤ j ≤ λi }. Such a diagram is of size n and height t . A key
parameter in our study is the number of columns of odd length.

A standard Young tableau of size n is a filling of a Ferrers diagram using precisely
the integers 1 to n. The entries strictly increase to the right along each row and strictly
increase down each column. A tableau is semi-standard if the entries weakly increase
along each rowand strictly increase downeach column. In thiswork,we are interested
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in the number of standard Young tableaux of a given size with the height is bounded
by a fixed value.

1.1 Enumeration Formulas

Rather classically, the number of standard Young tableaux of shape λ is denoted f λ

and is given by the hook-length formula:

f λ = n!
∏

c hc
where hc = λi + card{ j : λ j ≥ i} − i − j + 1. (1)

The following formulation is due to MacMahon:

f λ = (λ1 + · · · + λd)! det
(

1

(λi − i + j)!
)

1≤i, j≤d

.

The number of standard Young tableaux of height at most k is thus the sum

yk(n) ≡
∑

λ�n
�(λ)≤k

f λ. (2)

The first enumerative formulas for Young tableaux where the height is an explicit
consideration appear in the 1960s, when Gordon and Houten studied k-rowed plane
partitions whose nonzero parts strictly decrease along rows and columns, in addition
to some related variants. In their series of Notes on Plane Partitions [20, 21], they
give some formulas for the generating functions in terms of infinite products and
determinants. Regev [29] first determined exact expressions for y2(n) and y3(n). The
formulas are equivalent to the following. Here Ck denotes the kth Catalan number1:

y2(n) =
(

n

�n/2�
)

y3(n) =
�n/2�∑

k=0

(
n

2k

)

Ck . (3)

The numbers y3(n) are also known as Motzkin numbers. Figure 1 illustrates the
nine standard Young tableaux of size four and of height at most three. Around the
same time, Gessel [16] found an expression for y4(n), and Gouyou-Beauchamps [23]
found the following expressions for y4(n) and y5(n):

1Cn ≡ (2n
n

) 1
n+1 .
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Fig. 1 All standard Young
tableaux of size 4 and height
at most 3

y4(2n) = CnCn y4(2n + 1) = CnCn+1

y5(n) =
�n/2�∑

i=0

3!n!(2i + 2)!
(n − 2i)!i !(i + 1)!(i + 2)!(i + 3)! .

(4)

No comparable expression for y6(n) has appeared in the literature. The presence of
binomials in general, and Catalan numbers in particular, is a strong hint that these
tableaux are related to well understood combinatorial classes.

1.2 The Exponential Generating Function

We study yk(n) via Yk(t), the exponential generating function for yk(n):

Yk(t) ≡
∑

yk(n)
tn

n! . (5)

The formulas depends on the parity of the height. The formula forY2k(t)was obtained
by Gordon [19] by reducing a Pfaffian of Gordon and Houten [20], and Gessel [16]
found the formula for odd heights. They are both expressed in terms of the hyperbolic
Bessel function of the first kind of order j

b j ≡ I j (2t) =
∞∑

n=0

t2n+ j

n!(n + j)! .

The formulas are:

Y2k(t) = det
(
bi− j + bi+ j−1

)
1≤i, j≤k

(6)

Y2k+1(t) = et det
(
bi− j − bi+ j

)
1≤i, j≤k . (7)

For example, Y2(t) = b0 + b1 and Y4(t) = b20 + b0b1 + b0b3 − 2b1b2 − b22 − b21+ b1b3. These expressions grow very fast as polynomials in b j ; however, they are
amenable to some further study including asymptotic analysis of the coefficients.
They also imply that yk(n) can be expressed by binomial sums, although an expres-
sion that one could compute may be too complex to be of any use.

One important consequence of these formulas is that they resolved a question that
Stanley [35] had asked almost 10years before these formulas appeared about the
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nature of the function Yk(t). Specifically, he asked if Yk(t) is D-finite, that is, does
it satisfy a differential equation with polynomial coefficients. Gouyou-Beauchamps
showed that Y4(t) is D-finite from his formula, and Gessel [16] proved this result for
general k since the expressions are a polynomial combination of Bessel functions
(possibly times an exponential). Bessel functions are D-finite, so the result follows
from closure properties.

1.3 Schur Functions

To prove these formulas, Gessel started with another important formula for standard
Young tableaux. Schur functions can be described via a summation over the set of
all semi-standard Young tableaux of shape λ:

sλ =
∑

T∈SSYT(λ)

xcontent(T ) =
∑

T∈SSYT(λ)

xt11 x
t2
2 . . . xtkk . (8)

The exponents describe the content of the tableau: ti is the number of occurrences
of i in T . Thus, the coefficient of the monomial x1 . . . xn in this expression is the
number of standard Young tableaux of shape λ. We deduce the formula

yk(n) =
∑

λ�n
�(λ)≤k

[x1x2 . . . xn]sλ = [x1x2 . . . xn]
∑

λ�n
�(λ)≤k

sλ.

This kind of coefficient extraction in symmetric functions can be framed as a
homomorphism. This was done by Gessel in his PhD thesis (Theorem 3.5) and also
by Jackson andGoulden [22, Lemma4.2.5]. In the case of the homogeneous complete
symmetric function hn , it is easy to see that [x1x2 . . . xn]hk = 1n=k . One would like
to apply this to the Jacobi-Trudi identity, which is an expression for a Schur function
in terms the homogeneous complete symmetric functions:

sλ = det
(
hλi+ j−i

)�(λ)

i, j=1 .

The truth is slightly more complicated. Indeed Gordon and Houten did much of
the heavy lifting for this problem and had expressed the number of semi-standard
tableaux as a determinant of homogenous complete symmetric functions. Gessel
extracted the generating function for standard Young tableaux and derived the for-
mulas in Eq. (6).
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1.4 The Robinson–Schensted Correspondence

The following identity is incredibly evocative to combinatorialists:

∑

λ�n
( f λ)2 = n! (9)

The bijective correspondence between pairs of standard Young tableaux of the same
shape and permutations was described by Robinson in the 1930s and also by Schen-
sted in the 1960s. Below we describe the Schensted algorithm which builds a pair
of tableaux by parsing the permutation and incrementally building two tableaux. We
refer readers to Sagan’s book [31] for additional details.

An algorithmic description of the bijection begins with a permutation σ ∈ Sn and
a pair of empty tableaux, denoted (P0, Q0). For i from 1 to n, we create Pi by adding
a box with entry σ(i) to Pi−1 via a special insertion algorithm. For each i we add
precisely one box. The position is noted and a box with entry i in the same location is
added to Qi−1. The sequence of Q tableaux records the history of the box additions.
The pair (Pn, Qn) is returned.

The row insertion takes as input a possibly incomplete standardYoung tableau and
adds an integer m not already in the tableau. The process acts incrementally along
each row. If m is bigger than all of the elements in the row under consideration, it
is placed at the end of it. If not, it finds its natural place and bumps the larger value.
The bumped value is inserted in the tableau formed by the lower rows by the same
process.

Example 1. Let σ be the involution σ = 7 2 9 6 10 4 1 8 3 5. If the Schensted algo-
rithm is applied, the penultimate step returns the following two tableaux:

P9 = 1 3 8
2 4 10
6 9
7

Q9 = 1 3 5
2 4 8
6 9
7

.

The final step is to insert 5 into P9. The 5 fits between the 3 and 8 in the first row,
hence it bumps 8 to the next row which then bumps 10 which settles at the end of row
three. The position of the new square is (3, 3), and the algorithm finishes by adding
this square to Q9, with an entry value of 10.

The end result is

P10 = Q10 = 1 3 5
2 4 8
6 9 10
7
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The involution has two fixed points (2 and 8) and the resulting tableaux each have
two columns of odd length (specifically, length 3).

The example illustrates some properties which are true in general. The length of
the longest increasing subsequence of σ is equal to the length of the first row of
the tableaux. If σ is an involution, then the number of fixed points of σ equals the
number of columns of odd length in λ. That standard Young tableaux of size n are
equinumerous with involutions was known to Frobenius and Schur.

Viennot [38] described a very beautiful geometric construction using shadow
lines to give a more intuitive illustration of this slightly mechanical bijection. It
should be better incorporated into the bijections we encounter in later sections. A
second geometric construction is given by Fomin using growth diagrams [14]. The
construction can be mined for additional information.

1.5 Plan of the Article

The first formulas found Yk(t) were recognized to resemble generating functions for
walks in Weyl chambers deduced by Grabiner and Magyar [25, Section 6.2]. We
examine the relevant developments made in the early 1990s [15, 39, 40, 42, 43] in
Sect. 2.

Bijective proofs of some of these connections are more recent [10, 26, 33],
although the work of Gouyou-Beauchamps dates back to the late 1980s. All of these
authors’ proofs pass through secondary objects, such as coloured Motzkin paths, or
matchings. We consider these in Sect. 2.6.

One of the most common strategies for enumerating lattice walks restricted to
cones with symmetry in the set of allowable steps involves a sub-series extraction
from a rational function. Remarkably, many combinatorial classes with transcen-
dental D-finite generating functions share this property. It is an open problem to
answer under which conditions this might be universally true. In part, it is a useful
formulation since in ideal cases we can answer questions about the order and com-
plexity of the recurrences and also (re-) derive asymptotic formulas. We describe
such extractions, and the resulting tableaux generating functions in Sect. 3.

From the Robinson–Schensted correspondence, we see that the combinatorial
cousin to the standard Young tableau of bounded height is the permutation with
bounded longest increasing subsequence. Many of the techniques described here can
also enumerate these classes. For example, Gessel determined expressions for the
generating functions, and they also have lattice walk interpretations. We summarize
results in Sect. 4.

We conclude with some natural generalizations and open problems.
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2 Lattice Walk Models

There are no fewer than five different lattice walk classes that are equinumerous
with standard Young tableaux of bounded height. Most of them are defined using
d-dimensional Weyl chambers2 of type C , denoted by WC(d)

WC(d) ≡ {(x1, x2, . . . , xd) : x1 ≥ x2 ≥ · · · ≥ xd ≥ 0} .

Let {e1, . . . , ed} denote the standard basis of Rd . A lattice walk model is defined
by a set of allowable steps and a region which confines each walk. A walk is a
sequence of steps. For example, the set

S = {±ei : 1 ≤ i ≤ d}

defines the d dimensional simple step set. This is considered in several different
bounding cones.

Gessel and Zeilberger [17] considered general walks in Weyl chambers and
demonstrated an enumeration strategy for models where the stepset possesses a cer-
tain kind of symmetry, and avoid jumping over boundaries. Such walks have come
be called walks reflectable. The generating function for reflectable walk models with
specified starting and endpoints (excursions) is written as a coefficient extraction
from a signed sum of unrestricted walks. This idea, which appears frequently in lat-
tice walk enumeration, is a version of the reflection principle. The expressions were
made explicit for WC(d) by Grabiner and Magyar for the simple step set, which
happens to be reflectable.

Theorem 1 (Grabiner and Magyar [25]). For fixed λ,μ ∈ WC(d), the exponential
generating function Oλ,μ(t) of the simple walks in WC(d) from λ to μ, counted by
their lengths, satisfies

Oλ,μ(t) = det
(
bμi−λ j − bμi+λ j

)
1≤i, j≤d

.

This is immediately reminiscent of the generating function formulas in Eq. (6).
Several authors have made the connection, in particular, Gessel, Weinstein and
Wilf [15], Zeilberger [43],Xin [42], Eu et al. [32, 33], Burrill et al. [10] andCourtiel et
al. [12]. In almost every case, there is a natural parameter which is equidistributed
with number of odd columns in the tableaux. We describe these classes next.

2For convenience we define the chambers using non-strict inequalities, our bijective statements can
equivalently be given under strict inequalities, upon applying the coordinate shift x̃i = xi + d +
1 − i .
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2.1 Ballot Walks

We can build an integer sequence from the entries of a standard Young tableaux.
We define the associated lattice wordw = (w1, w2, . . . , wn) by settingwi = j if the
entry i is in the j th row. This word has the property that for any prefix the number of
occurrences of � is greater than or equal to the number of occurrences of � + 1 since
the columns of the associated tableau are strictly decreasing. These are also known
as generalized Ballot sequences.

We associate a step naturally to each letter:

w1 → e1, wi → ei − ei−1 for (2 ≤ i ≤ k − 1), wk → −ek−1.

Restricting walks to the first orthant is equivalent to the ballot condition. That is, the
ballot word of a tableaux of height at most k gives a natural encoding as a lattice
walk in the cone Rk−1

≥0 with steps from the following stepset:

B ≡ {e1,−ek−1} ∪ {ei − ei−1 : 2 ≤ i ≤ k − 1}.

Figure 2 has an example.

Fig. 2 Representatives of classes of objects in bijection with standard Young tableaux of bounded
height, in particular their image of ι, a standard Young tableau of height 3 with two odd columns;
σ is an involution with maximal increasing sequence of length 3; ω is a ballot walk; μ is an open
arc diagram for a partial matching; θ is an oscillating tableau ending on a row shape
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2.2 Lazy Walks

To define this step set, we set 0 to be the zero step (whence the label “lazy”).
Zeilberger [43] noted (although, he attributes the proof to Xin without citation) that
the number of excursions inWC(k) starting and ending at the origin using the stepset
L, given by

L ≡ {ei ,−ei : 1 ≤ i ≤ k} ∪ {0}

is y2k+1(n). A small computation suggests that the distribution of the zero steps
matches the distribution of odd columns in the Young tableaux. He remarks that it
would be interesting to find a (bijective) proof of this result.

2.3 Generalized Motzkin Paths

In Zeilberger’s lazy walks, the k = 1 case encodes the classic Motzkin walks, con-
sistent with the longstanding observation that y3(n) is the number of Motzkin words.
One could view the higher dimension lazy walks as a generalization of Motzkin
words, and this notion was first formalized by Eu [32], and subsequently by Eu, Fu,
Hou, and Hsu [33]. They add a counter component and describe an explicit bijection
between the Motzkin paths of length n and the standard Young tableaux of size n
with at most three rows.

To prove this, they considered the lazy lattice walks and then algorithmically
mapped the steps in. The odd and even cases reconcile as follows.

Theorem 2 (Eu, Fu, Hou, and Hsu 2013 [33, Theorem 1.1]). Consider the lattice
model defined by the step set

M ≡ {e1} ∪ {e1 + e2, e1 − e2} ∪ {e1 − ei + ei+1, e1 + ei − ei+1 : 2 ≤ i ≤ k}

confined to Z
k+1
≥0 . The number of walks of length n from the origin to the point

(n, 0, ..., 0) staying within the nonnegative octant equals the number of n-cell SYTs
with at most 2k + 1 rows.

If, additionally, the e1 steps are confined to the hyperplane spanned by the vectors
{e1, . . . , ek}, then the number of paths equals the number of n-cell standard Young
tableaux with at most 2k rows.

The number of e1 steps is equidistributed with the odd column statistic of standard
Young tableaux.
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Fig. 3 The first few levels of Young’s lattice of Ferrers diagrams

2.4 Oscillating Tableaux and Arc Diagrams

The set of Ferrers diagrams ordered by diagram inclusion3 is called Young’s lattice.
Figure 3 depicts the first few levels of its Hasse diagram. We consider a sequence
of Ferrers diagrams as a walk on this lattice. We consider three variants defined
by restrictions on moving up or down in the lattice (or not at all). The length of a
sequence is the number of elements, minus one. (It is the number of steps in the
corresponding walk.)

An oscillating tableau is simply a sequence of Ferrers diagrams such that at every
stage a box is either added or deleted. They were popularized by their use in interpre-
tations for representations of the symplectic group [36]. If no diagram in the sequence
is of height k + 1, we say that the tableau has its height bounded by k. We recall two
related families, namely vacillating tableaux, and hesitating tableaux. The vacillat-
ing tableaux are even length sequences of Ferrers diagrams, written (λ(0), . . . ,λ(2n))

where consecutive elements in the sequence are either the same or differ by one
square, under the restriction that λ(2i) ≥ λ(2i+1) and λ(2i+1) ≤ λ(2i+2). The hesitat-
ing tableaux are even length sequences of Ferrers diagrams, written (λ(0), . . . ,λ(2n))

where consecutive differences of elements in the sequence are either the same or
differ by one square, under the following restrictions:

• if λ(2i) = λ(2i+1), then λ(2i+1) < λ(2i+2) (do nothing; add a box)
• if λ(2i) > λ(2i+1), then λ(2i+1) = λ(2i+2) (remove a box; do nothing)
• if λ(2i) < λ(2i+1), then λ(2i+1) > λ(2i+2) (add a box; remove a box).

Figure 4 shows examples from each of these classes.
Chen, Deng, Du, Stanley, and Yan [11] described nontrivial bijections between

sequences of Ferrers diagrams and several combinatorial families encoded in arc
diagrams. Arc diagrams are labelled graphs under some degree and embedding
restraints. They can be used to represent a variety of combinatorial classes, such
as matchings and partitions. Figure 5 illustrates how to encode a set partition as an
arc diagram.

3Recall λ ≤ μ means that λi ≤ μi for all i .
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Fig. 4 From top to bottom: a vacillating tableau of length 10; a hesitating tableau of length 8; an
oscillating tableau of length 11. In each case, the height is bounded by 2. From [10]

Fig. 5 An arc diagram representation of the set partition π = {1, 2, 7, 10}, {3, 8}, {4, 6}, {5}, {9}. It
is both 3-noncrossing and 3-nonnesting. However, the subdiagram induced by {2, 3, 7, 8, 10} is an
enhanced 3-crossing. Similarly, the subdiagram induced by {3, 4, 5, 6, 8} is an enhanced 3-nesting

They generalize the Schensted algorithm, in some sense, by describing how to
parse arc diagrams, with each step defining a tableau insertion or deletion. The result
is bijection φ from partitions to vacillating tableau. It is robust and can be adapted
to other arc diagram classes. A key feature is sub-pattern avoidance properties in the
arc diagrams are mapped to height restrictions on the tableaux. This echoes a key
feature of the Schensted algorithm.

An arc diagram is noncrossing if no two arcs intersect. Noncrossing set partitions
are counted by Catalan numbers. In addition to appearing in combinatorics, these
diagrams arise in algebra, physics, and free probability. The notion of a crossing
is generalized to a k-crossing, which denotes a set of k arcs that each mutually
cross. Similarly, a k-nesting refers to k arcs which mutually nest into a rainbow
figure. More formally, let us consider a set of k distinct arcs: (i1, j1), . . . , (ik, jk).
They form a k-crossing if i1 < i2 < · · · < ik < j1 < j2 < · · · < jk , and a k-nesting
if i1 < i2 < · · · < ik < jk < · · · < j2 < j1. A slightly relaxed notion is sometimes
appropriate. Enhanced k-nestings and k-crossings permit the middle inequality to
be an equality. We are interested in the classes of diagrams which avoid such sub-
diagrams and consider k-noncrossing diagrams (they contain no k-crossing) and
k-nonnesting diagrams (which contain no k-nesting). Figure 5 gives examples.

Theorem 3.2 of Chen et al. [11] proves that given a partition π of {1, . . . n}, and
the vacillating tableau φ(π) = (∅ = λ(0),λ(1), . . . ,λ(2n) = ∅), the size of the largest
crossing of φ is the largest height of any λi , and the size of the largest nesting is the
maximum number of columns.

Thus, by a simple transposition one deduces the corollary comprised of the surpris-
ingly nontrivial fact that k-noncrossing set partitions of {1, 2, . . . , n} are in bijection
with k-nonnesting set partitions of {1, 2, . . . , n}. We leave it to the reader to see why
a simple swap of sub-diagrams is not a bijection.

The bijection φ supports many generalizations. A diagram is said to be open if,
in addition to closed edges, there are also half edges. The notion of crossing extends
naturally, given a fixed convention of how the open edges lie. The diagram μ in Fig. 2
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demonstrates an incomplete, or open, matching. Remark there are not three edges
that mutually cross, and hence, this diagram is also 3-noncrossing. An open diagram
corresponds to a sequence that does not necessarily end at an empty diagram—
rather it ends in a row shape, i.e. a partition with a single part: (m). The bijection
φ is well defined in this case, although Chen et al. did not discuss how to interpret
this, although Burrill, Melczer and Mishna [9]. Xin [42] consider walks with any
endpoint and found generating functions for palindromic sequences.

In a sequence of Ferrers diagrams of height at most k, each diagram can be coded
by a k-dimensional vector where each successive entry is weakly decreasing. Thus,
a sequence is an encoding of a walk in WC(d). Thus, we can view the bijection φ as
a nontrivial map between arc diagrams and walks. To end in a row shape is the same
as ending on the first axis.

This brings us back to our topic at hand, standard Young tableaux. Which arc
diagrams are associated with a standard Young tableau of bounded height? The most
plain interpretation is to view a standard Young tableau as a sequence of Ferrers
diagrams—it starts at the empty diagram and a single cell is added at each step, with
the position indicated by the entry in the tableaux.We could consider the arc diagram
image of this sequence, but we can do better.

Recall the Robinson–Schensted correspondence is a bijection between pairs of
standardYoung tableaux and permutations. By restricting themap to pairs of identical
tableaux, it becomes a bijection between standard Young tableaux and involutions.
Involutions have a very natural arc diagram representation! In this correspondence, a
tableauwith a fixed number of odd columns ismapped to an involutionwith precisely
that many fixed points. An involution is a partial matching, and they are in bijection
with oscillating tableaux.

These pieces lead to the following result, a map between standard Young tableaux
and a class of walks that end on a boundary.

Theorem 3 (Krattenthaler [26, Theorem 4]; Burrill, Courtiel, Fusy, Melczer and
Mishna [10, Theorem 1]; Okada [28, Theorem 1.2]). For n, k ≥ 1, there is an explicit
bijection between the standard Young tableaux of size n with height at most k and
with m odd columns, and the simple walks of length n staying in WC(k), starting
from the origin and ending at the point m e1.

We have outlined one possible argument, but in fact three very different proofs
have been discovered. Above is the argument of Burrill, Courtiel, Fusy, Melczer
and Mishna [10]. Krattenthaler [26] determines a different bijection using growth
diagrams as an intermediary object. It is direct and gives several generalizations. It is
self-contained in that it does not exploit the τ map. Okada [28] uses a representation
theoretic argument starting from Pieri rules. He also has generalizations to semi-
standard tableaux. Gouyou-Beauchamps proved the k = 4 case.

One consequence of a lattice walk bijection is a generating function expression.
Applying Grabiner and Magyar’s formula gives the following

Yk(t) =
k−1∑

u=0

(−1)u
2k−1−2u∑

�=u

(b�) det(bi− j − bkd−i− j )0≤i≤k−1,i =u,1≤ j≤k−1.
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Remarkably, the infinite sum which arises from direct application of Grabiner and
Magyar’s formula telescopes into a finite sum. We also use the identity b−k = bk .

2.5 Excursions in the Weyl Chamber of Type D

Classically, there is a simple bijectionbetweenwalkswith steps from {(1, 1), (1,−1)}
which, in the first instance start and end on the axis, with no further restriction (let
us call them bridges), and in the second instance start at the origin, and never go
below the axis and can end at any height (Dyck prefixes). The first class restricts free
walks by restricting the possible endpoints, and the second restricts free walks by
restricting the size of the region. We can view this as a trade-off of restrictions. The
simplest proof of this result passes through a third object, marked Dyck paths, which
are objects in the intersection of both classes, but have additional markings on some
of the down steps which touch the axis. Consider the following two maps, which
both define bijections. A Dyck path with marked down steps is mapped to a Dyck
prefix, by flipping all of the marked down steps into upsteps. The flipped marked
steps become the last step at that height in the walk, and the Dyck prefix ends at a
height equal to the number of marked steps. On the other hand, we could consider
the entire segment of the walk ending at a marked down step, starting at the nearest
previous up step which touched the axis. We can flip this entire segment across the
axis. We do this for every marked step to build a bridge. The marked intermediary
facilitates a straightforward proof, but how to mark in higher dimensions?

The Weyl chamber of type D is the following region:

WD(k) ≡ {(x1, x2, . . . , xk) : x1 ≥ x2 ≥ · · · ≥ xk−1 ≥ |xk |} .

An axis walk is any walk starting at the origin and ending on the x1-axis.

Theorem 4 (Courtiel, Fusy, Lepoutre and Mishna [12, Theorem 20]). For k ≥ 1
and n ≥ 0, there is an explicit bijection between simple axis walks of length n stay-
ing in WC(k) and simple excursions of length n staying in WD(k), starting from
( 12 , . . . ,

1
2 ,

1
2 ), and ending at ( 12 , . . . ,

1
2 ,

(−1)n

2 ). The ending x1-coordinate of a walk
from WC(k) corresponds to the number of steps that change the sign of xk in its
bijective image.

The proof of this result is a generalization of the marked Dyck path example.
The analog to the Dyck prefix is the axis walk in the orthant space WC(k), and the
analog to the bridge is the excursion in the larger space WD(k). The intermediary
class, marked excursions in WC(k), are defined by a less straightforward process.
For the first bijection, Courtiel et al. map the axis walks to open arc diagrams. The
open arcs are removed, but their position is marked. The inverse bijection is applied
and a marked excursion results. The second bijection is slightly more complicated,
and the reader is referred to the article for details.
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A corollary of this result is another lattice model in bijection with standard Young
tableaux of bounded height.

