
7
Symmetric Functions

7.1 Symmetric Functions in General

The theory of symmetric functions has many applications to enumerative combi-
natorics, as well as to such other branches of mathematics as group theory, Lie
algebras, and algebraic geometry. Our aim in this chapter is to develop the basic
combinatorial properties of symmetric functions; the connections with algebra will
only be hinted at in Sections 7.18 and 7.24, Appendix 2, and in some exercises.

Let x = (x\, Jt2,...) be a set of indeterminates, and let n eN. A homogeneous
symmetric function of degree n over a commutative ring R (with identity) is a
formal power series

where (a) a ranges over all weak compositions a = («i, «2, • • •) of n (of infinite
length), (b) ca e R, (c) xa stands for the monomial x\xx£ . . . , and (d) / (x^i ) ,
Xw(2), • • •) = f(x\,X2,.. •) for every permutation w of the positive integers P.
(A symmetric function of degree 0 is just an element of R.) Note that the term
"symmetric function" is something of a misnomer; f(x) is not regarded as a
function but rather as a formal power series. Nevertheless, for historical reasons
we adhere to the above terminology.

The set of all homogeneous symmetric functions of degree n over R is denoted
An

R. Clearly if / , g e An
R and a, b e R, then af + bg e A\\ in other words, A^

is an R-module. For our purposes it will suffice to take R = Q (or sometimes Q
with some indeterminates adjoined), so A^ is a Q-vector space. For the sake of
convenience, then, and because some readers are doubtless more comfortable with
vector spaces than with modules, we will henceforth work over Q, though this is
not the most general approach.

If / € AQ and g e AQ, then it is clear that fg € AQ+W (where fg is a product
of formal power series). Hence if we define

AQ = AQ 0 AQ 0 • • • (vector space direct sum) (7.1)
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7.2 Partitions and Their Orderings 287

(so the elements of AQ are power series / = / o + / H — where /„ e AQ and all but
finitely many fn = 0), then AQ has the structure of a Q-algebra (i.e., a ring whose
operations are compatible with the vector space structure), called the algebra (over
Q) of symmetric functions. Note that the algebra AQ is commutative and has an
identity element 1 e AQ. The decomposition (7.1) in fact gives AQ the structure
of a graded algebra, meaning that if / e AQ and g e AQ, then fg e A Q + n. From
now on we suppress the subscript Q and write simply Art and A for AQ and AQ.
Note, however, that in the outside literature A usually denotes Az.

A central theme in the theory of symmetric functions is to describe various bases
of the vector space A" and the transition matrices between pairs of these bases.
We will begin with four "simple" bases. In Sections 7.10-7.19 we consider a less
obvious basis which is crucial for the deeper parts of the theory.

7.2 Partitions and Their Orderings

Recall from Section 1.3 that a partition A of a nonnegative integer n is a sequence
(Ai, . . . , Xk) e Nh satisfying Ai > • • • > Xk and J2 h — n- Any A,; = 0 is consi-
dered irrelevant, and we identify A with the infinite sequence (Ai , . . . , A*, 0,0, . . . ) .
We let Par(n) denote the set of all partitions of n, with Par(0) consisting of the
empty partition 0 (or the sequence (0,0,. . .)) , and we let

Par:=

For instance (writing for example 4211 as short for (4, 2, 1, 1, 0,.. .)),

Par(l) = {1}

Par(2) = {2, 11}

Par(3) = {3,21,111}

Par(4) = {4,31,22,211,1111}

Par(5) = {5,41,32,311,221,2111, 11111}.

If A e Par(/i), then we also write A h n or |A| = n. The number of parts of A (i.e.,
the number of nonzero A/) is the length of A, denoted £(A). Write m, = m;(A) for
the number of parts of A that equal /, so in the notation of Section 1.3 we have
A = (lm i2m 2 . . .) , which we sometimes abbreviate as lmi2m2 • • •. Also recall from
the discussion of entry 10 of the Twelvefold Way in Section 1.4 that the conjugate
partition X' = (Ar

p A^,...) of A is defined by the condition that the Young (or
Ferrers) diagram of A; is the transpose of the Young diagram of A; equivalently,
m,-(A/) = A, - A?+i. Note that X\ = l(X) and Ai = l(Xf).

Three partial orderings on partitions play an important role in the theory of
symmetric functions. We first define /x c A for any /x, A e Par if /z; < A/ for
all /. If we identify a partition with its (Young) diagram, then the partial order
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288 7 Symmetric Functions

Figure 7-1. Young's lattice.

c is given simply by containment of diagrams. The set Par with the partial order
c is called Young's lattice Y and (as mentioned in Exercise 3.63) is isomorphic to
Jf(N2). The rank of a partition A in Young's lattice is equal to the sum |A| of its
parts, so the rank-generating function by equation (1.30) is given by

See Figure 7-1 for the first six levels of Young's lattice.
The second partial order is defined only on Par(«) for each n eN, and is called

dominance order (also known as majorization order or the natural order), denoted
<. Namely, if |/x| = |A.| then define /z < A if

+ A&2 H h fit < A.i + A2 H h A/ for all i > 1.

For the reader's benefit we state the following basic facts about dominance order,
though we have no need for them here.

• (Par(n), <) is a lattice.
• The map X \-+ A' is an anti-automorphism of (Par(jz), <) (so Par(n) is self-dual

under dominance order).
• (Par(rc), <) is a chain if and only if n < 5.
• (Par(?z), <) is graded if and only if n < 6.
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7.3 Monomial Symmetric Functions 289

• For k = (k\,..., kn) h n, \ctVx denote the convex hull in Rn of all permutations
of the coordinates of A. Then (Par(«), <) is isomorphic to the set of PA'S ordered
by inclusion.

For the Mobius function of (Par(n), <) see Exercise 3.55, and for some further
properties see Exercise 7.2.

For our final partial order, also on Par(n), it suffices to take any linear order
compatible with (i.e., a linear extension of) dominance order. The most convenient

R R

is reverse lexicographic order, denoted <. Given \X\ = |/x|, define \i < X if either
\i = X, or else for some /,

/xi = A.i,..., /z; = Xt, /z/+i < Xi+\.

For instance, the order > on Par(6) is given by

6 > 51 > 42 > 411 > 33 > 321 > 3111 > 222 > 2211 > 21111 > 111111.

On the other hand, in dominance order the partitions 33 and 411, as well as 3111
and 222, are incomparable.

We would like to make one additional definition related to partitions. Define the
rank of a partition X = (X\, X2,...), denoted rank(A), to be the largest integer i
for which Xt > i. Equivalently, rank(A) is the length of the main diagonal of the
diagram of X or the side length of the Durfee square of X (defined in the solution
to Exercise 1.23(b)). Note that rank(X) = rank(Ar).

7.3 Monomial Symmetric Functions

Given X = (k\, X2,...) h n, define a symmetric function mx(x) e An by

mx =
a

where the sum ranges over all distinct permutations a = (a 1, a2,...) of the entries
of the vector k = (k\, A.2,.. .)• For instance,

m2 =

We call mx a monomial symmetric function. Clearly if / = ^2a cax
a e An then

/ = X̂ xi-n c^m^- ^ follows that the set {mx : k \- n} is a (vector space) basis for
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290 7 Symmetric Functions

A", and hence that

dimA" = p(n),

the number of partitions of n. Moreover, the set {mx : X e Par} is a basis for A.

7.4 Elementary Symmetric Functions

Next we define the elementary symmetric functions ex for X e Par by the formulas

en = m\n =

ex = exxex2 •

c/j • • • jCjn, n > 1 (with £o = W 0 = 1)

if X = (Xu A 2 , . . .)•
(7.2)

If A = (aij)ij>\ is an integer matrix with finitely many nonzero entries and
with row and column sums

Ci =

then define the row-sum vector row(A) and column-sum vector col(A) by

row(A) = ( r i , r 2 , . . . )

col(A) = (ci,c2, . . .)•

Also define a (0, \)-matrix to be a matrix whose entries are all 0 or 1.

7.4.1 Proposition. Let X \- n, and let a = (a\, a-i,...) be a weak composition
ofn. Then the coefficient Mka ofxa in ex, i.e.,

ex = (7.3)

is equal to the number of (0, \)-matrices A = (Qij)ij>\ satisfying row(A) = Xand
col(A) = a.

Proof Consider the matrix

X =

X\ X2 Xi

X\ X2 X3
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7.4 Elementary Symmetric Functions 291

To obtain a term of ex, choose X \ entries from the first row, X2 from the second row,
etc. Let the product of the chosen entries be xa. If we convert the chosen entries
to l's and the other entries to O's, then we obtain a matrix A with row(A) = X
and col(A) = a. Conversely, any such matrix corresponds to a term of ex, and the
proof follows. •

7.4.2 Corollary. Let M^ be given by (7.3). Then MXlx = M^x, i-e-> the transition
matrix between the bases* {mA : X h n) and [ex : X h n] is a symmetric matrix.

Proof. The (0, l)-matrix A satisfies row(A) = X and col(A) = [i if and only if
the transpose A1 satisfies row(A') = \i and col(Af) = X. •

It is easy to see that the coefficient M^ of (7.3) has the following alternative
combinatorial interpretation. We have n balls in all, with Xt balls labeled /. We also
have boxes labeled 1,2, Then M^ is the number of ways of placing the balls
into the boxes so that: (a) no box contains more than one ball with the same label,
and (b) box / contains exactly /x, balls. The elegant combinatorial interpretations
we have given of MAM are our first hints of the combinatorial efficacy of the theory
of symmetric functions.

In general, let {ux\ be a basis for A and let / e A. If the expansion / = J^x CLX^X

of / in terms of the basis {ux} satisfies ax > 0 for all X, then we say that / is
u-positive. If / is u-positive, then the coefficients ax often have a simple com-
binatorial or algebraic interpretation. (An example of an algebraic interpretation
would be the dimension of a vector space.) For instance, it is obvious from the
relevant definitions that ex is m-positive, and Proposition 7.4.1 gives a stronger
result (viz., a combinatorial interpretation of the coefficients). Similarly to the def-
inition of M-positivity, we also say that / is u-integral if the coefficients ax above
are integers.

Proposition 7.4.1 has an equivalent formulation in terms of generating func-
tions. The type of generating function that we will be considering throughout this
chapter has the form z = J^x CAMA, where X ranges over Par, {ux} is a Q-basis for
A (and usually M^ G A", where X \- n), and ex belongs to some coefficient ring R
(which for us will always be a Q-algebra). We may think of z as belonging to the

* ring AR = A 0 R, where AR denotes the completion of AR with respect to the
ideal A^ 0 A^ • •. Readers unfamiliar with completion need not be concerned;
the generating functions ^cxux will always behave in a reasonable, intuitive
way.

A frequently occurring class of generating functions has R = A(y), i.e., sym-
metric functions in a new set of variables y = (yi,y2, -> •)• For instance, the
generating function z = Y2xm*-(x^e^(y) °f the n e x t proposition is of the form
J2xcxux where uk = mx(x) e A(x) and ck = ek(y) e A(y) = R. In general,
if a function ex indexed by X e Par arises in an enumeration problem, then it is

* It follows from Theorem 7.4.4 below that the set {ex : A I- n) is indeed a basis.
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292 7 Symmetric Functions

natural to consider a generating function of the form J2 c^u*. f°r a suitable basis
Ux of A. The difficulty, of course, is deciding what basis is "suitable." We will see
throughout this chapter various choices of ux, the most common being the Schur
functions sk discussed in Sections 7.10-7.19.

Let us now give the promised reformulation of Proposition 7.4.1. The generating
function that we consider, as well as a closely related one to be discussed later (see
Proposition 7.5.3), plays an important role in the theory of symmetric functions.

7.4.3 Proposition. We have

+ xiyj) = J2 Mx»mx(x)m^y) (7.4)

(7.5)

Here X and \x range over Par. (It suffices to take \X\ = \/JL\, since otherwise
Mx» = 0.)

Proof. A monomial x\xx^ • • • y\xy^ • • • = xayP appearing in the expansion of
Y\(l + xtyj) is obtained by choosing a (0, l)-matrix A = (a^) with finitely many
l's, satisfying

But

/ ) * " = j c r o w ( A ) y c o l ( A ) ,

so the coefficient of xay? in the product ]~J(1 -f- xt v7) is the number of (0,1)-
matrices A satisfying row(A) = a and col(A) = p. Hence equation (7.4) follows.
Equation (7.5) is then a consequence of (7.3). •

Note that Corollary 7.4.2 is immediate from (7.4), since the product ]~I(1 +*/X/)
is invariant under interchanging xt and yt for all /.

We now come to a basic result known as the "fundamental theorem of symmetric
functions," though for us it will barely scratch the surface of this subject.

7.4.4 Theorem. Let X, // h n. Then Mx^ = 0 unless \x < X', while MXx> = 1.
Hence the set {ex : X h n} is a basis for An (so {ex : X e Par} is a basis for
A). Equivalently, e\, e2, . . . are algebraically independent and generate A as a
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7A Elementary Symmetric Functions 293

Q-algebra, which we write as

Proof. Suppose that Mkfl / 0, so by Proposition 7.4.1 there is a (0, l)-matrix A
with row(A) = A and col(A) = /x. Let A! be the matrix with row(A') = A and with
its 1 's left-justified, i.e., A\- = 1 precisely for 1 < j < Xt. For any / the number of
1 's in the first / columns of A! clearly is not less than the number of 1 's in the first i
columns of A, so by definition of dominance order we have col(A') > col(A) = [i.
But col(A') = A', so X' > /x as desired. Moreover, it is easy to see that Ar is the
only (0, l)-matrix with row(A') = A and col(A') = A', so Mxxr = 1.

The previous argument shows the following: let X1, A 2 , . . . , Xp^ be an ordering
of Par(«) that is compatible with dominance order, and such that the "reverse
conjugate" order (Xp^)f,..., (A2)', (A1)' is also compatible with dominance order.
(It is easily seen that such orders exist.) Then the matrix (M^^), with the row order
A1, A2 , . . . and column order (A1)7, (A2) ' , . . . , is upper triangular with l's on the
main diagonal. Hence it is invertible, so {ex : A h n} is a basis for A". (In fact, it is
a basis for Kn

% since the diagonal entries are actually l's, and not merely nonzero.)
The set {ex : A e Par} consists of all monomials e\x e% • • • (where at e N, J^ at <

oo). Hence the linear independence of {ex : X e Par} is equivalent to the algebraic
independence of e\, ei,..., as desired. •

Figure 7-2 gives a short table of the coefficients Mx^.

ex = mi

en = m2 + 2mn

e2 = mn

em = AM3 -f- 3m2i + 6mm

^21 = m2i + 3mm
£3 = m m

*2ii = w3i + 2m22 + 5m2n + 12mnn
2̂2 = m22 + 2/W211 + 6miin

3̂1 = m2n + 4m mi

= m5 + 5m4i + 10m32 + 20m3n + 30m22i + 60m2m + 120mnni
£2111 = m4i + 3m32 + 7m3n + 12m22i + 27m2m + 60mimi
£221 = m32 ~l~ 2m3n + 5m22i ~\~ 12/W2m ~\~ 3 0 m n m

3̂11 == m3n + 2m221 ~l~ 7m2in H~ 2 0 m n m
3̂2 = m22i + 3m2in + lOmnm

^41 : = m2in ~l~ 5 m n m
^5 = m u m

Figure 7-2. The coefficients MXfl.
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294 7 Symmetric Functions

7.5 Complete Homogeneous Symmetric Functions

Define the complete homogeneous symmetric functions (or just complete symmetric
functions) hx for X e Par by the formulas

xh -"xin> n > 1 ( w i t h h o = m0 = 1 )

hx = hXlhX2 • • • if X = (A.i, k2,.. .)•

Thus hn is the sum of all monomials of degree n.
The symmetric functions hx are in many ways "dual" to the elementary sym-

metric functions e^. The underlying reason for this duality will be brought out by
Theorem 7.6.1 and various subsequent developments. For now let us consider the
"complete analogue" of Proposition 7.4.1.

7.5.1 Proposition. Let X h n, and let a — (ot\, ct2,...) be a weak composition
ofn. Then the coefficient Nxa ofxa in hx, i.e.,

is equal to the number ofN-matrices A = (a>ij)i,j>\ satisfying row(A) = X and
col(A) = a.

Proof. Analogous to the proof of Proposition 7.4.1. A term xa from h
hx2 • • • is obtained by choosing a term jcfl x%2 • • • from each hXi such that

•) = * • •

But this is just the same as choosing (#;y) to be an N-matrix A with row(A) = X
and col(A) = a, and the proof follows. D

7.5.2 Corollary. Let Nx^ be given by (7.7). Then Nx^, = N^x, *•£•> the transition
matrix between the bases* [mx : X h n} and {hx : X h n} is a symmetric matrix.

Proof Exactly analogous to the proof of Corollary 7.4.2. D

The coefficient A^M of (7.7) has an alternative combinatorial interpretation in
terms of balls into boxes, similar to the interpretation of M ^ in this way. We have

* It follows from Corollary 7.6.2 that the set {hx : A. h n) is indeed a basis.
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7.5 Complete Homogeneous Symmetric Functions 295

n balls in all, with A; balls labeled /. We also have boxes labeled 1,2, Then
Nx^ is the number of ways of placing the balls in the boxes so that box i contains
exactly fit balls.

On the combinatorial level, the duality between ex and h^ is manifested by
(0, l)-matrices vs. N-matrices, or equivalently, balls into boxes (subject to certain
conditions) not allowing repetitions or allowing repetitions. This situation is rem-
iniscent of the reciprocity between (£) and ((£)) = (— l)k(~^), or of the more
general reciprocity theorems of Sections 4.5 and 4.6. Indeed, given a symmetric
function f(x) and n e N, let us write

f(ln) = f(xx = x2 = • • • = xn = 1, xn+l = xn+2 = • • • = 0). (7.8)

Then

eka
n) = Yl l =

We next give the generating function interpretation of Proposition 7.5.1. The
proof is analogous to that of Proposition 7.4.3 and is omitted.

hi = mi

/in == 2m ii + m-i

hi = "Mi ~l~ ^2

hu = 3 m m + 2m2i 4- m3

^n i i == 24mini -|- 12m2n ~\~ 6m22 ~l~ 4m3i -\- m4

\ + 2m3i + m4

• + 2m3i + m4

> + m^\ ~\~ m 4

" i n n == 120minii + 60m2in H~ 30m22i ~H 20m3n -f- 10m32 4~ 5m4i + ms
= 6 0 m i m i + 33m2in ~l~ 18m22i H~ 13m3u + 7m32 ~t~ 4m4i -H m5
= 3 0 m i m i + 18m2in ~l~ Wntm -\- 8m3n + 5m32 ~\~ 3m4i + ms

-\- 13m2in ~\~ 8m22i ~l~ 7m3n + 4m32 H~ 3m4i 4~ ms
-\- 7m2in ~\~ 5m22i H~ 4m3n + 3m^i ~t~ 2m4i -|- ms
+ 4wi2in 4" 3m22i 4" 3m3n 4" Lmyi -\- m4i 4~ ^ 5

4" ^2111 H~ WI221 H~ AW311 4- WI32 4~ w4i 4" W5

Figure 7-3. The coefficients Nx^.
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296 7 Symmetric Functions

7.5.3 Proposition. We have

f](l - xtyj)-1 = J ] N^mxWmpW (7.9)

(7.10)

where X and /JL range over Par (and where it suffices to take \X\ = \ii\).

It is not as easy to argue as in the proof of Theorem 7.4.4 that the set {hx : X h n}
is a basis for Aw (so /zi, /*2>... are algebraically independent), since the matrix
(Nx^) has no nice triangularity properties. But the linear independence of the /ix's
will be a trivial consequence of Theorem 7.6.1, so we save its "official" statement
until then.

Figure 7-3 gives a short table of the coefficients Nx^.