Corollary 5 (Courtiel, Fusy, Lepoutre, Mishna [12, Corollary 21]). For n, k ≥ 1,
there is an explicit bijection between the standard Young tableaux of size n with
height at most k, and the simple walks of length n staying in WD(k), starting from
( 12 , . . . ,

1
2 ,

1
2 ), and ending at ( 12 , . . . ,

1
2 ,

(−1)n

2 ). The number of odd columns corre-
sponds to the number of steps that change the sign of xk .

It seems very likely that an explicit bijection could be found between these and the
lazy walks. This would answer the question of Zeilberger and likely reveal a model
for the odd cases.

There is also potential for another generating function formula by applying the
results of Grabiner and Magyar.

2.6 A Collection of Bijections

We summarize some combinatorial classes in bijectionwith standardYoung tableaux
of bounded height. Figure 2 illustrates some of these classes.

Theorem 6. The set of standard Young tableaux of size n with height bounded by k
and m odd columns is in bijection with each of the following sets:

(1) The set of involutions of size n withm fixed points and no decreasing subsequence
of length k + 1;

(2) The set of oscillating tableaux of size n with height bounded by k, which start at
the empty partition and end in a row shape λ = (m);

(3) (if k is even) The set of open matching diagrams of length n, with m open arcs
and with no (k/2 + 1)-crossing;

Gil, McNamara, Tirrell, and Weiner [18, Theorem 1.1] proved the equivalence
between Class (3) in the theorem, and a set of Dyck paths where each group of ascent
steps are decorated by a connected matching of a related size. A main feature of their
construction is the following identity. Suppose Pk(t) denotes the generating function
for the number of k-noncrossing perfect matchings on [2n], then

Y2k−1(t) = 1 + Pk(t2(1 − t)−2)

1 − t
.

3 Generating Function Expressions

The generating functions of lattice walk in cones with symmetries in the stepset can
often be expressed as a sub-series extraction of a Laurent expansion of a rational
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function. This generalizes the result on reflectable walks of Gessel and Zeilberger
and is at the heart of the orbit summethod of Bousquet-Mélou andMishna [6] which
handles a wide class of lattice walks restricted to the quarter plane. In their work,
they start with a natural combinatorial recurrence on lattice walks, which translates
to a functional equation satisfied by the generating function. For some models, it
is sufficient to take a weighted sum (the namesake orbit sum) of the equations and
isolate the target generating function with a sub-series extraction.

In this context, the extraction operates on iterated Laurent series. For a function
F(x1, . . . , xd; t) ∈ C(x1, . . . , xd)(t) which is analytic at the origin, we denote by
[xk11 xk22 . . . xkdd tn]F(x1, . . . , xd; t) to be the coefficient of the term xk11 xk22 . . . xkdd tn in
the Laurent expansion. In this context, we view the objects to be series in t variable.
We recall the terminology that several authors use for the special case of the constant
term with respect to a set of variables: CTx1...xd F(x1, . . . , xd; t) is the coefficient of
the term x01 . . . x0d in the Laurent series expansion of F at the origin. It is a series in the
remaining variables. It can be obtained by incrementally determining the constant
term with respect to a single variable. Here we shall take the order of the variables as
they are listed, for example. Such a coefficient extraction can be written as a Cauchy
integral.

A related operator is the diagonal. The (central) diagonal �F(x0, x1, . . . , xd) of
a formal power series is the univariate sub-series defined

�F(x0, . . . , xd) = �
∑

i0,...,id

f (i0, . . . , id)x
i0
0 . . . zidd ≡

∑

n

f (n, . . . , n) tn.

Lipshitz [27] proved that the diagonal of a D-finite function4 is also D-finite. Since
rational functions are D-finite, diagonals of rational functions are also D-finite. The
expressions we consider here are all diagonals of rational functions and hence are
all D-finite by construction. This provides an alternate proof of the D-finiteness of
Yk(t).

Bousquet-Mélou [7] used an orbit sum to directly derive generating function
expressions for standard Young tableaux of bounded height. Her generating func-
tions also mark the number of odd columns, and other parameters are also readily
accessible. In that same paper, she determines a nice functional equation proof of
the hook length formula. The starting point is a simple recursive construction for
standard Young tableaux: a tableau of size n + 1 is obtained from a tableau of size
n by adding a cell to the j th row, unless the j th row is already the same length as
the j − 1 row. This translates into a very straightforward functional equation for the
generating function

F(u) ≡
∑

λ�n
�(λ)≤k

f λuλ1
1 uλ2

2 · · · .

4A (multivariate) function is D-finite if the set of all its partial derivatives spans a vector space of
finite dimension.
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The equation is defined in term of Fj (u), the generating function for those standard
Young tableaux such that λ j−1 = λ j :

F(u) = 1 + u1F(u) +
k∑

j=2

u j (F(u) − Fj (u)).

She applies a kernel method argument to this functional equation to recover
MacMahon’s formula for f λ.

She has generating function expressions in her Propositions 9 and 10. It is her
Proposition 11 that accounts for the additional parameter of interest. We note that
she works with the ordinary generating function,

Ỹk(u; t) ≡
∑

n

∑

λ�n
�(λ)≤k

f λ u#odd columns in λ tn.

Theorem 7 (Bousquet-Mélou [7]). For k = 2�, the ordinary generating function of
standard Young tableaux with height bounded by k where t marks the length and x1
marks the number of odd columns is

Ỹk(x1; t) = CTx2,...,xk

− det(x−i
j − xij )1≤i, j≤�

1 − t (x1 + x−1
1 + · · · + x� + x−1

� )

1

x2x23 . . . x�−1
�

. (10)

The orbit sum strategy can be used to determine an expression for the ordinary
generating function for simple walks in WC(k) ending on the axis. This gives the
following result.

Theorem 8 (Burrill, Melczer and Mishna [9]). The ordinary generating function,
Ỹk(t) for Young tableaux of height bounded by k satisfies the formula formula

t2k−1Ỹ2k(t) =

− �

[
z2k−1
0 (z3z

2
4 · · · zk−2

k )(z1 + 1)
∏

1≤ j<i≤k(zi − z j )(zi z j − 1) · ∏
2≤i≤k(z

2
i − 1)

1 − z0(z1 · · · zk)(z1 + z−1
1 + · · · zk + z−1

k )

]

.

These formulas are not necessarily easier to compute or interpret than the others,
but they do have a few implications. They do provide a proof that the generating
function is D-finite. Furthermore, we see a second proof that yk(n) can be expressed
as binomial sums, and potentially a different route to obtain such expressions, using
the work of Bostan, Lairez and Salvy [5]. They may be suitable for analysis by the
methods of Pemantle and Wilson [41], which determine asymptotic formulas for
coefficients of functions which are expressed as diagonals of rational functions.

Since it is the generating function for Motzkin numbers, Ỹ3(t) is algebraic.
Because the asymptotics of the coefficients are incompatible with algebraicity, Ỹ4(t)
is not. For which k is the ordinary generating function Ỹk(t) algebraic?
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3.1 Differential Equations

Once we know that a generating function is D-finite, it is natural to ask about dif-
ferential equations that it satisfies. Bergeron, Favreau and Krob [3] generated many
conjectures about the order of the differential equation satisfied by Yk(t) from com-
puter experiments, and some analysis of its expression as a determinant of a matrix
of modified Bessel functions.

Proposition 1 in [2] states the dimension of the vector space over the field C(t)
of rational functions in t spanned by Yk(t) and all its derivative is bounded by � k

2�.
Conjecture 9 (Bergeron, Favreau, Krob [3]). For each k, there are polynomials
pm(t) of degree at most � k

2� such that Yk(t) is a solution of a linear differential
equation order at most � k

2� + 1 with coefficients pm(t).

They have verified this conjecture for k ≤ 11.
We can use recent advances in symbolic computation and the diagonal expression

in Theorem 8 to bound the order and degree of the differential equations satisfied
by the ordinary generating function Ỹk(t). In particular, the following theorem of
Bostan, Lairez, and Salvy [4] can be explicitly applied.

Theorem 10 (Bostan,Lairez, andSalvy [4]).Let R(z1, . . . , zd , t) = A(z, t)/B(z, t)
∈ Q(t)(z1, . . . , zd), be a rational function with multidegree bounds

nz := max(degz B, degz A + d + 1) nt := max(degt A, degt B).

Then there exists an annihilating differential equation L for the integral

P(t) :=
∮

γ

R(z, t)dz,

where γ is any n-cycle in C
n on which R is continuous when t ranges over some

connected open set U ⊂ C (note that L is independent of γ). Furthermore the order
of L is at most ndz and the degree of L is at most

(
5
8n

3d
z + ndz

)
ednt .

We write a diagonal as an integral:

�F(z, t) =
(

1

2πi

)d ∫

γ

F(z1, z2/z1, z3/z2, . . . , zd/zd−1, t/zd)

z1z2 · · · zd dz (11)

by the multivariate Cauchy residue theorem, for an appropriate n-cycle γ around the
origin.

In the case of Ỹk(t), we compute an upper bound of 2d2 − 3d + 1 on the total
degree of the denominator in the z variables and a bound of 2d2 − 4d − 2 on the
degree of the numerator and implies the following result, computed by Melczer.
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Proposition 11. The generating function for the number of standard Young tableaux
of height at most k satisfies a linear differential equation of order at most (2k2 −
3k + 1)k and degree at most

(
5

8
(2d2 − 3d + 1)3d + (2d2 − 3d + 1)d

)

ed .

3.2 Asymptotics

Regev [29] determined asymptotic expansions for the number of Young tableaux of
bounded height. He explicitly deduced asymptotics for the k = 3 case as a particular
extraction:

(n + 1)y3(n) = [x−1](x + 1/x + 1)n+1 ∼
√
3

8
π · 1√

n
3n.

By a slightly more general argument, he showed

y2k(n) ∼n→∞ (2/π)k/2(2k)n(k/n)k(k−1/2)
k−1∏

i=0

(2i)!. (12)

The asymptotics of lattice walks in cones have been well studied. The tour de
force of Denisov and Wachtel [13] describes a collection of very comprehensive
results. The formulas given in [13, Theorem 6] should be applied here, for example
to the lazy walks and to the excursions in WD(k).

Grabiner [24] used his formulas for walks in Weyl chambers to find the asymp-
totics of the probability that a randomly chosen standard Young tableau of size n
with at most t rows contains a given subtableau. This is equivalent to counting walks
that have visited a particular point—there might be similar results to be extracted by
considering other lattice models.

The asymptotic formula that has been described so far are valid for fixed k, as n
tends to infinity. It is open to develop formulas when k is a function of n.

4 Restricting Increasing Subsequences in Permutations

Motivated by algebraic interpretations, Regev [29] considered the quantity

y(β)

k (n) ≡
∑

λ∈Pk

( f λ)β

What can be said of the generating functions
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∑
y(β)

k (n)tn
∑

yβ
k (n)tnuβ?

When β = 2, this counts permutations with restricted longest increasing sub-
sequence, and it is very well studied, with many relevant connections to lattice
walks [39, 40]. Define uk(n) to be the number of pairs of Young tableaux of the
same shape with at most k rows. By the Robinson–Schensted correspondence, this
is the number of permutations in Sn with no (k + 1)-increasing subsequence. For
every k ≥ 1, Gessel [16] proved the formula

∑

n≥0

uk(n)

n!2t2n = det
(
bi− j

)
1≤i, j≤k , (13)

where the b j are the Bessel function evaluations defined earlier.
A combinatorial proof of this expression has been given by Gessel et al. [15] via

simple walks ending at so-called Toeplitz points, and Xin [42] did a combinatorial
derivation based on arc diagrams, and yet another constant term extraction. The
permutations satisfy a nice combinatorial recursion, and, in a manner similar to her
solution for involutions, Bousquet-Mélou [7] determines functional equations that
can be resolved using a kernel method approach.

She determined [7, Proposition 13] the following expression for the ordinary
generating function of permutations avoiding the pattern 1 2 . . .m (m + 1):

Uk(t) ≡
∑

n≥0

uk(n)t2n = CTx1,...,xm
det((x j − x j−1)

i− j )1≤i, j≤m

1 − t
(∑ 1

x j−x j−1

) ·
m∑

i=0

i∏

j=1

x j

1 − x j
.

(14)
Bergeron and Gascon found the differential equations satisfied by the exponential

generating functions for k < 11. It remains open to answer if (y(β)

k (n)) is the counting
sequence for any easily characterizable combinatorial family, perhaps as a restricted
or decorated family of permutations. The argument of Gessel [16] applies to prove
that the sequence is P-recursive for positive integer β, and probably also a diagonal
of a rational function. Can we usefully bound the annihilating differential operators
or determine asymptotic formulas for arbitrary β?

Wilf [40] deduced U2k(t) = Y2k(t)Y2k(−t). From this, it follows

(
2n

n

)

u2k(n) =
∑

r

(
2n

r

)

(−1)r y2k(r)y2k(2n − r).

Is there a lattice path interpretation of this identity? Are there identities for other β
values?
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5 Other Directions

5.1 Using Kronecker Coefficients

The Kronecker product of symmetric functions gives an important connection to rep-
resentation theory. In particular, the Kronecker product of two symmetric functions
in the Schur function basis determines the multiplicities of irreducible characters in
this tensor product.

The following Schur function identity for the Kronecker product of two Schur
functions (denoted by ∗) was shown by Brown, van Willigenburg and Zabrocki [8]:

s(n,n−1) ∗ s(n,n−1) =
∑

λ�2n−1
�(λ)≤4

sλ.

Tewari [37] manipulates this formula to deduce a closed form for the number of
Young tableaux with height exactly 5, under the additional constraint of λ5 = 1. His
Theorem 7.4 is a simple sum of Motzkin numbers (recall Mn = y3(n)) and pairs of
Catalan numbers (recall also the formula of y4):

∑

λ�2n
�(λ)=5
λ5=1

f λ =
(
n(n + 2)

2n + 1

)

CnCn+1 − C2
n+1 + M2n,

∑

λ�2n−1
�(λ)=5
λ5=1

f λ =
(

(n + 1)

2

)

C2
n − CnCn+1 + M2n−1.

It could be straightforward to find a combinatorial interpretation of his formula,
which then could be generalized to higher dimensions. It also suggests that perhaps
some of the larger summations could be simplified. This could be key to finding a
useful expressions for y6(n).

5.2 Other Classes in Bijection

As Gouyou-Beauchamps noted in [23], the numbers that appear in y4(n) also appear
in the enumeration of planar maps and alternating Baxter permutations. Baxter per-
mutations are a class of pattern avoiding permutations that are very combinatorially
rich. They also have a bijection to lattice path models, using the machinery of arc
diagrams as an intermediary class. It might be possible to directly connect these
classes.
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5.3 Shadow Diagrams

Some of the lattice walk bijections use tableau insertion and deletion in more than
one stage. Perhaps there exist more economical, or direct bijections. The shadow
diagrams of Viennot may play an important role in such a simplification.

5.4 Random Tableaux

There have been several recent works on generating random walks. One application
is to convert this to a generator for random tableaux. Which of the above bijections
has smallest complexity?

Grabiner [24] was able to use lattice walk results to determine distributions of
subtableaux in Young tableaux. It seems that there should be more results along this
vein with each of the lattice walk representations.

5.5 Semi-standard Young Tableaux

Okada [28] proved some results connecting counting sequences of generalized oscil-
lating tableaux and semi-standard tableaux using techniques from representation
theory. In particular, his Theorem 5.3 is a list of results on equinumerous classes of
tableaux of bounded height that are well suited for more bijective explanations.

Krattenthaler’s results [26] on semi-standard tableaux replace single steps in oscil-
lating tableaux with jumps by horizontal strips. Perhaps they can connect here using
lattice walks with longer steps or diagonal steps. In any case, these two works should
be connected more explicitly.
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A Tale of Centrally Symmetric Polytopes
and Spheres

Isabella Novik

Abstract This paper is a survey of recent advances as well as open problems in the
study of face numbers of centrally symmetric simplicial polytopes and spheres. The
topics discussed range from neighborliness of centrally symmetric polytopes and the
Upper Bound Theorem for centrally symmetric simplicial spheres to the Generalized
Lower Bound Theorem for centrally symmetric simplicial polytopes and the lower
bound conjecture for centrally symmetric simplicial spheres and manifolds.

1 Introduction

The goal of this paper is to survey recent results related to face numbers of cen-
trally symmetric simplicial polytopes and spheres. To put things into perspective, we
start by discussing simplicial polytopes and spheres without a symmetry assumption.
The classical theorems of Barnette [10] and McMullen [48], known as the Lower
Bound Theorem (LBT, for short) and the Upper Bound Theorem (or UBT), assert
that among all d-dimensional simplicial polytopes with n vertices a stacked polytope
simultaneously minimizes all the face numbers while the cyclic polytope simulta-
neously maximizes all the face numbers. Furthermore, the same results continue to
hold in the generality of (d − 1)-dimensional simplicial spheres (see [9, 73]). It is
also worth mentioning that in the class of simplicial spheres of dimension d − 1 ≥ 3
with n vertices, the (boundary complexes of the) stacked polytopes are the only min-
imizers [37]. On the other hand, the maximizers are precisely the �d/2�-neighborly
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spheres—a set that, in addition to the (boundary complex of the) cyclic polytope,
includes many other simplicial spheres, see, for instance, a recent paper [63].

In fact, much more is known: the celebrated g-theorem of Billera–Lee [15] and
Stanley [74] provides a complete characterization of all possible f -vectors of sim-
plicial polytopes. The equally celebrated g-conjecture posits that the same charac-
terization is valid for the f -vectors of simplicial spheres. (The f -vector encodes
the number of faces of each dimension of a simplicial complex.) In other words, at
least conjecturally, the f -vector cannot differentiate between simplicial polytopes
and simplicial spheres.

Let us now restrict our world and consider all centrally symmetric (cs, for short)
simplicial polytopes and all centrally symmetric simplicial spheres. What is known
about the f -vectors of these objects? Are there cs analogs of the LBT and UBT,
and ultimately of the g-theorem and g-conjecture, respectively? Surprisingly very
little is known, and not for the lack of effort. There is an analog of the LBT for
cs simplicial polytopes established by Stanley [75] as well as a characterization of
minimizers [41], and while it is plausible that the same results continue to hold for
all cs simplicial spheres, the proofs remain elusive.

Still, the most mysterious and fascinating side of the story comes from trying to
understand the upper bounds: in contrast with the situation for simplicial polytopes
and spheres without a symmetry assumption, the existing upper bound-type results
and conjectures indicate striking differences between f -vectors of cs polytopes and
those of cs spheres. In otherwords, cs spheres and polytopes do not look alike f -wise,
even though their non-cs counterparts do! For instance, the (appropriately defined)
neighborliness of cs polytopes is quite restrictive [46], and a cs d-dimensional poly-
tope with more than 2d vertices cannot be even 2-neighborly; yet, by a result of
Jockusch [36], there exist cs 2-neighborly simplicial spheres of dimension 3 with
any even number n ≥ 8 of vertices. Thus, for a sufficiently large n, the maximum
number of edges that a cs 4-dimensional polytope with n vertices can have differs
from the maximum number of edges that a cs simplicial sphere of dimension 3 with
n vertices can have; moreover, the former quantity (or even its asymptotic behavior)
is unknown at present. This indicates how very far we are from even posing a plau-
sible (sharp) upper bound conjecture for cs d-dimensional polytopes with d ≥ 4. At
the same time, Adin [2] and Stanley (unpublished) provided upper bounds on face
numbers of cs simplicial spheres of dimension d − 1 with n vertices; these bounds
are attained by a cs �d/2�-neighborly sphere of dimension d − 1 with n vertices
assuming such a sphere exists.

Aside from being of intrinsic interest, additional motivation to better understand
the f -vectors of cs polytopes arises from the recently discovered tantalizing connec-
tions (initiated by Donoho and his collaborators, see, for instance, [22, 23]) between
cs polytopeswithmany faces and seemingly unrelated areas of error-correcting codes
and sparse signal reconstruction. Furthermore, any cs convex body in R

d is the unit
ball of a certain norm on Rd . As a result, methods used in the study of face numbers
of cs complexes, at present, involve not only commutative algebra (via the study of
associated Stanley–Reisner rings) but also a wealth of techniques from geometric
analysis. Yet, many problems remain notoriously difficult.
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The goal of this paper is thus to survey a few of the known results on f -vectors
of cs simplicial polytopes and spheres, showcase several existing techniques, and,
most importantly, present many open problems. It is our hope that collecting such
problems in one place will catalyze progress in this fascinating field. For a quick
preview of what is known and what is not, see the following table.

non-cs cs
simplicial
polytopes

simplicial
spheres

same? simplicial
polytope

simplicial
spheres

same?

UBT
√ √

yes no plau-
sible con-
jecture

known
bounds
conjec-
turally
sharp

no

LBT
√ √

yes
√

conjecture conjecturally yes
GLBT

√
conjecture conjecturally yes

√
conjecture conjecturally yes

The rest of the paper is structured as follows. In Sect. 2, we set up notation and
recall basic definitions pertaining to simplicial polytopes and spheres. Section3 is
devoted to neighborliness of cs polytopes. This leads to discussion of upper bound-
type results and problems on face numbers of cs polytopes, see Sect. 4. Section5
deals with neighborliness and upper bound-type results for cs simplicial spheres.
Section6 takes us into the algebraic side of the story: there we present a quick review
of Stanley–Reisner rings—the major algebraic tool in the study of face numbers,
sketch the proof of the classical UBT along with Adin–Stanley’s variant of this result
for cs spheres, and prepare the ground for the following sections. Sections7 and 8
are concerned with the lower bound-type results and conjectures. Specifically, in
Sect. 7 we discuss a cs analog of the Generalized LBT for cs simplicial polytopes—a
part of the story that is most well understood, while in Sect. 8 we consider a natural
conjectural cs analog of the LBT for spheres, manifolds, and pseudomanifolds. We
close with a few concluding remarks in Sect. 9.

2 Preliminaries

We start with outlining basic definitions and notation we will use throughout the
paper. A polytope is the convex hull of a set of finitely many points in R

d . One
example is the (geometric) d-simplex defined as the convex hull of an arbitrary set
of d + 1 affinely independent points in R

d . A (proper) face of any convex body K
(e.g., a polytope) is the intersection of K with a supporting affine hyperplane; see,
for example, Chapter II of [11]. A polytope P is called simplicial if all of its (proper)
faces are simplices. The dimension of a polytope P is the dimension of the affine
hull of P . We refer to d-dimensional polytopes as d-polytopes and to i-dimensional
faces as i-faces.
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Apolytope P ⊂ R
d is centrally symmetric (cs, for short) if P = −P; that is, x ∈ P

if and only if −x ∈ P . An important example of a cs polytope is the d-dimensional
cross-polytope C∗

d = conv(±p1,±p2, . . . ,±pd), where p1, p2, . . . , pd are points in
R

d whose position vectors form a basis for Rd . If these position vectors form the
standard basis of Rd , denoted {e1, . . . , ed}, then the resulting polytope is the unit
ball of the �1-norm; we refer to this particular instance of the cross-polytope as the
regular cross-polytope.

A simplicial complex � on a (finite) vertex set V = V (�) is a collection of
subsets of V that is closed under inclusion; an example is the (abstract) simplex
on V , V := {F : F ⊆ V }. The elements of � are called faces, and the maximal
under inclusion faces are called facets. The dimension of a face F ∈ � is dim F =
|F | − 1, and the dimension of� is dim� := max{dim F : F ∈ �}. The k-skeleton
of �, Skelk(�), is a subcomplex of � consisting of all faces of dimension ≤ k. The
f -vector of a simplicial complex � is f (�) := ( f−1(�), f0(�), . . . , fdim�(�)),

where fi = fi (�) denotes the number of i-faces of �; the numbers fi are called the
f -numbers of �.
Each simplicial complex � admits a geometric realization ‖�‖ that contains a

geometric i-simplex for each i-face of �. A simplicial complex � is a simplicial
sphere (simplicial ball, or simplicial manifold, respectively) if ‖�‖ is homeomorphic
to a sphere (ball, or closed manifold, respectively). If P is a simplicial d-polytope,
then the empty set along with the collection of the vertex sets of all the (proper) faces
of P is a simplicial sphere of dimension d − 1 called the boundary complex of P;
it is denoted by ∂P . While it follows from Steinitz’ theorem that every simplicial
2-sphere can be realized as the boundary complex of a simplicial 3-polytope, for
d ≥ 4, there are many more combinatorial types of simplicial (d − 1)-spheres than
those of boundary complexes of simplicial d-polytopes, see [38, 57, 65].

A simplicial complex � is centrally symmetric (or cs) if it is equipped with a
simplicial involutionφ : � → � such that for every non-empty face F ∈ �,φ(F) =
F . We refer to F and φ(F) as antipodal faces. For instance, the boundary complex of
any cs simplicial polytope P is a cs simplicial sphere with the involution φ induced
by the map φ(v) = −v on the vertices of P .

A simplicial complex � is k-neighborly if every set of k of its vertices forms a
face of �. Equivalently, a simplicial complex � with n vertices is k-neighborly if its
(k − 1)-skeleton coincides with the (k − 1)-skeleton of the (n − 1)-simplex. Since
in a cs complex, a vertex and its antipode can never form an edge, this definition
of neighborliness requires a suitable adjustment for cs complexes. We say that a
cs simplicial complex � is k-neighborly if every set of k of its vertices, no two of
which are antipodes, forms a face of�. Equivalently, a cs simplicial complex�on2m
vertices is k-neighborly if its (k − 1)-skeleton coincides with the (k − 1)-skeleton of
∂C∗

m . In particular, if� is a k-neighborly simplicial complex, then f j−1(�) = ( f0(�)

j

)

for all j ≤ k, while if � is a cs k-neighborly simplicial complex, then f j−1(�) =
2 j

( f0(�)/2
j

)
for all j ≤ k.

It isworthmentioning that similar definitions apply to general (i.e., not necessarily
simplicial) polytopes. Specifically, a polytope P is k-neighborly if every set of k of
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its vertices forms the vertex set of a face of P; a cs polytope P is k-neighborly if
every set of k of its vertices, no two of which are antipodes, forms the vertex set of
a face of P . In the next two sections, we work with general cs polytopes.

3 How Neighborly Can a cs Polytope Be?

Our story begins with the cyclic polytope, Cd(n), which is defined as the convex hull
of n ≥ d + 1 distinct points on the moment curve {(t, t2, . . . , td) ∈ R

d : t ∈ R} or
on the trigonometric moment curve {(cos t, sin t, cos 2t, sin 2t, . . . , cos kt, sin kt) ∈
R

2k : t ∈ R}, assuming d = 2k. Both types of cyclic polytopes were investigated
by Carathéodory [19] and later by Gale [27], who, in particular, showed that the two
types are combinatorially equivalent (assuming d is even) and independent of the
choice of points. In fact, the two types are projectively equivalent, see [84, Exercise
2.21]. These polytopes were also rediscovered byMotzkin [32, 53] and many others;
see books [11, 84] for more information on these amazing polytopes. The properties
of the cyclic polytope Cd(n) that will be important for us here are: it is a (non-cs)
simplicial d-polytope with n vertices; furthermore, it is �d/2�-neighborly for all
n ≥ d + 1.

The existence of cyclic polytopes motivated several questions, among them: do
there exist cs d-polytopes (apart from the cross-polytope) that are �d/2�-neighborly
or at least “highly” neighborly? This section discusses the state-of-affairs triggered
by this question.

It became apparent from the very beginning that the answer is likely to be both
interesting and complicated: several works from the sixties indicated that in contrast
to the general case, the neighborliness of cs polytopes might be rather restricted.
Specifically, Grünbaum showed in 1967 [31, p. 116] that while there exists a cs 2-
neighborly 4-polytope with 10 vertices, no cs 4-polytope with 12 or more vertices
can be 2-neighborly. This observation was extended byMcMullen and Shephard [51]
who proved that while there exists a cs �d/2�-neighborly d-polytope with 2(d + 1)
vertices, a cs d-polytope with at least 2(d + 2) vertices cannot be more than �(d +
1)/3�-neighborly. A cs �d/2�-neighborly d-polytope with 2(d + 1) vertices is easy
to construct: for instance, conv

( ± e1,±e2, . . . ,±ed ,±∑d
i=1 ei

)
does the job. On

the other hand, to show that a cs d-polytope with 2(d + 2) vertices can only be �(d +
1)/3�-neighborly and to construct cs polytopes achieving this bound, McMullen and
Shephard [51] introduced and studied cs transformations of cs polytopes—acs analog
of celebratedGale transforms. (See [31, Section 5.4] and [84, Chapter 6] for a detailed
description of Gale transforms and their applications.)

Let k(d, n) denote the largest integer k such that there exists a cs d-polytope
with 2(n + d) vertices that is k-neighborly. Influenced by their result, McMullen
and Shephard [51] conjectured that, in fact, k(d, n) ≤ �(d + n − 1)/(n + 1)� for
all n ≥ 3. Their conjecture was subsequently refuted by Halsey [33] and then by
Schneider [69], but only for d � n. Namely, Schneider showed that
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lim inf
d→∞

k(d, 3)

d + 3
≥ 1 − 2−1/2 and lim inf

d→∞
k(d, n)

d + n
≥ 0.2390 for all n.

On the other hand, Burton [18] proved that a cs d-polytope with a sufficiently large
number of vertices (≈(d/2)d/2) indeed cannot be even 2-neighborly. Burton’s proof is
surprisingly short and simple: it relies on John’s ellipsoid theorem, see for instance [8,
Chapter 3], along with a quantitative version of the observation that any sufficiently
large finite subset of the Euclidean unit sphere contains two points that are very close
to each other.

To the best of the author’s knowledge, McMullen–Shephard’s values k(d, 1) =
� d
2 � and k(d, 2) = � d+1

3 � (see [51]) remain the only known exact values of k(d, n) for
alld. In particular, k(4, 1) = 2 and k(4, 2) = 1,while k(5, 1) = k(5, 2) = 2. Further-
more, the main result of a very recent paper [60] implies that k(5, 3) = k(5, 4) = 2,
but it appears unknown whether k(5, 5) equals 2 or 1. On the other hand, the asymp-
totics of k(d, n) is now well understood:

Theorem 3.1. There exist absolute constants C1,C2 > 0 independent of d and n
such that

C1d

1 + log n+d
d

≤ k(d, n) ≤ 1 + C2d

1 + log n+d
d

.

Theorem3.1 is due to Linial and Novik [46]. A dual version of the lower bound part
of this theorem was also independently established by Rudelson and Vershynin [67].

Two extreme, and hence particularly interesting, cases of Theorem 3.1 deserve a
special mention: the case of k(d, n) proportional to d and the case of k(d, n) = 1.
Donoho [22] proved that there exists ρ > 0 such that for large d, the orthogonal pro-
jection of the 2d-dimensional regular cross-polytope onto a d-dimensional subspace
of R2d , chosen uniformly at random, is at least �ρd�-neighborly with high proba-
bility and provided numerical evidence that ρ ≥ 0.089. In other words, for large d,
k(d, d) ≥ ρd. (The estimates from [46] guarantee that ρ ≥ 1/400.) As for the other
extreme, Theorem3.1 shows that the largest number of vertices in a cs 2-neighborly
d-polytope is e�(d). In fact, the following more precise result is known, see [46,
Theorem 1.2] and [12, Theorem 3.2].

Theorem 3.2. Acs2-neighborly d-polytope has atmost2d vertices, i.e., k(d, 2d−1 +
1 − d) = 1. On the other hand, for any even d ≥ 6, there exists a cs 2-neighborly

d-polytope with 2(
√
3
d
/3 − 1) vertices.

While this chapter awaited its publication, the author proved in [60] that for every
d ≥ 2, there exists a cs 2-neighborly d-polytope with 2d−1 + 2 vertices.

Our discussion of k(d, n) is summarized in a table below.
We devote the rest of this section to pointing out some of the main ideas used

in the proofs. In particular, the proof of the fact that a cs 2-neighborly d-polytope
has at most 2d vertices is so short that we cannot avoid the temptation to provide
it here. For a polytope P ⊂ R

d and a vector a ∈ R
d , define Pa := P + a to be the

translation of P by a, where “+” denotes the Minkowski addition. The first step in
the proof is the following simple observation from [14]:
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n k(d, n)

1
⌊ d
2

⌋

2
⌊ d+1

3

⌋

d proportional to d
≤2d−2 + 1 − d ≥ 2
≥2d−1 + 1 − d 1

Lemma 3.3. Let P ⊂ R
d be a cs d-polytope, and let u and v be vertices of P, so

that −v is also a vertex of P. If the polytopes Pu and Pv have intersecting interiors
then the vertices u and −v are not connected by an edge. Consequently, if P is a
cs 2-neighborly polytope with vertex set V , then the polytopes {Pv : v ∈ V } have
pairwise disjoint interiors.

Proof: The assumption that int (Pu) ∩ int (Pv) = ∅ implies that there exist x, y ∈
int (P) such that x + u = y + v, or equivalently, that (y − x)/2 = (u − v)/2. Since
P is centrally symmetric, and x, y ∈ int (P), the point q := (y − x)/2 is an interior
point of P . As q is also the barycenter of the line segment connecting u and −v, this
line segment is not an edge of P . �

The rest of the proof that a cs 2-neighborly d-polytope has at most 2d vertices
utilizes a volume trick that goes back to Danzer and Grünbaum [21]. If P ⊂ R

d is
a cs 2-neighborly d-polytope with vertex set V , then by Lemma 3.3, the polytopes
{Pv : v ∈ V } have pairwise disjoint interiors. Therefore,

Vol
( ⋃

v∈V
Pv

) =
∑

v∈V
Vol (Pv) = |V | · Vol (P).

On the other hand, since for v ∈ V , Pv = P + v ⊂ 2P , it follows that
⋃

v∈V Pv ⊆
2P , and so

Vol
( ⋃

v∈V
Pv

) ≤ Vol (2P) = 2d · Vol (P).

Comparing these two equations yields |V | ≤ 2d , as desired.
The proof of the upper bound part of Theorem3.1 relies on a more intricate

application of the same volume trick. Let P be a cs k-neighborly d-polytope, where
k = 2s for some integer s. We say that a family F of (s − 1)-faces of P is good if
every two elements F = G of F satisfy the following conditions: F and G share at
most s/2 vertices, while F and −G have no common vertices. To obtain an upper
bound on the size of the vertex set V of P in terms of d and k, one first observes that
if F is a good family, F = G are in F , and bF and bG are the barycenters of F and
G, then the polytopes P + 2bF and P + 2bG have disjoint interiors (cf. Lemma3.3).
One then uses a simple counting argument to show that there is a relatively large (in
terms of d, s, and |V |) good familyF . Since the translates {P + 2bF : F ∈ F} of P
have pairwise disjoint interiors and are all contained in 3P , the volume trick yields
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a desired upper bound on |F |, and hence also on |V |; see the proof of Theorem 1.1
in [46] for more details.

The proof of the lower bound in Theorem3.1 is based on studying the cs trans-
forms of cs polytopes introduced in [51] and on “high-dimensional paradoxes” such
as Kašin’s theorem [40] and its generalization due to Garnaev and Gluskin [28].
Specifically,Kašin’s theorem asserts that there is an absolute constantC (for instance,
32 does the job, see [8, Lecture 4]) such that for every d, R2d has a d-dimensional
subspace, Ld , with the following property: the ratio of the �2-norm to the �1-norm of
any nonzero vector x ∈ Ld is in the interval [ 1√

2d
, C√

2d
]; we refer to such a subspace

as a Kašin subspace. Via cs transforms, d-dimensional subspaces of R2d correspond
to cs d-polytopes with 4d vertices; furthermore, a careful analysis of cs transforms
shows that the polytopes corresponding to Kašin subspaces are k-neighborly with k
proportional to d.

More generally, a theorem due to Garnaev and Gluskin [28] quantifies the extent
to which an n-dimensional subspace of Rn+d can be “almost Euclidean” (meaning
that the ratio of the �2-norm to the �1-norm of nonzero vectors remains within certain
bounds, more precisely, it is ≤ C̃

√
1+log((n+d)/d)

d for some absolute constant C̃). Via

cs transforms, n-dimensional subspaces of Rn+d correspond to cs d-polytopes with
2(n + d) vertices, and the “almost Euclidean” subspaces correspond to cs polytopes
with neighborliness given by the lower bound in Theorem 3.1, see [46] for technical
details.

The proof of the Garnaev–Gluskin result and hence also of the lower bound part
of Theorem3.1 is probabilistic in nature: it does not give an explicit construction of
neighborly cs polytopes, but rather shows that they form a set of positive probability
in a certain probability space. Indeed, it is an interesting open question to find an
explicit construction for highly neighborly cs polytopes that meet the lower bound
in Theorem3.1. We discuss some known explicit constructions (for instance that of

a cs 2-neighborly d polytope with ≈√
3
d
vertices) in the next section. It would also

be extremely interesting to shed some light on the exact values of k(d, n):

Problem 3.4. Determine the exact values of k(d, n), or at least find the value of
n0(d) := min{n : k(d, n) = 1}, that is, find the number n starting from which a cs
d-polytope with 2(d + n) vertices cannot be even 2-neighborly.

4 Toward an Upper Bound Theorem for cs Polytopes

The fame of the cyclic polytope comes from the Upper Bound Theorem (UBT, for
short) conjectured by Motzkin [53] and proved by McMullen [48]. It asserts that
among all d-polytopes with n vertices, the cyclic polytope Cd(n) simultaneously
maximizes all the face numbers. The goal of this section is to summarize several
upper bound-type results and problems for cs polytopes motivated by the UBT.
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What is the maximum number of k-faces that a centrally symmetric d-polytope
with N vertices can have? While our discussion in the previous section suggests that
at present we are very far from even posing a plausible conjecture, certain asymp-
totic results on the maximum possible number of edges are known. Specifically, the
following generalization of Theorem 3.2 holds. This result is in sharp contrast with
the fact that f1(Cd(n)) = (n

2

)
as long as d ≥ 4.

Theorem 4.1. Let d ≥ 4. If P ⊂ R
d is a cs d-polytope on N vertices, then

f1(P) ≤ (1 − 2−d)
N 2

2
.

On the other hand, there exist cs d-polytopes with N vertices (for an arbitrarily large

N) and at least
(
1 − 3−�d/2−1�) (N

2

) ≈ (1 − √
3

−d
) · N 2

2 edges.

The first part of Theorem4.1 was established by Barvinok and Novik in [14,
Proposition 2.1]; its proof relies on an extension of the argument discussed in the
previous section to obtain an upper bound on the number of vertices that a cs 2-
neighborly d-polytope can have and more specifically on Lemma 3.3. The idea, very
roughly, is as follows: each of the N vertex translates of P , Pu for u ∈ V , has the
same volume as P , and all of them are contained in the polytope 2P , whose volume
is 2dVol (P). Hence, on average, an interior point of 2P belongs to N/2d (out of N )
sets int (Pu). Therefore, on average, int (Pu) intersects with the interiors of at least
N/2d − 1 other vertex translates of P . Consequently, by Lemma 3.3, the average
degree of a vertex of P in the graph of P is ≤ N (1 − 2−d). This yields the desired
upper bound on the number of edges of P .

The second part of Theorem4.1 is due to Barvinok, Lee, and Novik [12]. The
proof is based on an explicit construction whose origins can be traced to work of
Smilansky [70]. To discuss this part, we start by recalling that the cyclic polytope
Cd(n) is defined as the convex hull of n points on the moment curve or, if d = 2k is
even, on the trigonometric moment curve Tk : R → R

2k , where

Tk(t) = (cos t, sin t, cos 2t, sin 2t, . . . , cos kt, sin kt).

In an attempt to come up with a cs analog of the cyclic polytope, Smilansky [70]
(in the case of k = 2), and Barvinok and Novik [14] (in the case of arbitrary k)
considered the symmetric moment curve, Uk : R → R

2k , defined by

Uk(t) = (cos t, sin t, cos 3t, sin 3t, . . . , cos(2k − 1)t, sin(2k − 1)t) .

SinceUk(t) = Uk(t + 2π) for all t ∈ R, from this point on, we think ofUk as defined
on the unit circle S = R/2πZ. The name symmetric moment curve is explained
by an observation that for all t ∈ S, t and t + π form a pair of opposite points
and Uk(t + π) = −Uk(t). A bicyclic polytope is then defined as the convex hull of
{Uk(t) : t ∈ X}, where X ⊂ S is a finite subset of S; we will also assume that X is a
cs subset of S.



314 I. Novik

The papers [70] (in the case of k = 2), and [14] along with [79] (in the case of
arbitrary k) study the edges of bicyclic polytopes. In particular, when k = 2, the
following result established in [70] (see also [14]) holds. Recall that a face of a
convex body K is the intersection of K with a supporting hyperplane.

Theorem 4.2. Let � ⊂ S be an open arc of length 2π/3 and let t1, t2 ∈ �. Then
the line segment conv(U2(t1),U2(t2)) is an edge of the 4-dimensional convex body
B2 := conv(U2(t) : t ∈ S).

One immediate consequence is

Corollary 4.3. Let X = {0,π/2,π, 3π/2} ⊂ S, let s ≥ 2 be an integer, and let Xs be
a cs subset of S obtained from X by replacing each τ ∈ X with a cluster of s points all
of which lie on a small arc containing τ . Then the polytope Qs := conv(U2(t) : t ∈
Xs) is a cs 4-polytope that has N := 4s vertices and at least 1

2 · N ( 34N − 1) ≈ 3
4

(N
2

)

edges.

Indeed, it follows from Theorem4.2 that each vertex of Qs is connected by an edge
to all other vertices of Qs except possibly those coming from the opposite cluster,
yielding the result.

Denote by fmax(d, N ; k − 1) the maximum possible number of (k − 1)-faces
that a cs d-polytope with N vertices can have. From the above discussion, we infer
that

3

4
· N

2

2
− O(N ) ≤ fmax(4, N ; 1) ≤ 15

16
· N

2

2
.

These are currently the best-known bounds on the maximum possible number of
edges that a cs 4-polytope with N vertices can have.

Perhaps somewhat surprisingly, for k > 2, bicyclic polytopes do not have a record
number of edges. However, the symmetric moment curve is used in the following
construction that produces cs polytopes with the largest known to-date number of
edges.

Let m ≥ 1 be an integer. Define �m(t) : S → R
2m+2 by

�m(t) := (U1(t),U1(3t),U1(3
2t), . . . ,U1(3

m(t))

= (cos t, sin t, cos 3t, sin 3t, cos 9t, sin 9t, . . . , cos(3mt), sin(3mt)).

Parts 1 and 2 of the following result complete the proofs of Theorems3.2 and 4.1,
respectively.

Theorem 4.4. Fix integers m ≥ 2 and s ≥ 2. Let Am be a set of 2(3m − 1) equally
spaced points on S, and let Am,s be a cs subset of S obtained from Am by replacing
each τ ∈ Am with a cluster of s points, all of which lie on a very small arc containing
τ . Then

1. the polytope Pm := conv(�m(Am)) is a cs 2-neighborly polytope of dimension
2(m + 1) that has 2(3m − 1) vertices,
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2. the polytope Pm,s := conv(�m(Am,s)) is a cs polytope of dimension 2(m + 1)
that has N := 2s(3m − 1) vertices and more than

(
1 − 3−m

) (N
2

)
edges.

The assumption m ≥ 2 is only needed to guarantee that the dimension of Pm is
exactly 2(m + 1) rather than ≤ 2(m + 1). To prove that Pm is cs 2-neighborly and
Pm,s has many edges for all m ≥ 1, it is enough to show that each vertex of Pm,s is
connected by an edge to all other vertices of Pm,s except possibly those coming from
the opposite cluster. This can be done by induction on m. Since �1 = U2, the case
ofm = 1 is simply Corollary4.3. For the inductive step, one relies on some standard
facts about faces of polytopes along with an observation that the composition of
�m : R → R

2(m+1) with the projection of R2(m+1) onto R
2m that forgets the first

two coordinates is the curve t → �m−1(3t), while the composition of �m with the
projection of R2(m+1) onto R

4 that forgets all but the first four coordinates is the
curve �1; see [12, Section 3] for more details. Finally, to extend the construction
of Theorem 4.4 to odd dimensions, consider the bipyramid over polytopes Pm and
Pm,s .
To summarize,

(
1 − 3−�d/2−1�)

(
N

2

)
≤ fmax(d, N ; 1) ≤ (

1 − 2−d
) · N

2

2
. (4.1)

It is, however,worth pointing out that in viewof themain result of [60], fmax(d, N ; 1)
might be closer to the right-hand side of Eq. (4.1) than to the left one.

To extend the above discussion to higher-dimensional faces, we need to lookmore
closely at the curve Uk and its convex hull.

One crucial feature of the convex hull Mk = conv(Tk(t) : t ∈ S) ⊂ R
2k of the

trigonometric moment curve is that it is k-neighborly, that is, for any p ≤ k distinct
points t1, . . . , tp ∈ S, the convex hull conv(Tk(t1), . . . , Tk(tp)) is a face ofMk ; see,
for example, Chapter II of [11]. While the convex hull of Uk is not k-neighborly,
the following theorem, which is the main result of [13], shows that it is locally
k-neighborly (cf. Theorem4.2).

Theorem 4.5. For every positive integer k there exists a number π
2 < αk < π such

that for an arbitrary open arc � ⊂ S of length αk and arbitrary distinct p ≤ k points
t1, . . . , tp ∈ �, the set conv(Uk(t1), . . . ,Uk(tp)) is a face of Bk := conv(Uk(t) : t ∈
S).

The gap between the currently known upper and lower bounds on fmax(d, N ; k −
1) for k > 2 is much worse than the gap for k = 2 illustrated by Eq. (4.1). Indeed,
we have:

Theorem 4.6. Let 3 ≤ k ≤ d/2. Then

(
1 − k2

(
23/20k

22k
)−d

) (
N

k

)
≤ fmax(d, N ; k − 1) ≤ (

1 − 2−d
) N

N − 1

(
N

k

)
.

The proof of the upper bound part of this theorem follows easily from the first part
of Theorem4.1 together with (1) the well-known perturbation trick that reduces the
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situation to cs simplicial polytopes and (2) the standard double-counting argument
that relates the number of edges to the number of (k − 1)-faces in any simplicial
complex with N vertices, see [14, Proposition 2.2] for more details.

The proof of the lower bound part can be found in [12, Section 4]. It utilizes a
construction that is somewhat along the lines of the construction of Theorem 4.4,
but quite a bit more involved: the desired polytope is obtained as the convex hull of
a carefully chosen set of points on the curve �k,m : S → R

2k(m+1) defined by

�k,m(t) := (Uk(t),Uk(3t),Uk(3
2t), . . . ,Uk(3

mt)).

(Note that�m is essentially�2,m : in�2,m(t) every coordinate except for the first two
and the last two shows up twice; to obtain �m from �2,m simply leave one copy of
each repeated coordinate.) To choose an appropriate set of points one uses the notion
of a k-independent family of subsets of {1, 2, . . . ,m} and a deterministic construction
from [25] of a large k-independent family. Finally, to show that the resulting polytope
has many (k − 1)-faces, one relies heavily on the local neighborliness of the convex
hull of Uk discussed in Theorem4.5 along with some standard results on faces of
polytopes.

As the discussion above indicates, at present our understanding of the maximum
possible number of faces of a given dimension that a cs d-polytope with a given num-
ber of vertices can have is rather limited even for d = 4. In particular, the following
questions are wide open:

Problem 4.7. Does the limit limN→∞ fmax (d,N ;1)
(N
2)

exist and, if so, what is its value?

Or better yet, what is the actual value of fmax(d, N ; 1)? Similarly, what is limN→∞
fmax (d,N ;k−1)

(N
k )

for 2 < k ≤ d/2? Can we, at least, establish better lower and upper

bounds than those given in Theorem4.6?

In fact, it should be stressed that for d ≥ 6 and N ≥ 2(d + 2), we do not even
know if in the class of cs d-polytopes with N vertices there is a polytope that simulta-
neously maximizes all the face numbers. (For d = 4, 5, a cs simplicial polytope that
maximizes the number of edges automatically maximizes the rest of face numbers.)

5 Toward an Upper Bound Theorem for cs Simplicial
Spheres

McMullen’s Upper Bound Theorem was extended by Stanley [73] to the class of all
simplicial spheres. More precisely, Stanley proved that among all simplicial (d − 1)-
spheres with n vertices, the boundary complex of the cyclic polytope Cd(n) simul-
taneously maximizes all the face numbers. (This result was extended even further to
some classes of simplicial manifolds and even certain pseudomanifolds with isolated
singularities, see [34, 58, 62]. In fact, already in 1964, Victor Klee [44] proved that
the UBT holds for all (d − 1)-dimensional Eulerian complexes that have at least
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O(d2) vertices. Whether the UBT holds for all Eulerian complexes remains an open
question.)

The situation with the face numbers of cs spheres versus face numbers of cs
polytopes appears to be drastically different. On one hand, as we saw in Sects. 3 and
4, a cs 4-polytope P with N ≥ 12 vertices cannot be 2-neighborly; furthermore, such
a P has at most 15

16 · N 2

2 edges. On the other hand, it is a result of Jockusch [36] that

Theorem 5.1. For every even number N ≥ 8, there exists a cs 2-neighborly sim-
plicial sphere JN of dimension 3 with N vertices. In particular, JN has

(N
2

) − N
2 =

N 2

2 − N edges.

Jockusch’s proof, see [36], is by inductive construction. The initial sphere, J8, is
the boundary complex of the cross-polytope C∗

4 with the involution φ induced by the
map φ(v) = −v on the vertex set of C∗

4 . The cs sphere (JN+2,φ) is obtained from
the cs sphere (JN ,φ) by the following procedure:

1. Find a subcomplex BN in JN such that (i) BN is a 3-ball, (ii) BN and φ(BN ) share
no common facets, (iii) every vertex of JN is a vertex of BN , and (iv) every edge
of BN lies on the boundary of BN , i.e., BN has no interior vertices and no interior
edges.