7.6 An Involution

Since A = Q[e\, e2,...], an algebra endomorphism / : A -> A is determined
uniquely by its values f(en), n > 1; and conversely any choice of f(en)eA
determines an endomorphism /.Define an endomorphism co : A -> Abyo){en) =
hn,n > 1. Thus (since co preserves multiplication) co(ex) = hx for all partitions X.

7.6.1 Theorem. The endomorphism co is an involution, i.e., co2 — 1 (the identity
automorphism), or equivalently co(hn) = en. (Thus co(hx) = ex for all partitions
X.)

Proof. Consider the formal power series

n>0

n>0

We leave to the reader the easy verification of the identities

-xntr
l (7.11)

E(t) = \\(\ + xnt). (7.12)
n

Hence H(t)E(—t) = 1. Equating coefficients of tn on both sides yields

n

-iy^/in_,, n> 1. (7.13)
i=0

Conversely, if ^=0(—iyM//zn_/ = Oforallrc > 1, for certain w, e A withw0 = 1>
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7.7 Power Sum Symmetric Functions 297

then ui = e(. Now apply co to (7.13) to obtain

0 = ^(-U'hMhn-i) = (-1)"
1=0 i=0

whence &>(/*;) = e, as desired. •

The involution a> may be regarded as an algebraic elaboration of the reciprocity
between sets and multisets expressed by the identity ((n

k)) = (— l)k(~^), as sug-
gested in Section 7.5.

7.6.2 Corollary. The set {hx : A. h n] is a basis for An (so {hx : A. e Par} is a
basis for A). Equivalently, h\, hi,... are algebraically independent and generate
A as a Q-algebra, which we write as

Proof Theorem 7.6.1 shows that the endomorphism co : A —> A defined by
o>(en) = hn is invertible (since a; = co~l), and hence is an automorphism of A.
The proof now follows from Theorem 7.4.4. •

7.7 Power Sum Symmetric Functions

We define a fourth set pk of symmetric functions indexed by X e Par and called
power sum symmetric functions, as follows:

Pn=mn = ̂ P * ? , n > 1 (with p0 = m0 = 1)
i

Px = PkxPx2 "• if A. = (A.i, A.2,. • •)•

7.7.1 Proposit ion. Z^r A. = ( A . i , . . . , A€) h n, where I = £(A), a n d sef

(7.14)

Let k — l(fji). Then R^ is equal to the number of ordered partitions n =
( # i , . . . , Bk) of the set [£] such that

N = J2Xi, l<j<k. (7.15)
ieBj

Proof RXfM is the coefficient of x^ = jcfx x%2 • • • in px = (£ xfl ) ( £ jcf2) • • •. To
obtain the monomial x^ in the expansion of this product, we choose a term xt

J

from each factor J2xiJ s o t n a t Yij xiJ — x/x- Define Br = {j : i7- = r}. Then
(B i , . . . , Bk) will be an ordered partition of [I] satisfying (7.15), and conversely
every such ordered partition gives rise to a term JCM. •
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298 7 Symmetric Functions

1.1.2 Corollary. Let Rkfl be as in (7.14). Then R^ = 0 unless X < /x, while

i(X)U (7.16)

where X = (\m^2m2^ • • •). Hence {pk : X h n} is a basis for An (so {px : X e
Par} is a basis for A). Equivalently, p\, p2,... are algebraically independent and
generate A as a Q-algebra, i.e.,

Proof. If RX^L 7̂  0, then by Proposition 7.7.1 there is an ordered partition
it — (Bu ..., Bk) of the set [I] = [£(k)] satisfying (7.15). Given 1 < r < I, let
Bix,..., Bis be the distinct blocks of n containing at least one of 1, 2 , . . . , r. From
(7.15)wehave/x/jH \-fiis >X\-\ hVBut/xiH h/xr > titl-\ \-fiis

since r > s and Mi > /X2 > • • •. Hence /x > A, as desired.
If [x = X, then each block Bt is a singleton {j}, which we denote simply as j .

B\,..., #mi can be any ordering of 1 , . . . , m\. Then # m i +i , . . . , Bmi+m2 can be
any ordering ofrai + l , . . . , m i + m2, etc., giving a total of Rxx = m\ !^2- • • •
possibilities for n.

The fact that {px : A h n} is a basis for A (so A = Q[/?i, /?2, • • •]) follows by
reasoning as in the proof of Theorem 7.4.4. •

NOTE. Because the diagonal elements Rxx are not all ±1 , it follows that {px :
X h n] is not a Z-basis for A\. Rather, the (additive) abelian subgroup Pn of An

%

generated by the /7 '̂s has index

[An
z : Pn] =

X\-n i

By Exercise 1.26, if follows that this index is also given by

[A£ : Pn] = f l lm i ( A )2m 2 ( A )

Xhn

i.e., the product of all parts of all partitions of n.

We now consider the effect of the involution co on px. A generating function
approach is most efficacious. For any partition X = (lmi2m2 • • •), define

Zx = lmimi!2m2m2!---. (7.17)

For instance, Z442111 = 133! 211! 422! = 384. If w e &n, then the cycle type p(w)
of w is the partition p(w) = (p\, p2,...) \- n such that the cycle lengths of w (in
its factorization into disjoint cycles) are p\, p2, Recall from Proposition 1.3.2
that the number of permutations w e <5n of a fixed cycle type p = (lmi2m2 • • •)

Cambridge Books Online © Cambridge University Press, 2010Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511609589.006
Downloaded from https://www.cambridge.org/core. Access paid by the UC Berkeley Library, on 26 Jun 2019 at 21:59:31, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511609589.006
https://www.cambridge.org/core


7.7 Power Sum Symmetric Functions 299

is given by

n\
#{w e <&n : p(w) = p] = —

= n\z~\ (7.18)

The set {v e <&n : p(v) = p} is just the conjugacy class in <&n containing w. For
any finite group G, the order #KW of the conjugacy class Kw containing w is equal
to the index [G : C(w)] of the centralizer of w. Hence:

7.7.3 Proposition. Let X h n. Then zx is equal to the number of permutations
v e &n that commute with a fixed wx of cycle type X.

For a bijective proof of Proposition 7.7.3, see Exercise 7.6.
For a partition X = (lmi2m2 • • •) of n, define

Thus for w G <5M, £P(u;) is +1 if w is an even permutation and —1 otherwise, so
the map <&>n ->• {±1} defined by w H> ^ ( ^ is the usual "sign homomorphism."

7.7.4 Proposition. We have

l y ) (7.20)
x

n>\

5 Z y ) . (7.21)
X

Proof We have

logf](l -xiyjr
l
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300 7 Symmetric Functions

Thus the first equality of (7.20) is established. The second equality of (7.20) is
a consequence of (and in fact is equivalent to) the permutation version of the
exponential formula (Corollary 5.1.9). More specifically, in Corollary 5.1.9 set
f(n) = Pn(x)pn(y) andx = 1. Then

we&n

X\-n

where c\ — #{w G &n : p(w) = A,}. By equation (7.18) we have c\ =
n\z^\ and (7.20) follows from Corollary 5.1.9. The proof of (7.21) is entirely
analogous. •

From the previous proposition it is easy to deduce the effect of co on px.

7.7.5 Proposition. Let Ah«. Then

In other words, px is an eigenvector for co corresponding to the eigenvalue ex.

Proof. Regard co as acting on symmetric functions in the variables y = (y\,
y2,...); those in the variables x are regarded as scalars. Apply co to (7.20). We
obtain

xpx(x)px(y) = Y\
ij

= J2mvMcohv(y) (by (7.10))
V

= Y^ mv(x)ev(y) (by Theorem 7.6.1)
V

= Y\(\+xiyj) (by (7.5))

)') (by (7.21)).

Since the px(x)'s are linearly independent, their coefficients in the first and last
sums of the above chain of equalities must be the same. In other words, copxiy) =

) , as desired. •

Note in particular that copn = (— l)n~lpn, or copn(x) = —pn(—x). Since co is
an automorphism, just the values of copn in fact suffice to determine copx for any
partition A.
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7.8 Specializations 301

Consider co restricted to the vector space (of dimension p(n)) An. Since the
Px's for X h n are linearly independent, it follows from Proposition 7.7.5 that the
characteristic polynomial (normalized to be monic) of the linear transformation
co : An —• A" is given by (x — \)e{ri\x + l)o(n\ where e(n) (respectively, o(n))
is the number of partitions of n with an even number (respectively, odd number)
of even parts. In other words, e(n) is the number of even conjugacy classes (i.e.,
conjugacy classes contained in the alternating group) of <&n. By Exercise 1.1.9(b)
we have

(JC - \)e{n\x + l)o(n) = (x2 - l)o(n\x - l)k(n\

where k(n) is the number of self-conjugate partitions of n. At the end of Section 7.14
we will see a simple reason for the factor (x — \)k{n) in terms of symmetric functions.

We can now ask how to express the symmetric functions mx,hx, and ex in terms
of the /?M's. Although combinatorial interpretations can be given to the coefficients
in these expansions, they tend to be messy and not very useful. One special case,
however, is of considerable importance.

7.7.6 Proposition. We have

J2lPx (7.22)
Xhn

Proof. Substituting v = (f, 0, 0, . . .) in (7.20) immediately yields (7.22). Equa-
tion (7.23) is similarly obtained from (7.21), or by applying co to (7.22). •

See Example 5.2.11 for a combinatorial proof of equation (1.22). Equation
(7.23) can be given a similar proof.

7.8 Specializations

In many combinatorial problems involving symmetric functions / we only need
partial information about / , such as a particular coefficient or value. In this section
we give a brief overview of the most common specializations that arise in practice.
(See Exercises 7.43 and 7.44 for two others.) Proofs for the most part are straight-
forward and will be omitted. First let us give a formal definition of the concept of
specialization.

7.8.1 Definition. Let R be a commutative Q-algebra with identity. A special-
ization of the ring A is a homomorphism <p : A —> R. (We always assume
homomorphisms are unital, i.e., (p(\) = 1.)
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302 7 Symmetric Functions

The most obvious examples of specializations arise from substituting elements
at of R for the variables xt (provided of course this substitution is well-defined
formally; it would make no sense, for instance, to set each JC; = 1 in h\(x) =
*\ + *2 + * * *)• We may then write

and we call (p the substitution of at for xt.
Our first example may be called "reducing the number of variables" and is

very common. Let An denote the set of all polynomials / € Q[JCI, . . . , xn] in
the variables JCI, . . . , xn with rational coefficients which are invariant under any
permutation of the variables. Thus / is just a symmetric function in the vari-
ables JCI, . . . , xn. Define rn : A -> An by rn(f) = f(x\,..., Jtn, 0, 0,. . .) (written
f(x\ , . . . ,*„ ) ) . The next proposition examines the behavior of the four bases m^,
Px, hx, ex, as well as the involution a>, under rn.

7.8.2 Proposition. Let Parn denote the set of all partitions X e Par of length at
mostn, i.e.,

Parn = {X G Par : l(X) < n}.

(a) The sets {rn(mx) : X e Parn}, {rn(px) : Xf e Parn}, {rn(hk) : X' e Parn}, {rn(ek):
Xf ePain} are all Q-bases for An. Moreover, if X g Parn, then rn{mx) =
rn(ev) = 0.

(b) For convenience identify an element / € A with its image rn(f) in An. Define a
linear transformation con : An —> An by con(ex) = hxfor Xf e Parn. Then con is
an algebra automorphism and an involution, and a)n (px ) = £x Pxfar X' e Parn.

Proof. Straightforward consequence of analogous properties for A and triangu-
larity properties of the bases mx, px> ex discussed previously. •

A little caution is needed when dealing with pk or hx in An when X' g Parn.
For instance, px need not be zero nor an eigenvector of con. For instance, when
w = 2we have p3 = \{?>p2\ - p\\\) and co2(p3) = |(-3/?2i - Pin).

An important substitution psrt : A -^ Q[q] is defined by

and is called the principal specialization (of order n) of / . If we let n -+ oo we
obtain the limiting value

ps(/) = /( l , t f ,42 , . . . )eQ[[<7]] , (7.24)

called the stable principal specialization of / . (It is easily seen that lim^oo psn(/)
exists in the sense of Section 1.1.) A specialization ps^ : A - • Q of the principal
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7.8 Specializations 303

specialization is obtained by letting q = 1, i.e.,

psl
n(f) = / ( I , 1.....1) = / ( I" ) ,

« l's

in the notation of (7.8).

7.8.3 Proposition. The following table summarizes the behavior of the bases
mx, Px, hx, ex under psn, ps, andpsl

n:

basis bk

1^' L

Proof All can be done by straightforward combinatorial or algebraic reasoning.
As an example, we show how to obtain psn(/i^).

Since hx = hxxhx2 • • • and psn is an algebra homomorphism, it suffices to
compute psn(/ifc). Since

hk = 2_^ x°^x£

we have

a\-\ \-an=k

summed over all weak compositions of k into n parts. If we identify the sequence
(fli, a2,..., an) with the partition X = {la\ 2a\ . . . , (n - l)a"), then we see that

psn(hk)= J2 ^

-rn-
by Proposition 1.3.19, and the proof follows. •
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304 7 Symmetric Functions

We now consider an important specialization that is not obtained simply by
substituting for the variables JC,-. We call this specialization the exponential spe-
cialization ex : A ->• Q[t] or ex : A —• Q[[f ]], defined by

ex(pn) = t8in.

Note that since the pn's are algebraically independent and generate A as a Q-
algebra, any homomorphism (p : A —>> /? is determined by its values (p(pn). Here
we are setting <p(/?i) = t and <p(/?n) = 0 if n > 1. (If the domain of ex is taken to
be A, then we define ex to preserve infinite linear combinations, or equivalently,
to be continuous in a suitable topology.)

7.8.4 Proposition, (a) We have

ex(/) =
n>0

tn

Xn]f — >
n\

for any f e A, where [x\X2 • • • xn]f denotes the coefficient of x\X2 •
Equivalently, if f — X!A c^m^ tnen

(7.25)

in f.

ex(/) =
tn

n\

(b) We have

ex(mA) = n!
0, otherwise

tn if A. = (ln)

0, otherwise
(7.26)

(7.27)

(a) Since the right-hand side of (7.25) is linear in / , we need only verify
(7.25) for f = pk. This is a routine computation,
(b) Easy consequence of (a). •

7.8.5 Example. Let

Fix) = Y\(l - JC,)-1 J"[(l - XiXj)

(For the significance of this product, see Corollary 7.13.8.) In this example we will
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7.8 Specializations 305

evaluate cx(F(x)). We can save a little work by observing that

exY\(l ~*i)~l = ex
n>0

n>0

so (since ex is a homomorphism),

ex(F(x)) = et -

Now

-XiXj)-1 = exp]Tlog(l -Wj)-1

= exp
i<] n>l

X—^ I / o

n > l

(Do not confuse ex with the ordinary exponential function exp.) Hence

ex [~[(1 - xtXjT1 = exp ] T — tx(p2
n - p2n)

by (7.26), so

We recognize from equation (5.32) that et+^ is the exponential generating func-
tion for the number e2(n) of involutions in <Sn. Indeed, it is easy to see directly
from the definition of F(x) that

[xi --'Xn]F(x) = e2(n).

In view of Proposition 7.8.4, it is natural to ask whether the specialization ex
has a "natural" ^-analogue ex^. The definition that works best is given by

tn

By Proposition 7.8.3 we see that
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306 7 Symmetric Functions

a minor variant of the stable principal specialization ps. In fact, if / e An then

(7.29)

Thus the exponential specialization ex is essentially a limiting case of ps, though
we cannot simply set q = 1 in (7.29) to conclude that ex(/) = 0 for all / ! The
substitution q = 1 is not a valid formal power series operation, since the operation
of setting q = 1 in ps(/) is undefined (or is oo, if one prefers).

7.9 A Scalar Product

Up to now we have been dealing with a graded algebra A with several distinguished
bases. We now want to put on A the additional structure of a scalar product, i.e.,
a bilinear form A x A -> Q, which we will denote by ( , ). If {ut} and {VJ}
are bases of a vector space V, then a scalar product on V is uniquely determined
by specifying the values (w;, Vj). In particular, we say that {«;} and {VJ} are dual
bases if (w,, Vj) = 6,; (Kronecker delta) for all i and j . We now define a scalar
product on A by requiring that {m{\ and {h^} be dual bases, i.e.,

(m,,/i,)=V (7.30)

for all A, /A G Par. The motivation for this definition will become clear as we develop
many desirable and useful properties. First notice that ( , ) respects the grading
of A, in the sense that if / and g are homogeneous then (/, g) = 0 unless
d e g / = degg.

We now give a series of results which elucidate the nature of the scalar product

7.9.1 Proposition. The scalar product ( , ) is symmetric, i.e., (/, g) = (g, f)
for all f,g e A.

Proof. The result is equivalent to Corollary 7.5.2. More specifically, it suffices
by linearity to prove (/, g) = (g, / ) for some bases {/} and {g} of A. Take
{/} = {g} = {hx}. Then

Since Nx^ = N^x by Corollary 7.5.2, we have {hx, h^) = {h^, hx), as desired. •

The following lemma is a basic tool for verifying orthogonality of certain classes
of symmetric functions. Its proof is a straightforward exercise in linear algebra and
can be omitted without significant loss of understanding.
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7.9 A Scalar Product 307

7.9.2 Lemma. Let {ux\ and {vx} be bases of A such that for all X\- n we have
Ux, vx £ An. Then {ux} and {vx} are dual bases if and only if

Proof Write mx = J^P &PUP
 a n d hn = Ylv fy*vVv. Thus

^ i v i u p , v v ) . (7.32)

For each fixed n > 0, regard £ and rj as matrices indexed by Par(n), and let A
be the matrix defined by Apv = (up,vv). Then (7.32) is equivalent to / =
wheref denotes transpose and / the identity matrix. Therefore:

and {v^} are dual bases ^=> A = I

2 ] . (7.33)
x

Now by Proposition 7.5.3 we have

Since the power series up(x)vv(y) are linearly independent over Q, the proof
follows from (7.33). •

7.9.3 Proposition. We have

(Px> Pn) = zxhn- (7.34)

Hence the px 'sform an orthogonal basis of A. (They don't form an orthonormal
basis, since (pk, pk) ^ I.)

Proof By Proposition 7.7.4 and Lemma 7.9.2 we see that {px} and {p^/z^} are
dual bases, which is equivalent to (7.34). •

The length \\px\\ = (px, Px)l/2 = z[/2 is in general not rational. Thus the
elements px/\\ px II form an orthonormal basis of AR but not of A (since they don't
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308 7 Symmetric Functions

belong to A). It is natural to ask whether there is a "natural" orthonormal basis
for A. Even better, is there an integral orthonormal basis for A, i.e., is there an
orthonormal basis {bx} for A such that each bx is an integer linear combination
of ra^'s, and conversely each m^ is an integer linear combination of Z?̂ 's? Such
a basis will thus be a basis for Az (as an abelian group). In Sections 7.10-7.17
we will construct such a basis (see Corollary 7.12.2) and derive many remarkable
combinatorial properties that it possesses.

7.9.4 Corollary. The scalar product (, ) is positive definite, i.e., (/, / ) > Ofor
all f e A, with equality if and only if f = 0.

Proof. Write (uniquely) / =

The proof follows since each zx > 0. D

7.9.5 Proposition. The involution a> is an isometry, i.e., (cof, cog) = (f,g) for
all f,g e A.

Proof. By the bilinearity of the scalar product, it suffices to take f = pk and
g = p^. The result then follows from Propositions 7.7.5 and 7.9.3. D

7.10 The Combinatorial Definition of Schur Functions

The four bases mx, ex, hx, and px of A discussed in the previous sections all
have rather transparent definitions. In this section we consider a fifth basis, whose
elements are denoted sx and are called Schur functions, and whose definition is con-
siderably more subtle. In fact, there are many different (equivalent) ways in which
we can define sx, viz., in terms of any of the four previous bases, or a "classical"
definition involving quotients of determinants, or by abstract properties related to
orthogonality and triangularity, or finally by sophisticated algebraic means. All
these possible definitions will appear unmotivated to a neophyte. We choose to
define sx in terms of the mM's because this approach is the most combinatorial,
though other approaches have their own advantages. In the end, of course, all the
approaches produce the same theory.