2. Let vN+1 and vN+2 be two new vertices. Cut out the interior of BN from JN , and
cone the boundary of the resulting hole with vN+1. Similarly, cut out the interior
of φ(BN ) from JN , and cone the boundary of the resulting hole with vN+2.

Extending φ to JN+2 by letting φ(vN+1) = vN+2 and φ(vN+2) = vN+1 provides us
with a free involution on JN+2. Furthermore, choosing BN in a way that is specified
in Part (1) of the construction guarantees that the cs sphere JN+2 is 2-neighborly
(provided JN was 2-neighborly). To allow for this inductive construction, an essential
part of Jockusch’s proof is devoted to defining BN in a way that ensures that the
resulting simplicial sphere JN+2 has a subcomplex BN+2 with the same properties.

The suspension of a simplicial complex �, �(�), is the join of � with the 0-
dimensional sphere, that is, �(�) = {F, F ∪ {u0}, F ∪ {w0} : F ∈ �}, where u0
andw0 are two new vertices. Observe that if� is cs, then�(�) is cs (with u0 andw0

being antipodes), and if� is a (d − 1)-sphere, then�(�) is a d-sphere; furthermore,
if � is cs k-neighborly, then so is �(�). In particular, for every even N ≥ 8, �(JN )

is a cs 2-neighborly simplicial 4-sphere with N + 2 vertices. Jockusch’s results lead
to the following problem on higher-dimensional cs spheres.

Problem 5.2. Let d > 5 and let N ≥ 2d be an even number. Is there a cs �d/2�-
neighborly simplicial (d − 1)-sphere with N vertices?

The boundary complex of C∗
d is the unique cs d-neighborly simplicial (d − 1)-

sphere with 2d vertices. The boundary complex of conv(±e1, . . . ,±ed ,±∑d
i=1 ei )

is a cs �d/2�-neighborly simplicial (d − 1)-sphere with 2(d + 1) vertices [51]; fur-
thermore, in the case of an odd d, [16, Section 6.2] provides a construction of many
cs �d/2�-neighborly simplicial (d − 1)-spheres with 2(d + 1) vertices. Lutz [47,
Chapter 4] found (by a computer search) several cs 3-neighborly simplicial 5-spheres
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with 16 = 2(6 + 2) vertices; his examples have vertex-transitive cyclic symmetry.
Suspensions of Lutz’s examples are cs 3-neighborly simplicial 6-spheres with 18
vertices. For all other values of d and N , Problem5.2 remains wide open. It is also
worth pointing out that Pfeifle [64, Chapter 10] investigated possible neighborliness
of cs star-shaped spheres—a class of objects that contains all boundary complexes
of cs simplicial polytopes and is contained in the class of all cs simplicial spheres. In
analogy with McMullen–Shephard’s result [51] about cs d-polytopes with 2(d + 2)
vertices, he proved that for all even d ≥ 4, and for all odd d ≥ 11, there are no cs
�d/2�-neighborly star-shaped spheres of dimension d − 1 with 2(d + 2) vertices.

One of the main reasons for trying to resolve Problem 5.2 comes from the fol-
lowing cs analog of the Upper Bound Theorem; this result is due to Adin [2] and
Stanley (unpublished).

Theorem 5.3. Among all cs simplicial (d − 1)-spheres with N vertices, a cs �d/2�-
neighborly (d − 1)-sphere with N vertices simultaneously maximizes all the face
numbers, assuming such a sphere exists.

We sketch the proof of Theorem5.3 in the next section; as in the classic non-cs
case, it relies on the theory of Stanley–Reisner rings and on the Dehn–Sommerville
relations.

To close this section, we posit a weaker and hence potentially more approachable
version, of Problem5.2. Let � be a (d − 1)-dimensional simplicial complex and F
a face of �. The link of F in � is lk�(F) := {G ∈ � : F ∪ G ∈ �, F ∩ G = ∅}.
(Thus, the link of F describes the local structure of � around F .) We say that �

is pure if all facets of � have dimension d − 1; equivalently, for any face F ∈ �,
the link of F is (d − |F | − 1)-dimensional. Furthermore, we say that � is Eulerian
if it is pure and the link of any face F ∈ � (including the empty face) has the
same Euler characteristic as S

d−|F |−1—the (d − |F | − 1)-dimensional sphere. In
particular, the class of Eulerian complexes includes all simplicial spheres, all odd-
dimensional simplicial manifolds as well as all even-dimensional manifolds whose
Euler characteristic is two. Eulerian complexes were introduced by Victor Klee in
[43].

Problem 5.4. Let d > 5 and let N ≥ 2d be an even number. Is there a cs �d/2�-
neighborly (d − 1)-dimensional Eulerian complex with N vertices?

6 The Algebraic Side of the Story: Stanley–Reisner Rings

We now switch to the algebraic side of the story and present a quick review of
the major algebraic tool in the study of face numbers of simplicial complexes—the
Stanley–Reisner ring. Along the way, we outline the proof of Theorem5.3 as well
as prepare the ground for our discussion of the Lower Bound Theorems in the next
section. The main reference to this material is Stanley’s book [77].

Let � be a simplicial complex with vertex set V and let K be an infinite field of
an arbitrary characteristic. Consider the polynomial ring S := K[xv : v ∈ V ] with
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one variable for each vertex in �. The Stanley–Reisner ideal of � is the following
squarefree monomial ideal

I� := (
xv1xv2 · · · xvk : {v1, v2, . . . , vk} /∈ �

)
.

The Stanley–Reisner ring (or face ring) of � is the quotient K[�] := S/I�. Since
I� is a monomial ideal, the quotient ring K[�] is graded by degree. The definition
of I� ensures that, as a K-vector space, each graded piece of K[�], denoted K[�]i ,
has a natural basis of monomials whose supports correspond to faces of �.

Stanley’s and Hochster’s insight (independently from each other) in defining this
ring [35, 73] was that algebraic properties of K[�] reflect many combinatorial and
topological properties of�. For instance, if� is (d − 1)-dimensional, then the Krull
dimension of K[�] is d; in fact, the Hilbert series of K[�], i.e., Hilb(K[�], t) :=∑∞

i=0 dimK K[�]i · t i , is given by

Hilb(K[�], t) =
d∑

i=0

fi−1(�)t i

(1 − t)i
=

∑d
i=0 fi−1(�)t i (1 − t)d−i

(1 − t)d
.

The last equation leads to the following definition: if � is a (d − 1)-dimensional
simplicial complex, then the h-vector of �, h(�) = (h0(�), h1(�), . . . , hd(�)), is
the vector whose entries satisfy

∑d
i=0 hi (�)t i = ∑d

i=0 fi−1(�)t i (1 − t)d−i ; equiv-
alently,

d∑

i=0

hi (�)td−i =
d∑

i=0

fi−1(�)(t − 1)d−i . (6.1)

In particular, h0(�) = 1, h1(�) = f0(�) − d, and h2(�) = f1(�) − (d − 1) f0(�)

+ (d
2

)
.

The following immediate consequences of Eq. (6.1) are worth mentioning: know-
ing the f -numbers of � is equivalent to knowing its h-numbers. Moreover, since the
f -numbers are nonnegative integer combinations of the h-numbers, any upper/lower
bounds on the h-numbers of � automatically imply upper/lower bounds on the f -
numbers of �.

Let � be a (d − 1)-dimensional simplicial complex. A sequence of linear forms,
θ1, θ2, . . . , θd ∈ S is called a linear system of parameters (or l.s.o.p.) forK[�] if the
ring K[�]/(�) is a finite-dimensional K-vector space; here (�) := (θ1, . . . , θd). It
is well known that ifK is an infinite field, thenK[�] admits an l.s.o.p. An l.s.o.p. for
K[�] is a regular sequence if θi+1 is a nonzero divisor on K[�]/(θ1, . . . , θi ) for all
0 ≤ i < d. We say that � is Cohen–Macaulay (overK), orK-CM for short, if every
l.s.o.p. for K[�] is a regular sequence.

Assume now that � is K-CM, and θ1, . . . , θd is an l.s.o.p. for K[�]. Then θ1 is a
nonzero divisor on K[�], and so the following sequence of K-vector spaces

0 → K[�]i−1
·θ1−→ K[�]i −→ (

K[�]/(θ1)
)
i
→ 0 (6.2)



320 I. Novik

is exact (for all i ≥ 0). Thus, dimK(K[�]/(θ1))i = dimK K[�]i − dimK K[�]i−1

for all i . Multiplying by t i and summing up the resulting equations, we obtain that
Hilb(K[�]/(θ1), t) = (1 − t)Hilb(K[�], t). Iterating this argument for θ2, . . . , θd
leads to the following result due to Stanley [73, Section 4].

Theorem 6.1. Let � be a (d − 1)-dimensional K-CM complex and let θ1, . . . , θd
be an l.s.o.p. forK[�]. Then Hilb(K[�]/(�), t) = (1 − t)d Hilb(K[�], t) = ∑d

i=0
hi (�)t i . (In particular, the h-numbers of CM complexes are nonnegative.)

If � ⊆ � are simplicial complexes (say, on the same vertex set V ), then I� ⊇ I� ,
and so there is a natural surjection K[�] → K[�]. Furthermore, if dim� = dim �,
then any l.s.o.p. θ1, . . . , θd for K[�] is also an l.s.o.p. for K[�], and the induced
graded homomorphism K[�]/(�) → K[�]/(�) is surjective. This observation
together with Theorem6.1 yields the following special case of [76, Theorem 2.1]:

Corollary 6.2. Let � ⊆ � be simplicial complexes. Assume that both � and � are
K-CM and have the same dimension. Then hi (�) ≤ hi (�) for all i .

The reason CM complexes are relevant to our discussion is that, by a result of
Reisner [66], � is a K-CM complex if and only if � is pure and for every face F of
� (including the empty face), all but the top homology group (computed over K) of
the link of F vanish. In particular, all simplicial spheres and balls are CM over any
field; furthermore, the j-skeleton of a K-CM complex is K-CM for all j .

Another very important result about simplicial spheres is Dehn–Sommerville
relations established by Klee [43]: if � is a simplicial (d − 1)-sphere, then hi (�) =
hd−i (�) for all 0 ≤ i ≤ d. (In fact, Klee showed that these relations hold for all
Eulerian complexes.)

We are now ready to close this section with a sketch of the proof of Stanley’s
UBT and of its cs analog—Theorem 5.3. Following the custom, if P is a simplicial
polytope, we denote by h(P) the h-vector of the boundary complex of P .

Let � be a simplicial (d − 1)-sphere with vertex set V , |V | = n. Let V be the
simplex on V , let � = Skeld−1(V ), and let Cd(n) be the cyclic polytope. Then
� ⊆ � are both CM complexes of the same dimension. Hence, by Corollary6.2,
hi (�) ≤ hi (�) for all 0 ≤ i ≤ d. Furthermore, since Cd(n) is �d/2�-neighborly,
∂Cd(n) and � have the same (�d/2� − 1)-skeleton, and so hi (�) = hi (Cd(n)) for
all 0 ≤ i ≤ d/2. (Indeed, hi is determined by f0, f1, . . . , fi−1.) We conclude that
hi (�) ≤ hi (Cd(n)) for all 0 ≤ i ≤ d/2. Dehn–Sommerville relations, applied to �

and ∂Cd(n), then yield that hi (�) ≤ hi (Cd(n)) also holds for all d/2 ≤ i ≤ d. Thus,
hi (�) ≤ hi (Cd(n)) for all 0 ≤ i ≤ d, and the Upper Bound Theorem, asserting that
f j (�) ≤ f j (Cd(n)) for all 1 ≤ j ≤ d − 1, follows.
Similarly, if � is a cs simplicial (d − 1)-sphere with N = 2m vertices, then �

is a full-dimensional subcomplex of � := Skeld−1(∂C∗
m) (under any bijection from

the vertex set of � to that of ∂C∗
m that takes antipodal vertices to antipodal vertices).

Further, if S is a cs �d/2�-neighborly simplicial (d − 1)-sphere with N vertices, then
Skel�d/2�−1(�) = Skel�d/2�−1(S). Applying the same argument as above to�,�, and
S, we conclude that hi (�) ≤ hi (S) for all 0 ≤ i ≤ d, and hence that f j (�) ≤ f j (S)

for all 1 ≤ j ≤ d − 1. This completes the proof of Theorem 5.3.
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Note that whether a cs �d/2�-neighborly simplicial (d − 1)-sphere with N = 2m
vertices exists or not, the h-numbers (and hence also f -numbers) such a sphere
would have are well defined: hi (S) = hd−i (S) = hi (Skeld−1(C∗

m)) for all i ≤ d/2.
Thus, independently of the existence of such a sphere, Theorem5.3 provides upper
bounds on face numbers of cs simplicial (d − 1)-spheres with N vertices. However,
if a cs �d/2�-neighborly simplicial (d − 1)-sphere with N vertices exists, then these
bounds are tight.

Note also that the proof of Theorem5.3 almost does not use the central symmetry
assumption: instead, it relies on a much weaker condition, namely, on the existence
of a free involution φ : V (�) → V (�) on the vertex set of � such that {v,φ(v)} is
not an edge of � for all v ∈ V (�). We refer our readers to [59] for more details on
the h-vectors of simplicial spheres and manifolds possessing this weaker property
and to [17] for a complete characterization of h-vectors of CM complexes with this
property.

7 The Generalized Lower Bound Theorem for cs Polytopes

Our ultimate dream is to find a cs analog of the g-theorem for cs simplicial polytopes.
While at the moment it is completely out of reach (we do not even have a plausible
upper bound conjecture, let alone a complete characterization!), establishing the
lower bound-type results is a necessary part of the program. To this end, in this
section we discuss a cs analog of the Generalized Lower Bound Theorem for cs
simplicial polytopes. We start by reviewing the classical Lower Bound Theorem
(LBT, for short) and the Generalized Lower Bound Theorem (GLBT, for short). To
state these results, we need a few definitions.

A triangulation of a simplicial d-polytope P is a simplicial d-ball B whose
boundary, ∂B, coincides with ∂P . A simplicial d-polytope P is called (r − 1)-
stacked (for some 1 ≤ r ≤ d) if there exists a triangulation B of P such that
Skeld−r (B) = Skeld−r (∂P), i.e., all “new” faces of this triangulation have dimen-
sion > d − r . Note that the simplices are the only 0-stacked polytopes, and that
1-stacked polytopes—usually referred to as stacked polytopes—are polytopes that
can be obtained from the d-simplex by repeatedly attaching (shallow) d-simplices
along facets. In contrast with the cyclic polytopes, two stacked d-polytopes with n
vertices may not have the same combinatorial type. However, they do have the same
face numbers.

Theorem 7.1. (LBT) Let P be a simplicial d-polytope with d ≥ 4. Then h1(P) ≤
h2(P), with equality if and only if P is stacked.

Theorem 7.2. (GLBT) Let P be a simplicial d-polytope. Then

1 = h0(P) ≤ h1(P) ≤ h2(P) ≤ · · · ≤ h�d/2�(P).

Furthermore, hr (P) = hr−1(P) for some r ≤ d/2 if and only if P is (r − 1)-stacked.
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Since fi−1 is a nonnegative linear combination of h0, h1, . . . , hi , one immediate
corollary of Theorem7.1 is that among all simplicial d-polytopes with n vertices, a
stacked polytope has the smallest number of edges. In fact, Theorem 7.1 together
with a well-known reduction due to McMullen, Perles, and Walkup implies that
among all simplicial d-polytopes with n vertices, stacked polytopes simultaneously
minimize all the face numbers, and that for d ≥ 4, stacked polytopes are the only
minimizers, see [37, Section 5].

The differences between consecutive h-numbers are known as the g-numbers:
g0(P) := 1 and gr (P) := hr (P) − hr−1(P) for 1 ≤ r ≤ d/2. Nonnegativity of g2
for simplicial polytopes of dimension 4 and higher was established by Barnette [10],
while Billera and Lee [15] proved that the equality g2(P) = 0 (for d ≥ 4) holds if
and only if P is stacked. The first part of the GLBT was proved by Stanley [74] (a
more elementary proof of this part is due to McMullen [49, 50]). The second part
was conjectured by McMullen and Walkup, [52] and proved only recently by Murai
and Nevo [55].

Since the d-dimensional cross-polytope has the minimal number of faces among
all cs simplicial d-polytopes and since hr (C∗

d ) = (d
r

)
>

( d
r−1

) = hr−1(C∗
d ) for all 1 ≤

r ≤ d/2, one expects that for this class of polytopes, the inequalities gr (P) ≥ 0 of
the GLBT can be considerably strengthened. Indeed, the following result of Stanley
[75] provides a cs version of the inequality part of the GLBT. This result settled an
unpublished conjecture by Björner.

Theorem 7.3. Let P be a cs simplicial d-polytope. Then

gr (P) ≥
(
d

r

)
−

(
d

r − 1

)
= gr (C∗

d ) for all r ≤ d/2.

Stanley’s proof of the first part of Theorem7.2 is based on the theory of toric
varieties associated with polytopes. Here is a very rough sketch of the argument.
If P ⊂ R

d is a simplicial d-polytope, then a slight perturbation of the vertices
of P does not change its combinatorial type, and so we may assume without
loss of generality that P has rational vertices; further, by translating P , we may
also assume that the origin is in the interior of P . Let V be the vertex set of
P . For each v ∈ V , let (v1, v2, . . . , vd) denote the coordinates of v in R

d , and
define θ j := ∑

v∈V v j xv ∈ R[xv : v ∈ V ] for j = 1, 2, . . . , d. Consider R[∂P]—
the Stanley–Reisner ring of the boundary complex of P over R. Then θ1, . . . , θd
is an l.s.o.p. of R[∂P] (this follows, for instance, from [77, Theorem III.2.4]), and
so by Theorem6.1, dimR (R[∂P]/(�))i = hi (P). On the other hand,R[∂P]/(�) is
isomorphic to the singular cohomology ring of the toric variety XP corresponding to
P (see [20, Theorem 10.8] and [26, Section 5.2] for more details). Let ω = ∑

v∈V xv .
The toric variety XP is known to satisfy the hard Lefschetz theorem, which implies
that for all i ≤ d/2, the multiplication map ·ω : (R[∂P]/(�))i−1 → (R[∂P]/(�))i
is injective, and hence that hi−1(P) ≤ hi (P) for all i ≤ d/2, as desired.

Extending Theorem7.2 to all simplicial spheres is a major open problem in the
field: it is a part of the celebrated g-conjecture. The main obstacle is that all known
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proofs of the g-theorem for simplicial polytopes, see [49, 50, 74], rely heavily on such
tools as toric varieties and the hard Lefschetz theorem or polytopal algebras and the
Hodge–Riemann–Minkowski quadratic inequalities betweenmixed volumes, that is,
tools that are (at least at present) available only for convex polytopes.

To prove Theorem7.3, a few additional ideas are needed. Let P be a cs simplicial
d-polytope or, more generally, let (�,φ) be a cs CM complex over R with vertex
set V . Then the involution φ induces the map σ : xv → xφ(v) on the set of variables
of S = R[xv : v ∈ V ], which, in turn, extends to a unique automorphism σ on S.
Furthermore, since σ(I�) = I�, the map σ gives rise to an automorphism on R[�],
which we also denote by σ. The main insight of [75] is that this allows us to equip
R[�] with a finer grading by N × Z/2Z: indeed, define

R[�](i,+1) := { f ∈ R[�]i : σ( f ) = f } and R[�](i,−1) := { f ∈ R[�]i : σ( f ) = − f }.

Then R[�]i = R[�](i,+1) ⊕ R[�](i,−1) as vector spaces while R[�](i,ε1) · R[�]( j,ε2)
⊆ R[�](i+ j,ε1ε2) for all i, j ∈ N and ε1, ε2 ∈ {±1}. It is also not hard to see that
dimR R[�](i,+1) = dimR R[�](i,−1) = 1

2 dimR R[�]i for all i ≥ 1, and that
R[�](0,+1) = R[�]0 = R.

One can use the Kind–Kleinschmidt criterion [77, Theorem III.2.4] to show that
R[�] has an l.s.o.p. θ1, . . . , θd such that θ j ∈ R[�](1,−1) for all j . (For instance,
for a cs simplicial polytope P and � = ∂P , the l.s.o.p. described in the proof of
Theorem7.2 does the job.) Analyzing the exact sequences as in the proof of Theorem
6.1, see Eq. (6.2), but using our finer grading and, in particular, that ·θ j maps the
degree (i − 1,±1) pieces of R[�]/(θ1, . . . , θ j−1) to the degree (i,∓1) pieces, then
yields that

dimR(R[�]/(�))(i,−1) = 1

2

(
hi (�) −

(
d

i

))
for all 0 ≤ i ≤ d; (7.1)

see [75] for more details. This establishes the following result of Stanley [75]:

Theorem 7.4. Let � be a cs R-CM complex of dimension d − 1. Then hi (�) ≥ (d
i

)

for all i .

We now consider the case of � = ∂P , where P is a cs simplicial d-polytope
(with rational vertices), and θ1, . . . , θd are defined using the coordinates of vertices
of P as in the sketch of the proof of Theorem7.2; in particular, θ j ∈ R[�](1,−1).
Observe thatω = ∑

v∈V xv ∈ R[�](1,+1) and hence that ·ωmaps (R[�]/(�))(i−1,−1)

to (R[�]/(�))(i,−1). As the map ·ω : (R[�]/(�))i−1 → (R[�]/(�))i is injective
for all i ≤ d/2, its restriction to (R[�]/(�))(i−1,−1) is also injective. This, along
with Eq. (7.1), completes the proof of Theorem7.3. It is worth pointing out that
Theorem7.3 was extended by Adin [3, 4] to the classes of all rational simplicial
polytopes with a fixed-point-free linear symmetry of prime and prime-power orders.
Furthermore, A’Campo-Neuen [1] extended Theorem 7.3 to toric g-numbers of all
cs polytopes (including non-rational non-simplicial ones).
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The Murai–Nevo proof [55] of the equality case of Theorem7.2 involves a beau-
tiful blend of tools such as Alexander duality, Stanley–Reisner rings, the Cohen–
Macaulay property, as well as generic initial ideals, and, in particular, Green’s crys-
talization principle [30, Proposition 2.28]. A different proof of both parts of Theorem
7.2, including a sharper version of the inequality part, was very recently obtained by
Adiprasito [5, Cor. 6.5 and §7]. His proof relies on Lee’s generalized stress spaces
[45].

When does equality hold in Theorem7.3? That is, for a fixed r ≤ d/2, is there
a characterization of cs simplicial d-polytopes with gr = (d

r

) − ( d
r−1

)
? In a recent

paper [41], Klee, Nevo, Novik, and Zheng provide such a characterization in the
r = 2 case and a conjectural characterization in the r > 2 case. Both statements
strongly parallel the equality cases of Theorems7.1 and 7.2. If P is a cs simplicial
d-polytope with d ≥ 4, then we can apply to P the symmetric stacking operation:
this operation repeatedly attaches (shallow) simplices along antipodal pairs of facets.
Note that symmetric stacking preserves both central symmetry and g2.

Theorem 7.5. Let P be a cs simplicial d-polytope with d ≥ 4. Then g2(P) = (d
2

) −
d if and only if P is obtained from C∗

d by symmetric stacking.

Conjecture 7.6. Let P be a cs simplicial d-polytope, and assume that gr (P) =(d
r

) − ( d
r−1

)
for some 3 ≤ r ≤ �d/2�. Then there exists a unique polytopal complex C

inRd with the following properties: (i) one of the faces of C is the cross-polytope C∗
d ,

all other faces of C are simplices that come in antipodal pairs, (ii) C is a “cellulation”
of P, that is,

⋃
C∈C C = P, and (iii) each element C ∈ C of dimension ≤ d − r is a

face of P.

We mention that [41, Conjecture 8.6] provides a more detailed version of the
above conjecture, and we refer our readers to Ziegler’s book [84, Section 8.1] for the
definition of a polytopal complex. Conjecture7.6, if true, would imply the following
weaker statement that is also wide open at present. (The r = 2 case does hold; this
is immediate from Theorem 7.5.)

Conjecture 7.7. Let P be a cs simplicial d-polytope. If gr (P) = gr (C∗
d ) for some

3 ≤ r ≤ �d/2� − 1, then gr+1(P) = gr+1(C∗
d ).

One consequence of Theorems7.3 and 7.5, along with the fact that the f -numbers
of spheres are nonnegative linear combinations of the g-numbers, is that among all
cs simplicial d-polytopes with n vertices, a polytope obtained from C∗

d by symmetric
stacking simultaneously minimizes all the face numbers; furthermore, if d ≥ 4, then
such polytopes are the only minimizers.

While we will not discuss here the proof of Theorem 7.5, it is worth pointing out
that it relies on the rigidity theory of frameworks (some ingredients of this theory
are briefly outlined in the next section), and, in particular, on (1) the theorem of
Whiteley [82] asserting that the graph of a simplicial d-polytope (d ≥ 3) with its
natural embedding in R

d is infinitesimally rigid, and on (2) the fact that if P is
a cs simplicial d-polytope with g2(P) = (d

2

) − d, then all stresses on P must be
symmetric (i.e., assign the same weight to each edge and its antipode.) This latter
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observation follows from work of Stanley [75] and Lee [45], and also from more
recent work of Sanyal, Werner, and Ziegler [68, Theorem 2.1].

To summarize: in contrast with the upper bound-type results, an analog of the
GLBT for cs simplicial polytopes (at least its inequality part developed in Theo-
rem7.3) is a very well-understood part of the story. Furthermore, in the case of the
LBT we even have a characterization of the minimizers (see Theorem7.5). The
part that is still missing is a characterization of cs simplicial d-polytopes with
gr = (d

r

) − ( d
r−1

)
for 3 ≤ r ≤ �d/2�. Conjecture7.6 proposes such a characteriza-

tion.

8 The Lower Bound Conjecture for cs Spheres and
Manifolds

The final part of our story concerns a conjectural analog of the LBT for cs spheres
(manifolds and even normal pseudomanifolds)—a necessary step in our quest for a
cs analog of the g-conjecture. To this end, it is worth recalling that in the world of
simplicial complexes without a symmetry assumption, where at present the GLBT
(Theorem7.2) is only known to hold for the class of simplicial polytopes, works of
Walkup [80], Barnette [9], Kalai [37], Fogelsanger [24], and Tay [78] show that the
LBT (Theorem7.1) holds much more generally:

Theorem 8.1. Let � be a simplicial complex of dimension d − 1 ≥ 3. Assume fur-
ther that � is a connected simplicial manifold (or even a normal pseudomanifold).
Then g2(�) ≥ 0, with equality if and only if � is the boundary complex of a stacked
polytope.

In view of this result, we strongly suspect that Stanley’s inequality on the g2-
number of cs polytopes (see Theorem 7.3) as well as the characterization of the
minimizers given in Theorem7.5 continue to hold in the generality of cs simplicial
spheres or perhaps even cs normal pseudomanifolds. This conjecture is howeverwide
open at present.

Conjecture 8.2. Let � be a cs simplicial complex of dimension d − 1 ≥ 3. Assume
further that � is a simplicial sphere (or a connected simplicial manifold or even a
normal pseudomanifold). Then g2(�) ≥ (d

2

) − d. Furthermore, equality holds if and
only if� is the boundary complex of a cs d-polytope obtained from the cross-polytope
C∗
d by symmetric stacking.

In the rest of this short section, we discuss one potential approach to attacking this
conjecture: via the rigidity theory of frameworks. The (now wide) use of this theory
in the study of face numbers of simplicial complexes was pioneered by Kalai in
his celebrated proof of Theorem8.1 for simplicial manifolds [37]. Below we review
several results and definitions pertaining to this fascinating theory. We refer our
readers to Asimow and Roth [6, 7] for a friendly introduction to this subject.
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Let G = (V, E) be a finite graph. A map ρ : V → R
d is called a d-embedding

of G if aff{ρ(v) : v ∈ V } = R
d . The graph G, together with a d-embedding ρ, is

called a d-framework. An infinitesimal motion of a d-framework (G, ρ) is a map
μ : V (G) → R

d such that for any edge {u, v} in G,

d

dt

∣∣∣
t=0

∥∥(ρ(u) + tμ(u)) − (ρ(v) + tμ(v))
∥∥2 = 0.

An infinitesimal motion μ of (G, ρ) is trivial if d
dt

∣∣∣
t=0

∥∥(ρ(u) + tμ(u)) − (ρ(v) +
tμ(v))

∥∥2 = 0 holds for every two vertices u, v of G. (Trivial infinitesimal motions
correspond to a start of an isometricmotion ofRd .)We say that a d-framework (G, ρ)

is infinitesimally rigid if every infinitesimal motion μ of (G, ρ) is trivial.
A stress on a d-framework (G, ρ) is an assignment of weights ω = (ωe : e ∈

E(G)) to the edges of G such that for each vertex v equilibrium holds:

∑

u : {u,v}∈E(G)

ω{u,v}(ρ(v) − ρ(u)) = 0.

We denote the space of all stresses on (G, ρ) by S(G, ρ). The stresses on (G, ρ)

correspond to the elements in the kernel of the transpose of a certain f1(G) × d f0(G)

matrix Rig(G, ρ) known as the rigidity matrix of (G, ρ).
The relevance of rigidity theory to the Lower Bound Theorem is explained by

the following fundamental fact that is an easy consequence of the Implicit Function
Theorem (see [6, 7]).

Theorem 8.3. Let (G, ρ) be a d-framework. Then the following statements are
equivalent:

• (G, ρ) is infinitesimally rigid;
• rank Rig(G, ρ) = d f0(G) − (d+1

2

)
;

• dimR S(G, ρ) = f1(G) − d f0(G) + (d+1
2

)
.

A graph G is called generically d-rigid if there exists a d-embedding ρ of G
such that (G, ρ) is infinitesimally rigid; in this case, the set of infinitesimally rigid
d-embeddings ofG is an open dense subset of the set of all d-embeddings. Recall that
if � is a (d − 1)-dimensional simplicial complex, then g2(�) = h2(�) − h1(�) =
f1(�) − d f0(�) + (d+1

2

)
. The last condition of Theorem8.3 then implies that if the

graph (i.e., 1-skeleton) of � is generically d-rigid, then g2(�) ≥ 0.
Two basic but very useful results in rigidity theory are the gluing lemma ([7,

Theorem 2] and [83, Lemma 11.1.9]) and the cone lemma [81]. The gluing lemma
asserts that if two graphs G1 and G2 are generically d-rigid and share at least d
vertices, then their union G1 ∪ G2 is also generically d-rigid, while the cone lemma
posits that G is generically d-rigid if and only if the graph of the cone over G
is generically (d + 1)-rigid. Additionally, by Gluck’s result [29], the graph of any
simplicial 2-sphere is generically 3-rigid. Now, if� is a simplicial (d − 1)-manifold
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(with d ≥ 4) and F is a (d − 4)-face of �, then the link of F in � is a simplicial
2-sphere and hence has a generically 3-rigid graph. This observation, along with the
gluing and cone lemmas, allowed Kalai [37] to prove by induction on d ≥ 4 that the
graph of any simplicial (d − 1)-manifold is generically d-rigid and thus to establish
the inequality part of Theorem 8.1 for all simplicial manifolds.

The relationship of infinitesimal rigidity to the Stanley–Reisner ring was worked
out in [45]. Specifically, let � be a (d − 1)-dimensional simplicial complex with
vertex set V and let ρ : V → R

d be a d-embedding of the graph of �, G(�). Define
d linear forms in R[xv : v ∈ V ] by θ j := ∑

v∈V ρ(v) j xv for j = 1, . . . , d, where
ρ(v) j denotes the j th coordinate of ρ(v) ∈ R

d , and let θd+1 := ∑
v∈V xv (cf. Sect. 7,

and especially the sketch of the proof of Theorem7.2). Theorem 10 of [45] implies
that if (G(�), ρ) is infinitesimally rigid, then dimR(R[�]/(θ1, . . . , θd , θd+1))2 =
dimR S(G(�), ρ) = g2(�). Equivalently, if (G(�), ρ) is infinitesimally rigid, then
θi+1 : (R[�]/(θ1, . . . , θi ))1 → (R[�]/(θ1, . . . , θi ))2 is an injection for all
0 ≤ i ≤ d.

Assume now that� is centrally symmetric. If there is a d-embedding ρ : V (�) →
R

d that respects symmetry and such that (G(�), ρ) is infinitesimally rigid, then the
previous paragraph along with the N × Z/2Z-grading of R[�] and relevant com-
putations of Sect. 7 (e.g., Eq. (7.1)) shows that g2(�) ≥ (d

2

) − d. (This also follows
from the argument in [68, Section 2].) In particular, the following conjecture, if true,
would imply the inequality part of Conjecture 8.2.

Conjecture 8.4. Let � be a (d − 1)-dimensional cs simplicial complex with an
involution φ. Assume further that � is a simplicial sphere (or a connected simplicial
manifold or even a normal pseudomanifold) and that d − 1 ≥ 3. Then there exists
a d-embedding ρ : V (�) → R

d that respects symmetry, i.e., ρ(φ(v)) = −ρ(v) for
each vertex v of �, and such that (G(�), ρ) is infinitesimally rigid.

For instance, if � is the boundary complex of a cs simplicial d-polytope P ⊂ R
d ,

then byWhiteley’s theorem [82], the natural d-embedding of the graph of P qualifies
for φ as in Conjecture8.4.

One of the reasons Conjecture8.4 appears to be hard in the general case is that
the links of cs complexes are usually not centrally symmetric, and so starting with
cs 2-spheres as the base case (and proceeding by induction via the cone and gluing
lemmas) does not work. Conjecture 8.4 of [41] proposes a statement about rigidity of
graphs of (non-cs) simplicial 2-spheres that, if true, will provide an appropriate base
case, and implyConjecture8.4. In any case, as a step in our quest for a cs analog of the
g-conjecture, it would be extremely interesting to shed any light on Conjectures8.2
and 8.4 as well as to attempt to strengthen the inequality of Conjecture 8.2 in the
spirit of results from [54, Theorem 5.3(i)] and [56]. Such strengthened inequalities
would provide lower bounds on g2 of a cs simplicial manifold (or even a normal
pseudomanifold) � in terms of the first homology or perhaps even in terms of the
fundamental group of � and/or of the Z/2Z-quotient of �.
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9 Concluding Remarks

The recent decades made the theory of face numbers into a very active and a rather
large field. Consequently, there are quite a few topics we glossed over or omitted in
this paper. Among them are the face numbers of general (not necessarily simplicial)
cs polytopes. However, one of the conjectures about general cs polytopes we cannot
avoid mentioning is Kalai’s “3d -conjecture” [39, Conjecture A]: it posits that the
total number of faces in a cs d-polytope (including the empty face but excluding the
polytope itself) is at least 3d . If the conjecture is true, there are multiple minimizers:
the class of polytopes with exactly 3d faces includes at least all the Hanner polytopes.
(If Mahler’s conjecture holds, then Hanner polytopes are the minimizers of Mahler
volume among all the cs convex bodies.) At present the 3d -conjecture is known to
hold for all cs simplicial polytopes (this is an immediate corollary of Theorem7.4)
and, by duality, all simple polytopes, as well as for all at most 4-dimensional cs
polytopes [68]. The conjecture is wide open in all other cases.

We have also only barely touched on the face numbers of cs simplicial manifolds
and instead concentrated on the face numbers of cs simplicial polytopes and spheres.
Papers [59], [61, Section 4], and [42] contain some results pertaining to the Upper
Bound Theorem for cs simplicial manifolds as well as to Sparla’s conjecture [71,
Conjecture 4.12], [72] on the Euler characteristic of even-dimensional cs simplicial
manifolds.

While we had to skip quite a few of the topics and could not possibly do justice
to all of the existing methods, we hope we have conveyed at least some of the
essence and beauty of this fascinating subject! We are very much looking forward to
progress on the many existing as well as yet unstated problems about cs polytopes
and simplicial complexes, and to new interactions between combinatorics, discrete
geometry, commutative algebra, and geometric analysis thatwill lead to this progress!

Acknowledgements I am grateful to Steve Klee, Connor Sawaske, Hailun Zheng, Günter Ziegler,
and the anonymous referee for numerous comments on the preliminary version of this paper.

References

1. A. A’Campo-Neuen, On toric h-vectors of centrally symmetric polytopes. Arch. Math. (Basel)
87(3), 217–226 (2006)

2. R.M. Adin, Combinatorial structure of simplicial complexes with symmetry. Ph.D. thesis,
Hebrew University, Jerusalem (1991)

3. R.M.Adin,On h-vectors and symmetry, JerusalemCombinatorics ’93, vol. 178, Contemporary
in Mathematics (American Mathematical Society, Providence, 1994), pp. 1–20

4. R.M. Adin, On face numbers of rational simplicial polytopes with symmetry. Adv. Math.
115(2), 269–285 (1995)

5. K. Adiprasito, Toric chordality. J. Math. Pures Appl. (9) 108(5), 783–807 (2017)
6. L. Asimow, B. Roth, The rigidity of graphs. Trans. Am. Math. Soc. 245, 279–289 (1978)
7. L. Asimow, B. Roth, The rigidity of graphs II. J. Math. Anal. Appl. 68(1), 171–190 (1979)



A Tale of Centrally Symmetric Polytopes and Spheres 329

8. K. Ball, An elementary introduction to modern convex geometry, in Flavors of Geometry,
vol. 31, Mathematical Sciences Research Institute Publications (Cambridge University Press,
Cambridge, 1997)

9. D. Barnette, Graph theorems for manifolds. Isr. J. Math. 16, 62–72 (1973)
10. D. Barnette, A proof of the lower bound conjecture for convex polytopes. Pac. J. Math. 46,

349–354 (1973)
11. A. Barvinok, A Course in Convexity, vol. 54, Graduate Studies in Mathematics (American

Mathematical Society, Providence, 2002)
12. A. Barvinok, S.J. Lee, I. Novik, Explicit constructions of centrally symmetric k-neighborly

polytopes and large strictly antipodal sets. Discret. Comput. Geom. 49(3), 429–443 (2013)
13. A. Barvinok, S.J. Lee, I. Novik, Neighborliness of the symmetric moment curve. Mathematika

59(1), 223–249 (2013)
14. A. Barvinok, I. Novik, A centrally symmetric version of the cyclic polytope. Discret. Comput.

Geom. 39(1–3), 76–99 (2008)
15. L.J. Billera, C.W. Lee, A proof of the sufficiency of McMullen’s conditions for f -vectors of

simplicial convex polytopes. J. Comb. Theory Ser. A 31, 237–255 (1981)
16. A. Björner, A. Paffenholz, J. Sjöstrand, G.M. Ziegler, Bier spheres and posets. Discret. Comput.

Geom. 34(1), 71–86 (2005)
17. J. Browder, I. Novik, Face numbers of generalized balanced Cohen-Macaulay complexes.

Combinatorica 31(6), 669–689 (2011)
18. G.R. Burton, The nonneighbourliness of centrally symmetric convex polytopes having many

vertices. J. Comb. Theory Ser. A 58, 321–322 (1991)
19. C. Carathéodory, Über den Variabilitatsbereich det Fourierschen Konstanten von positiven

harmonischen Furktionen. Rend. Circ. Mat. Palermo 32, 193–217 (1911)
20. V.I. Danilov, The geometry of toric varieties. Uspekhi Mat. Nauk 33(2(200)), 85–134, 274

(1978)
21. L. Danzer, B. Grünbaum, Über zwei probleme bezüglich konvexer körper von P. Erdös und

von V. L. Klee. Math. Z. 79, 95–99 (1962)
22. D.L. Donoho, High-dimensional centrally symmetric polytopes with neighborliness propor-

tional to dimension. Discret. Comput. Geom. 35(4), 617–652 (2006)
23. D.L. Donoho, J. Tanner, Exponential bounds implying construction of compressed sensing

matrices, error-correcting codes, and neighborly polytopes by random sampling. IEEE Trans.
Inf. Theory 56(4), 2002–2016 (2010)

24. A. Fogelsanger, The generic rigidity of minimal cycles. Ph.D. thesis, Cornell University (1988)
25. G. Freiman, E. Lipkin, L. Levitin, A polynomial algorithm for constructing families of k-

independent sets. Discret. Math. 70(2), 137–147 (1988)
26. W. Fulton, Introduction to toric varieties, in The William H. Roever Lectures in Geometry, vol.

131, Annals of Mathematics Studies (Princeton University Press, Princeton, 1993)
27. D. Gale, Neighborly and cyclic polytopes, in Proceedings of the Seventh Symposium in Pure

Mathematics, Vol. VII. (American Mathematical Society, Providence, 1963), pp. 225–232
28. A.Y. Garnaev, E.D. Gluskin, The widths of a Euclidean ball. Dokl. Akad. Nauk SSSR 277(5),

1048–1052 (1984). (English translation: Sov. Math. Dokl. 30(1), 200–204 (1984))
29. H. Gluck, Almost all simply connected closed surfaces are rigid, in Geometric Topology (Pro-

ceedings of the Geometric Topology Conference, Park City, Utah, 1974), Lecture Notes in
Mathematics, vol. 438 (Springer, Berlin, 1975), pp. 225–239

30. M.L. Green, Generic initial ideals, in Six Lectures on Commutative Algebra (Bellaterra, 1996),
vol. 166, Progress in Mathematics (Birkhäuser, Basel, 1998), pp. 119–186

31. B. Grünbaum, Convex Polytopes, vol. 221, 2nd edn., Graduate Texts in Mathematics (Springer,
New York, 2003). Prepared and with a preface by Volker Kaibel, Victor Klee and Günter M,
Ziegler

32. B. Grünbaum, T.S. Motzkin, On polyhedral graphs, in Proceedings of Symposia in Pure Math-
ematics, Vol. VII (American Mathematical Society, Providence, 1963), pp. 285–290

33. E.R. Halsey, Zonotopal complexes on the d-cube. Ph.D. thesis, University of Washington
(1972)



330 I. Novik

34. P. Hersh, I. Novik, A short simplicial h-vector and the upper bound theorem. Discret. Comput.
Geom. 28(3), 283–289 (2002)

35. M. Hochster, Cohen-Macaulay rings, combinatorics, and simplicial complexes, inRing Theory,
II (Proceedings of the Second Conference, Univ. Oklahoma, Norman, Okla., 1975), vol. 26,
Lecture Notes in Pure and Applied Mathematics (Dekker, New York, 1977), pp. 171–223

36. W. Jockusch, An infinite family of nearly neighborly centrally symmetric 3-spheres. J. Comb.
Theory Ser. A 72(2), 318–321 (1995)

37. G. Kalai, Rigidity and the lower bound theorem I. Invent. Math. 88, 125–151 (1987)
38. G. Kalai, Many triangulated spheres. Discret. Comput. Geom. 3(1), 1–14 (1988)
39. G. Kalai, The number of faces of centrally-symmetric polytopes. Graphs Comb. 5(1), 389–391

(1989)
40. B.S. Kašin, The widths of certain finite-dimensional sets and classes of smooth functions. Izv.

Akad. Nauk SSSR Ser. Mat. 41(2): 334–351, 478 (1977)
41. S. Klee, E. Nevo, I. Novik, H. Zheng, A lower bound theorem for centrally symmetric simplicial

polytopes. Discret. Comput. Geom. (2018). https://doi.org/10.1007/s00454-018-9978-z
42. S. Klee, I. Novik, Centrally symmetric manifolds with few vertices. Adv. Math. 229, 487–500

(2012)
43. V. Klee, A combinatorial analogue of Poincaré’s duality theorem. Can. J. Math. 16, 517–531

(1964)
44. V. Klee, On the number of vertices of a convex polytope. Can. J. Math. 16, 701–720 (1964)
45. C.W. Lee, Generalized stress and motions, in Polytopes: Abstract, Convex And Computational

(Scarborough, ON, 1993), vol. 440, NATO Advanced Study Series C Institute Mathematical
and Physical Sciences (Kluwer Academic Publishers, Dordrecht, 1994), pp. 249–271

46. N. Linial, I. Novik, How neighborly can a centrally symmetric polytope be? Discret. Comput.
Geom. 36, 273–281 (2006)

47. F. Lutz, Triangulated manifolds with few vertices and vertex-transitive group actions. Disser-
tation, Technischen Universität Berlin, Berlin (1999)

48. P.McMullen, Themaximum numbers of faces of a convex polytope.Mathematika 17, 179–184
(1970)

49. P. McMullen, On simple polytopes. Invent. Math. 113(2), 419–444 (1993)
50. P. McMullen, Weights on polytopes. Discret. Comput. Geom. 15(4), 363–388 (1996)
51. P. McMullen, G.C. Shephard, Diagrams for centrally symmetric polytopes. Mathematika 15,

123–138 (1968)
52. P. McMullen, D.W. Walkup, A generalized lower-bound conjecture for simplicial polytopes.

Mathematika 18, 264–273 (1971)
53. T.S. Motzkin, Comonotone curves and polyhedra. Bull. Am. Math. Soc. 63, 35 (1957)
54. S. Murai, Tight combinatorial manifolds and graded Betti numbers. Collect. Math. 66(3), 367–

386 (2015)
55. S. Murai, E. Nevo, On the generalized lower bound conjecture for polytopes and spheres. Acta

Math. 210(1), 185–202 (2013)
56. S. Murai, I. Novik, Face numbers and the fundamental group. Isr. J. Math. 222(1), 297–315

(2017)
57. E. Nevo, F. Santos, S.Wilson, Many triangulated odd-dimensional spheres. Math. Ann. 364(3–

4), 737–762 (2016)
58. I. Novik, Upper bound theorems for homology manifolds. Isr. J. Math. 108, 45–82 (1998)
59. I. Novik, On face numbers of manifolds with symmetry. Adv. Math. 192, 183–208 (2005)
60. I. Novik, From acute sets to centrally symmetric 2-neighborly polytopes. SIAM. J. Discret.

Math. 32, 1572–1576 (2018)
61. I. Novik, E. Swartz, Socles of buchsbaum modules, posets and complexes. Adv. Math. 222,

2059–2084 (2009)
62. I. Novik, E. Swartz, Face numbers of pseudomanifolds with isolated singularities.Math. Scand.

110(2), 198–222 (2012)
63. A. Padrol, Many neighborly polytopes and oriented matroids. Discret. Comput. Geom. 50(4),

865–902 (2013)

https://doi.org/10.1007/s00454-018-9978-z


A Tale of Centrally Symmetric Polytopes and Spheres 331

64. J. Pfeifle, Extremal constructions for polytopes and spheres. Dissertation, Technischen Uni-
versität Berlin, Berlin (2003)

65. J. Pfeifle, G.M. Ziegler, Many triangulated 3-spheres. Math. Ann. 330(4), 829–837 (2004)
66. G.A. Reisner, Cohen-Macaulay quotients of polynomial rings. Adv.Math. 21(1), 30–49 (1976)
67. M. Rudelson, R. Vershynin, Geometric approach to error correcting codes and reconstruction

of signals. Int. Math. Res. Not. 64, 4019–4041 (2005)
68. R. Sanyal, A. Werner, G.M. Ziegler, On Kalai’s conjectures concerning centrally symmetric

polytopes. Discret. Comput. Geom. 41(2), 183–198 (2009)
69. R. Schneider, Neighbourliness of centrally symmetric polytopes in high dimensions. Mathe-

matika 22, 176–181 (1975)
70. Z. Smilansky, Convex hulls of generalized moment curves. Isr. J. Math. 52(1–2), 115–128

(1985)
71. E. Sparla, Geometrische und kombinatorische Eigenschaften triangulierterMannigfaltigkeiten.

Berichte aus der Mathematik. [Reports from Mathematics]. Verlag Shaker, Aachen. Disserta-
tion, Universität Stuttgart, Stuttgart (1997)

72. E. Sparla,Anupper and a lower bound theorem for combinatorial 4-manifolds.Discret.Comput.
Geom. 19, 575–593 (1998)

73. R.P. Stanley, The upper bound conjecture and Cohen-Macaulay rings. Stud. Appl. Math. 54,
135–142 (1975)

74. R.P. Stanley, The number of faces of a simplicial convex polytope. Adv. Math. 35, 236–238
(1980)

75. R.P. Stanley, On the number of faces of centrally-symmetric simplicial polytopes. Graphs
Comb. 3, 55–66 (1987)

76. R.P. Stanley, A monotonicity property of h-vectors and h∗-vectors. Eur. J. Comb. 14(3), 251–
258 (1993)

77. R.P. Stanley, Combinatorics and Commutative Algebra, 2nd edn., Progress in Mathematics
(Birkhäuser, Boston, 1996)

78. T.-S. Tay, Lower-bound theorems for pseudomanifolds. Discret. Comput. Geom. 13(2), 203–
216 (1995)

79. C. Vinzant, Edges of the Barvinok-Novik orbitope. Discret. Comput. Geom. 46(3), 479–487
(2011)

80. D.W. Walkup, The lower bound conjecture for 3- and 4-manifolds. Acta Math. 125, 75–107
(1970)

81. W. Whiteley, Cones, infinity and 1-story buildings. Struct. Topol. 8, 53–70 (1983)
82. W. Whiteley, Infinitesimally rigid polyhedra. I. Statics of frameworks. Trans. Am. Math. Soc.

285(2), 431–465 (1984)
83. W. Whiteley, Some matroids from discrete applied geometry, inMatroid Theory (Seattle, WA,

1995), vol. 197, Contemporary in Mathematics (American Mathematical Society, Providence,
1996), pp. 171–311

84. G.M. Ziegler, Lectures on Polytopes, vol. 152, Graduate Texts in Mathematics (Springer, New
York, 1995)



Crystal Constructions in Number Theory

Anna Puskás

Abstract Weyl group multiple Dirichlet series and metaplectic Whittaker functions
can be described in terms of crystal graphs. We present crystals as parameterized
by Littelmann patterns, and we give a survey of purely combinatorial constructions
of prime power coefficients of Weyl group multiple Dirichlet series and metaplec-
tic Whittaker functions using the language of crystal graphs. We explore how the
branching structure of crystals manifests in these constructions, and how it allows
access to some intricate objects in number theory and related open questions using
tools of algebraic combinatorics.