Much of the importance of Schur functions arises from their connections with
such branches of mathematics as representation theory and algebraic geometry. We
will discuss the connection with the representation theory of the symmetric group
&n in Section 7.18 and with the general linear group GL(n, C) and related groups
in Appendix 2. Another important application of Schur functions not developed
here occurs in the Schubert calculus; the cohomology ring of the Grassmann variety
Gk(Cn) can be described in a natural way in terms of Schur functions.
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7.10 The Combinatorial Definition ofSchur Functions 309

The fundamental combinatorial objects associated with Schur functions are
semistandard tableaux. Let A be a partition. A semistandard (Young) tableau
(SSYT) of shape k is an array T = (7^) of positive integers of shape k (i.e.,
1 < i < £(k), 1 < j < ki) that is weakly increasing in every row and strictly
increasing in every column. The size of an SSYT is its number of entries. An
example of an SSYT of shape (6, 5, 3, 3) is given by

1 1 1344
24455
557
6 9 9.

If T is an SSYT of shape k then we write k = sh(T). Hence the size of T is
just |sh(J)|. We may also think of an SSYT of shape k as the Young diagram (as
defined in Section 1.3) of k whose boxes have been filled with positive integers
(satisfying certain conditions). For instance, the above SSYT may be written

1

2

5

6

1

4

5

9

1

4

7

9

3

5

4

5

4

We say that T has type a = (ai,«2, • •-X denoted a = type(!T),if rhasa , = ca(T)
parts equal to i. Thus the above SSYT has type (3, 1, 1,4, 4, 1, 1, 0, 2). For any
SSYT T of type a (or indeed for any multiset on P with possible additional
structure), write

T o
X = X ,

For our running example we have

XT = #

a2(T)

*

There is a generalization of SSYTs of shape k that fits naturally into the theory of
symmetric functions. If A and /x are partitions with /x c k (i.e., /z; < kt for all /),
then define a semistandard tableau of (skew) shape k//jL to be an array T = (Ttj)
of positive integers of shape k/fi (i.e., 1 < i < l(k), /z* < j < ki) that is weakly
increasing in every row and strictly increasing in every column. An example of an
SSYT of shape (6, 5, 3, 3)/(3, 1) is given by

1 4
2 2 6
3 8 8.

3 4 4
7 7

We can similarly extend the definition of a Young diagram of shape k to one of
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310 7 Symmetric Functions

shape A.//X. Thus the Young diagram of shape (6, 5, 3, 3)/(3,1) is given by

Thus an SSYT of shape k/fi may be regarded as a Young diagram of shape
A.//X whose boxes have been filled with positive integers (satisfying certain con-
ditions), just as for "ordinary shapes" k. For instance, the above SSYT of shape
(6, 5, 3, 3)/(3,1) may be written

2

3

1

2

8

4

6

8

3

7

4

7

4

The definitions of type(r) and xT carry over directly from SSYTs T of ordinary
shape to those of skew shape.

We now come to the key definition of this entire chapter. As mentioned previ-
ously, this definition will appear entirely unmotivated until we proceed further.

7.10.1 Definition.
S),/ti(x) of shape

Let k/ii be a skew shape. The skew Schur function
in the variables x = (x\, JC2, • • •) is the formal power series

summed over all SSYTs T of shape k//ji. If /JL = 0 so A//x = k, then we call s\(x)
the Schur function of shape k.

For instance, the SSYTs of shape (2, 1) with largest part at most three are given
by

Hence

11 12 11 13 22 23 12 13
2 2 3 3 3 3 3 2

+ X\x\

Thus, since at most three distinct variables can occur in a term of S2\, we have
$21 = m2i+2min (as elements of A, i.e., as symmetric functions in infinitely many
variables). It is by no means obvious that sX/^ is in fact always a symmetric function.

Cambridge Books Online © Cambridge University Press, 2010Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511609589.006
Downloaded from https://www.cambridge.org/core. Access paid by the UC Berkeley Library, on 26 Jun 2019 at 21:59:31, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511609589.006
https://www.cambridge.org/core


7.10 The Combinatorial Definition ofSchur Functions 311

7.10.2 Theorem. For any skew shape X/fi, the skew Schur function sx/^ is a
symmetric function.

Proof It suffices to show [why?] that sx/n is invariant under interchanging Xi and
Jt/+i. Suppose that |A//x| = n and that a = (<x\, ot2,...) is a weak composition of
n. Let

a = (ai, a2, • . . , a,-_i, ai+i, a,-, a,-+2,.. •)•

If %./ii,a denotes the set of all SSYTs of shape A//x and type a, then we seek a
bijection <p : Tk/ll,a -> 71/^a.

Let T G Tx/^^. Consider the parts of T equal to i or i + 1. Some columns of
T will contain no such parts, while some others will contain two such parts, viz.,
one i and one i + 1. These columns we ignore. The remaining parts equal to / or
i + 1 occur once in each column, and consist of rows with a certain number r of
I'S followed by a certain number s of i + l's. (Of course r and s depend on the
row in question.) For example, a portion of T could look as follows:

i

i i i i i + l i + 1 i + l i + l i + 1
1 + 1 I + l r=2 s=4

In each such row convert the r / 's and s i + l 's to s / 's and r i + l 's:

i

i i / i i i i + 1 / + 1 / + 1

I + l I + l =̂4 r=2

It's easy to see that the resulting array <p(T) belongs to %,/^a, and that <p establishes
the desired bijection. •

If X h n and a is a weak composition of n, then let KXa denote the number of
SSYTs of shape X and type a. Kka is called a Kostka number and plays a prominent
role in the theory of symmetric functions. By Definition 7.10.1 we have

a

summed over all weak compositions a of n, so by Theorem 7.10.2 we have

fihn

More generally, we can define the skew Kostka number Kx/V,a as the number of
SSYTs of shape X/v and type a, so that if \X/v\ = n then

fi\~n

No simple formula is known in general for Kx/V,n, or even Kx^, and it is unlikely
that such a formula exists. For certain A., v, and /x a formula can be given, the most
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312 7 Symmetric Functions

important being the case v — 0 and /x = (\n). While we will give this formula later
(Corollary 7.21.6), let us here consider more closely the combinatorial significance
of the number Kx,\n, also denoted fk. By definition, fk is the number of ways to
insert the numbers 1, 2 , . . . , n into the shape X h n, each number appearing once,
so that every row and column is increasing. Such an array is called a standard
Young tableau (SYT) (or just standard tableau) of shape X. For instance, the SYTs
of shape (3,2) are

123 124 125 134 135
45 35 34 25 24 '

so / ( 3 2 ) = 5. The number fx has several alternative combinatorial interpretations,
as given by the following proposition.

7.10.3 Proposition. Let X e Par. Then the number fx counts the objects in items
(a)-(e) below. We illustrate these objects with the case X = (3, 2).
(a) Chains of partitions. Saturated chains in the interval [0, X] of Young's lattice

Y, or equivalently, sequences 0 = A,0, X1,..., Xn = X of partitions (which we
identify with their diagrams) such that X1 is obtained from Xl~l by adding a
single square.

0 C 1 C 2 C3 C 31c 32

0C 1 C2 C21 C31 C32

0 C 1 C 2 C 21 C 22 C 32

0C 1 C 11 C21 C31 C32

0C 1 C 11 C21 C 22 c 32

(b) Linear extensions. Let P\ be the poset whose elements are the squares of the
diagram ofX, with t covering sift lies directly to the right or directly below
s (with no squares in between). Such posets are just the finite order ideals of
N x N . Then fx = e(Px), the number of linear extensions of Px.

abcde
abdce
abdec
adbce
adbec

(c) Ballot sequences. Ways in which n voters can vote sequentially in an election
for candidates A\, A2,..., so that for all i, At receives A; votes, and so that
At never trails Ai+\ in the voting. (We denote such a voting sequence as
a\a2 - -an, where the k-th voter votes for Aak.)

11122 11212 11221 12112 12121
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7.10 The Combinatorial Definition ofSchur Functions 313

(d) Lattice permutations. Sequences 0102 • • -an in which i occurs A; times, and
such that in any left factor a\a2 • • • a/, the number ofi 's is at least as great as
the number ofi + \'s (for all i). Such a sequence is called a lattice permutation
(or Yamanouchi word or ballot sequence) of type A.

11122 11212 11221 12112 12121

(e) Lattice paths. Lattice paths 0 = vo, vi,..., vn in Rl (where £ = l(X))from
the origin vo to vn = (A.i, A2,. . . , A )̂, with each step a unit coordinate vector,
and staying within the region (or cone) x\ > X2 > • • • > xi > 0.

Proof (a) Insert / into the square that was added to A/ l in order to obtain X1, to
get an SYT of shape A,.
(b) The interval [0, A] in Y is just /(PA.), the lattice of order ideals of / \ , so the
equivalence between our interpretations (a) and (b) of fk is just a special case of
the discussion following Proposition 3.5.2.
(c) If the k-ih voter votes for At, then put k in the /-th row of the shape A.
(d) Clearly the voting sequences in (c) are identical to the lattice permutations
of(d).
(e) \ia\a2 • • • an is a lattice permutation as in (d), then let vt — vt-\ be the at-th unit
coordinate vector (i.e., the vector with a one in position at and zeros elsewhere) to
obtain a lattice path. Alternatively, the equivalence between (b) and (e) is a special
case of the discussion preceding Example 3.5.3. •

All five of the above interpretations can be straightforwardly generalized to the
skew case fk^. We leave the details of this task to the interested reader.

There is a combinatorial object equivalent to an SSYT that is worth mentioning.
A GeIfand-Tsetlin pattern (sometimes called just a Gelfand pattern), or complete
branching, is a triangular array G of nonnegative integers, say

a\\ 012

033 (7.37)

such that 0/7 < 0;+ij+i < 0;,7+i when all three numbers are defined. In other
words, the rows of G are weakly increasing, and at+ij+i lies weakly between its
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314 7 Symmetric Functions

two neighbors above it. An example of a Gelfand-Tsetlin pattern is

0 2 2 3 6

0 2 2 4

1 2 4

1 3

3.

Given the Gelfand-Tsetlin pattern G of equation (7.37), let A.1 be the i-th row of
G in reverse order. Define a tableau T = T(G) by inserting n — i + 1 into the
squares of the skew shape A.1 /Xl+l. For the example above, T(G) is given by

1 1 1 3 5 5
2 3 5
3 4
5 5.

We obtain an SSYT of shape A.1 (the first row of G in reverse order) and largest
part at most n. This correspondence between Gelfand-Tsetlin patterns with fixed
first row a of length n and SSYT of shape ar (the elements of a in reverse order)
and largest part at most n is easily seen to be a bijection.

It is sometimes more convenient in dealing with Schur functions, Kostka num-
bers, etc., to work with arrays that are decreasing in rows and columns rather than
with SSYT. Define a reverse SSYT or column-strict plane partition (sometimes
abbreviated as costripp) of (skew) shape X//JL to be an array of positive integers of
shape A.//Z that is weakly decreasing in rows and strictly decreasing in columns.
Define the type a of a reverse SSYT exactly as for ordinary SSYT. For instance,
the array

6 5 5
8 5 2 2

7 7 3
6 1 1

is a reverse SSYT of shape (6, 5, 3, 3)/(3, 1) and type (2, 2, 1, 0, 3, 2, 2, 1).
Define kx/^,a to be the number of reverse SSYTs of shape A.//X and type a. The

next proposition shows that for many purposes there is no significant difference
between ordinary and reverse SSYTs.

7.10.4 Proposition. Let A//x be a skew partition of n, and let a be a weak
composition ofn. Then Kx/^a = Kyw

Proof. Suppose that T is a reverse SSYT of shape A. and type a = (a\, o?2,.. .)•
Let k denote the largest part of T. The transformation 7}j• \-> k + 1 — Ttj shows
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7.10 The Combinatorial Definition ofSchur Functions 315

that KXa = Kxa, where a = (ak, ak-u..., ai, 0, 0 , . . .)• But by Theorem 7.10.2
we have Kxa = K\a, and the proof is complete. •

We now wish to show that the Schur functions sx form a Q-basis for A. The
following proposition implies an even stronger result.

7.10.5 Proposition. Suppose that /x and k are partitions with |/x| = \k\ and
Kxp 7̂  0. Then \x < k (dominance order). Moreover, Kxx = 1.

Proof Suppose that Kx^ ^ 0. By definition, there exists an SSYT T of shape k
and type /z. Suppose that a part Ttj = k appears below the k-th row (i.e., i > k).
Then we have 1 < T\k < Tik < • • • < Tik — k for / > k, which is impossible.
Hence the parts 1, 2 , . . . , / : all appear in the first k rows, so [i\ + ^2 H h Vk <
^1 + ^2 H h Ajt, as desired. Moreover, if /x = A, then we must have Ttj = i for
dl (ij), so Ku = l. •

7.10.6 Corollary. The Schur functions Sx with k e Pzr(n)form a basis for An, so
{sx : k € Par} is a basis for A. In fact, the transition matrix (Kx^) which expresses
the sx's in terms of the m^'s, with respect to any linear ordering of Par(n) that
extends dominance order, is lower triangular with Ys on the main diagonal.

si = m i

s2 = mn + rn2

S21

S2U

S22

5 4

$11111

521H

^221
5311

532

541

55

= 2mm
= Win

= mim
= 3miin
= 2mmi
= 3mmi

m i m

= 5mZ
= 6m inn
= 5m inn
= 4m n in
= mum

+

+

+
+

+
4-

+

W21

W21

W211

W211

2m2n
W211

3m2in
3m2in
3m2in

W2111

m3 2

m32
m22i + m3n + m32 + mA\ + m5

Figure 7-4. The Kostka numbers ^ .
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316 7 Symmetric Functions

Proof. Proposition 7.10.5 is equivalent to the assertion about (KXfJi). Since a
lower triangular matrix with l's on the main diagonal is invertible, it follows that
{sk : X e ParOz)} is a Q-basis for An. •

Note that in fact {sk : A e Par(n)} is a Z-basis for AJ, since each Kxx = 1>
rather than just Kxx ¥" 0-

In subsequent sections we will work out the basic theory of Schur functions,
that is, the transition matrices between the sk's and the bases mk, hx, ex, px, as well
as connections with the scalar product ( , ) and the automorphism co. (We have
already considered, essentially by definition, the transition matrix (K^) from the
mx 's to the sx 's, but we don't know yet what the inverse matrix looks like.) We will
also give several enumerative applications of the theory of symmetric functions:
the enumeration of plane partitions, some results on permutation statistics, and
Poly a's theory of enumeration under group action.

Figure 7-4 gives a short table of the Kostka numbers K^.

7.11 The RSK Algorithm

There is a remarkable combinatorial correspondence associated with the theory of
symmetric functions, called the RSK algorithm. (For the meaning of the initials
RSK, as well as for other names of the algorithm, see the Notes at the end of
this chapter.) We will develop here only the most essential properties of the RSK
algorithm, thereby allowing us to give combinatorial proofs of some fundamental
properties of Schur functions. It is also possible to give purely algebraic proofs
of these results, but of course in a text on enumerative combinatorics we prefer
combinatorial proofs.

The basic operation of the RSK algorithm consists of the row insertion P <- k
of a positive integer k into a nonskew SSYT P = (Ptj). The operation P <— k is
defined as follows: Let r be the largest integer such that P\j-\ < k. (If P\\ > k
then let r = 1.) If P\r doesn't exist (i.e., P has r — 1 columns), then simply place
k at the end of the first row. The insertion process stops, and the resulting SSYT
is P <- k. If, on the other hand, P has at least r columns, so that P\r exists, then
replace P\r by k. The element then "bumps" P\r := k' into the second row, i.e.,
insert k' into the second row of P by the insertion rule just described. Continue
until an element is inserted at the end of a row (possibly as the first element of a
new row). The resulting array is P +-k.

7.11.1 Example. Let

1 124556
233668

P = 4468
67
8 9.
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7.77 The RSKAlgorithm 317

Then P <- 4 is shown below, with the elements inserted into each row (either by
bumping or by the final insertion in the fourth row) in boldface. Thus the 4 bumps
the 5, the 5 bumps the 6, the 6 bumps the 8, and the 8 is inserted at the end of a
row. The set of positions of these boldface elements is called the insertion path
I(P «- 4) of 4 (the number being inserted into P). Thus for this example we have
/ ( P < - 4) = {(1,5), (2,4), (3,4), (4, 3)}:

1 124456
233568
4466
678
8 9.

There are two technical properties of insertion paths that are of great use in
proving properties of the RSK algorithm.

7.11.2 Lemma, (a) When we insert k into an SSYT P, then the insertion path
moves to the left. More precisely, if(r,s),(r-\- l,t) G I(P —̂ k) then t < s.
(b) Let P be an SSYT, and let j < k. Then I(P *- j) lies strictly to the left of
I((P <- j) <- k). More precisely, if(r,s) e I(P <- j) and(r,t) e I((P <-
j) <- k), then s < t. Moreover, I((P <- j) <- k) does not extend below the
bottom of I(P «— j). Equivalently,

#/((/> <- j) <- k) < #I(P <- j).

Proof (a) Suppose that (r, s) e I(P <- k). Now either Pr+i,s > Prs (since P
is strictly increasing in columns) or else there is no (r + 1, s) entry of P. In the
first case, Prs cannot get bumped to the right of column s without violating the
fact that the rows of P «— k are weakly increasing, since Prs would be to the right
of Pr+\,s

 o n the same row. The second case is clearly impossible, since we would
otherwise have a gap in row r + 1. Hence (a) is proved.
(b) Since a number can only bump a strictly larger number, it follows that k is
inserted in the first row of P <— j strictly to the right of j . Since the first row of
P is weakly increasing, j bumps an element no larger than the element k bumps.
Hence by induction I(P <- j) lies strictly to the left of I((P <- j) <- k). The
bottom element b of I(P <- j) was inserted at the end of its row. By what was
just proved, if I((P *- j) «- k) has an element c in this row, then it lies to the
right of b. Hence c was inserted at the end of the row, so the insertion procedure
terminates. It follows that I((P <- j) «— k) can never go below the bottom of
I(P +- j). •

7.11.3 Corollary. If P is an SSYT and k > 1, then P <-k is also an SSYT.
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318 7 Symmetric Functions

Proof. It is clear that the rows of P <— k are weakly increasing. Now a number
a can only bump a larger number b. By Lemma 7.11.2(a), b does not move to the
right when it is bumped. Hence b is inserted below a number that is strictly smaller
than b, so P <- k remains an SSYT. •

Now let A = (atj)ij>\ be an N-matrix with finitely many nonzero entries.
We will say that A is an N-matrix of finite support. We can think of A as ei-
ther an infinite matrix or as an m x n matrix when atj = 0 for / > m and
j > n. Associate with A a generalized permutation or two-line array wA defined
by

= I . . .
\J\ 72 n '" JmJ

(7.38)

where (a) i\ < z*2 < • • • < im, (b) if ir = is and r < s, then jr < j s , and
(c) for each pair (/, j), there are exactly atj values of r for which (/r, 7V) =
(/, j). It is easily seen that A determines a unique two-line array wA satisfying
(a)-(c), and conversely any such array corresponds to a unique A. For instance,
if

A =

then the corresponding two-line array is

"1

0

1

0

2

1

2"

0 (7.39)

wA =
1 1 1 2 2 3

1 3 3 2 2

3 3 Y
1 2 ;

(7.40)

We now associate with A (or wA) a pair (P, Q) of SSYTs of the same shape, as
follows. Let wA be given by (7.38). Begin with (P(0), 2(0)) = (0, 0) (where 0
denotes the empty SSYT). If t < m and (P(t), Q{t)) are defined, then let

(a) P(r + l)
(b) 2(f + 1) be obtained from Q(t) by inserting it+\ (leaving all parts of Q(t)

unchanged) so that P(t + 1) and Q(t + 1) have the same shape.