1 Introduction

Crystal graphs are combinatorial objects appearing in the representation theory of
semisimple Lie algebras. To an irreducible representation of a semisimple Lie algebra
g, one may associate a crystal graph C. The vertices of this graph are in bijection
with a weight basis of the representation, and the edges are colored by a set of simple
roots of g.

Crystals were first studied in connection with the representation theory of the
quantized universal enveloping algebra. However, in this chapter it is their structure
as a colored (directed) graph and their symmetries related to theWeyl group of g that
are of interest to us. Crystals turn out to be a valuable tool in constructing certain
objects from number theory: coefficients of multiple Dirichlet series and metaplectic
Whittaker functions.

Interest in multiple Dirichlet series and metaplectic Whittaker functions is moti-
vated by hard questions in analytic number theory, for example, the Lindelöf Hypoth-
esis, and the studyof automorphic forms [20]. The relevant literature in number theory
is extensive (see Sect. 1.2). However, since these objects have constructions that are
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almost purely combinatorial in nature, their study can be approached using tools of
algebraic combinatorics.

In this chapter, we are interested in this approach. Our main goal is to present
combinatorial constructions of metaplectic Whittaker functions and coefficients of
multiple Dirichlet series corresponding to root systems of the four infinite families
of Cartan types. To do so, we use the language of Littelmann patterns. We highlight
how the branching structure of crystals is apparent in the constructions and indicate
how this aspect turns out to be significant in the study of the related questions from
number theory.

Before giving an overview of the structure of the chapter, we say a few more
words on the relevant objects.

Crystal graphs can be parameterized (without referring to the representation the-
ory of the quantum group) using a variety of combinatorial devices, such as the Lit-
telmann path model, Gelfand–Tsetlin patterns, Lusztig’s parametrization [35, 36],
tableaux of Lakshmibai and Sheshadri [32] or Kashiwara and Nakashima [31]. For
a thorough introduction to the theory of crystals from a combinatorial perspective,
the reader is encouraged to consult [18].

Here we present crystals in terms of Berenstein–Zelevinsky–Littelmann paths
and Littelmann patterns [34]. Our reason for this choice is twofold. First, most of
the constructions in number theory that we are concerned with were either originally
given in this language, or are easily rephrased in such terms. Moreover, phrasing the
constructions in terms of Littelmann patterns highlights the role of the branching
structure of crystals (as well as the significance of some “nice elements” of the Weyl
group) very well.

A major hurdle any expository writing on this topic has to overcome is the inher-
ent intricacy and volume of the theory of multiple Dirichlet series and metaplectic
Whittaker functions. Since we wish to take a purely combinatorial approach, we
largely try and circumvent this issue. Some background on multiple Dirichlet series
andWhittaker functions (as well as on metaplectic groups) will be given in Sect. 2.4.
For now we say that through their connection to an algebraic group over a local
or global field, these objects from number theory are related to the representation
theory of the underlying Lie algebra g. Their constructions involve producing, for
a dominant weight λ, a polynomial Pλ(x) in r variables, where r is the rank of
the Lie algebra g. In Sect. 2.4, we shall say more about how a Weyl group multiple
Dirichlet series or a metaplectic Whittaker function gives rise to such a polynomial
Pλ. However, for most of the chapter we shall ignore details of this background and
concern ourselves with producing a polynomial Pλ as a sum over a crystal graph.
The “constructions” mentioned throughout the chapter refer to constructions of a
polynomial Pλ, depending on the context, this may agree with a p-part of a Weyl
group multiple Dirichlet series or certain values of a spherical Whittaker function.

The combinatorial perspective of focusing our attention on the polynomials Pλ

is, on the one hand, helpful when considering questions motivated by the analytic
background. On the other hand, these objects are interesting in their own right. This
is due to the fact that they can be thought of as deformations of highest weight
characters. As a result, techniques of character theory come into play. As a method
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to study these polynomials, it provides insight into the original analytical objects.
Furthermore, it motivates further questions.

To provide an example, we mention two aspects of the polynomials Pλ now. One
is Weyl symmetry: the polynomials Pλ inherit certain functional equations under the
Weyl group corresponding to the underlying root system. Hence one may construct
such a polynomial by (1) taking a sum over an object that is similarly symmetric,
such as a highest weight crystal or (2) by taking an “average” over the Weyl group.
(See Sect. 1.2 for relevant results in the literature.) Understanding the relationship
between these two approaches is a large part of the motivation between studying the
constructions combinatorially, and in the cases where the question is resolved, the
branching structure of crystals turns out to play a significant role.

We briefly explain the relevance of character theory. In the simplest special case,
Pλ looks very similar to the deformation of a Schur polynomial; more generally, to
the deformation of a Weyl character. (For Pλ a Whittaker function, this is a conse-
quence of the Casselman–Shalika formula.) Hence one expects that the behavior of
families of polynomials Pλ will be similar to the behavior of characters. On the one
hand, this means that identities ofWeyl characters may provide a useful tool of study.
These come in a couple of different flavors. For example, the Weyl(-Kac) character
formula produces a character. Branching rules describe the behavior of characters
under restriction. Indeed, Tokuyama’s theorem (a deformation of the Weyl character
formula) turns out to be key in investigating the relationship of the two approaches (1)
and (2) mentioned above. Generalizing it to the polynomials Pλ requires understand-
ing the branching properties of the Pλ. We shall elaborate on this point in Sects. 1.3
and 1.4 below.

On the other hand, one may ask if products of the Pλ satisfy some “enhanced”
version of other character identities. For example, does a product of such polynomials
satisfy “deformed” Pieri and Littelwood–Richardson rules? Question of this flavor
may be investigated using any description of these objects. We shall see that the Pλ

can be defined in terms of the combinatorial structure of a crystal and a few Gauss
sums. Hence any question about them can be phrased in terms of the crystal structure
and identities of Gauss sums.

We give an overview of the structure of the chapter.

1.1 Structure of the Paper

In the remainder of this Introduction, we first give a brief review of results con-
structing Weyl group multiple Dirichlet series or metaplectic Whittaker functions
(Sect. 1.2). In Sect. 1.3, we explain how a theorem of Tokuyama is related to this
topic, and how Demazure–Lusztig operators can be used to study, and extend the
constructions discussed in this chapter to greater generality. Section1.4 provides
some further insight into the meaning and significance of branching.

Littelmann patterns and their bijection with crystal elements are discussed in
Sect. 3. The constructions of Whittaker functions and prime power coefficients of
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multiple Dirichlet series in terms of highest weight crystals are presented in Sect. 4,
and the relationship of the constructions with the branching structure of crystals is
highlighted in Sect. 5.

Section2 serves to present some preliminaries. We introduce notation (Sect. 2.1)
and present Gauss sums, a necessary arithmetic ingredient to the constructions
(Sect. 2.2). We then give a brief introduction to crystals and Berenstein–Zelevinsky–
Littelmann paths (Sect. 2.3). We also provide a little more insight into how coef-
ficients of multiple Dirichlet series and Weyl group metaplectic Whittaker func-
tions give rise to polynomials Pλ(x), related to sums over highest weight crystals
(Sect. 2.4).

1.2 A Review of Literature

We discuss the literature of constructions of multiple Dirichlet series and Whittaker
functions. Our interest here is from the perspective of combinatorics. Hence we shall
focus on the role of the branching structure of the crystals and the significance of
special words in the Weyl group. For an insightful and thorough introduction to the
topic from a number-theoretic perspective, the reader is encouraged to consult [17],
the Introduction of the volume where many of the constructions discussed in this
chapter were published. The role of this section is to provide this topic with a wider
context; strictly speaking, it is not necessary for the understanding of any of the later
parts.

Brubaker, Bump, Chinta, Friedberg, and Hoffstein [12] introduced Weyl group
multipleDirichlet series (WMDS), series in several complexvariableswith functional
equations governed by a finiteWeyl group, corresponding to a root system� of finite
type. As mentioned above, there are two separate approaches to how to associate a
WMDS to a root system: by taking a sum over a crystal, or by Chinta and Gunnells
[21], by averaging over the Weyl group.

The authors of [12] conjecturally related WMDS to Whittaker coefficients of
metaplectic Eisenstein series. This connection is of interest in that it allows one
to prove functional equations and analytic continuation of the constructed series.
Elucidating this connection motivates study of these objects as well. In the following
paragraphs when we refer to a “conjectural description” of a WMDS as a sum over a
crystal, we mean either that the constructed series is conjectured to be the Whittaker
coefficient of a metaplectic Eisenstein series, or that it is conjectured to agree with a
series constructed via the averaging method.

We shall mention relevant results in all four infinite families of Cartan types; some
of these results will be covered in more detail in Sect. 4.

Brubaker, Bump, and Friedberg [15] describe the Fourier–Whittaker coefficients
of Eisenstein series on a metaplectic cover of the general linear group as a Weyl
groupmultiple Dirichlet series. They compute the prime power coefficients (p-parts)
of these series in terms of the string parametrization of a crystal by Berenstein and
Zelevinsky [4, 5] and Littelmann [34]. In [14], the same authors further explore the
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combinatorics in the type A case. They give two separate constructions of the p-
part in type A. These can be seen as corresponding to two different choices of nice
decompositions of the long element of the Weyl group. The authors then prove that
the two descriptions give the same p-parts through a subtle combinatorial argument.
The equivalence of the two statements allows them to prove analytic continuation and
functional equations for the emergingmultipleDirichlet series. In proving the equiva-
lence, they observe the significance of some purely combinatorial phenomena—such
as the Schützenberger involution. Their method provides an example of how to build
p-parts of multiple Dirichlet series out of finite crystal data.

Beineke, Brubaker, and Frechette [1, 2] give a definition for a WMDS in terms of
statistics on a highest weight crystal of Cartan type C . They prove analytic continu-
ation and functional equation of such series using a connection to Eisenstein series
over odd orthogonal groups in the nonmetaplectic case, and conjecture a similar
connection in general.

Friedberg and Zhang [26] study Eisenstein series over metaplectic covers of odd
orthogonal groups. They then describe the p-parts of the MDS that are theWhittaker
coefficients of these series in terms of type C highest weight crystals. They in fact
give two descriptions. The first one is only valid in the case of odd covers; this proves
the conjectured connection in [2] above. The second is uniform in the degree n of the
metaplectic cover, but the assignment of number-theoretic data to the combinatorial
structure is more subtle. An interesting feature of their methods is that they are is
inductive by rank. Furthermore, the proof of the agreement of two descriptions relies
on the type A theory of [14].

As for type D, Chinta and Gunnells [22] give a conjectural construction of a
Weyl group multiple Dirichlet series of type D. The p-part of a series is produced
as a sum over a highest weight crystal associated to an irreducible representation of
SO(2r). The contribution of a crystal element to the sum is described in terms of
the corresponding Littelmann pattern.

We also mention constructions of Whittaker functions. McNamara [39] consid-
ers Whittaker functions on metaplectic covers of a simple algebraic group over a
nonarchimedean local field. The Whittaker function is given as an integral (over the
unipotent radical). Given a reduced decomposition of the long element in the Weyl
group, one may break up the domain of integration into a set of cells. These cells are
in a natural bijection with elements of an (infinite) crystal. By computing the integral
on each cell, the Whittaker function is produced as a sum over a(n infinite) crystal
structure. In type A, the resulting formula for the Whittaker function agrees with the
formula given for local parts of a Weyl group multiple Dirichlet series by [15].

The averaging approach can also be used to construct metaplecticWhittaker func-
tions as shown by Chinta and Offen [24] in the type A case, and McNamara [40] in
general. Work of McNamara thereby provides a number-theoretic proof that the two
methods (averaging and crystal constructions) produce the same local parts.

From a combinatorial perspective, the formulas produced by the two separate
approaches (averaging or sum over a crystal) are related in the nonmetaplectic case
by a theorem of Tokuyama [45]. More generally, Demazure operators can be used
to elucidate the connection between the two approaches [23, 44] combinatorially.
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This relies heavily on the branching properties of crystals. This is explained in more
detail in Sects. 1.3 and 1.4.

The reason for the emergence of crystal bases in the study of these topics in itself
warrants further exploration. Some results of this flavor exist both in the local and
in the global setting. As mentioned above, the work of McNamara [39] expresses a
Whittaker function as a sum over cells of the unipotent radical. The cell decompo-
sition is then related to geometric realizations of the crystal in terms of Lusztig data
[37] and Mirković–Vilonen cycles [7]. In the global setting, Brubaker and Friedberg
[8] study Whittaker coefficients of metaplectic Eisenstein series induced from max-
imal parabolics. They produce a formula for the Whittaker coefficient for a wide
class of long words in the Weyl group by matching contributions with Lusztig data
through MV polytopes considered by Kamnitzer [29].

In addition, highest weight crystals are not the only combinatorial device that
is of use in constructing these number-theoretic objects. An other approach uses
metaplectic ice [9, 10, 13].

1.3 Tokuyama’s Theorem

In this section, we explain how the results above relate to a deformation of the Weyl
character formula by Tokuyama [45], and how understanding the branching structure
of crystals elucidates the relationship of the constructions.

The constructions produce a polynomial Pλ(x) that satisfies certain functional
equations under a Weyl group W. (Here we assume that the polynomial ring C[x]
in r variables is identified with the group algebra of the weight lattice.) This is done
either by taking a sum over a highest weight crystal Cλ, or by taking an average over
the Weyl group. We explain how both of these strategies results in a polynomial that
is, roughly speaking, a deformation of a Weyl character.

First let us consider the method of producing the polynomial Pλ by taking a sum
over the crystal graph:

Pλ(x) =
∑

b∈Cλ

G(b)xwt(b) (1)

The elements of the crystal Cλ are in bijection (via the weight map wt) with a weight
basis of a representation of highest weight λ. Note that if we had G(b) = 1 for every
element of the crystal in (1), then the resulting sum would be the character χλ of this
highest weight representation:

∑

b∈Cλ

1 · xwt(b) = χλ(x) = 1

�
·
∑

w∈W
(−1)�(w) · w(xλ+ρ) (2)

Here the right-hand side is theWeyl character formula, and� is aWeyl denominator.
In general G(b) is more complicated, but in the simplest case we have that in fact
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Pλ(x) =
∑

b∈Cλ

G(b)xwt(b) = �q · χλ(x) (3)

where �q is a deformation of the Weyl denominator.
Next let us consider the “averaging approach” to constructing the polynomial

Pλ(x). This approach produces Pλ(x) by an expression similar to the right-hand side
of (2). However, the action of w on the monomial xλ+ρ is replaced by the Chinta–
Gunnells action [21], which depends on the metaplectic degree n. In the special case
of n = 1, this construction results in the expression �q · χλ(x) as well.

The statement that the two approaches to constructing Pλ give the same result
can thus be phrased as a combinatorial identity, a deformation of the Weyl character
formula. In the nonmetaplectic case, this is the second equality in (3), and this identity
is a theorem by Tokuyama [45].

When n > 1, then understanding the relationship between the two constructions
of Pλ combinatorially amounts to proving a metaplectic analogue of Tokuyama’s
theorem. In the type A case, this was done by the author in [44] using metaplectic
Demazure–Lusztig operators defined in [23].

We mention that analogues of Tokuyama’s theorem for root systems of other
types have been given by Hamel and King [28] (for type B) and Friedlander, Gaudet,
and Gunnells [27] (in type G2). Note also that the agreement between the rele-
vant constructions in the type A case follows from work of McNamara as indicated
above. However, treating these sides combinatorially via Demazure–Lusztig opera-
tors allows one to understand how the constructions can be extended to more general
settings, for example, from the finite dimensional to the general Kac–Moody set-
ting [42], or, from Whittaker functions to the constructions of Iwahori–Whittaker
functions [43].

The proof of the metaplectic analogue of Tokuyama’s theorem in [44] relies
heavily on the type A crystal construction “respecting” the branching structure of
the highest weight crystal. We explain this in more detail next.

1.4 Motivation: Demazure–Lusztig Operators and the
Branching Structure

As seen above, understanding the combinatorial relationship between different con-
structions of the polynomial Pλ (whichmay be aWhittaker function or the prime part
of a WMDS) amounts to proving a metaplectic analogue of Tokuyama’s theorem.

Using Demazure–Lusztig operators, one may phrase a more general identity,
corresponding to elements w of the Weyl group, and any metaplectic degree n. The
more general identity [44, Theorem 1.] is of the form:

(
∑

u≤w

Tu

)
xλ =

∑

b∈C(w)

λ

G(b)xwt(b) (4)
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Here the expression on the left-hand side can be thought of as the general form of the
expression produced by the averaging method (by results in [23]) and the right-hand
side is a sum over a Demazure crystal. The “metaplectic analogue of Tokuyama’s
theorem” (in type A) is the special case of this statement corresponding to w being
the long element of the Weyl group. This more general statement has the advantage
that it can be proven “one simple reflection at a time,” i.e., by induction on the length
�(w) of the Weyl group element.

The fact that the construction of Pλ as a sum over a highest weight crystal respects
the branching structure of the crystal is crucial to the proof.We explainwhat wemean
by this below. We shall return to this discussion in more detail in Sect. 5 equipped
with the necessary background.

The crystal Cλ is graph, whose edges are labeled by simple roots αi (1 ≤ i ≤ r )
of an underlying Lie algebra or rank r. When the edges labeled by αr are omitted,
the remaining graph is a disjoint union of crystals Cμ, corresponding to a Lie algebra
of the same Cartan type as g, but rank r − 1 :

Cλ = �μCμ (5)

A crystal element b ∈ Cλ has a contribution G(b) = Gλ(b) in the sum (1). The
element b belongs to exactly one of the rank r − 1 crystals Cμ ⊂ Cλ. The element
b has a contribution in the analogous construction of Pμ(x). By the constructions
respecting the branching structure, we mean that we have

Gλ(b) = g(μ) · Gμ(b), (6)

where the factor g(μ) is the same for every element b ∈ Cμ ⊂ Cλ. It follows that Pλ

can be written as an expression of polynomials Pμ corresponding to the weights μ
of the decomposition (5) above.

This means that statements about these crystal constructions are amenable to
proof by induction on rank. The parametrization of crystal elements by Littelmann
patterns highlights the branching structure of crystals. We encourage the reader to
keep the branching structure in mind while reading through the sections covering the
ingredients of the constructions.

2 Preliminaries

Before describing the constructions mentioned above, we cover a few preliminaries.
The constructions in Sect. 4 have two main ingredients: a set of root data and an
arithmetic ingredient in the form of certain Gauss sums. We introduce notation and
the necessary ingredients below.
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2.1 Notation

Throughout the paper, � shall denote a root system of rank r , with �+ (respectively
�−) being the set of positive (respectively, negative) roots. Let � = {α1, . . . ,αr } be
a set of simple roots in �, and let us write ρ = 1

2

∑
β∈�+ β for the Weyl vector. Of

particular interest are the root systems of Cartan types A, B,C and D.We give [6] as
a general reference on root systems. Note however that when discussing Littelmann
patterns [34], our numbering of the simple roots agrees with that of Littelmann and
hence differs from that of Bourbaki. (For example in type D, the simple roots α1 and
α2 are orthogonal.)

Let uswriteσ1, . . . ,σr for the set of simple reflections corresponding to the simple
roots; σi is the reflection through the hyperplane perpendicular toαi .TheWeyl group
W is generated by the simple reflections σi (1 ≤ i ≤ r ). Every element w ∈ W can
be written as a product w = σi1 · · · σik . We call this a reduced decomposition and
w = [i1, . . . , ik] a reduced word if k is minimal and k = �(w), the length of w. The
Weyl group has a unique longest element w0 ∈ W. The parameterization of highest
weight crystals by Littelmann patterns given in Sect. 3 depends on a choice of a nice
decomposition w0 of the long element.

The Weyl group permutes the elements of �. Let �(w) = w−1(�−) ∩ �+, then
�(w) = |�(w)| and �(w0) = �+. We shall denote the weight lattice corresponding
to� by�, and the fundamental weights corresponding to the basis� by�1, . . . ,�r .

The constructions we are concerned with produce polynomials in C[�]. The Weyl
group has a natural action on�, and hence onC[�], it thus makes sense to talk about
the resulting polynomials being symmetric (or having functional equations) under
the Weyl group.

2.2 Gauss Sums

Next we introduce notation for the arithmetic ingredients of the polynomials con-
structed in Sect. 4. The contribution of a crystal element is given by nth-order Gauss
sums, where n is a positive integer. (In applications, n is the degree of the metaplectic
cover.) Recall that (for n = 2), one may take the quadratic Gauss sum

G(a) =
p∑

k=0

(
k

p

)
e

ka2πi
p (7)

where
(

k
p

)
is the Legendre symbol; i.e., it is 1 if k is a square modulo p and −1

otherwise. The Gauss sums appearing in the construction are generalizations of the
one in (7). The Legendre symbol is replaced by an nth power residue symbol (a

multiplicative character), and e
ka2πi

p is replaced by an additive character.
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To state the definition of the Gauss sums g(a)(=gt (a)) and h(a)(=ht (a)), we
introduce some more notation. We use the language of local and global fields, and
provide examples (see [41] for reference). The Gauss sums g(a) and h(a) are func-
tions that depend on the residue of a modulo n. For the purpose of understanding the
constructions and their relationship to the branching structure of crystals, the values
of these functions are not crucial.

Following [11], let F be a global field; the reader may choose to simply think of
Q as an example. For a place v of F , one may take the completion Fv. (For example,
the completion Qp of p-adic numbers at any finite prime p, or the completion R

at the infinite place.) Let Ov denote the set of integers (e.g., Zp ⊂ Qp or Z ⊂ R).
Let S be a finite set of places of F, and let OS denote the set of S-integers x ∈ K
such that x ∈ Ov for every v /∈ S. (For S = {∞, 2}, the set OS ⊆ Q is the set of
rational numbers with only 2 in the denominator.) For a sufficiently large S, OS is
a principal ideal domain. Let FS = ∏

v∈S Fv, OS embeds into FS diagonally. Let ψ
be a character of FS trivial on OS and no larger fractional ideal. Let

( ·
·
)
n
denote the

nth-order residue symbol and t a positive integer. We define

gt (a, c) =
∑

d mod c

(
d

c

)t

n

ψ

(
ad

c

)
. (8)

The constructions in Sect. 4 will involve special values of gt (a, c). We shall have
t = 1 or t = 2 be the length of a simple root (i.e., t = 1 in the simply laced cases and
t = 1 or t = 2 in type B or type C), and we shall have fixed a prime p. Then we set

gt (a) = gt (p
a−1, pa); and ht (a) = gt (p

a, pa) =
{ |(OS/pOS)

×| if t−1n | a
0 if t−1n � a

(9)

In the remainder of the paper, we use the notation q = |OS/pOS| for the order of
a residue field.

The polynomials Pλ that we shall define in Sect. 4 are given as a sumover a crystal.
Each term is determined via combinatorial data coming from the parameterization
of the corresponding crystal element via a method that makes use of the above Gauss
sums. For example in Cartan type A, the Gauss sums take n values (indexed by the
residue classes modulo n). Consequently, any statement about these polynomials can
be phrased entirely in terms of the structure of the highestweight crystal and identities
of these nth-order Gauss sums. Such identities are rare. In addition to the identity
expressing the relationship of Gauss sums corresponding to conjugate characters,
one has the Hasse–Davenport relations [25]. By work of Yamamoto [46], these are
essentially the only multiplicative identities of these Gauss sums. We thank one of
the referees for pointing this out.
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2.3 Highest Weight Crystals and Littelmann’s Cone

Given an irreducible (finite) root system � and a dominant weight λ, there is an
associated crystal graph Cλ. We shall describe the structure of Cλ as a directed graph
with colored edges. We mention that if g is a simple Lie algebra with root system
�, and Vλ is the unique simple g module with highest weight λ, then the quantized
universal enveloping algebra Uq(g) has a corresponding module. A crystal base is
a base for this module at q = 0. It carries a graph structure induced by its structure
as a Uq(g) module. For further information, see [30]. Here we forgo exploring the
connection with the quantum group. We instead explain the structure of a crystal
as a colored directed graph and the parameterization of crystals by Berenstein–
Zelevinsky–Littelmann paths and Littelmann patterns.