The process ends at (P(m), Q(m)), and we define (P, Q) = (P(m), Q(m)).
RSK

We denote this correspondence by A —> (P, Q) and call it the RSK algo-
rithm. We call P the insertion tableau and Q the recording tableau of A or of
wA.
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7.11 The RSK Algorithm 319

7.11.4 Example. Let A and wA be given by (7.39) and (7.40). The SSYTs
(P(l), 2 (1) ) , . . . , (/>(7), 2(7)) = (P, Q) are as follows:

2(0
1 1
13 11
133 111
123 111
3 2
122 111
33 22
112 111
23 22
3 3

1122 1113
23 22
3 3.

The main result on the RSK algorithm is the following.

7.11.5 Theorem. The RSK algorithm is a bijection between N-matrices A =
(cLij)ij>\ of finite support and ordered pairs (P, Q) ofSSYTofthe same shape. In
this correspondence,

j occurs in P exactly /_^«/y times (7.41)

i occurs in Q exactly 2_jaij times. (7.42)
j

(These last two conditions are equivalent to type(P) = col(A), type(<2) = row(A)J

Proof By Corollary 7.11.3, P is an SSYT. Clearly, by definition of the RSK
algorithm P and Q have the same shape, and also (7.41) and (7.42) hold. Thus
we must show the following: (a) Q is an SSYT, and (b) the RSK algorithm is a
bijection, i.e., given (P, Q), one can uniquely recover A.

To prove (a), first note that since the elements of Q are inserted in weakly
increasing order, it follows that the rows and columns of Q are weakly increasing.
Thus we must show that the columns of Q are strictly increasing, i.e., no two
equal elements of the top row of wA can end up in the same column of Q. But if
ik = ik+l in the top row, then we must have jk < j k + \ . Hence by Lemma 7.11.2(b),
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320 7 Symmetric Functions

the insertion path of jk+\ will always lie strictly to the right of the path for j k , and
will never extend below the bottom of yVs insertion path. It follows that the bottom
elements of the two insertion paths lie in different columns, so the columns of Q
are strictly increasing as desired.

The above argument establishes an important property of the RSK algorithm:
Equal elements of Q are inserted strictly left to right.

It remains to show that the RSK algorithm is a bijection. Thus given (P, Q) =
(P(m), Q(m)), let Qrs be the rightmost occurrence of the largest entry of Q (where
Qrs is the element of Q in row r and column s). Since equal elements of Q are
inserted left to right, it follows that Qrs = im, Q(m — 1) = Q(m)\Qrs (i.e.,
Q(m) with the element Qrs deleted), and that Prs was the last element of P to be
bumped into place after inserting jm into P(m — 1). But it is then easy to reverse the
insertion procedure P(ra — 1) <- j m . Prs must have been bumped by the rightmost
element Pr-\,t of row r — 1 of P that is smaller than Prs. Hence remove Prs from
P, replace Pr-u with Prs, and continue by replacing the rightmost element of row
r — 2 of P that is smaller than Pr-\,t with Pr-i,t, etc. Eventually some element jm

is removed from the first row of P. We have thus uniquely recovered (im, jm) and
(P(m — 1), Q(m — 1)). By iterating this procedure we recover the entire two-line
array wA. Hence the RSK algorithm is injective.

To show surjectivity, we need to show that applying the procedure of the previous
paragraph to an arbitrary pair (P, Q) of SSYTs of the same shape always yields a
valid two-line array

wA

_ (h ••• im\
V/l *•• jm)'

Clearly i\ < i2 < • • • < im, so we need to show that if 4 = h+i t n e n jk <
Let ik = Qrs and 4+i = Quv, so r > u and s < v. When we begin to apply
inverse bumping to Puv, it occupies the end of its row (row u). Hence when we
apply inverse bumping to Pr5, its "inverse insertion path" intersects row u strictly
to the left of column v. Thus at row u the inverse insertion path of Prs lies strictly
to the left of that of Puv. By a simple induction argument (essentially the "inverse"
of Lemma 7.11.2(b)), the entire inverse insertion path of Prs lies strictly to the left
of that of Puv. In particular, before removing IVH the two elements jk and jk+\
appear in the first row with jk to the left of jk+\. Hence jk < jk+\ as desired,
completing the proof. •

In Section 7.13 we will give an alternative "geometric" description of the RSK
algorithm useful in proving some remarkable properties. This geometric description
is only defined when the matrix A is & permutation matrix, i.e., a n n x n (0, 1)-
matrix with exactly one 1 in every row and column. In this case the top line of
the two-line array is just 12 • • • n, while the bottom line is a permutation w of
1, 2 , . . . , n that we can identify with A. When the RSK algorithm is applied to a
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7.77 The RSK Algorithm 321

permutation matrix A (or permutation w e &n), the resulting tableaux P, Q are
just standard Young tableaux (of the same shape). Conversely, if P and Q are SYTs

RSK

of the same shape, then the matrix A satisfying A —> (P, Q) is a permutation
matrix. Hence the RSK algorithm sets up a bijection between the symmetric group
<&n and pairs (P, Q) of SYTs of the same shape k \- n. In particular, if / A denotes
the number of SYTs of shape A, then we have the fundamental identity

(7.43)
X\-n

Although permutation matrices are very special cases of N-matrices of finite
support, in fact the RSK algorithm for arbitrary N-matrices A can be reduced
to the case of permutation matrices. Namely, given the two-line array wA, say of
length ?z, replace the first row by 1, 2 , . . . , n. Suppose that the second row of wA has
ct f s. Then replace the l's in the second row from left-to-right with 1, 2 , . . . , a,
next the 2's from left-to-right with c\ + 1, c\ + 2 , . . . , c\ + C2, etc., until the
second row becomes a permutation of 1, 2 , . . . , n. Denote the resulting two-line
array by w A - For instance, if

A =

then

~2

0

1

0

1

3

r
i

0

wA =
1 1 1 2 2 3 3 3 3

1 1 3 2 3 1 2 2 lV

and wA is replaced by

wA - C 2 3 4 5 6
2 8 4 9 3

7 8 9 \
5 6 7 /

7.11.6 Lemma. Let

be a two-line array, and let

_ (h h ••• in\

\ h h " - JnJ

\JlJ2 •" Jn )
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322 7 Symmetric Functions

RSK ~ ~ ~ ~
Suppose that w A —> (P, Q)> Let (P, Q) be the tableaux obtained from P and Q

~ ~ ~ RSK

by replacing k in Q by ik, and j k in P by jk. Then WA —> (P, Q). In other words,
the operation WA *->- U>A "commutes" with the RSK algorithm.

Proof. Suppose that when the number j is inserted into a row at some stage of
the RSK algorithm, it occupies the &-th position in the row. If this number j were
replaced by a larger number 7 + e, smaller than any element of the row which is
greater than j , then j + e would also be inserted at the &-th position. From this
we see that the insertion procedure for elements j \ 72 • • • jn exactly mimics that for
J1J2" ' Jn> anc* the proof follows. •

The process of replacing WA with WA, P with P, etc., is called standardization.
Compare the second proof of Proposition 1.3.17.

7.12 Some Consequences of the RSK Algorithm

The most important result concerning symmetric functions that follows directly
from the RSK algorithm is the following, known as the Cauchy identity.

7.12.1 Theorem. We have

I~]d - xtyjT1 = I > ( * K O 0 . (7.44)
ij A

Proof. Write

Y\ n I E ( 7 - 4 5 )
= n I Etoyj?" •

iJ L<*ij>0 J

A term xayP in this expansion is obtained by choosing an N-matrix Af = (a^)*
(the transpose of A) of finite support with row(A) = a and col(A) = p. Hence the
coefficient of xay& in (7.45) is the number Nap of N-matrices A with row(A) = a
and col(A) = ft. (This statement is also equivalent to (7.9).) On the other hand, the
coefficient of xayP in J^x sdx)si(y)is t h e number of pairs (P, Q) of SSYT of the
same shape A such that type(P) = a and type(<2) = P- The RSK algorithm sets
up a bijection between the matrices A and the tableau pairs (P, g) , so the proof
follows. •

The Cauchy identity (7.44) has a number of immediate corollaries.

7.12.2 Corollary. The Schur functions form an orthonormal basis for A, i.e.,

Proof Combine Corollary 7.10.6 and Lemma 7.9.2. •

LINEAR-ALGEBRAIC NOTE. We say that the Schur functions form an integral or-
thonormal basis of A, since by Proposition 7.10.5 they actually generate Az as
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7.72 Some Consequences of the RSK Algorithm 323

an abelian group. In general it is a subtle question whether a vector space with a
distinguished basis (in our case the monomial symmetric functions) and a posi-
tive definite symmetric scalar product has an integral orthonormal basis. For our
situation such a basis is equivalent to the existence of an integral matrix A such
that At A = N, where N is the transition matrix from mx to h\. We then say N is
integrally equivalent to the identity. The next result (which is nothing more than
standard linear algebra) identifies A as the Kostka matrix K. Note that in general
if an integral orthonormal basis exists, then it is unique up to sign and order. This
is because the transition matrix between two such bases must be both integral and
orthogonal. It is easy to see that the only integral orthogonal matrices are signed
permutation matrices.

7.12.3 Corollary. Fix partitions /x, v h n. Then

where K^ and Kxv denote Kostka numbers, and N^v is the number of N-matrices
A with row(A) = [i and col(A) = v.

Proof Take the coefficient of x^yv on both sides of (7.44). •

7.12.4 Corollary. We have

In other words, if M(u, v) denotes the transition matrix from the basis {vx} to the
basis [ux\ of A (so that Ux = JZ^ M(«, v)x^vjJi)y then

M(h,s) = M(s,m)'.

We give three proofs of this corollary, all essentially equivalent.

First Proof Let h^ = Y^x a^s^- By Corollary 7.12.2, we have a^ = (h^, sx).
Since (/zM, mv) = 8^ by the definition (7.30) of the scalar product (, ), we have
from (7.35) that (fcM, sx) = Kx^. •

Second Proof Fix /x. Then

y.CO\(A)

AA

xQ by the RSK algorithm
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324 7 Symmetric Functions

where (i) A ranges over all N-matrices with row(A) = /z, (ii) (P, Q) ranges over
all pairs of SSYT of the same shape with type(P) = //,, and (iii) Q ranges over all
SSYT of shape X. D

Third Proof. Take the coefficient of m^(x) on both sides of the identity

A. A

(The two sides are equal by (7.10) and (7.44).) •

The next corollary may be regarded as giving a generating function (with respect
to the Schur functions sk) for the number fk of SYT of shape A..

7.12.5 Corollary. We have

/z? = ^ ] / V (7.47)

Proof Take the coefficient of x\ X2 • • • xn on both sides of (7.44). To obtain a bi-
RSK

jective proof, consider the RSK algorithm A —> (P, <2) when col(A) = (1"). •

Finally we come to an identity already given in (7.43) but worth repeating here.
7.12.6 Corollary. We have

M-n

Proof Regard (7.47) as being in the variables x = (JCI, *2, • . . ) , and take the
coefficient of x\X2 • • • xn on both sides. To obtain a bijective proof (as mentioned
before equation (7.43)) consider the RSK algorithm applied t o n x n permutation
matrices. •

7.13 Symmetry of the RSK Algorithm

The RSK algorithm has a number of remarkable symmetry properties. We will
discuss only the most important such property in this section.

RSK

7.13.1 Theorem. Let A be an N-matrix of finite support, and suppose that A —>
RSK

(P, Q). Then A1 —> (Q, P), where ldenotes transpose.
To prepare for the proof of this theorem, let it; A = (") be the two-line array asso-

ciated to A. Hence w^ = (vu )sorted> i-e->sort t n e columns of (v
u) so that the columns

are weakly increasing in lexicographic order. It follows from Lemma 7.11.6 that
we may assume u and v have no repeated elements [why?].
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7.13 Symmetry of the RSK Algorithm 325

Given

(u\ "• un\ fu\
WA =

\v\ ••• vnj \vj
where the ul'sand the t>/s are distinct, define the inversion poset I = I (A) = / ( " )
as follows. The vertices of / are the columns of ("). For notational convenience,
we often denote a column a

b as ab. Define ab < cd in / if a < c and b < d.

7.13.2 Example. Let (JJ) = ( \ ] \\ 5
4
6
2 * ) . Then / is given by

13

Note that the number of incomparable pairs in / is just the number of inversions
of the permutation v, whence the terminology "inversion poset."

The following lemma is an immediate consequence of the definition of I (A).

7.13.3 Lemma. The map <p : /(A) -> /(A?) defined by <p(ab) = ba is an
isomorphism ofposets.

Now given the inversion poset / = /(A), define I\ to be the set of minimal
elements of / , then I2 to be the set of minimal elements of / — I\, then I3 to be
the set of minimal elements of / — I\ — h, etc. For the poset of Example 7.13.2
we have h = {13,41}, I2 = {27, 36, 54, 62}, I3 = {75}. Note that since It is an
antichain of / , its elements can be labeled

(UiuVn), (Ui2,Vi2), - . . , (Uinn Vin.), (IAS)

where ni = #//, such that

vn > Vi2 > • • • > vinr

7.13.4 Lemma. Let I\,..., Id be the (nonempty) antichains defined above, la-
RSK

beled as in (7.49). Let A —> (P, Q). Then the first row of P is v\ni v2n2 * * • Vdnd>
while the first row of Q is u\\U2\ • • • Ud\. Moreover, if (uk, vk) e Iif then vk is
inserted into the i-th column of the first row of the tableau P(k — 1) in the RSK
algorithm.

Proof. Induction on n, the case n = 1 being trivial. Assume the assertion for
n — 1, and let

AA _(U\U2 '" Un\ (u\ _

W \viv2 -- vn)' \v)
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326 7 Symmetric Functions

Let (P(n — 1), Q(n — 1)) be the tableaux obtained after inserting v\,..., vn-\,
and let the antichains // := / / ( - ) , 1 < i < e (where e = d — 1 or e — d), be
given by (uiU vn),..., (fi/m., t)im.), where un < • • • < wlm. and v^ > • • • > vimr

By the induction hypothesis, the first row of P(n — 1) is v\miV2m2'
m' veme, while

the first row of Q is unii2i • • • ue\- Now we insert vn into P(n — 1). If vimi > vn,
then // U (M«, vn) is an antichain of / ( " ) . Hence («n, u n ) € / , ( " ) if / is the least
index for which vimi > vn. If there is no such /, then (un, vn) is the unique element
of the antichain /f/(") o f / ( " ) . These conditions mean that vn is inserted into the
i-th column of P(n — 1), as claimed. We start a new i-th column exactly when
vn = Vd\, in which case un = M Î , so wn is inserted into the i-th column of the first
row of Q(n — 1), as desired. •

Proof of Theorem 7.13.1. If the antichain /, (") is given by (7.48) such that (7.49)
is satisfied, then by Lemma 7.13.3 the antichain /, (^) is just

(vimi,Uimi), . . . , (U/2, Kj2), (Uil, Wil),

where

U/m,- < ' * ' < Vi2 < Vn

Uimi > • • • > Ui2 > M,-l.

RSK

Hence by Lemma 7.13.4, if A1 —> (P', Q'), then the first row of P' is unu2\ • • •
WJI, and the first row of Q' is f/mif2m2 • * * vdmd- Thus by Lemma 7.13.4, the first
rows of Pf and Qf agree with the first rows of Q and P, respectively.

When the RSK algorithm is applied to ("), the element vtj, 1 < j < m,, gets
bumped into the second row of P before the element vrs, 1 < s < mr, if and only
if w;j+i < Mr>J+i. Let P and <2 denote P and <2 with their first rows removed. It
follows that

' ' ^1,/nj-l ^21 * * * V2,m2-l ' ' ' vd\ ' " Vd,md-\

, Q).

Similarly let (P\ Q) denote P' and Q' with their first rows removed. Applying
the same argument to (^) rather than (") yields

(::) -
V\,mi-l ' ' ' V\\ t>2,m2-l * * ' ^21 * ' ' Vd,md-l ' ' ' vd\

U22---Udmd • • • W d 2 / s o r t e d

1, Q'y

But (I) = (a/)sorted>
 s o by induction on n (or on the number of rows) we have

(P\ Qf) = (Q, P), and the proof follows. •
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7.13 Symmetry of the RSK Algorithm 327

Second Proof (sketch). The above proof was somewhat mysterious and did not
really "display" the symmetric nature of the RSK algorithm. We will describe an
alternative "geometric" description of the RSK algorithm from which the symmetry
property is obvious.

Given w = W{- -wn€&n, construct an n x n square array with an X in the wt -th
square from the bottom of column /. For instance, if w = 43512 then we obtain

X

X

X

X

X

4 3 5 1 2

This is essentially the usual way of representing a permutation by a permutation
matrix, except that we place the (1, 1) entry at the bottom left instead of at the top
left. We want to label each of the (n + I)2 points that are corners of squares of our
n x n array with a partition. We will write this partition just below and to the left
of its corresponding point. Begin by labeling all points on the bottom row and left
column with the empty partition 0:

X

X

X

X

X

Suppose now that we have labeled all the corners of a square s except the upper
right, say as follows:
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328 7 Symmetric Functions

Then label the upper right corner by the partition p defined by the following
"local" rules (L1)-(L4):

(LI) Suppose that the square s does not contain an X, and that X = /x = v. Then
define p = X.

(L2) Suppose that s does not contain an X, and that X c /x = v. This automatically
implies that |/x/A.| = 1, so /x is obtained from X by adding 1 to some part Xt.
Let p be obtained from /x by adding 1 to /x,-+i.

(L3) Suppose that s1 does not contain an X and that / z / y . Define p = /x U v,
i.e., pi = max(/x;, v/).

(L4) Suppose that s contains an X. This automatically implies that X = \x = v.
Let p be obtained from X by adding 1 to X\.

Using these rules, we can uniquely label every square corner, one step at a time. The
resulting array is called the growth diagram Qwofw. For our example w = 43512,
we get the growth diagram

1

1

X

0

0

0

11

11

1

X

0

0

21

X

11

1

0

0

211

111

11

1

1

X

221

211

21

2

X

1

(7.50)

It's easy to see that if a point p is labeled by X, then the sum |X| of the parts
of X is equal to the number of X's in the quarter plane to the left and below p.
In particular, if X1 denotes the partition in row i (with the bottom row being row
0) and column n (the rightmost column), then \Xl\ = i. Moreover, it is immediate
from the labeling procedure that 0 = X° c X1 c • • • C Xn. Similarly, if /x* denotes
the partition in column / (with the leftmost column being 0) and row n (the top
row), then |/x'' | = / and 0 = /x° c /x1 c • • • C /xn.

The chains 0 = A0 c X1 C • • • C Xn and 0 = /x° C /x1 C • • • C /xn

correspond to standard tableaux Pw and Qw, respectively (as explained in Propo-
sition 7.10.3(a)). The main result concerning the geometric construction we have
just described is the following.