2.3.1 The Crystal as a Colored Directed Graph

We now describe Cλ as a colored directed graph. Let B be a finite set, and we call
elements of B elements (or vertices) of the crystal. (We shall abuse notation andwrite
b ∈ Cλ for a b ∈ B.) For every 1 ≤ i ≤ r , we have operators fi : B ∪ {0} → B ∪ {0}
and ei : B � {0} → B � {0} acting on the vertices. We shall refer to these as root
operators. They have the property that if b, b′ ∈ B, then fi b = b′ and b = eib′ are
equivalent. This defines the structure of Cλ as a colored directed graph: if b, b′ ∈ B

and fi b = b′, then Cλ has a directed edge b
i→ b′ “colored” by the index i. There

is a weight function wt : B → � such that wt( fi (b)) = wt(b) − αi and in fact the
functionwt is a bijectionbetween B and aweight basis of the highestweightg-module
Vλ. In particular, there is a unique “highest element” bλ ∈ Cλ with wt(bλ) = λ. This
bλ is the unique element of B such that eibλ = 0 for every 1 ≤ i ≤ r. It follows that

B � {0} = { f n1i1
f n2i2

· · · f nkik
bλ | 1 ≤ i j ≤ k, 0 ≤ n j }. (10)

We shall be interested in writing an element b ∈ B as b = f n1i1
f n2i2

· · · f nkik
bλ in par-

ticular when the sequence of indices [i1, i2 . . . , ik] is a reduced word.

2.3.2 Berenstein–Zelevinsky–Littelmann Paths

Letw = [i1, i2 . . . , ik] be a reducedword inW , and let n = [n1, n2 . . . , nk] ∈ (Z≥0)
k

for b = f n1i1
f n1i2

· · · f nkik
bλ.Wecall n an adaptive string of b [34] if for every 1 ≤ j ≤ k

we have
1 ≤ j ≤ k : ei j f

n1
i j+1

· · · f nkik
bλ = 0 (11)

We can think of n as encoding a path from b to bλ along crystal edges (against the
direction of the edges), using w as a road map. To get the path, starting at b we first
take steps along edges colored i1 as long as that is possible. After taking n1 steps, we
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arrive at a vertex b1 = en1i1 b such that ei1b1 = 0. We then proceed with steps along
edges colored i2 for as long as possible, etc.

Taking an adaptive string above defines a map b → Z≥0
�(w) for any reduced word

w. Let w0 be a long word of the Weyl group. Write Sλ
w0

⊆ Z≥0
�(w0) for the set of

adaptive strings that occur inCλ and Sw0
⊆ Z≥0

�(w0) for the set of strings that occur for
any strongly dominant λ. Then it follows from work of Littelmann, Berenstein, and
Zelevinsky [3, 33, 34] that Sw0

is the set of integral points inside a convex cone,which
we from now on refer to as the Littelmann cone Cw0

. Furthermore, the set Sλ
w0

is the

set of integral points in a convex polytopeCλ
w0

in this cone (the Littelmann polytope).
The inequalities describingCw0

depend on the long wordw0; the further inequalities
describingCλ

w0
depend on λ as well. For particularly “nice” choices ofw0 [34], these

inequalities take on a transparent form. We shall describe these choices for Cartan
types A, B, C , and D as well as the Littelmann patterns they give rise to in Sect. 3.
For w = w0, we shall refer to the adaptive string n corresponding to a vertex b ∈ Cλ

(as well as the corresponding path in Cλ) as the Berenstein–Zelevinsky–Littelmann
path or BZL path of b and write BZL(b) = n.

2.4 Multiple Dirichlet Series and Whittaker Functions

We briefly introduce the objects from number theory that are produced by the con-
structions in Sect. 4. Sincewewish to focus on the combinatorics of the constructions,
we keep the length of this section to a minimum. Our purpose here is merely to moti-
vate the appearance of highest weight crystals as an apt combinatorial device in the
study of these objects.

2.4.1 Multiple Dirichlet Series

Multiple Dirichlet series are series in several complex variables. They can be used
to study automorphic L-functions, generalizations of the Riemann zeta function
via the Langlands–Shahidi method. Of special interest to us here are Weyl group
multiple Dirichlet series, whose functional equations are governed by a Weyl group
associated to a (finite) Cartan type. The functional equations are of significance in
proving meromorphic continuation and functional equations.We explain briefly how
prime power coefficients ofmultipleDirichlet series are related to sums over a highest
weight crystal. We follow the notation of [17] with some simplifications, so as not
to occlude the picture.

Let F now be a global field.Wewish to construct a series in r variables s1, . . . , sr :

∑

Ci

H(C1, . . . ,Cr ;m1, . . . ,mr ) · |C1|−2s1 · · · |Cr |−2sr (12)



Crystal Constructions in Number Theory 345

where the summation is over ideals Ci ofOS. Relating such a series to automorphic
L-functions imposes certain restrictions on its construction. For example, though a
series does not have an Euler product in the way the Riemann zeta function does:

ζ(s) =
∞∑

n=1

1

ns
=

∏

p prime

1

1 − p−s

its coefficients satisfy a twisted multiplicativity and the series is hence determined
by its p-parts

∞∑

ki=1

H(pk1 , . . . , pkr ; pl1 , . . . , plr ) · |p|−2k1s1−···−2kr sr (13)

where p is (a representative of) a prime ideal, and (l1, . . . , lr ) correspond to a weight
λ = ∑r

i=1 li�i .

Constructing aWeyl groupmultipleDirichlet series thus amounts to describing the
coefficients H(pk1 , . . . , pkr ; pl1 , . . . , plr ) for any fixedweightλ.Note that assigning
a weight to every (k1, . . . , kr ) as above, we may interpret the p-part as a sum over
the weight lattice �. Its support turns out to be finite, and in fact contained in the
convex hull of the Weyl group orbit of λ.

Recall that for a highest weight crystal Cλ (associated to a root system �), the
weight function wt : Cλ → � is a bijection between vertices of Cλ and a weight basis
of a representation with highest weight λ.Hence the constructions of the p-part may
be written as a sum over a highest weight crystal.

2.4.2 Whittaker Functions

Our aim here is to motivate why metaplectic analogues of the Casselman–Shalika
formula lead to constructions involving highest weight crystals.

Let G be a split reductive group defined over Z. (The reader may think of SLr or
Sp2r .) Let F be a nonarchimedean local field (e.g., F = Qp, the p-adic numbers),
andO ⊂ F the ring of integers in F (e.g.,O = Zp). Let G = G(F) and K = G(O)

be a maximal compact in G. Let T ⊆ G be a maximal torus, and U ⊂ G be the
unipotent radical of a Borel subgroup of G. (In the examples above, T is the group
of diagonal matrices in G and U the group of upper triangular matrices with 1s on
the diagonal.) Let Ĝ denote the Langlands dual of G (we have ŜLr+1 = PGLr and
Ŝp2r = SO2r+1); let � be the root system associated with Ĝ and � its weight lattice.
(Here� is of type A or type B for SLr or Sp2r , respectively.) To an element x ∈ T̂ ,we
may associate aWhittaker functionW : G → C that satisfiesW(ugk) = ψ(u)W(g)

(for u ∈ U, g ∈ G, and k ∈ K , where ψ is an unramified character ofU ). Let π ∈ F
be a uniformizer (e.g., p in F = Qp). By the Iwasawa decomposition, any element
g ∈ G can be written as g = uπλk,where u ∈ U, k ∈ K , and λ ∈ � is a cocharacter
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of T . A Whittaker function W is then determined by its values W(πλ). In this
classical (nonmetaplectic) setting, these values are determined by the Casselman–
Shalika formula [19]:

W(x,λ) =
∏

α∈�+
(1 − q−1xα)χλ(x) (14)

This expresses the values of a Whittaker functionW(x,λ) in terms of the character
χλ(x) of a representation of Ĝ of highest weight λ. (Here q = |O/πO| as before.)

Now let n be a positive integer so that charF � n and |μ2n| = 2n for the group
μ2n ⊂ F of nth roots of unity. Then an n-fold metaplectic cover G̃ of G is a central
extension

1 → μn → G̃ → G → 1

constructed from the Cartan datum of G and some arithmetic data on F [38]. By a
metaplectic generalization of the Casselman–Shalika formula, we mean an analogue
of (14) forWhittaker functions on G̃. Asmentioned in Sect. 1.3, such a generalization
may produce such a formula as a sum over a highest weight crystal, or as a sum over
a Weyl group. This is motivated by the shape of (14) and its similarity with the
deformation of the Weyl character formula in (3).

3 Littelmann Patterns

We recall Littelmann patterns from [34] in each of the Cartan types Ar , Br , Cr ,
and Dr . A pattern is an array of �(w0) nonnegative integers. Integral points of the
Littelmann cone (see Sect. 2.3) are in bijection with the set of patterns that satisfy
a set of inequalities. Imposing a further set of inequalities gives a parametrization
of integral points within the Littelmann polytope, i.e., a highest weight crystal for a
fixed highest weight. The contribution of a single element to the sums in Sect. 4 will
be phrased in terms of the corresponding Littelmann pattern.

The branching properties of highest weight crystals and how it is reflected in
the constructions will be made explicit in Sect. 5. One may observe these branching
properties in the extent to which the Littelmann patterns are consistent within an
infinite family of Cartan types. Note also that the simple root αr that is “new” in rank
r is associated only to entries in the top row of the pattern.

3.1 The Choice of a Long Words

Recall that a long word is a reduced decomposition of the long element of the Weyl
group. The parametrization of crystal elements in terms of Littelmann patterns is
dependent on the choice of a long word w0. The choice of particular “nice” long
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words results in the Littelmann cone having a transparent description. We give the
nice long words here for each infinite family of Cartan types.

Notice that the choice is consistent within each family in the following sense. Let
X stand for any of A, B, C , or D, and let w

Xr
0 be the choice of long word for type

Xr , i.e., rank r. Then the word w
Xr
0 starts with the long word w

Xr−1
0 from rank r − 1.

The choices are as follows.

w
Ar
0 = [(1), (2, 1), (3, 2, 1), . . . , (r, r − 1, . . . , 2, 1)] (15)

w
Br
0 = w

Cr
0 = [(1), (2, 1, 2), . . . , (r, r − 1, . . . , 2, 1, 2, . . . , r)] (16)

w
Dr
0 = [(1), (2), (3, 1, 2, 3), . . . , (r, r − 1, . . . , 3, 1, 2, 3, . . . , r)] (17)

3.2 The Shape of Patterns

The choice of a long word w0 establishes a bijection between elements of a crystal
and �(w0)-tuples of nonnegative integers via BZL paths as in Sect. 2.3.2. We arrange
these �(w0) integers as entries ai, j of a Littelmann pattern. The shape of the pattern
reflects the choice of w0 made.

Each column of a pattern corresponds to a particular index 1 ≤ j ≤ r. Entries ai, j
with the same column index j correspond to occurrences of same simple reflection
in the word w0. A row of the pattern will correspond to a step in the rank within the
infinite family of Cartan types.

In the remainder of this chapter, we follow the convention that if ai, j is not an
entry of a pattern, then ai, j = 0. (This is the case, for example, if i ≤ 0 or j < i.)

3.2.1 Type Ar

We have �(w
Ar
0 ) − �(w

Ar−1
0 ) = r for r ≥ 2. A Littelmann pattern of type Ar has r

rows, with r − i + 1 elements in the i th row. We write L = (ai, j )1≤i≤r
i≤ j≤r

and draw the

pattern aligned to the right:
a1,1 a1,2 · · · a1,r

a2,2 · · · a2,r
. . .

...

ar,r

(18)
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3.2.2 Type Br and Cr

In this case, �
(
w

Br
0

)
− �

(
w

Br−1
0

)
= 2r − 1. These Littelmann patterns have r rows

as well, but now the i th row has 2r − 1 entries, denoted ai, j for i ≤ j ≤ 2r − i. We
write j̄ = 2r − j and āi, j = ai, j̄ , and draw the patterns centered as follows:

a1,1 a1,2 · · · a1,r · · · ā1,2 ā1,1
a2,2 · · · a2,r · · · ā2,2

. . .
... . .

.

ar,r

(19)

3.2.3 Type Dr

In this case, �
(
w

Dr
0

)
− �

(
w

Dr−1
0

)
= 2r − 2 for r ≥ 3. The �

(
w

Dr
0

)
= r2 − r inte-

gers from a BZL path are now arranged into a Littelmann pattern with r − 1 rows.
The i th row has 2r − 2i entries, ai, j for i ≤ j ≤ 2r − 1 − i.We use notation similar
to type B and C and write j̄ = 2r − 1 − j for āi, j = ai,2r−1− j .

a1,1 a1,2 · · · a1,r̄ a1,r · · · ā1,2 ā1,1
a2,2 · · · a2,r̄ a2,r · · · ā2,2

. . .
...

... . .
.

ar̄ ,r̄ ar̄ ,r

(20)

3.3 The Bijection with Crystal Elements

We are ready to give the bijection between crystal elements and Littelmann patterns.
Recall that the BZL path of a crystal element b consists of �(w0) segments.

Taking the length of these segments produces a tuple BZL(b) = (n1, . . . , n�(w0)
).

The entries of the Littelmann pattern L(b) corresponding to b are these integers nh
(1 ≤ h ≤ �(w0)). The pattern L(b) is filled with elements of BZL(b) row by row
proceeding from left to right and from bottom to top. For example, in type Ar we
have that L(b) = (ai, j )1≤i≤r

i≤ j≤r
and:

ar,r = n1, ar−1,r−1 = n2, ar−1,r = n3, . . . , a1,1 = n(r2)+1, . . . , a1,r = n(r+1
2 )

The shape of the Littelmann patterns above arranges entries in the same column if
they correspond to the same edge label. We examine this property in more detail.
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3.4 The Weight of a Pattern

Let b be an element in a crystal element of highest weight λ. Let BZL(b) =
(n1, . . . , n�(w0)

) and L = L(b) be the Littelmann pattern corresponding to b via the
bijection above. Then the weight of b is easily recovered from entries of the pattern.
Recall that the hth segment of the BZL path follows edges of the crystal labeled
with index k = w0(h). These edges all correspond to a root operator for the simple
root αk ; i.e., they all have the same label k. It follows that

λ − wt(b) =
r∑

k=1

αk ·
∑

w0(h)=k

nh . (21)

The shape of the patterns has the following property. Entries in a single column
of L(b) correspond to segments of the BZL path of b. These segments all run along
edges of the crystal with the same color k (orαk) 1 ≤ k ≤ r . Figure1 shows the index
of the crystal edges corresponding to each column in the various types. Observe that
reading off the index for elements in the top row gives the segment of w0 that is
present in rank r but not in rank r − 1.

We make this explicit for each of the infinite families. We define the weight
s(L) = (s1, . . . , sr ) of a Littelmann pattern L (sk = sk(L)) so that:

λ − wt(b) =
r∑

k=1

sk(L(b)) · αk (22)

3.4.1 Type A

In this case, L(b) = (ai, j )1≤i≤ j≤r . A column consists of entries a1, j , . . . , a j, j . If
BZL(b) = (n1, . . . , n(r+1

2 )), then ai, j = n(r−i
2 )+ j−i and the corresponding segment of

the BZL path of b lies along edges labeled r − j + 1.We define sk(L) for 1 ≤ k ≤ r
by:

Fig. 1 Edge colors corresponding to columns of a pattern
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sk(L) =
r∑

i=1

ai,r+1−k (23)

3.4.2 Type B or C

Here we have L(b) = (ai, j )1≤i≤ j≤2r−i . For any 1 < k ≤ r there are two columns
corresponding to the edge index k, the one with j = r − k + 1 and the one with
j̄ = r − k + 1. We thus define:

sk(L) =
r∑

i=1

(ai,r+1−k + āi,r+1−k) (24)

The middle column corresponds to the index 1 and so we define:

s1(L) =
r∑

i=1

ai,r (25)

Note that |α1| is different from |α2| = · · · = |αr |.

3.4.3 Type D

This case is similar to the previous one. We have L(b) = (ai, j )1≤i≤ j≤2r−1−i . For
2 < k ≤ r , the two columns corresponding to the edge index k are the j th where j =
r − k + 1 and j̄ th, where recall that j̄ = r − k. The two middle columns correspond
to α1 and α2, the roots on the “branched” end of the Dynkin diagram. Hence we
define (cf. [22]):

sk(L) =
{∑r

i=1(ai,r+1−k + āi,r+1−k) if 2 < k ≤ r
∑r

i=1 ai,r−2+k if k = 1, 2
(26)

3.5 Constraints on Littelmann Patterns

The correspondence b → L(b) described in Sect. 3.3 above is a bijection between
integral points of the Littelmann cone (see Sect. 2.3.2) and the set of Littelmann
patterns whose entries satisfy a certain set on inequalities, depending on the Cartan
type of the underlying root system. To get a set of patterns in bijection with the
integral points of a Littelmann polytope for λ (equivalently, a crystal of highest
weight λ), we may impose a further set of inequalities on the entries. This second set
of inequalities shall depend on the highest weight λ. In this section, we make these
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constraints explicit for each of the infinite families of Cartan types. The constructions
in Sect. 4 phrase the contribution of a crystal element b in terms of whether these
inequalities are satisfied by the entries of L(b) strictly or with an equality.

3.5.1 Constraints for the Cone

We give the inequalities describing Littelmann patterns corresponding to integral
points of the Littelmann cone C. Let CXr denote the Littelmann cone in the Cartan
type Xr . Then we have the following.

Theorem. [34] Let b correspond to L(b) under the bijection described in Sect.3.3.
Then b is an integral point of C Xr if and only if the entries of L(b) are nonnegative
and the following holds.

Xr = Ar : [34, Theorem 5.1] The rows are weakly decreasing:

ai,i ≥ ai,i+1 ≥ · · · ≥ ai,r−1 ≥ ai,r for every 1 ≤ i ≤ r (27)

Xr = Br : [34, Theorem 6.1] For every row we have:

2ai,i ≥ 2ai,i+1 ≥ · · · ≥ 2ai,r−1 ≥ ai,r ≥ 2āi,r−1 ≥ · · · ≥ 2āi,i for every 1 ≤ i ≤ r
(28)

Xr = Cr : [34, Theorem 6.1] The rows are weakly decreasing:

ai,i ≥ ai,i+1 ≥ · · · ≥ ai,r−1 ≥ ai,r ≥ āi,r−1 ≥ · · · ≥ āi,i for every 1 ≤ i ≤ r
(29)

Xr = Dr : [34, Theorem 7.1] For every row we have:

ai,i ≥ ai,i+1 ≥ · · · ≥ ai,r−2 ≥ ai,r−1, ai,r ≥ āi,r−2 ≥ · · · ≥ āi,i for every 1 ≤ i ≤ r − 1
(30)

i.e., the rows are weakly decreasing with the exception of the central two elements.
There is no restriction on the comparative size of these two elements.

3.5.2 Constraints for a Polytope

We introduce shorthand to refer to the sums of particular groups of elements of a
Littelmann pattern. The notation si, j (L), s̄i, j (L), ti,r−1(L), ti,r (L) used here differs
slightly from that of [34] (s(ai, j ), s(āi, j ), etc.) to emphasize that si, j (L) may be
nonzero even if ai, j is not an element of the pattern L. When the pattern L is clear
from context, we write si, j for si, j (L).
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We define the following shorthand:

si, j (L) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∑i
k=1 ak, j ifL is type A∑i
k=1(ak, j + āk, j ) ifL is type B orC, j ≤ r − 1∑i
k=1 ak,r ifL is type B and j = r∑i
k=1 2ak,r ifL is typeC and j = r∑i
k=1(ak, j + āk, j ) ifL is type D, j ≤ r − 2∑i
k=1(ak,r−1 + āk,r ) ifL is type D, j = r − 1 or j = r

(31)

s̄i, j (L) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

āi, j + si−1, j (L) ifL is type B and j ≤ r − 1
orL is typeC and j ≤ r
orL is type D and j ≤ r − 2

āi, j + 2si−1, j (L) ifL is type B and j = r
si, j (L) ifL is type D, j = r − 1 or j = r

(32)

Observe that s̄i, j = si, j̄ when both are defined; when only one is, we use this to extend
the definition. For patterns L of type D, we shall also need:

ti,r−1(L) :=
i∑

k=1

ak,r−1 and ti,r (L) :=
i∑

k=1

ak,r (33)

We are ready to state the inequalities characterizing patterns that correspond to
the integral points of a Littelmann polytope, or, equivalently, the points of a crystal of
highest weight λ. Let λ = ∑r

k=1 mi · �i . The integers mk appear in the inequalities.
For type Ar , the pattern L corresponds to b ∈ Cλ if the following inequalities are

satisfied [34, Corollary 4]:

ai, j ≤ mr− j+1 + si, j−1(L) − 2si−1, j (L) + si−1, j+1(L); for 1 ≤ i ≤ j ≤ r (34)

For type Br and type Cr the inequalities are as follows [34, Corollary 6.]:

āi, j ≤ mr− j+1 + s̄i, j−1(L) − 2si−1, j (L) + si−1, j+1(L); for 1 ≤ i ≤ j ≤ r − 1 (35)

ai, j ≤ mr− j+1 + s̄i, j−1(L) − 2s̄i, j (L) + si, j+1(L); for 1 ≤ i ≤ j ≤ r − 1 (36)

ai,r ≤ m1 + ds̄i,r−1(L) − ds̄i−1,r (L) (37)

where d = 2 in type B and d = 2 in type C.

Finally for type Dr the inequalities are as follows [34, Corollary 8.]:

āi, j ≤ mr− j+1 + s̄i, j−1(L) − 2si−1, j (L) + si−1, j+1(L); for 1 ≤ i ≤ j ≤ r − 2

(38)

ai, j ≤ mr− j+1 + si, j+1(L) − 2s̄i, j (L) + s̄i, j−1(L); for 1 ≤ i ≤ j ≤ r − 2 (39)

ai,r−1 ≤ m2 + s̄i,r−2(L) − 2ti−1,r−1(L) (40)

ai,r ≤ m1 + s̄i,r−2(L) − 2ti−1,r (L) (41)
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Let BZL(λ) denote the set of Littelmann patterns L that are in bijection with
elements of the highest weight crystal Cλ.

4 The Constructions

Weare ready to give the constructions of p parts ofWMDSandmetaplecticWhittaker
functions, i.e., the objects from Sect. 2.4. To emphasize the combinatorial nature of
the constructions in this section,we restrict our attention to constructing a polynomial
Pλ. The meaning of this polynomial in each of the types was given in Sects. 1.2 and
2.4.

We shall give a polynomial P for any Cartan type in the infinite families Ar , Br ,

Cr , and Dr .

The constructions are analogous in different types. Before giving the type-by-type
constructions in Sect. 4.3, we begin by summarizing the common elements. In this
section and afterward, we shall identify a crystal element with the corresponding
Littelmann pattern.

4.1 The Contribution of a Pattern

In all cases, P = Pλ is a sum over a crystal of highest weight λ. Using the bijection
b → L(b) above, we write P as a sum over BZL(λ). We shall have a sum:

P =
∑

L∈BZL(λ)

G(L) · xwt(L) (42)

where recall that C[�] was identified with a polynomial ring C[x]. Here wt (L) is
essentially the weight of the pattern given in Sect. 3.4.

The coefficient G(L) shall be given as a product:

G(L) =
∏

i, j

gi, j (L) (43)

This product is over elements of theLittelmann pattern, and the factor gi, j (L) depends
only on the decoration of the element ai, j in L. For each of the infinite families, we
decorate the elements of the pattern L according to a circling and a boxing rule.
An entry ai, j may be circled, boxed, neither, or both. Before giving the rules for
decorating elements of L in Sect. 4.2, we preview how the decorations affect the
contribution of L.
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In the case of the constructions in type A, B, and C, the factor gi, j (L) depends
only on the decoration of ai, j and the integer ai, j itself.1 In particular (in type A and
C)2:

If ai, j is circled, then gi, j (L) :=
{
qai, j if ai, j is not boxed
0 if ai, j is boxed

(44)

If ai, j is not circled, then the value of gi, j (L) is a Gauss sum (see Sect. 2.2).

4.2 Circling and Boxing Rules

Recall that in Sect. 2.3.2, we identified elements of the highest weight crystal Cλ with
integral points of the Littelmann polytope. In Sect. 3, we gave a set of constraints
that a pattern L(b) ∈ BZL(λ) satisfies if it corresponds to an element b ∈ Cλ. The
constraints came in the form of inequalities (27)–(30) (these guarantee that b is in the
Littelmann cone) and (34)–(38) (these are specific to the polytope and depend on λ).
The decoration of an entry ai, j of L depends on whether the inequalities involving
ai, j are satisfied with an equality.

4.2.1 Circling Rule

The inequalities (27)–(30) involve a single row of the Littelmann pattern. An element
ai, j appears in one of these, and that has a lower bound for ai, j . The lower bound is
of the form:

ai, j ≥

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max(ai, j+1, ai, j+2) ifL is of type D and j = r − 2
ai, j+2 ifL is of type D and j = r − 1
1
2 · ai, j+1 ifL is of type B and j = r − 1
2 · ai, j+1 ifL is of type B and j = r
ai, j+1 otherwise

(45)

Then ai, j is circled if this lower bound (45) holds with an equality.

1In type D, the picture is more complex. An analogous construction gives a result slightly different
from the one expected from the p-part. The phenomenon of (symmetric) multiple leaners accounts
for this discrepancy; see Sect. 4.3.4 for details.
2Note that in type B, we have the coefficient 1 instead of qai, j . This discrepancy by a factor of q
also present when comparing (47) with (46) or (48) can be eliminated with a change of variables
in the polynomial Pλ(x).
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4.2.2 Boxing Rule

The inequalities (34)–(38) have the property that every ai, j entry of a Littelmann
pattern appears on the left-hand side of exactly one of them. Let ai, j be boxed if this
inequality holds with an equality.

4.2.3 Interpretation of Decorations

Observe that an entry is circled or boxed when an inequality defining the Littelmann
polytope is satisfied with an equality. This means that the element of the polytope
corresponding to L is on one of the hyperplanes defining the polytope.

4.3 Constructions Type by Type

We are ready to finish describing the constructions in type Ar , Br , Cr , and Dr .

4.3.1 Type A

We recall the definition of a p-part from [14]. First recall that the weight s(L) of
a pattern was defined in (23) as the sum of entries in columns. In this case, we
are interested in the p-part (13); we set P = Pλ(x) equal to this p-part with λ =∑r

i=1(li + 1)�i and we assume that λ is a strongly dominant weight (mi = li ≥ 1
for every 1 ≤ i ≤ r ).

Then P is given by (42) where wt(L) = s(L) and G(L) is a product as in (43)
where the factors of the coefficient are given as follows [14, Chapter 1]:

gi, j (L) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if ai, j is circled and boxed
qai, j if ai, j is circled but not boxed
g(ai, j ) if ai, j is boxed but not circled
h(ai, j ) if ai, j is neither circled nor boxed

(46)

Here g = g1 and h = h1 are the Gauss sums from Sect. 2.2 and q is the order of a
residue field.

Remark. This is the construction of the p part H� from [14].
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4.3.2 Type B

Recall from Sects. 1.2 and 2.4.2 that [16] gives a conjectural formula for a Whittaker
function in type B. In this case,we have that Pλ(x) is the valueW(x,λ) of aWhittaker
function on a torus element.

In this case, let wt(L) := ∑r
k=1 skαk − λwhere s(L) = (s1, . . . , sr ) as defined in

(24) and (25). Then [16, Conjecture 2] states that P is given by (42) and (43) where
the factors are given as follows:

gi, j (L) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if ai, j is circled and boxed
1 if ai, j is circled but not boxed
q−ai, j gt (ai, j ) if ai, j is boxed but not circled
q−ai, j ht (ai, j ) if ai, j is neither circled nor boxed

(47)

where gt and ht are as in Sect. 2.2 and the subscript t is 1 if j = r and t = 2 otherwise.

4.3.3 Type C

Once again we have Pλ(x) be the p-part of a Multiple Dirichlet series from [2] or
[26]. Let us once again write wt(L) = s(L). To specify P by (42) and (43), we must
again specify the factors gi, j (L) :

gi, j (L) =

⎧
⎪⎪⎨

⎪⎪⎩

qai, j if ai, j is circled but not boxed
gt (ai, j ) if ai, j is boxed but not circled
h1(ai, j ) if ai, j is neither circled nor boxed and n|ai, j
0 otherwise

(48)

where again t = 1 if j �= r and t = 2 is j = r. (We note that [2, (31)] contained a
typo that was fixed by [26, (34)]: note that by (Sect. 2.2) if ai, j is neither circled nor
boxed, then gi, j (L) = 0 unless n|ai, j .)

4.3.4 Type D

Finally, we recall [22, Conjecture 1], a conjectural expression for the p-part Pλ(x)
of a Multiple Dirichlet series. In this case, the construction for P(= Pλ) is slightly
different. Once again, it is a sum (42) over contributions from Littelmann patterns
L ∈ BZL(λ) and the weight of a pattern is wt(L) = s(L). The contribution G(L)

of a pattern is again a product. However, in this case the factor gi, j is dependent on
more than the decoration of ai, j .

The definition of G(L) in [22] is written as a product over connected components
of the decorated graph �(L) of the pattern L. To give the conjectural construction
of the p-part, we introduce some terminology.
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The vertices of�(L) are the entries ofL.Two entries belong to the same connected
component in�(L) if they are comparable in the inequalities (30) and they are equal.
By the rightmost element of a componentC , wemean the entry inC that is positioned
rightmost in the Littelmann pattern. A connected component C is called a multiple
leaner (m.l.) if it consists of entries ai, j1 = ai, j1+1 = · · · = ai, j2 where j1 ≤ r − 2,
r + 1 ≥ j2 and ai, j1−1 > ai, j1 , ai, j2 > ai, j2+1. By the legs of C we mean the entries
ai, j1 = · · · = ai,r−2 and ai,r+1 = · · · = ai, j2; the entry on the endpoint of the shorter
leg of � is ai, j1 or ai, j2 . The component C is called a symmetric multiple leaner
(s.m.l.) if in addition j2 = j̄1; in this case, we define its length to be l(C) = r − j1,
half the number of its vertices.

We may write G(L) as in (43) but to define gi, j (L), we write [22, 5.5]

σ(C) =
∏

ai, j∈C
gi, j (L) (49)

and give σ(C) in terms of standard contributions of the entries it contains. Let [22,
5.5]

σ(y) =
⎧
⎨

⎩

0 if the entry a is circled and boxed
h1(a) · q−a if the entry a is not boxed and not circled
g1(a) · q−a if the entry a is boxed and not circled

(50)

We then define σ(C) to be as follows:

• σ(C) = 0 if any ai, j ∈ C is both circled and boxed.
• σ(C) = σ(a) if C is not a m.l. and a is its rightmost element, or C is a m.l. that is
not symmetric and a is the endpoint of its shorter leg.

• σ(C) = σ(a)(1 − q−l(C)) if C is a s.m.l., a �= 0 is its rightmost element, and a is
unboxed.

• σ(C) = σ(ai, j )σ(ai, j−1)q1−l(C) if C is a s.m.l., ai, j is its rightmost element, and
ai, j �= 0 is boxed.

• σ(C) = 1 if C is a s.m.l. with zero entries.

Note that σ(C) is a product over gi, j (L), but now gi, j (L) depends not only on the
decoration of ai, j ∈ L, but also on the position of ai, j within a connected component
of �(L), and whether that component is a (symmetric) multiple leaner or not.

5 Branching

In the previous section, we described constructions of polynomials Pλ(x) that are
of interest from a number-theoretic perspective as explained in Sect. 2.4. We also
mentioned in Sect. 1.4 that elucidating the relationship of the constructions with
the branching properties of highest weight crystals can be the key to understanding
some of their properties. In this section, we take a closer look at how the branching
properties of crystals manifests in these constructions.
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In all of the examples above, the polynomial P was associated to a crystal Cλ

corresponding to a root system � or rank r, with Cartan type in one of the infinite
families Ar , Br , Cr , or Dr . When the edges of Cλ labeled by αr are omitted, the
remaining graph is a disjoint union of rank r − 1 crystals of the same Cartan type,
but rank r − 1 :

Cλ =
⊔

μ

Cμ (51)

Wenowwish explain how Pλ can bewritten in terms of the polynomials Pμ associated
to those crystals.

The construction of Pλ is given (cf. (42)) as a sum over Littelmann patterns L ∈
BZL(λ), each contributing a term G(L)xwt(L). We examine how the sets BZL(μ)

corresponding to μ in (51) can be recovered from BZL(λ) by giving a pattern
L′ ∈ BZL(μ) for any pattern L ∈ BZL(λ) in Sect. 5.1. We indicate a method of
computing the weights μ that appear in (51) in Sect. 5.2. Then in Sects. 5.2 and 5.3,
we explain how for such pairs L and L′ the contributions G(L) and wt(L) can be
written in terms of G(L′), wt(L′) and μ. For the remainder of the discussion, let us
fix a dominant weight λ = ∑r

k=1 mk�k and the corresponding crystal Cλ.

5.1 Patterns with Fixed Top Row

Recall the bijection between elements of the crystal Cλ and Littelmann patterns given
in Sect. 3.3. For an element b ∈ Cλ, the entries of the pattern L(b) = Lλ(b) are the
lengths of the segments in the BZL path of b.Here BZL(b) corresponds to the choice
of a particular long word w0.

Let the elementb ∈ Cλ belong toCμ in the decomposition (51).We shall sometimes
write b′ when we mean b as an element of the abstract crystal Cμ;writeL′ = L(b′) ∈
BZL(μ).

As remarked in Sect. 3.1, the choices made in (15) all have the property that the
long wordw

Xr
0 chosen in rank r starts with the long wordw

Xr−1
0 chosen in rank r − 1.

Together with the shape of the patterns (see Sect. 3.2), this means that L(b′) is the
same as L(b) without its first row. This argument proves the following.

Lemma. Let bμ ∈ Cμ ⊂ Cλ be the highest element within a crystal in the decomposi-
tion (51). Let Lμ(b) and Lλ(b) denote the Littelmann patterns corresponding to any
b ∈ Cμ ⊂ Cλ as an element of Cμ and Cλ, respectively. Then for any b ∈ Cμ ⊂ Cλ the
top row of Lλ(b) is the same as the top row of Lλ(bμ), and Lμ(b) can be recovered
from Lλ(b) by deleting the top row.
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5.2 The Weights in the Decomposition

In light of Lemma5.1 and the inequalities on the top row of L ∈ BZL(λ), we can
describe the highest weights μ appearing in the decomposition (51) by computing
the weight of the highest element bμ ∈ Cμ. Recall that by (22) λ − wt(bμ) = λ − μ
can be expressed in terms of s(Lλ(bμ)) :

λ − μ =
r∑

k=1

sk(Lλ(bμ)) · αk (52)

and furthermore that we have:

s(Lλ(b)) = s(Lλ(bμ)) + s(Lμ(b)) for any b ∈ Cμ ⊂ Cλ (53)

Note that since the entries under the first row of Lλ(bμ) are all zero, the right-hand
side of (52) can be written entirely in terms of the entries in the first row of Lλ(bμ).

The inequalities restricting the first row of a L ∈ BZL(λ) involve no entries from
any other row (cf. Sect. 3.5). It follows that given a highest weight λ, we can recover
the set of weights μ that appear in the decomposition (51). (This involves expressing
the simple roots αk in terms of the fundamental weights, and carefully examining
the restrictions on entries of the first row of a pattern L ∈ BZL(λ).) We omit further
discussion of this here and refer the reader to [14, (2.4)] for an example of a similar
statement in Cartan type A.

5.3 Branching and Contributions

Let b be an element b ∈ Cμ ⊂ Cλ. Let L = Lλ(b) and L′ = Lμ(b). We wish to write
Pλ(x) as a sum

Pλ(x) =
∑

μ

p(μ) · Pμ(x) (54)

where the weights μ are the ones of the decomposition (51) and p(μ) is a monomial.
Before we explain why this decomposition is possible for the polynomials Pλ(x)

we remark on the terminology of “branching.” Recall that the polynomial Pλ(x) can
be thought of as a deformation of a highest weight character. Equation (54) has a clear
analogue for highest weight characters. Let us write Vλ and Vμ for the irreducible
representations of highest weight λ and μ (in rank r and r − 1), respectively. If Pλ(x)
were the character of Vλ, then the coefficient in the monomial p(μ) would match the
multiplicity of the Vμ in the restriction of Vλ to a subalgebra of corank one determined
by the first r − 1 simple roots.
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The contribution of a pattern L is of the form G(L)xwt(L) as in (42). The term
xwt(L) depends only on s(L). It follows from (53) that the first r − 1 component of
s(L) is the tuple s(L′), while sk(L) = sk(L(bμ)) depends only on μ.

We turn next to the coefficient G(L). Recall from Sect. 4.1 and in particular (43)
that G(L) is a product of factors gi, j (L). The factor gi, j (L) essentially depends on
the decoration of an entry ai, j inL, and the decorations in turn depend onwhether the
inequalities imposed on the entry ai, j by L being an element of BZL(λ) are satisfied
strictly or with an equality. It is immediate that the factors g1, j (L) corresponding to
entries of the first row of L depend only on μ. Closer examination of the inequalities
imposed on the lower rows and the decorations show that in fact, gi, j (L) can be
written as a product of gi−1, j−1(L

′) and a factor that depends only on μ, and not the
element b ∈ Cμ.

Thus we may conclude that one may in fact decompose Pλ(x) as in (54). For a
precise statement of this flavor in Cartan type A, see [44, Proposition 16.].
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29. J. Kamnitzer, Mirković-Vilonen cycles and polytopes. Ann. Math. 171, 245–294 (2010)
30. M. Kashiwara, Representations of Groups, (Banff, AB, 1994), vol. 16 (1995), pp. 155–197
31. M. Kashiwara, T. Nakashima, Crystal graphs for representations of the q-analogue of classical

Lie algebras. J. Algebra 165(2), 295–345 (1994). MR1273277
32. V. Lakshmibai, C.S. Seshadri, Standard monomial theory, in Proceedings of the Hyderabad

Conference on Algebraic Groups, Hyderabad, 1989 (1991), pp. 279–322. MR1131317
33. P. Littelmann, A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras. Invent.

Math. 116(1), 329–346 (1994)
34. P. Littelmann, Cones, crystals, and patterns. Transform. Groups 3(2), 145–179 (1998)

http://arxiv.org/abs/1604.02206
http://arxiv.org/abs/1009.1741
https://doi.org/10.4007/annals.2011.173.2.13
https://doi.org/10.4007/annals.2011.173.2.13
https://doi.org/10.1090/S0894-0347-09-00641-9
http://arxiv.org/abs/1408.5394
https://doi.org/10.1007/s10801-014-0567-9
https://doi.org/10.1007/s10801-014-0567-9
https://doi.org/10.1016/j.jcta.2014.11.005


362 A. Puskás

35. G. Lusztig, Canonical bases arising from quantized enveloping algebras. J. Am. Math. Soc.
3(2), 447–498 (1990)

36. G. Lusztig, Canonical bases arising from quantized enveloping algebras II. Prog. Theor. Phys.
Suppl. 102, 175–201 (1991)

37. G. Lusztig, An algebraic-geometric parametrization of the canonical basis. Adv. Math. 120(1),
173–190 (1996)

38. H. Matsumoto, Sur les sous-groupes arithmétiques des groupes semi-simples déployés. Ann.
Sci. École Norm. Sup. 2(1), 1–62 (1969). MR0240214

39. J.P.McNamara,MetaplecticWhittaker functions and crystal bases. DukeMath. J. 156(1), 1–31
(2011). https://doi.org/10.1215/00127094-2010-064. MR2746386

40. P.J. McNamara, The metaplectic Casselman-Shalika formula. Trans. Am. Math. Soc. 368(4),
2913–2937 (2016)

41. J. Neukirch,Algebraic Number Theory, vol. 322 (Springer Science andBusinessMedia, Berlin,
2013)

42. M. Patnaik, A. Puskás, Metaplectic covers of Kac-Moody groups and Whittaker functions
(2017), arXiv:1703.05265

43. M. Patnaik, A. Puskás, On Iwahori-Whittaker functions for metaplectic groups. Adv. Math.
313, 875–914 (2017)

44. A. Puskás, Whittaker functions on metaplectic covers of GL(r) (2016), arXiv:1605.05400
45. T. Tokuyama, A generating function of strict Gel′fand patterns and some formulas on characters

of general linear groups. J. Math. Soc. Jpn. 40(4), 671–685 (1988). https://doi.org/10.2969/
jmsj/04040671. MR959093 (89m:22019)

46. K. Yamamoto, On a conjecture of Hasse concerning multiplicative relations of Gaussian sums.
J. Comb. Theory 1(4), 476–489 (1966)

https://doi.org/10.1215/00127094-2010-064
http://arxiv.org/abs/1703.05265
http://arxiv.org/abs/1605.05400
https://doi.org/10.2969/jmsj/04040671
https://doi.org/10.2969/jmsj/04040671

	Preface
	Contents
	Partition Algebras and the Invariant Theory of the Symmetric Group
	1 Introduction
	2 Restriction–Induction Bratteli Diagrams and Vacillating Tableaux
	2.1 Generalities on Restriction and Induction
	2.2 The Restriction–Induction Bratteli Diagram
	2.3 Restriction and Induction for the Symmetric Group Pair (Sn, Sn-1)

	3 Set Partitions
	3.1 Multiplicities from a Permutation Module Perspective
	3.2 Set-Partition Tableaux
	3.3 Bijections

	4 The Partition Algebra ¶k(n)
	4.1 The Diagram Basis of the Partition Algebra ¶k(n)
	4.2 The Orbit Basis
	4.3 Change of Basis
	4.4 Multiplication in the Orbit Basis
	4.5 Characters of Partition Algebras

	5 The Representation Φk,n: ¶k(n) rightarrow EndSn(Mnotimesk) and Its Kernel
	5.1 The Orbit Basis of  EndG(Mnotimesk) for G a Subgroup of Sn
	5.2 The Definition of Φk,n
	5.3 The Kernel of the Surjection Φk,n: ¶k(n) to EndSn(Mnotimesk) When 2k > n

	6 The Fundamental Theorems of Invariant Theory for Sn
	References

	Affine Grassmannians and Hessenberg Schubert Cells
	1 Introduction
	2 The Classical Grassmannian
	2.1 Combinatorial Description of Grassmannian Permutations
	2.2 Linear Model
	2.3 Decomposition into Schubert Cells

	3 Affine Grassmannian Permutations
	3.1 Coset Description for the Affine Grassmannian
	3.2 Geometric Linear Model for the Affine Grassmannian
	3.3 Affine Grassmannian Permutations and Skyline Diagrams

	4 Affine Schubert Cells
	5 Descriptions of Affine Schubert Cells: Bit Sequence, Linear Model, Cores, and Partitions
	6 (Grassmannian) Hessenberg Schubert Cells and Varieties
	6.1 Hessenberg Varieties
	6.2 Hessenberg Schubert Cells and Varieties
	6.3 Grassmannian Hessenberg Schubert Cells
	6.4 Hessenberg Schubert Varieties and Grassmannian Hessenberg Schubert Varieties
	6.5 Minimal Hessenberg Schubert Cells

	7 Affine Schubert Cells and Hessenberg Schubert Cells
	References

	A Survey of the Shi Arrangement
	1 Background
	1.1 Root Systems and Coxeter Group Notation
	1.2 A Taste of Coxeter Combinatorics, Type A
	1.3 Deformation of Coxeter Arrangements

	2 Origin
	2.1 Kazhdan–Lusztig Cells
	2.2 Shi Regions and Kahzdan–Lusztig Cells

	3 Enumeration
	3.1 The Number of Shi Regions, Part 1
	3.2 Interlude
	3.3 The Number of Shi Regions, Part 2
	3.4 The Number of Shi Regions, Part 3
	3.5 The Number of Shi Regions, Part 4
	3.6 More
	3.7 The Ish and the Shi
	3.8 Extended Shi Arrangement

	4 Connections
	4.1 Decompositions Numbers and the Shi Arrangement
	4.2 Finite Automata and Reduced Expressions
	4.3 More Connections

	5 Further Developments
	6 Themes We Haven't Included
	References

	Variations on a Theme of Schubert Calculus
	1 Introduction
	1.1 ``Variations on a Theme''

	2 Background on Projective Space
	2.1 Affine Patches and Projective Varieties
	2.2 Points, Lines, and m-Planes in Projective Space
	2.3 Problems

	3 Theme: The Grassmannian
	3.1 Projective Variety Structure
	3.2 Schubert Cells and Schubert Varieties
	3.3 A Note on Flags
	3.4 Problems

	4 Variation 1: Intersections of Schubert Varieties  in the Grassmannian
	4.1 Opposite and Transverse Flags, Genericity
	4.2 Duality Theorem
	4.3 Cell Complex Structure
	4.4 Cellular Homology and Cohomology
	4.5 Connection with Symmetric Functions
	4.6 The Littlewood–Richardson Rule
	4.7 Problems

	5 Variation 2: The Flag Variety
	5.1 Schubert Varieties and the Bruhat Order
	5.2 Intersections and Duality
	5.3 Schubert Polynomials and the Cohomology Ring
	5.4 Two Alternative Definitions
	5.5 Generalized Flag Varieties
	5.6 Problems

	6 Variation 3: The Orthogonal Grassmannian
	6.1 Schubert Varieties and Row Reduction in OG(2n+1,n)
	6.2 General Elimination Argument
	6.3 Shifted Tableaux and a Littlewood–Richardson Rule
	6.4 Problems

	7 Conclusion and Further Variations
	References

	Combinatorics of the Diagonal Harmonics
	1 Background
	1.1 Parking Functions in Enumerative Combinatorics
	1.2 Symmetric Function Background
	1.3 Macdonald Polynomials

	2 The Diagonal Harmonics
	2.1 Shuffles and the q,t Catalan

	3 Alternate Formulations of the Shuffle Conjecture: The ζ Map and the Γ Map
	3.1 The ζ Map on Dyck Paths
	3.2 ζ on the Parking Functions
	3.3 Γ on the Parking Functions

	4 Proof of the Shuffle Theorem
	5 Extensions of the Shuffle Theorem
	5.1 Rational Shuffle Theorem
	5.2 Additional Conjectures and Theorems Related to 

	References

	On Positivity of Ehrhart Polynomials
	1 Introduction
	2 Polytopes with Ehrhart Positivity
	2.1 Products of Positive Linear Polynomials
	2.2 Roots with Negative Real Parts
	2.3 Coefficients with Combinatorial Meanings
	2.4 Higher Integrality Conditions

	3 McMullen's Formula and Positivity of Generalized Permutohedra
	3.1 Motivation and Evidence
	3.2 McMullen's Formula, α-Positivity, and a Reduction Theorem
	3.3 Positivity of Generalized Permutohedra

	4 Negative Results
	4.1 Reeve Tetrahedra
	4.2 Possible Sign Patterns
	4.3 Smooth Polytopes
	4.4 Stanley's Example
	4.5 Non-Ehrhart-Positive Families
	4.6 Minkowski Sums

	5 Further Discussion
	5.1 Ehrhart Positivity Conjectures
	5.2 Other Questions

	References

	Recent Trends in Quasisymmetric Functions
	1 Introduction
	1.1 Basic Definitions and Background on Symmetric Functions
	1.2 Schur Functions
	1.3 Quasisymmetric Functions

	2 Algebra and Representation Theory
	2.1 Combinatorial Hopf Algebras
	2.2 Solomon's Descent Algebra
	2.3 Representations of the 0-Hecke Algebra

	3 Macdonald Polynomials
	3.1 Quasisymmetric Decomposition of Macdonald Polynomials
	3.2 Quasisymmetric Schur Functions

	4 Quasisymmetric Analogues of Symmetric Function Bases
	4.1 Dual Immaculate Quasisymmetric Functions
	4.2 Quasisymmetric Analogues of the Power Sum Basis
	4.3 The Shuffle Algebra

	5 Connections to Symmetric Functions and the Polynomial Ring
	5.1 Chromatic Quasisymmetric Functions
	5.2 Quasisymmetric Expansions of Symmetric Functions
	5.3 Slide Polynomials and the Quasi-key Basis

	References

	On Standard Young Tableaux  of Bounded Height
	1 Introduction
	1.1 Enumeration Formulas
	1.2 The Exponential Generating Function
	1.3 Schur Functions
	1.4 The Robinson–Schensted Correspondence
	1.5 Plan of the Article

	2 Lattice Walk Models
	2.1 Ballot Walks
	2.2 Lazy Walks
	2.3 Generalized Motzkin Paths
	2.4 Oscillating Tableaux and Arc Diagrams
	2.5 Excursions in the Weyl Chamber of Type D
	2.6 A Collection of Bijections

	3 Generating Function Expressions
	3.1 Differential Equations
	3.2 Asymptotics

	4 Restricting Increasing Subsequences in Permutations
	5 Other Directions
	5.1 Using Kronecker Coefficients
	5.2 Other Classes in Bijection
	5.3 Shadow Diagrams
	5.4 Random Tableaux
	5.5 Semi-standard Young Tableaux

	References

	A Tale of Centrally Symmetric Polytopes and Spheres
	1 Introduction
	2 Preliminaries
	3 How Neighborly Can a cs Polytope Be?
	4 Toward an Upper Bound Theorem for cs Polytopes
	5 Toward an Upper Bound Theorem for cs Simplicial Spheres
	6 The Algebraic Side of the Story: Stanley–Reisner Rings
	7 The Generalized Lower Bound Theorem for cs Polytopes
	8 The Lower Bound Conjecture for cs Spheres and Manifolds
	9 Concluding Remarks
	References

	Crystal Constructions in Number Theory
	1 Introduction
	1.1 Structure of the Paper
	1.2 A Review of Literature
	1.3 Tokuyama's Theorem
	1.4 Motivation: Demazure–Lusztig Operators and the Branching Structure

	2 Preliminaries
	2.1 Notation
	2.2 Gauss Sums
	2.3 Highest Weight Crystals and Littelmann's Cone
	2.4 Multiple Dirichlet Series and Whittaker Functions

	3 Littelmann Patterns
	3.1 The Choice of a Long Words
	3.2 The Shape of Patterns
	3.3 The Bijection with Crystal Elements
	3.4 The Weight of a Pattern
	3.5 Constraints on Littelmann Patterns

	4 The Constructions
	4.1 The Contribution of a Pattern
	4.2 Circling and Boxing Rules
	4.3 Constructions Type by Type

	5 Branching
	5.1 Patterns with Fixed Top Row
	5.2 The Weights in the Decomposition
	5.3 Branching and Contributions

	References