7.13.5 Theorem. The standard tableaux Pw and Qw just described satisfy

w ™ (Pw, Qw).
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7.13 Symmetry of the RSK Algorithm 329

Proof (sketch). Let the partition appearing in row i and column j be v(i, j). Thus
for fixed j , we have

where \v(i, j)/v(i — 1, j)\ = 0 or 1. Let T(i, j) be the tableau of shape v(*\ j)
obtained by inserting k into the square v(k, j)/v(k — I, j) when 0 < k < i
and \v(k, j)/v(k — 1, y)! = 1. For the array (7.50) the tableaux T(i, j) are given
by

4

4

0

0

0

3
4

3
4

3

0

0

35

3
4

3

0

0

15
3
4

1
3
4

1
3

1

1

X

12
35
4

12
3
4

12
3

12

X

1

We claim that the tableau T(i, j) has the following alternative description: Let
0'i» 7i)» • • • > (*'*> 7*) be the position of the JC'S to the left and below T(i, j) (i.e.,
ir < i and jr < j), labeled so that j \ < • • • < j k . Then T(i, j) is obtained
by row inserting successively i'i, z'2, • • •, ^ , beginning with an empty tableau. In
symbols,

The proof of the claim is by induction on / + j . The assertion is clearly
true if 1 = 0 or j = 0, so that T(i, j) = 0. If i > 0 and j > 0, then by
the induction hypothesis we know that T(i — 1, j), T(i, j — 1), and T(i — 1,
j — 1) satisfy the desired conditions. One checks that T(i, j) also satisfies these
conditions by using the definition of T(i, j) in terms of the local rules (Ll)-
(L4). There are thus four cases to check; we omit the rather straightforward de-
tails.

If we now take i = n, we see that

r(n, j) = ((0 <- wi) <- w2) < <- wj, (7.51)

where w = w\W2 • • • wn. Thus T(n, n) (which is the same as Pw) is indeed the
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330 7 Symmetric Functions

insertion tableau of w, while Qw (which is defined by the sequence v(n, 0) c
v(n, 1) C • • • C v(n, n)) is by (7.51) just the recording tableau. This completes
the proof of Theorem 7.13.5. •

It is now almost trivial to give our second proof of Theorem 7.13.1. If we trans-
pose the growth diagram Gw (i.e., reflect about the diagonal from the lower left
to the upper right corner) then the symmetry of the local rules (L1)-(L4) with
respect to transposition shows that we get simply the growth diagram Gw-\. Hence
Pw = Qw\ and Qw = Pw-i, and the proof follows from Theorem 7.13.5.

Growth diagrams and their variants are powerful tools for understanding the
RSK algorithm and related algorithms. For further infomation, see the Notes to
this chapter, as well as Exercise 7.28(a).

Let us now consider some corollaries of the symmetry property given by
Theorem 7.13.1.

RSK

7.13.6 Corollary. Let A be an N-matrix of finite support, and let A —> (P, Q).
Then A is symmetric (i.e., A = A1) if and only if P = Q.

RSK

Proof Immediate from the fact that A1 —> (Q, P). •
RSK

7.13.7 Corollary. Let A = Af and A ^ (P, P), and let a = («i, a 2 , . . .)>
where oti e N and Y^ ai < °°- Then the map A \-+ P establishes a bisection
between symmetric N-matrices with row(A) = a and SSYTs of type a.

Proof. Follows from Corollary 7.13.6 and Theorem 7.11.5. •

7.13.8 Corollary. We have

summed over all X e Par.

Proof The coefficient of xa on the left-hand side is the number of symmetric N-
matrices A with row(A) = a [why?], while the coefficient of xa on the right-hand
side is the number of SSYTs of type a. Now apply Corollary 7.13.7. •

7.13.9 Corollary. We have

the number of involutions in <&n (discussed in Example 5.2.10).
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7.14 The Dual RSK Algorithm 331

Proof. Let w e &n and w —> (P, g) , where P and Q are SYT of the same
shape X \- n. The permutation matrix corresponding to w is symmetric if and only
if w2 = 1. By Theorem 7.13.1 this is the case if and only if P = Q, and the proof
follows.

Alternatively, take the coefficient of x\ • • • xn on both sides of (7.52). •

Corollary 7.13.9 asserts that the total number of SYT of size n is equal to the
number of involutions in <E>n. The RSK algorithm provides a bijective proof.

Note that if t{n) denotes the coefficient of x\ • • • xn on the left-hand side of
(7.52), then Example 7.8.5 shows directly that

in agreement with (5.32).

+ •*/ yj)
. We call

7.14 The Dual RSK Algorithm

There is a variation of the RSK algorithm that is related to the product
in the same way that the RSK algorithm itself is related to ]~[(1 — JC/V

RSK*

this variation the dual RSK algorithm and denote it by A —> (P, Q). The matrix
A will now be a (0, 1) matrix of finite support. Form the two-line array wA just
as before. The RSK* algorithm proceeds exactly like the RSK algorithm, except
that an element i bumps the leftmost element > /, rather than the leftmost element
> /. (In particular, RSK and RSK* agree for permutation matrices.) It follows that
each row of P is strictly increasing.

7.14.1 Example. Let

A =

1

0

1

0

0

0

1

0

0

1

1

0

1

1

0

Then

wA =
1 1 2 3 3 4 5
1 3 2 1 3 3 2

The arrays (P(l), 2(1)),..., (P(7), Q(7)), with(P, Q) = (P(7), Q{1)\ obtained
from RSK* are as follows:
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Q(0

1

1

1
3

1
1
3

1
1
3

1
1
3

1
1
3
3

3

2

2

23

23
3

23
2

1

1

1
2

1
2
3

1
2
3

1

1

1

1

13

13
24
3

1 13
24
3
5

7.14.2 Theorem. The RSK* algorithm is a bijection between (0, \)-matrices A
of finite support and pairs (P, Q) such that P* (the transpose of P) and Q are
SSYTs, with sh(P) = sh(Q). Moreover, col(A) = type(P) androw(A) = type(g).

The proof of Theorem 7.14.2 is analogous to that of Theorem 7.11.5 and will
be omitted.

Exactly as we obtained the Cauchy identity (7.44) from the ordinary RSK algo-
rithm, we have the following result, known as the dual Cauchy identity.

7.14.3 Theorem. We have

ij A

An important consequence of Theorem 7.14.3 is the evaluation of cosx. First we
need to see the effect of co, acting on the y variables, on the product ]~[(1 -f- JC/VJ).

7.14.4 Lemma. Let coy denote co acting on the y variables only (so we regard
the Xi 's as constants commuting with co). Then
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7.14 The Dual RSK Algorithm 333

Proof. We have

FT(1 — xtyj)~l = My Y^ mx(x)hx(y) (by Proposition 7.5.3)
x

= ] P md*)ex(y) (by Theorem 7.6.1)

(1 + xtyj) (by Proposition 7.4.3).

An alternative proof can be given by expanding the products f~[( 1 — xi<yj0~l and
+xtyj) in terms of the power sum symmetric functions (equations (7.20) and

(7.21)) and applying Proposition 7.7.5.

7.14.5 Theorem. For every X e Par we have

COSx = Sx'.

Proof. We have

Y\ + Wj) % Theorem 7.14.3)

- xtyj)~l (by Lemma 7.14.4)

(by Theorem 7.12.1)

Take the coefficient of sx(x) on both sides. Since the SA(X)'S are linearly indepen-
dent, we obtain sx>(y) = coy (sx(y)), or just sx> = cosx. •

Later (Theorem 7.15.6) we will extend Theorem 7.14.5 to skew Schur functions.
After Proposition 7.7.5 we mentioned that the characteristic polynomial of co :

An -> An is equal to (x2 - l)o(n\x - l)k(n\ where o(n) is the number of odd
conjugacy classes in &n and k(n) is the number of self-conjugate partitions of
n. In particular, the multiplicity of 1 as an eigenvalue exceeds the multiplicity of
— 1 by k(n). This fact is also an immediate consequence of Theorem 7.14.5. For
if X ^ X' then co transposes sx and sx>, accounting for one eigenvalue equal to 1
and one equal to — 1. Left over are the k(n) eigenvectors sx for which X = X', with
eigenvalue 1.
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334 7 Symmetric Functions

7.15 The Classical Definition of Schur Functions

Let a = ( a i , . . . , an) e Nn and w e &n. As usual write xa = x"1 • • • JC"«, and
define

Now define

aa = aa(xu (7.53)

where

I if w is an even permutation

- 1 if odd.

(Thus ew = £P(W), as defined in (7.19).) Note that the right-hand side of equation
(7.53) is just the expansion of a determinant, namely,

Note also that aa is skew-symmetric, i.e., w{aa) = swaa, so aa = 0 unless all the
at 's are distinct. Hence assume that a\ > «2 > • • • > dn > 0, so a = A + 5, where
X G Par, €(X) < rc, and 5 = 8n = (n - 1, n - 2 , . . . , 0). Since a, =kj+n- j ,
we get

For instance,

421 = «211+210 =

Note in particular that

a8 =

4 2 1
1 X l ^1

X4 X2 X1

X4 X2 X1

(7.54)

the Vandermonde determinant.
If for some / ^ y we put xt = Xj in aa, then because aa is skew-symmetric (or

because the /-th row and y'-th row of the determinant (7.54) become equal), we
obtain 0. Hence aa is divisible by xt — Xj and thus by a8 (in the ring Z[x\,..., xn]).
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7.75 The Classical Definition ofSchur Functions 335

Thus aa/as £ Z[x\, . . . , xn]. Moreover, since aa and as are skew-symmetric, the
quotient is symmetric, and is clearly homogeneous of degree |a| — \8\ = \X\.
In other words, aa/a8 e A^. (The quotient aa/a8 is called a bialternant.) It is
therefore natural to ask for the relation between aa/a8 and the symmetric functions
we have already considered. The answer is a fundamental result in the theory of
symmetric functions.

7.15.1 Theorem. We have

ak+8/a8 =

Proof. There are many proofs of this result. We give one that can be extended to
give an important result on skew Schur functions (Theorem 7.15.4).

Applying co to (7.46) and replacing A by X' yields

Since the matrix (Kx^) is invertible, it suffices to show that

efJL(xu...,xn) =

• k i*d

or equivalently (always working with n variables),

(7.56)

Since both sides of (7.56) are skew-symmetric, it is enough to show that the coef-
ficient of xx+8 in a8e^ is Kx^. We multiply a8 by e^ by successively multiplying
by e^, e^2, Each partial product a^e^ • • -e^ is skew-symmetric, so any term
x\l • • • xl

n
n appearing in a^e^ • • • e^ has all exponents ij distinct. When we multiply

such a term x\l • • • xl
n
n by a term xmi • • • xmj from ^ + 1 (so j = /x^+i), either two

exponents become equal or the exponents maintain their relative order. If two ex-
ponents become equal, then that term disappears from a8efll • • • e^k+x. Hence to get
the term JCA+<5, we must start with the term x8 in a8 and successively multiply by
a term xa of e^, then xa of eM2, etc., keeping the exponents strictly decreasing.
The number of ways to do this is the coefficient of xk+8 in a8e^.

Given the terms x01', xa\ . . . as above, define an SSYT T = T(a\ a2,...) as
follows: Column j of T contains an i if the variable Xj occurs in xa' (i.e., the
7-th coordinate of a1 is equal to 1). For example, suppose n = 4, A = 5332,
A' = 44311, X + 6 = 8542,/x = 3222211, x01' = x^xs^x"2 = xxx2,x

a3 = JC3JC4,
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336 7 Symmetric Functions

x01* = x\X2, x®5 — JC1JC4, x"6 = JCI, xal = X3. Then T is given by

1 1 1 3

2 2 3 5

4 4 7

5

6

It is easy to see that the map (a1, of2,...) i-> T(al, a 2 , . . . ) gives a bijection be-
tween ways of building up the term xx+s from x8 (according to the rules above)
and SSYT of shape k' and type /z, so the proof follows. •

From the combinatorial definition of Schur functions it is clear that sx(x\,..., xn)
= 0 if t{k) > n. Since by Proposition 7.8.2(b) we have dim An = #{A e Par :
l(k) <n},it follows that the set [sx(x\,..., xn) : l(k) < n] is a basis for An. (This
also follows from a simple extension of the proof of Corollary 7.10.6.) We define on
An a scalar product (, >n by requiring that {^(JCI , . . . , xn)} is an orthonormal ba-
sis. If / , g e A, then we write (/, g)n as short for {f(xu . •., *«), g(xu • • •, ^))«.
Thus

provided that every monomial appearing in / involves at most n distinct variables,
e.g., i fdeg / <n.

7.15.2 Corollary. If f e An, l(k) < n, and 8 = (n - 1, n - 2 , . . . , 1, 0), then

the coefficient ofxk+8 in asf.

Proof. All functions will be in the variables x\,..., xn. Let / = J2t(x)<n
Then by Theorem 7.15.1 we have

SO

(f,sx)n=cx = [xk+8]a8f D

For instance, we have

[af,sx)n = [x^]a?+\ (7.57)

for l(k) < n. It is an interesting problem (not completely solved) to compute the
numbers (7.57); for further information on the case k = 1, see Exercise 7.37.
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7.15 The Classical Definition of Schur Functions 337

Let us now consider a "skew generalization" of Theorem 7.15.1. We continue
to work in the n variables x\, . . . , xn. For any X, v e Par, £(k) < n, £(v) < n,
consider the expansion

k

or equivalently (multiplying by a8),

J^^ (7.58)

Arguing as in the proof of Theorem 7.15.1 shows that L^ is equal to the number
of ways to write

X + 8 = v + 8 + of1 + a2 H ha*,

where £(/x) = k, each a1 is a (0, l)-vector with //; l's, and each partial sum
v + 8 + a1 + • • • + a1 has strictly decreasing coordinates. Define a skew SSYT
T = Tx>/v'((xl, • • •, a*) of shape X'/v' and type /x by the condition that / appears
in column j of T if the 7-th coordinate of a[ is a 1. This establishes a bijection
which shows that L^ffl is equal to the skew Kostka number K^/V'i/JL, the number of
skew SSYTs of shape X'/v' and type fi (see equation (7.36)). (If 1/ g A/ then this
number is 0.)

7.15.3 Corollary. We have

^2 k>/v,nSx. (7.59)

Proof. Divide (7.58) by as, and let n -> 00. •

It is now easy to establish a fundamental property of skew Schur functions.

7.15.4 Theorem. For any feA,we have

(fsv,sk) = (fsk/v).

In other words, the two linear transformations Mv : A —• A and Dv : A —> A
defined by Mvf = svf and Dvsk = sX/v are adjoint with respect to the scalar
product ( , ). In particular,

(SfiSv, sk) = (Sfj,, sX/v). (7.60)
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338 7 Symmetric Functions

Proof. Apply co to (7.59) and replace v by v' and X by X'. We obtain

Hence

(Sv/ l^ , 5A) = ^A/v,/x = (*jLt, •S'A./v)' ( 7 - 6 1 )

by (7.36) and the fact that {h^.mp) = S^p by definition of ( , ). But equation
(7.61) is linear in /zM, so since {h^} is a basis for A, the proof follows. •

7.15.5 Example. We have 51531 = 541 +532 + 5311 and s\S2i = 3̂2 + 2̂21- No
other product 515^ involves 532. It follows that 532/1 = 522+^31. For a generalization,
see Corollary 7.15.9.

We can now give the generalization of Theorem 7.14.5 to skew Schur functions.

7.15.6 Theorem. For any A, v e Par we have cosx/v = Sk'/v'.

Proof. By Proposition 7.9.5 and equation (7.60) we have

Hence by Theorem 7.14.5 we get

(s^Sy', sk>) = (ty» cosx/v). (7.62)

On the other hand, substituting A/, /xr, v' for X, /x, v respectively in (7.60) yields

(s^Sy', sk>) = ( 5 ^ , sx>/v'). (7.63)

From (7.62) and (7.63) there follows cosx/v = s\>/v>. •

The integer {s\, s^Sy) = (sx/v, s^) = (5^/^, sv) is denoted c^v and is called a
Littlewood-Richardson coefficient. Thus

(7.64)
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7.75 The Classical Definition of Schur Functions 339

r

V

Figure 7-5. A skew shape.

Note that the seemingly more general (s\/v, s^/p) is itself a Littlewood-Richardson
coefficient, since (sx/v,Sii/P) = {sx.SyS^/p) and S^V/P is just a skew Schur
function, as Figure 7-5 (together with the combinatorial definition of Schur func-
tions) makes evident. More generally, any product of skew Schur functions is a
skew Schur function.

A central result in the theory of symmetric functions, called the Littlewood-
Richardson rule, gives a combinatorial interpretation of the Littlewood-Richardson
coefficient c* v. We will defer the statement and proof of the Littlewood-Richardson
rule to Appendix 1 (Section A 1.3). Here we consider the much easier special case
when /JL = (n), the partition with a single part equal to n. To state this result, known
as PierVs rule, define a horizontal strip to be a skew shape k/v with no two squares
in the same column. Thus an SSYT of shape /x/p with largest part at most m may
be regarded as a sequence p = M°^M 1 ^ • • • ^ M m = M of partitions such that
each skew shape \il //x*"1 is a horizontal strip. (Simply insert / into each square of

7.15.7 Theorem. We have

(7.65)

summed over all partitions k such that k/v is a horizontal strip of size n.
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340 7 Symmetric Functions

Proof We have (svsn, sx) = {sn, sx/v) = (hn, sx/v) = Kx/v,n. Clearly by defini-
tion of Kx/V,n we n a v e

J 1 if X/v is a horizontal strip of size n

1 0 otherwise,

and the proof follows. •

7.15.8 Example. Let v = 331 and n = 2. The ways of adding a horizontal strip
of size 2 to the shape 331 are given by

Hence

= 5̂31 + 4̂32 + 54311 + 3̂33 + ^3321-

Note that by applying co to (7.65) we get a dual version of Pieri's rule. Namely,
defining a vertical strip in the obvious way, we have

X

summed over all partitions X for which X/v is a vertical strip of size n.
We also have as an immediate consequence of (7.60) and Pieri's rule (Theo-

rem 7.15.7) the following skew version of Pieri's rule.

7.15.9 Corollary. We have

where v ranges over all partitions v c A for which X/v is a horizontal strip of
size n.

The proof we have given of Pieri's rule is rather indirect, but Pieri's rule is
actually a simple combinatorial statement that deserves a direct bijective proof.
Let Tv

a
n be the set of all pairs (7\ Tf) of SSYTs such that sh(7) = v, sh(7") = (n\

and type(r) + type(r) = a. Similarly, let Tk
a be the set of all SSYTs T such that

sh(T) = X and type(T) = a. Pieri's rule asserts that

where X ranges over all partitions such that X/v is a horizontal strip of size n. Thus
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7.15 The Classical Definition ofSchur Functions 341

we seek a bijection

Let T = a\a2 • • -an. It is not difficult to show (using Lemma 7.11.2) that cp is
given just by iterated row insertion:

<p(T, T) = ((T <-ai)^a2)< <- an.

A further avatar of Theorem 7.15.4 is the following. Let A(JC) and A(v) de-
note the rings of symmetric functions in the variables x = (x\, x2,...) and y =
(ji, yi, • •.)»respectively. Denote by A(x) 0 A(y) the ring of formal power series
(over Q) in x and y of bounded degree that are symmetric in the x variables and sym-
metric in the y variables. In other words, if f(x\,x2,...; y\, y2, •..) € A(jc)0A(y)
and if u and v are both permutations of P, then

f(x\,x2,.. •; j i , v2, . . .) = / f e d ) , *II(2), . . . ;yV(\), vu(2),.. .)•

It is clear that if {b^ix)} is a basis for A(JC) and {cv(y)} for A(y), then {b^(x)cv(y)}
is a basis for A(x) 0 A(v). The ring A(JC, y) of formal power series of bounded
degree that are symmetric in the x and y variables together is a subalgebra of
A(JC) 0 A(v). Of course the containment is proper; for instance, if f(x) e A(x)
and d e g / > 0, then f(x) e A(x) 0 A(y) but f(x) # A(JC, v). If {^A(^)} is a
basis for A(x) then {bk(x, v)} is a basis for A(JC, v), where bx(x, y) denotes the
symmetric function b\ in the variables x\, x2,... and j i , v2, It is now natural
to ask how to expand s^(x, y) in terms of the basis {s/jL(x)sv(y)} of A(x) 0 A(v).
Consider an ordered alphabet A = {1 < 2 < • • • < V < 2r < • • •}. If T is an
SSYT of shape A with respect to this alphabet, then define

(YV\T _ #(D #(2) #(10 #(20
(xy) — xx x 2 • - • y l y2

where #(a) denotes the number of occurrences of a in T. Thus from the combina-
torial definition of sx (Definition 7.10.1), we have

where T ranges over all SSYT of shape X in the alphabet A. Now the part of T occu-
pied by 1, 2 , . . . is just an SSYT of some shape \x c A, while the part of T occupied
by T, 2 r , . . . is a skew SSYT of shape A//x. From this observation there follows

sx(x, y) = Y^

^ A , (7.66)

which gives us the desired expansion.
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342 7 Symmetric Functions

NOTE (for algebraists). Define A : A - • A(JC) 0 A(y) by A / = /(JC, y). This
operation makes the space A into a coalgebra, and together with the usual algebra
structure on A it forms a bialgebra. If we take 1 e A to be a unit and the map
/ |~> / (0 , 0, . . . ) to be a counit, then we get a Hopf algebra. Moreover, the scalar
product on A is compatible with the bialgebra structure, in the sense that

(Af,g(x)h(y)) = (f,gh). (7.67)

Here the first scalar product takes place in A(JC) <g> A(v), where the elements
sfM(x)sv(y) form an orthonormal basis. The second scalar product is just the usual
one on A.

7.16 The Jacobi-Trudi Identity

In this section we will expand the Schur functions in terms of the complete sym-
metric functions. In effect we are computing the inverse to the Kostka matrix
(K^). Note that expanding Schur functions in terms of /i^'s is equivalent to ex-
panding them in terms of e^s, for if sx = Z ^ ^ / ^ M > then applying GO yields
sv = Hfihnefi.

The main result of this section, known as the Jacobi-Trudi identity, expresses sx

(in fact, sx/fi) as a determinant whose entries are hi's. Each term of the expansion
of this determinant is thus of the form ±/zv, so we get our desired expansion. The
actual coefficient of hv must be obtained by collecting terms.

7.16.1 Theorem. Let k = (k\,..., kn) and /x = (/xi, . . . , /xn) c k. Then

-^-«-+j)L=i' ( 7 ' 6 8 )

where we set ho = 1 and h^ = Ofor k < 0.

First Proof. Our first proof will be a direct application of Theorem 2.7.1, in
which we evaluated a determinant combinatorially by constructing an involution
that canceled out all unwanted terms. Indeed, the Jacobi-Trudi identity is perhaps
the archetypal application of Theorem 2.7.1.

In Theorem 2.7.1, take otj = kj + n — j , ft = /x, + n — i, yt = oo (more
precisely, take y, = AfandletTV -> oo),and6; = 1. The function h(aj— ft; y,, 8j)
appearing in Theorem 2.7.1 is just the complete symmetric function /ix;-Mj-y+/.
Thus the determinant appearing in Theorem 2.7.1 becomes (after interchanging
the roles of / and j) the right-hand side of equation (7.68).

Therefore by Theorem 2.7.1 it remains to show that B(a, ft y, 8) = sx/^. In
other words, given a nonintersecting n-path L in B(a, ft y, 8), we need to associate
(in a bijective fashion) a skew SSYT T of shape A//x such that the weight of L
is equal to xtyv^-T\ Actually, we associate a reverse SSYT T, which by Proposi-
tion 7.10.4 does not make any difference. If the horizontal steps of the path from
(fit +n — i, oo) to (ki +n — i, 1) occur at heights a\ > a-i > • • • > a^-^, then let
ai, #2* • • • > ah-Hi b e m e *m row of T. A little thought shows that this establishes
the desired bijection. •
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(0,1)

3

• 4

4

2

> < 1
i 1

1
» 4

2 2

> • 4

Figure 7-6. Nonintersecting lattice paths corresponding to an SSYT of shape 541/2.

As an example of the above bijection, take L as in Figure 7-6. Then

4 2 2
T = 3 2 1 1

1

Second Proof. Though our first proof was a very elegant combinatorial argument,
it is also worthwhile to give a purely algebraic proof. Let c^v = {sx., s^sv), so

Then

X,v

Let y = ( v i , . . . , yn). Multiplying by as(y) gives

- T K(x)ya
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344 7 Symmetric Functions

Now take the coefficient of yM on both sides (so we are looking at terms where
k + 8 = a + w(/x + <$)). We get

^ (7.69)

= de t ( f t w ,_ , + y (* ) ) ; j = I • •

If we substitute A///z' for k/fi in (7.68) and apply the automorphism co, then
we obtain the expansion of sx/^i in terms of the elementary symmetric functions,
namely:

7.16.2 Corollary. Let /x c X with k\ < n. Then

-^i+j)
n.j=v (7.70)

Equation (7.70) is known as the dual Jacobi-Trudi identity.
Recall (Proposition 7.8.4) that the exponential specialization ex satisfies

ex(/) = Y"[xix2 • • -xn]f —.
n>0 n'

Letexi(/) = ex(/)f=i, provided this number is defined. In particular, if \X//i\ = N
then

where /A/M is the number of SYT of shape

7.16.3 Corollary. Let \k/[i\ = N andt(k) < n. Then

tf- l ) .= Â ! detf- l ) . (7.71)

Proof. Apply exi to the Jacobi-Trudi identity (equation (7.68)). Since exi(/im) =
1 /m! by (7.27), the proof follows. D

While it is certainly possible to prove Corollary 7.16.3 directly, our proof shows
that it is just a specialization of the Jacobi-Trudi identity. When /x = 0 the deter-
minant appearing in (7.71) can be explicitly evaluated (e.g., by induction and a
clever use of row and column operations), thereby giving an explicit formula for
fx. We will defer this formula to Corollary 7.21.6 and equation (7.113), where we
give two less computational proofs.
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7.7 7 The Murnaghan-Nakayama Rule 345

7.17 The Murnaghan-Nakayama Rule

We have succeeded in expressing the Schur functions in terms of the bases mx,hx,
and ex. In this section we consider the power sum symmetric functions px. A skew
shape k/iJi is connected if the interior of the diagram of A//x, regarded as a union
of solid squares, is a connected (open) set. For instance, the shape 21/1 is not
connected. A border strip (or rim hook or ribbon) is a connected skew shape with
no 2 x 2 square. An example of a border strip is 86554/5443, whose diagram is

Given positive integers a\,..., a*, there is a unique border strip X//x (up to trans-
lation) with at squares in row / (i.e., at = Xt — /z?). It follows that the number
of border strips of size n (up to translation) is 2n~l, the number of compositions
of n. Define the height ht(Z?) of a border strip B to be one less than its number of
rows. The next result shows the connection between border strips and symmetric
functions.

7.17.1 Theorem. For any /x e Par and r e N we have

(7.72)

summed over all partitions X 2 fifor which X//JL is a border strip of size r.

Proof. Let 8 = (n — 1, n — 2 , . . . , 0), and let all functions be in the variables
JCI, . . . , xn. In equation (7.53) let a = // + 8 and multiply by pr. We get

7, (7.73)
7 = 1

where €j is the sequence with a 1 in the 7-th place and 0 elsewhere. Arrange the
sequence /z + <5 + re7 in descending order. If it has two terms equal, then it will
contribute nothing to (7.73). Otherwise there is some p < q for which

/Xp-i +n — p + \ >nq+n — q+r>np+n — p,

in which case a^+s+rcj — (—^)q~Pa\+8, where A. is the partition
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346 7 Symmetric Functions

Figure 7-7. Border strips A/63321 of size three.

Such partitions are precisely those for which A//x is a border strip B of size r, and
q — p is just ht(#). Hence

Divide by as and let n —>• oo to obtain (7.72). •

7.17.2 Example, (a) Let /x = 63321. The border strips of size 3 that can be
added to \x are shown in Figure 7-7. Hence

S63321P3 = 9̂3321 + $66321 ~ $65421 ~ $63333 ~ $633222 + $63321111-

(b) Let 8 = (n — 1, n — 2 , . . . , 0) as above. There are only two border strips of
size 2 that can be added to 8, and we get

S&P2 = Sn+l,n-2,n-3,...,\ ~ ^n-l,n-2,...,2,l,l,l-

Let a = (ofi,of2, • • •) be a weak composition of n. Define a border-strip tableau
(or rim-hook tableau) of shape A.//X (where |A.//x| = n) and type a to be an
assignment of positive integers to the squares of X//x such that

(a) every row and column is weakly increasing,
(b) the integer / appears at times, and
(c) the set of squares occupied by / forms a border strip.

Equivalently, one may think of a border-strip tableau as a sequence/x = X° c X1 c
• • • c Xr c A of partitions such that each skew shape X1 /Xl+l is a border-strip of
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7.7 7 The Murnaghan-Nakayama Rule 347

size at (including the empty border-strip 0 when at = 0). For instance, the array

1

1

3

3

1

2

3

5

1

2

5

5

1

5

5

6

6

6

6

6

6 6

is a border-strip tableau of shape 7555 and type (5, 2, 3, 0, 5, 7). (The border-strip
outlines have been drawn in for the sake of clarity.) Define the height ht(T) of a
border-strip tableau T to be

ht(jT) = ht(£i) + ht(£2) + • • • + htCB*),

where B\,..., Bk are the (nonempty) border strips appearing in T. For the example
above we have ht(T) = 1 + 0 + 1 + 2 + 3 = 7.

If we iterate Theorem 7.17.1, successively multiplying s^ by pai, pa2,..., then
we obtain immediately the following result.

7.17.3 Theorem. We have

where

summed over all border-strip tableaux of shape

Taking /x = 0 in Theorem 7.17.3 yields:

7.17.4 Corollary. We have

where xX(a) is given by (7.75).

(7.74)

(7.75)

and type a.

(7.76)

If we restrict ourselves to n variables where n > t(k) and apply Theorem 7.15.1,
then equation (7.76) may be rewritten

Hence we obtain the following "formula" for xx(aY-

(7.77)

It is easy to use equation (7.74) to express s^/fi in terms of the power sums. This
result (at least in the case fi = 0) is known as the Murnaghan-Nakayama rule.
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348 7 Symmetric Functions

7.17.5 Corollary. We have

X X V/M(v)/>v, (7.78)

where xk^(v) is given by (7.75).

Proof. We have from (7.74) that

and the proof follows from Proposition 7.9.3. •

The orthogonality properties of the bases {sx.} and {px} translate into orthogo-
nality relations satisfied by the coefficients XAXAO-

7.17.6 Proposition, (a) Fix /x, v. Then

(b) Fix K /z. Then

Proof, (a) Expand p^ and pv by (7.76) and take (pM, pv).
(b) Expand sx and s^ by (7.78) and take (sx, s^). D

Proposition 7.17.6 is equivalent to the statement that the matrix (x x(l^)zjl l/2)x,n\-n
is an orthogonal matrix. This may be seen directly from the fact that this matrix is
the transition matrix between the two orthonormal bases {sx} and {PfiZ^l/2}.

A remarkable consequence of Corollary 7.17.4 is that the coefficients xx(a) do
not depend on the order of the entries of a (since the same is true of the product
pa = paipa2 • •)• This fact can be of great value in obtaining information about
the numbers x*(<*)• As a sample application, we mention the following result.

7.17.7 Proposition. Let 8 be the "staircase shape" 8 = (m — 1, m — 2 , . . . , 1).
Then s& is a polynomial in the odd power sums p\, p3,

Proof. We need to show that x8(v) = 0 if v has an even part. Let a be an
ordering of the parts of v such that the last nonzero entry ak of a is even. Thus the
border-strip tableaux T in (7.75) have the property that the squares labeled k form
a border strip 8/v of size ak. But every border strip 8/v has odd size, so no such
T exists. •

For the converse to Proposition 7.17.7, see Exercise 7.54.
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7.18 The Characters of the Symmetric Group 349

NOTE (for algebraists). The coefficients xA(v) for A, v \- n have a fundamental
algebraic interpretation: They are the values of the irreducible (ordinary) charac-
ters of the symmetric group <&>n. More precisely, the irreducible characters xk of
<E>n are indexed in a natural way by partitions X \- n, and x x(v) is the value of x A at
an element w e &n of cycle type v. Thus Proposition 7.17.6 is just the standard or-
thogonality relations satisfied by irreducible characters. Now it may be seen e.g. im-
mediately from (7.75) that the degree (or dimension) of the character xx is given by

deg x" := XXd") = /"• (7.79)

Thus Corollary 7.12.6 agrees with the well-known result that for any finite group G,

= # G , (7.80)

where G is the set of irreducible characters of G. Moreover, Corollary 7.13.9
agrees with the less well-known result that

=#{w e G : w2 = 1}

if and only if every (ordinary) representation of G is equivalent to a real representa-
tion. For further information on the connections between symmetric functions and
the characters of <&n, see the next section and many of the exercises for this chapter.

7.18 The Characters of the Symmetric Group

This section is not needed for the rest of the text (with a few minor exceptions)
and assumes a basic knowledge of the representation theory of finite groups. Our
goal will be to show that the functions xA of the previous section (where XA(M)
is interpreted as xx(w) when w is an element of <&n of (cycle) type /x) are the
irreducible characters of &n.

Let CFn denote the set of all class functions (i.e., functions constant on conjugacy
classes) / : <&n -> Q. Recall that CFn has a natural scalar product defined by

(/, s> = ^ £ f(w)g(w).
n ' W€&n

Sometimes by abuse of notation we write (0, y) instead of (/, g) when 0 and y
are representations of <E>n with characters / and g.

NOTE. For general finite groups G, we can define CF(G) to be the set of all class
functions / : G -> C, and we can define the scalar product on CF(G) by
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350 7 Symmetric Functions

where g(w) denotes the complex conjugate of g(w). Since all (complex) characters
of &n turn out to be rational, it suffices to use the ground field Q instead of C
when dealing with the characters of &n.

Now let us recall some basic facts from the theory of permutation represen-
tations. If X is a finite set and G a finite group, then an action of G on X is
a homomorphism <p : G -+ &x- If s eX and weG, then we write w • s for
(p(w)(s). The action of G on X extends to an action on CX (the complex vector
space with basis X) by linearity. Hence (p can be regarded as a linear representation
(p : G —> GL(CX). The character of this representation is given by

where Fix(w;) = {s e X : w • s = s}, the set of points fixed by w.
The action cp : G -> &x is transitive if for any s, f € X there is a w; e G

satisfying w • s = t.lf H is a. subgroup of G, then G acts on the set G/H of
left cosets of G by w - vH = wvH. (We do not assume H is a normal subgroup,
so G/H need not have the structure of a group.) Every transitive action of G is
equivalent to an action on the left cosets of some subgroup H. Moreover, this action
is equivalent to indg 1#, the induction from H to G of the trivial representation
\H of H. We sometimes abbreviate this representation as 1#. The well-known
"Burnside's lemma" (see Lemma 7.24.5) is equivalent to the statement that

(lg, 1G) = # of orbits of G acting on G/H. (7.81)

Here (lg, 1G> denotes the multiplicity of the trivial representation \G of G in lg ,
given more explicitly by

In the above sum Fix(u>) refers to the action of G on the set G/H, so that Fix(w;)
is just the value of the character of this action on w.

Our present goal is to find "enough" subgroups H of <&n so that we can obtain
all the irreducible characters of <Bn as linear combinations of characters of the
representations 1®\ To this end, if a = ( « i , . . . , o^) e P* and |a| := a\ H h
at = n, then define the Young subgroup <&a c <SW to be

where &ai permutes 1, 2 , . . . ,« i ; ©tt2 permutes «i + l ,«i + 2 , . . . ,a\
If a and ft differ from each other only by a permutation of coordinates, then <&a

and S ^ are conjugate subgroups of <5n, and the representations l |£ and l%n
p are

equivalent and hence have the same character. In particular, there is a unique X \- n
for which <&a and <&x arc conjugate.
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7.18 The Characters of the Symmetric Group 351

It is important to understand the combinatorial significance of the representations
\%n

a, so we will explain this topic in some detail. If we write a permutation w in
the usual way as w\W2 • • • wn (so wt is the value w(i) of w at /), then it is easy to
see that every left coset v&a contains a unique permutation that is an a-shuffle,
i.e., 1, 2 , . . . , a\ appear in increasing order, ct\ -h 1, a\ + 2 , . . . , ct\ + «2 appear
in increasing order, etc. For instance, one of the left cosets of ©(2,2) is given
by {1324,1423, 2314, 2413}, which contains the unique a-shuffle 1324. We can
identify an a-shuffle with a permutation of the multiset Ma = {aai ,bai,...}, by
replacing 1, 2 , . . . , ai w i t h a ; a i + l , a i + 2 , . . . , ai+a2 withb\ etc. &n then acts on
a permutation it of Ma by permuting positions. For instance, 2431 baab = abab,
since the second element of baab is moved to the first position, the fourth element
to the second position, etc.

Alternatively, we can write a permutation w e <Sn as the word w~1 (1 )w~l (2) • • •
w~l(n), so w~l(i) is the position of / in the word w\W2 • • • wn. With this repre-
sentation of permutations, every left coset of <5a contains a unique word w' =
w[wf

2 --'w'n such that w[ < w'2 < • • • < w'ai, w'ai+l < w'ai+1 < < <1 + f l f 2 ,
etc. Equivalently, the descent set D{w') is contained in the set Sa = {ai, ai +
a 2 , . . . , ai 4- • • -f di-i}. We can also view these distinguished coset represen-
tatives as a-flags, i.e., chains & = NQ c N\ c • • • C Ng = [n] of subsets of
[n] such that #(Nt - 7V;_i) = ai9 viz., Nt = [w[, w2,..., ^ 1 + a 2 + . . . + a . } . ©„ then
acts on a flag F by permuting elements. For instance, if F is given by 0 c 24 c
245 c 123456 (so that a = (2, 1, 3)) and if w = 523614, then w • F is given by
0 C 26 C 126 C 123456, since 2 and 6 are in the second and fourth position of w,
1 is in the fifth position of w, and 3,4,5 are in third, sixth, and fourth position of w.

Some special cases of the action of &n on a-flags should be noted. If a =
(&, n — k), then an a-flag 0 c N C [n] is equivalent to the ^-subset Af of [n], and
the action of w e <&n on F is equivalent to the "standard" action of <5n on Af that
replaces / e N with w~l(i). We may write this equivalence as

(7.82)

Similarly, ifa = ( l , l , « — 2) then we can identify the a-flag 0 c {a} C {a, b} c
[n] with the ordered pair (a, b) of distinct elements of [n], so we can write

6 n / ( 6 i x 6 l X e r t_2) = [n] x [n] - {(a, a) : a e [n]}. (7.83)

Similar interpretations can be given for various other values of a.
Our main tool will be a linear transformation ch: CFn —> A" called the (Frobe-

nius) characteristic map. If / e CFn, then define

= — X] fWPpW
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352 7 Symmetric Functions

where /(/x) denotes f(w) for any w of type p(w) = /x. Equivalently, extending
the ground field Q to the ring A and defining ty(w) = pP(w), we have

c h / = ( / , * ) . (7.84)

Note that if /M is the class function defined by

[ 1 if p(w) = /x

I 0 otherwise,

NOTE. Let cp : &n ->• GL (V) be a representation of <&n with character x • Some-
times by abuse of notation we will write ch q> or ch V instead of ch x • We also
sometimes call the symmetric function ch x (= ch (p = ch V) the Frobenius image
of x,<p, or V.

7.18.1 Proposition. The linear transformation ch is an isometry, i.e.,

(f,g)cFn = (ch/,chg)An.

Proof. We have (using Proposition 7.9.3)

<ch/,ch£> = (

We now want to define a product on class functions that will correspond to
the ordinary product of symmetric functions under the characteristic map ch. Let
/ G CFm and g e CFn. Define the (pointwise) product / x g e CF((Bm x &n)
by

(/ x g)(u, v) = f(u)g(v).

If / and g are characters of representations tp and i/r, then / x g is just the character
of the tensor product representation cp 0 \j/ of <&m x <&n. Now define the induction
product fog of / and g to be the induction of / x g to <5m+n, where as before <&m

permutes 1, 2 , . . . , m while &n permutes m + 1, m + 2 , . . . , m + n. In symbols,

Let CF = CF° 0 CF1 0 • • •, and extend the scalar product on CFn to all of CF
by setting (f,g) = 0 if / e CFm, g e CF", and m ^ n. The induction product
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7.18 The Characters of the Symmetric Group 353

on characters extends to all of CF by (bi)linearity. It is not hard to check that this
makes CF into an associative commutative graded Q-algebra with identity 1 e
CF°. Similarly we can extend the characteristic map ch to a linear transformation
ch:CF-> A.

7.18.2 Proposition. The characteristic map ch: CF ->• A is a bijective ring
homomorphism, i.e., ch is one-to-one and onto, and satisfies

Proof. Let res# / denote the restriction of the class function / on G to the
subgroup H. We then have

ch(/ og) = ch(ind^+
x

wen(/ x g))

= (ind%:+;&n(fxg),V) (by (7.84))

= ( / x g, rcs%2+xen
}^)& x e (by Frobenius reciprocity)

£ £ f(u)
ue&m ve&n

E
ue&m ve&n

E fw

= (chf)(chg).

Moreover, from the definition of ch and the fact that the power sums p^ form a
Q-basis for A it follows that ch is bijective. •

We wish to apply Proposition 7.18.2 to evaluate the characteristic map at the
aracter rf of the representation \%n

a d
(7.22) and the definition of ch we have
character rf of the representation \%n

a discussed above. First note that by equation

X\-n

7.18.3 Corollary. We have ch\%n
a=ha.

Proof. Since 1 ^ = 1 ^ o 1 ^ o • • • o 1 ^ , the proof follows from Proposi-
tion 7.18.2 and equation (7.85). •

Now let Rn denote the set of all virtual characters of &n, i.e., functions on &n

that are the difference of two characters. Thus Rn is a lattice (discrete subgroup of
maximum rank) in the vector space CFn. The rank of Rn is p(n), the number of
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354 7 Symmetric Functions

partitions of n, and a basis consists of the irreducible characters of (E>n. (Recall that
in any finite group G, the number of linearly independent irreducible characters
of G is equal to the number of conjugacy classes in G. For <&n the number of
conjugacy classes is p(n).) This basis is the unique orthonormal basis for Rn up to
sign and order, since the transition matrix between two such bases must be a integral
orthogonal matrix and hence a signed permutation matrix. (See the note after the
proof of Corollary 7.12.2 for similar reasoning.) Define R = R° 0 Rl 0 • • •.

7.18.4 Proposition. The image ofR under the characteristic map ch is Az. Hence
ch: R —> Az is a ring isomorphism.

Proof. It will suffice to find integer linear combinations of the characters r]a of
the representations \%n

a that are the irreducible characters of <5n. The Jacobi-Trudi
identity (Theorem 7.16.1) suggests that we define the (possibly virtual) characters
\frk = det{rjXi~i+j), where the product used in evaluating the determinant is the
induction product. Then by the Jacobi-Trudi identity and Proposition 7.18.2 we
have

ch(VA) = sx. (7.86)

Since ch is an isometry (Proposition 7.18.1) we get (x/r^, if/^) = <^. As pointed
out above, this means that the class functions \jrk are, up to sign, the irreducible
characters of &n. Hence the x//^ for X h n form a Z-basis for Rn, and the image
of Rn is the Z-span of the s^'s, which is just An as claimed. •

Finally we come to the main result of this section.

7.18.5 Theorem. Regard the functions x k (where k \- n) of Section 7.17 as
functions on (&n given by xX(w) ==

 XX(A0> where w has cycle type /A. Then the
XX's are the irreducible characters of the symmetric group &n.

Proof. By the Murnaghan-Nakayama rule (Corollary 7.17.5), we have

Hence by equation (7.86), we get xk = V^- Since the T/^X'S, up to sign, are the
irreducible characters of ©„, it remains only to determine whether xk or — xk is
a character. But xk(\n) = fk > 0, so xA is an irreducible character. •

NOTE. We have described a natural way to index the irreducible characters of &n

by partitions of n, while the cycle type of a permutation defines a natural indexing
of the conjugacy classes of &n by partitions of n. Hence we have a canonical
bijection between the conjugacy classes and the irreducible characters of &n.
However, this bijection is essentially "accidental" and does not have any useful
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7.18 The Characters of the Symmetric Group 355

properties. For arbitrary finite groups there is in general no canonical bijection
between irreducible characters and conjugacy classes.

7.18.6 Corollary. Let [i \- m, v \- n, X h m+n. Then the Littlewood-Richardson
coefficient c^v of equation (7.64) is nonnegative

Proof By Propositions 7.18.1 and 7.18.2 we have

Since by Theorem 7.18.5 x^ a nd X° are characters of <&m and &n, respectively,
it follows from the basic theory of induced characters that x^ ° Xv is a character
of e m + n . Hence (x\ X* ° Xv) >0. D

Combinatorial descriptions of the numbers cv
Xil are given in Appendix 1, Sec-

tion Al .3. A primary use of Theorem 7.18.5 is the following. Let x t>e any character
(or even a virtual character) of &n. Theorem 7.18.5 shows that the problem of de-
composing x into irreducibles is equivalent to expanding ch x into Schur functions.
Thus all the symmetric function machinery we have developed can be brought to
bear on the problem of decomposing x • An important example is given by the
characters rf of the representations l%\ The result that expresses rf in terms of
irreducibles is known as Young's rule.

7.18.7 Proposition. Let a be a composition ofn and A h n . Then the multiplicity
of the irreducible character xk in the character rf is just the Kostka number Kxa.
In symbols,

Proof By Corollary 7.18.3 we have chr]a = ha. The proof then follows from
Corollary 7.12.4 and Theorem 7.18.5. •

7.18.8 Example, (a) Let x denote the character of the action of <&n on the
^-subsets of [n] (by permuting elements of [n]). By equation (7.82), we have
ch x = hkhn-k. Assume without loss of generality that k < n/2 (since the action
on ^-element subsets is equivalent to the action on (n — fc)-element subsets). The
multiplicity of xk in x is the number of SSYTs of shape A and type \n~k2k. There
is one such SSYT if X = (n — m, m) with 0 < m < k, and no SSYTs otherwise.
Hence

Note the special case k = 1; this corresponds to the "defining representation" of
e n (the action of e n on [«]), with character x(n) + X(n~U)-
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356 7 Symmetric Functions

(b) Let x denote the character of the action of &n on ordered pairs (/, j) of distinct
elements of [n]. By equation (7.83), we have ch x = h\hn-2- There are five kinds
of SSYT of type (n - 2, 1,1), viz.,

1 . . . 123 1..
3

•12 1 -
2

13 1 1 . . .
23

1 1 -
2
3

•1

Hence

X = XM + 2X (""U) + X(""2'2) + x ( "- 2 ' U ) .

(c) The regular representation of <5n is defined to be the action of &n on itself
by left multiplication. Hence it is given by lg;x . . .x 6 l , whose Frobenius image is
h\ (by Corollary 7.18.3). By Corollary 7.12.5 we have h\ = £ x h n / V Hence
the multiplicity in the regular representation of the irreducible representation of
<&n whose character is xk is Jus t fX = XA(1W)- Thus Corollary 7.12.5 is a sym-
metric function statement for &n of the fact that the multiplicity of an irreducible
representation of a finite group in the regular representation is equal to its degree.

7.19 Quasisymmetric Functions

We have succeeded in expanding the Schur functions in terms of the four bases m^,
hx, ex, and px> We have also given a formula for s\ (in n variables) as a quotient
of determinants. There is one further expression for sx which has many combina-
torial ramifications. We will write sx in terms of a basis not of the space A, but of
a larger space Q. The theory of P-partitions, as discussed in Section 4.5, will be
generalized in order to obtain this expansion of sx (and more generally of sx/^)>

A quasisymmetric function in the variables JCI, X2,..., say with rational coef-
ficients, is a formal power series / = f(x) e Q[[*i, X2,...]] of bounded degree
such that for any a\,..., a^ G P we have

whenever i\ < - • • < ik and j \ < • • • < jk- Clearly every symmetric func-
xfxj *stion is quasisymmetric, but not conversely. For instance, the series J2t<j xfxjj

quasisymmetric but not symmetric.
Let Qn denote the set of all homogeneous quasisymmetric functions of degree n.

It is clear that Qn is a vector space (over Q). We will be indexing certain elements of
Qn by compositions a = (ct\,..., a^) of n. We will often be using the natural one-
to-one correspondence between compositions a of n and subsets S of [n — 1]. Thus
we associate the set Sa = {a\, a\ + o?2,..., ot\ + • • • + otk-i} with the composition
a, and the composition co(iS') = (s\, S2 — s\, S3 — S2, -.. ,n — Sk-\) with the set
S = {s\,S2,..., s*:-i}<- It is clear that co(Sa) = a and SCo(S) = S- We extend the
definition of co to permutations w e <&n by defining co(w) = co(D(u;)), where
D(w) denotes the descent set of w.
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7.19 Quasisymmetric Functions 357

Let Comp(n) denote the set of compositions of n, so #Comp(n) = 2n~~1. Given
a G Comp(n), define the monomial quasisymmetric function Ma by

Ma=

If / G Qn then it is clear that

/ = E ([*?•• •*?]/)**«• (7-88>
aeComp(n)

From (7.88) it follows that the set {Ma : a G Comp(n)} is a basis for Qn. In
particular,

dimQM =2n~l.

It is an easy exercise to see that if / G Qm and g e Qn, then / g G Qm+/I. (See
Exercise 7.93 for a more precise result.) Hence if Q = Q° 0 Q} 0 • • •, then Q is
a Q-algebra, called the algebra (or ring) of quasisymmetric functions (over Q).

We will now consider another important basis for Qn. Given a e Comp(n),
define

ij<ij+i if jeSa

It is clear that La e Qn. We call La a fundamental quasisymmetric function.

7.19.1 Proposition. For a G Comp(rc) we have

La= J2 M^(T) (7.90)
5acrc[«-l]

Ma= Y, (-1)#(r"5a)Lco(r). (7.91)

Hence the set {La : a G Comp(n)} is a basis for Qn.

Proof Equation (7.90) is an immediate consequence of (7.89), on grouping the
sequences i\ < - - < in according to whether ij < ij+\ or ij = ij+\ for each j .
Equation (7.91) then follows from (7.90) by the Principle of Inclusion-Exclusion
(Theorem 2.1.1). •

It is natural to ask under what conditions is a quasisymmetric function actually
symmetric.

7.19.2 Proposition. Let f e Qn, say f = E ^ C o m p ^ ) ^ ^ . Then f e An if
and only if for any two compositions a and fiofn that have the same multiset of
parts, we have ca = cp.
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358 7 Symmetric Functions

Proof. Let lZn be the subspace of Qn consisting of all / = ]T caMa satisfying
the conditions of the proposition. Given I h n , define Rx = J2a Ma, summed
over all distinct permutations of the parts of A.. It is clear that {Rx : A h n] is a
basis for 1Zn, so dimlZn = p(n), the number of partitions of n. On the other hand,
it is also evident that Rk = mk e A", so Kn c An. Since dim An = p(n), the
proof follows. D

Let us now consider the connection between quasisymmetric functions and the
theory of P-partitions. If X is any finite set and / : X -> P, then define

teX

In Definition 4.5.1 we defined the notion of a n-compatible function / : [n] - • C,
where TT = ii\ • • • nn e &n and C is a chain. It is more convenient here to work
with the "reverse" notion. We say that / is reverse n-compatible if

l) if Tti

Clearly Lemma 4.5.1 carries over with "compatible" replaced with "reverse com-
patible." Thus every / : [n] —• C is reverse JX-compatible for a unique n e <5n.

7.19.3 Lemma. Let n e &n, and let Sr
n denote the set of all reverse n -compatible

functions f : [n] —• N. Then

Proof Immediate from a comparison of the definition (7.89) of La and the defi-
nition of reverse n-compatible. •

Now let P be a finite poset of cardinality n. To be consistent with our treatment
of SSYTs, we will deal with functions a : P -> P rather than a : P ->• N as in
Section 4.5. It is a trivial matter to modify the theory to allow also a(t) = 0. A
reverse P-partition is an order-preserving map a : P —> P (and so is equivalent
to an ordinary P*-partition, where P* denotes the dual of P). Let Ar(P) denote
the set of reverse P-partitions. Define

KP(x)=
oeAr(P)

Note that Kp(x) is a quasisymmetric function that tells us for each weak com-
position a = («i, #2, . . •) of n the number of reverse P-partitions with a, parts
equal to /. As in Section 4.5, regard P as a natural partial order on [n], and let
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7.79 Quasisymmetric Functions 359

C(P) c <&n be the Jordan-Holder set of P. The fundamental decomposition
A(P) — [i)ne£(p)Sn clearly works just as well in the reverse situation:

Ar(P) = | J Sr
n. (7.93)

TT<E£(P)

Hence, letting J(P) denote the lattice of order ideals of P as in Chapter 3, we have

KP(x)= J2 W ) « (7-94)
jreC(P)

the latter equality by Theorem 3.12.1. This result shows that the expansion of a
quasisymmetric function in terms of the La's can be of combinatorial significance,
and that the coefficients may be regarded as an analogue of the numbers fi(J(P), S).

To apply the kind of reasoning of the previous paragraph to Schur functions, we
need an extension of the theory of P -partitions to the case where P need not be
a natural partial order. Define a labeling of P to be a bijection co : P —> [ri\. (Do
not confuse the labeling co with the involution co : A -> A.) Alternatively, one
could think of P as a partial ordering on [n] by identifying t e P with co(t). It is
convenient, however, to work with labelings and so avoid having to deal with two
different orderings on [n].

A reverse (P, co)-partition is a map o : P -> N satisfying the two axioms:

(Rl) If s < t in P then a(s) < o(t). In other words, a is order-preserving.
(R2) If s < t'm P and o»{s) > co(t), then a(s) < o(t).

Thus a reverse (P, a>)-partition is just a reverse P-partition with additional
conditions specified by co as to when strict inequality <r(s) < a(t) must occur.
If, for instance, co is order-preserving, then a reverse (P, a>)-partition is just a
reverse P-partition. On the other hand, if co is order-reversing, then a reverse
(P, ft))-partition is just a strict reverse P-partition.

Let £(P,co) denote the set of all permutations 7r = ii\ • • • nn e <&n such that
the map w : P -> [n] defined by w(a)~l(jti)) = / is a linear extension of P.
Thus £(P,co) may be regarded as the set of linear extensions of P, regarded as
permutations of the labels of P. For instance, if (P, co) is given by

then £(P, co) = {52143, 52413, 25143, 25413, 24513, 52134, 25134}.
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360 7 Symmetric Functions

The following result is the "fundamental theorem of (reverse) (P, ^-partitions."
The proof is exactly like that of the special case Lemma 4.5.3 (in its "reverse form")
and will be omitted.

7.19.4 Theorem. Let Ar(P, co) denote the set of all reverse (P, co)-partitions.
Then

Ar(P,co)= [ J Sr
n (disjoint union).

7re£(P,a>)

In exact analogy to the definition (7.92) of KP(x), let

Note that KP^{x) is quasisymmetric. Just as (7.94) follows from (7.93), we obtain:

7.19.5 Corollary. We have

the expansion of Kp^ in terms of the fundamental quasisymmetric functions.

We now want to apply Corollary 7.19.5 to the skew Schur functions sx/fi, where
\X//JL\ = n. Define PX/^ to be the poset whose elements are the squares (/, j)
of A//x, partially ordered componentwise. Thus /\/M is a finite convex subset of
P x P, and every finite convex subset of P x P is equal to Px/^ for some k/fi. (The
case /x = 0 was discussed already in Proposition 7.10.3(b).) Define a labeling
<*>k/ti • Pk/ii -^ W> called the Schur labeling of Px/^ as follows: The bottom
square of the first column of Px/^ is labeled 1. The labeling then proceeds up the
first column, then up the second column, etc. For instance, Figure 7-8 shows the
Schur labeling of the skew shape 5331/2, drawn both as a Young diagram and as
a labeled poset.

3

2

1

5

4

8

7

6

9 10

Figure 7-8. A Young diagram and the corresponding Schur labeled poset.
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7.7 9 Quasisymmetric Functions 361

It is immediate from the definition of KP^ that a reverse (/\//z, &>A/M)-partition
is just an SSYT, so

Hence as a special case of Corollary 7.19.5 we obtain the expansion of sx/^ in terms
of fundamental quasisymmetric functions. Rather than describe this expansion
directly in terms of C(Px/^, cox/fi) as in Corollary 7.19.5, we want a description in
terms of SYTs of shape X/JJL.

A linear extension w : Px/^ —• [n] corresponds to an SYT Tw of shape X/fi.
Similarly w corresponds to a permutation 7tw e £ ( / \ / / x , cox/^). Define a descent
of an SYT T to be an integer / such that i + 1 appears in a lower row of T than
i, and define the descent set D(T) to be the set of all descents of T. For instance,
the SYT

2 8

1 4 5 10

3 6 9

7

has descent set {2, 5, 6, 8}. We write co(r) for the composition co(D(r)) of n
associated with the descent set D(T).

7.19.6 Lemma. Letw : Px/^ —> [n]be a linear extension. Then D(TW) = D(TTW).

Proof. Let 1 < / < n — 1. Let s = (a, b) be the square of Tw containing /. The
square sf = (a\ bf) containing / + 1 satisfies either (a) a' < a and b' > b, or
(b) a' > a and V < b. In the former case, / ^ D(TW) and oo(s') > co(s), where
co = cox/fM. Hence also / ^ D(TCW). In the latter case, / e D(TW) and co(sf) < co(s).
Hence also / e D(TTW), and the proof follows. •

Combining Corollary 7.19.5 and Lemma 7.19.6 gives the main result of this
section.

7.19.7 Theorem. We have

Sk/li = / ,£co(7>
T

where T ranges over all SYTs of shape X//JL.

7.19.8 Example. Let k/ix = 32/1. The five SYTs of shape A//x, with their
descents shown in boldface, are:

14 12 24 23 13
23 34 13 14 24
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362 7 Symmetric Functions

Hence

= L i 3 +2L 2 2 -

As an illustration of the use of Theorem 7.19.7, we have the following somewhat
surprising combinatorial result. See Exercise 7.90(b) for a more direct proof.

7.19.9 Proposition. Let |X//x| = n. For any 1 < i < n - 1, the number dt(X/»
ofSYTs T of shape XI [i for which i e D(T) is independent ofi.

Proof Define a linear transformation <pt : Qn -> Q by

1 0 otherwise.

By Theorem 7.19.7 we have d;(A,//z) = <Pi(sk/ii)- Hence it suffices to prove that
(Pi{bv) is independent of / for some basis {bv} of Aw, for then (pt(f) will be inde-
pendent of / for all / G A", including / = s^/^. We choose bv = mv.

By definition of Ma we have

mv =

where a ranges over all distinct permutations of the parts of v. If S c [n — 1] and
#5 < n — 3, then every / e [n — 1] appears in the same number of sets T of even
cardinality satisfying S c J c [n — 1] as of odd cardinality. It follows from (7.91)
that <Pi(Ma) = 0 if l(a) < n - 2 (i.e., #Sa < n - 3), so ^,-(mv) = 0 (independent
of 0 unless possibly v = (ln> or v = (21n~2).

If v = (ln), then m\n = L11 ...1, so <Pi(m\n) = 1 (independent of /). If y =
(21n~2), then by (7.91) we have

n-\

It follows that (Pi(m2\n-2) = — 1 (independent of /), and the proof follows. D

If we write sx/^i = XIv ^^./i^,vmv and apply <pi, then the above proof shows that

<Pi(Sk/ti) = Kk/ti,ln — ^A//z,21"-2

It is easy to see that when [i = 0 this quantity is equal to / x / n . Alternatively, it is
clear that (pi(sk) = fx/l\ since if T is an SYT of shape X and 1 e D(T), then T
has a 1 in the (1, 1) square and a 2 in the (2, 1) square. Hence, given that <pi(sx) is
independent of/, there follows (pt(sx) = fx/n as before.
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7.79 Quasisymmetric Functions 363

As another and more significant application of Theorem 7.19.7, we give a for-
mula for the stable principal specialization ^ /^ ( l , q,q2,...).

7.19.10 Lemma. Let a e CompOz). Then

L«(l, q, q2,...) = —

where e(a) = Y2ieSa(
n ~ ')*

Proof By (7.89) we have

Define

r;- = /y — 1 — #{m e Sa : m < j}.

Then

where
n

i(a) = ^2#{m e Sa : m < j}.
7 = 1

It is easy to see that i(a) = e(a), and the proof follows. •

For any SYT T define the major index * maj(r) by

maj(r) = 2_̂  *•
ieD(T)

7.19.11 Proposition. L r̂ |A//x| = n. Then

where T ranges over all SYTs of shape >

Proof Combining Theorem 7.19.7 and Lemma 7.19.10 yields

* In Section 4.5 we used the notation L(TI) rather than maj(7r) for the analogous concept of the major
index (or greater index) of a permutation n.
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3 6 4 7 Symmetric Functions

where comaj(T) = e(D(T)) = ^2ieD^(n —i), the comajor index of T.
*J2a caLa. By Proposition 7.19.2 we see that ca = ca*, where if a = (a\,...,
then a* = (ofjfe,..., a?i). Hence

summed over all SYT of shape k//jL, a nd the proof follows. D

Suppose that k//ji is a disjoint union of squares, e.g., 4321/321 is a disjoint
union of four squares. Then the SYTs T of shape k/ii correspond in a natural way
to permutations n e <&n such that D(T) = D(n). Clearly 5 ^ ( 1 , q, q2,...) =
(1 — q)~n, so Proposition 7.19.11 reduces to Corollary 4.5.9, viz.,

m*{lz) = (\ + q)(\ + q + q 2 ) - • -(I + q + • • - + q n ~ x ) .

In Corollary 7.21.3 we will evaluate ^ ( 1 , q, q2,...) explicitly, thereby yielding
an explicit formula (Corollary 7.21.5) for J^T qm*m, summed over all SYTs of
shape A. Another formula for ^ /^ ( l , q, q2,.. .)> similar to Proposition 7.19.11 but
with a different denominator, is given by Exercise 7.102(b).

As a variant of Proposition 7.19.11, we can find the number of descents of
T, rather than the sum of the descents. Let d(T) = #D(T). For a power series
f(xi,x2,...) write / ( l m ) = f(x\ = • • • = xm = 1, xm+i = xm+2 = • • • = 0), as
in equation (7.8). For a e Comp (n) it is easy to see that

It now follows immediately from Theorem 7.19.7 (analogously to Theorem 4.5.14)
that if |A//x| = n then

y- td(T)+\

m>0

For instance, if X is the "hook" kln~k
9 then all (^}) SYTs of shape A have n-k

descents, from which there follows

Similarly we can take into account both d(T) and maj(r). We merely state the
resulting formula, whose proof is analogous to that of Exercise 4.24(b).

7.19.12 Proposition. We have

where T ranges over all SYTs of shape
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An explicit formula for ^ ( 1 , q,..., qm~l) is given by Theorem 7.21.2.

7.20 Plane Partitions and the RSK Algorithm

We have now developed enough of the theory of symmetric functions that we can
give a number of enumerative applications. This section and the next two will be
devoted to a fascinating generalization of partitions of integers known as "plane
partitions." A plane partition is an array n = (7T/;)/,;>i of nonnegative integers
such that n has finite support (i.e., finitely many nonzero entries) and is weakly
decreasing in rows and columns. If J2nij — n> m e n w e wr*te \n\ = n and say
that n is a plane partition ofn. When writing examples of plane partitions, the O's
(or all but finitely many O's) are suppressed. Thus the plane partitions of integers
0 < n < 3 are given by

0 1 2 11 1
1

3 21 111 11
1

2
1

1
1
1.

An ordinary partition X \- n may be regarded as a weakly decreasing one-
dimensional array (Ai, A2,...) of nonnegative integers with finite support. Thus
plane partitions are a natural generalization to two dimensions of ordinary par-
titions. It now seems obvious to define r-dimensional partitions for any r > 1.
However, almost nothing significant is known for r > 3. Plane partitions have
obvious similarities with semistandard tableaux. Indeed, a reverse SSYT is just a
special kind of plane partition (with the irrelevant O's removed), and in fact in our
definition of reverse SSYT we mentioned the alternative term "column-strict plane
partition." Because of the similarity between SSYTs and plane partitions, it is not
surprising that symmetric functions play an important role in the enumeration of
plane partitions.

Apart of a plane partition n = (jtij) is a positive entry 7T/; > 0. The shape of
n is the ordinary partition X for which n has Xt nonzero parts in the i-th row (so
7iiki > 0, TT/.A.f+i = 0). We say that n has r rows if r = l(X). Similarly, TT has
s columns if s = l(X') = X\. Write l\(n) for the number of rows and liijx) for
the number of columns of it. Finally, define the trace of it by the usual formula
tr(7r) = J2 nn- F°r example, the plane partition

7 5 5 3 2 1 1 1

6 5 5 2 1 1

6 3 2 2

has shape (8, 6,4), 18 parts, 3 rows, 8 columns, and trace 14.
Let V(r, c) be the set of all plane partitions with at most r rows and at most c

columns. For instance, if it e V(\, c), then TZ is just an ordinary partition and tr(7r)
is the largest part of n. It is then clear by "inspection" (looking at the conjugate
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366 7 Symmetric Functions

partition n1 instead of TX) that

*00 y I*| - \
- ( i

The main result of this section is the following generalization of equation (7.97).

7.20.1 Theorem. Fix r,c e P. Then

neV(r,c) i = l 7 = 1

We will give an elegant bijective proof based on the RSK algorithm and
a simple method of merging a pair of reverse SSYT of the same shape into a
single plane partition. First we describe how to merge two partitions X and \JL
with distinct parts and with the same number of parts into a single partition p =
p(X, fi). Draw the Ferrers diagram of X but with each row indented one space
to the right of the beginning of the previous row. Such a diagram is called the
shifted Ferrers diagram of X. For instance, if X = (5, 3, 2) then we get the shifted
diagram

Do the same for/z, and then transpose the diagram. For instance, if /i = (6, 3, 1)
then we get the transposed shifted diagram

Now merge the two diagrams into a single diagram by identifying their main
diagonals. For X and /x as above, we get the diagram (with the main diagonal
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7.20 Plane Partitions and the RSK Algorithm 367

drawn for clarity)

Define p(A, /x) to be the partition for which this merged diagram is the Ferrers
diagram. The above example shows that

p(532, 631) = 544211.

The map (A, /x) h^ p(A, /x) is clearly a bijection between pairs of partitions (A, JX)
with k distinct parts, and partitions p of rank k (as defined in Section 7.2). Note
that

We now extend the above bijection to pairs (P, Q) of reverse SSYTs of the same
shape. If X1 denotes the i-th column of P and fil the i-th column of Q, then let
n(P, Q) be the array whose /-th column is p(kl, / / ) . For instance, if

4 4 2 1 5 3 2 2

P = 3 11 and 2 = 4 2 1 ,

2 1

then

4 421

4 221

TT(P, Q) = 4 2 .

2

2

It is easy to see that n(P, g ) is a plane partition. Replace each row of n(P, Q) by
its conjugate to obtain another plane partition n'(P, Q). With 7r(P, Q) as above
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368 7 Symmetric Functions

we obtain

4322
4311

7tf(P,Q)= 22 11.
11
11

One can easily check that the map (F, Q) \-+ nf(P, Q) is a bijection between pairs
(P, Q) of reverse SSYTs of the same shape and plane partitions n'. Write diag(7r')
for the main diagonal (n'n, JZ'21, . . .) of it', max(P) for the largest part P\\ of the
reverse SSYT P, etc. Recall that sh(P) denotes the shape of P, so sh(P) = sh(<2),
with P, Q as above. It is easy to see that

(7.98)

diag(Tr') = sh(P) = sh(g), so tr(^r) = |sh(P)|

£i(nr) = max(G)

£2(7t') = max(P).

Now let A = (ciij) be an N-matrix of finite support. We want to associate with
A a pair of reverse SSYTs of the same shape. This can be done by an obvious
variant of the RSK algorithm, where we reverse the roles of < and > in defining
row insertion. Equivalently, if

wA =
••• un\

••• vn)

is the two-line array associated with A, then apply the ordinary RSK algorithm to
the two-line array,

/-**„ ••• -u{\

\-vn ••• -vij

(whose entries are now negative integers) and then change the sign back to positive
of all entries of the pair of SSYTs. We will obtain a pair (P, Q) of reverse SSYTs
satisfying

\p\

max(P) = max{y : aij ^ 0}

max(Q) = max{/ : a^ •=£• 0}
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7.20 Plane Partitions and the RSK Algorithm 369

It follows from the equations beginning with (7.98) and (7.99) that if Mrc is the
set of all r x c N-matrices, then

•

Now let V(r) denote the set of all plane partitions with at most r rows. If we
let q = 1 and c -> oo in Theorem 7.20.1, then we obtain the following elegant
enumeration of the elements of V(r).

7.20.2 Corollary. Fix r e P. Then

™ (7.100)

Proof. Theorem 7.20.1 yields

which is easily seen to agree with the right-hand side of (7.100). •

Finally, let V denote the set of all plane partitions, and let r —> oo in Corol-
lary 7.20.2 to obtain the archetypal result in the theory of plane partitions:

7.20.3 Corollary. We have

A nice variation of Theorem 7.20.1 arises when we take into account the symme-
try result Theorem 7.13.1 of the RSK algorithm. Define a plane partition a = (a/;)
to be symmetric if atj = Oji for all /, j . Let S(r) denote the set of all symmetric
plane partitions with at most r rows (and therefore with at most r columns).
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370 7 Symmetric Functions

7.20.4 Theorem. Fix r e P . Then

tr(<T)*H = f
First Proof. Let nf(P, Q) be the plane partition described in the proof of Theo-
rem 7.20.1. It is easy to see that it1 is symmetric if and only if P = Q. Moreover,

RSK/

suppose that A —> (P, Q), where RSK' is the "reverse" RSK algorithm also
described in the proof of Theorem 7.20.1 (so P and Q are reverse SSYTs). Theo-

RSK'

rem 7.13.1 holds equally well for RSK', so A —> (P, P) if and only if A = A'.
Let M!r be the set of all r x r symmetric N-matrices. We then obtain, exactly as
in the proof of Theorem 7.20.1, that

oeS{r) A

'")JU§

Second Proof. There is a clever alternative proof that avoids the use of Theo-
rem 7.13.1. Suppose that n is a reverse SSYT with only odd parts. Thus each
column of n is a partition into distinct odd parts. The solution to Exercise 1.22(d)
gives a bijection between partitions of n with distinct odd parts and self-conjugate
partitions of n. Apply this bijection to each column of ix, and then take the conjugate
of each row, producing a symmetric plane partition a. An example is given by

7 5 5 5 5 1 1 4 3 3 3 3 " " 5 1

, - 3 3 3 1 1 ^ 4 3 3 " ^ 5 5 3 ' = a .
3 3 2 1 1 5 3 2

2 11

One can easily check that \TC\ = |a|, sh(7r) = diag(cr), |sh(jr)| = tr(a), and
li(o) = ^[1 + max(7r)]. Hence from Corollary 7.13.8 there follows

creS(r) i = l l<i<j<2r
i odd i,j odd

n
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7.21 Plane Partitions with Bounded Part Size 371

Putting q — \ and letting r ->- oo yields the following elegant enumeration of
all symmetric plane partitions of n.

7.20.5 Corollary. Let S be the set of all symmetric plane partitions. Then

i
^ A \rj\ I I -L

^^^ _|_ X / 1 -y2/ — l^/ ' i V^'^L^/^J
O G«S / > 1

7.21 Plane Partitions with Bounded Part Size

Our main object in this section is to refine Theorem 7.20.1, in the case q =
1, by restricting the size of the largest part of the plane partition ix e V(r, c).
Consider, for instance, the special case r = 1, so that n is just an ordinary partition
X = (X\,..., Xc) with at most c parts. If we add the restriction X\ < t, then
Proposition 1.3.19 tells us that

a g-binomial coefficient. It is this result that we wish to generalize to plane parti-
tions. We cannot expect a nice bijective proof like that of Theorem 7.20.1, because
even in the case r = 1 the expansion of the numerator (1 — qc+t) •••(!— qt+l) of
the #-binomial coefficient ( c ^ ) has negative coefficients. A bijective proof would
have to involve either an involution principle argument (or something similar), or
else moving the numerator of ( c ^ ) over to the other side. While such proofs do
exist, they lack the elegance of the proof of Theorem 7.20.1. The proof we give
here will not be bijective, but will be a simple consequence of symmetric function
theory.

To understand better the significance of the restrictions on the number of rows,
the number of columns, and the largest part, we first discuss the notion of the
diagram of a plane partition, generalizing the notion of the Young or Ferrers
diagram of a partition. Formally, the diagram D{n) (often identified with n) of a
plane partition it = {itij) is the subset of P3 defined by

D(n) = {(/, j,k)e¥3 :1 <k< ntj}.

Think of replacing the entry ntj by a pillar of 7r,; cubes (or dots). For instance, the
(Ferrers) diagram of the plane partition

4 2 1

3 1

is given by Figure 7-9.
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372 7 Symmetric Functions

Figure 7-9. The diagram of a plane partition.

Any permutation w of the three coordinate axes transforms (the diagram of) a
plane partition n oin into another plane partition W(TT) of n. Thus a plane partition
has six "associates," called aspects, indexed by elements of <&i. Compare with the
two "associates" X and kf of an ordinary partition k. In terms of the plane partition
n = (jiij) itself, the six aspects are obtained as follows:

leave TT unchanged,
conjugate every row of TT,
conjugate every column of n,
transpose TT,
conjugate every row of TT and then transpose,
conjugate every column of TT and then transpose.

The three statistics I \ (TT), l2(n), and max(7r) are permuted among themselves when
we take an aspect W(TT) of TT. Thus for instance the number of plane partitions of
n with at most r rows and at most c columns equals the number of plane partitions
of n with at most c rows and with largest part at most r. Since we have enumerated
plane partitions of n with at most r rows and at most c columns (Theorem 7.20.1
when q = 1), it now seems very natural to consider an additional restriction on
the largest part.

Let r, c, t e P, and define the box

B{r, c, t) = {(/, j , k) G P3 : 1 < i < r, 1 < j < c, 1 < k < t}.

Thus a plane partition n satisfies 1\(TT) < r, liin) < c, and max(7r) < t if
and only if its diagram is contained in the box B(r, c, t), which we write as
Tt c B(r, c, t). Our current goal, then, is to evaluate the generating function

As a preliminary step we will evaluate the principal specialization
qn~l). The most elegant formulation of this result involves two important statistics
associated with the boxes of the Young diagram of a partition. Given a Young
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7.27 Plane Partitions with Bounded Part Size 373

diagram A (where we are identifying the diagram {(/, j) : 1 < j < A*} with its
shape) and a square u = (/, j) e A, define the hook length h(u) ofk at u by

Equivalently, h{u) is the number of squares directly to the right or directly below u,
counting u itself once. For instance, the partition 4421 has hook lengths given by

7

6

3

1

5

4

1

3

2

2

1

Similarly define the content c(u) of A at u = (i, j) by

c(u) = j - i.

For A = 4421 the contents are given by

0

- 1

- 2

- 3

1

0

- 1

2

1

3

2

7.21.1 Lemma. Let A = (Xu . . . , Xn) e Par and /x, = A.,- + n - i. Then

1 ll</<y<nLM/
(7.101)

(7.102)
1=1

where [k] = 1 - tf* and [it]! = [1][2] • • • [k].

Proof. Trusting that "one picture is worth a thousand words," we will illustrate
the proofs with an example. Let A = 4421. Add n — i squares to the i-th row of
the diagram of A, obtaining the diagram of /x. In square (/, j) insert the number
fit — j + I. Thus the multiset of inserted numbers is just I J ^ J l , 2 , . . . , /x,},
the exponents in the numerator of the right-hand side of equation (7.101) (when
written as a product of factors \ —qk). For each I < i < j < n, write the number
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374 7 Symmetric Functions

/x, — /xj in square (/, /z7 + 1) in boldface. We obtain the array

7

6

3

1

6

5

2

5

4

1

4

3

3

2

2

1

1

A little thought shows that if we remove the columns /x7 + 1 of bold numbers, we
obtain just the diagram of X with the hook length h(u) in square u. This proves
(7.101).

An analogous (but even simpler) argument works for equation (7.102). Here the
relevant array is

1 2

1

3

2

1

4

3

2

1

5

4

3

6

5

7

6

This completes the proof.

Given X\- n, define

b(X) =

•

(7.103)

Note that &(A) is the smallest possible sum of the entries of an SS YT (allowing
0 as a part) of shape X, obtained uniquely by placing / — 1 in all the squares
of the i-th row of X. In particular, for n > l(X) we have sx(l, q,..., qn~l) =

b ^ ) , where i^(#) is a polynomial in q satisfying vk(0) = 1. (If n < l(X)

7.21.2 Theorem. For any X e Par and n eFwe have

Proof. If n < l(X) then both sides vanish, so assume n > l(X). By Theo-
rem 7.15.1 (the bialternant formula for sx.(x\,..., xn)), we have

(7.104)

The denominator is just a specialization of the Vandermonde determinant a$ =

det(xf";)= Ui<i<j<n(
xi - ^ - ) , and so is equal to r i i ^ ^ ^ 1 " " 1 - ^ "
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7.27 Plane Partitions with Bounded Part Size 375

numerator is also a specialization of as, albeit somewhat disguised. Namely, let

We have a$ = (— l)©a5 since the matrix (xlj~1)" j=l is obtained from that defining
a$ by transposing as and then reversing the order of the rows. Thus the numerator of
the right-hand side of (7.104) is just ^(g^ 1 , q^2,..., q^n), where /JLJ = kj+n-j,
so we get

By Lemma 7.21.1 there follows (using Y\l<i<j<n[j - i] = Y\"=iln ~ 'lO

Note that

where n ranges over all column-strict plane partitions (= reverse SS YTs) of shape
X and largest part at most n — 1, allowing 0 as a part. Hence Theorem 7.21.2 may be
regarded as determining the generating function for this class of plane partitions,
enumerated by the sum of their parts. If one prefers not to have 0 as a part, then
the homogeneity of sx gives

where now n ranges over all column-strict plane partitions of shape A and largest
part at most n (with the usual condition that the parts are positive integers).

If we now let n -* oo in Theorem 7.21.2 then the numerator l\uek(l - qn+c(u))
goes to 1, so we get a formula for the stable principal specialization s\(l,q,q2,...).

7.21.3 Corollary. For any X e Par we have

sx(l,q,q2,...) =
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376 7 Symmetric Functions

Similarly, if we set q = 1 in Theorem 7.21.2, then we get (using the fact that
1 — qk = (1 — q)(\ +q-\ h qk~l) and canceling the factors of 1 — q from the
numerator and denominator) the following result. (For its representation-theoretic
significance, see Appendix 2, equation (A2.155) and the discussion following.)

7.21.4 Corollary. For any X e Par and n eFwe have

(7.106)

In particular, all the zeros ofsx(ln) (regarded as a polynomial in n) are integers.

Corollary 7.21.3 has some interesting consequences. For instance, setting fi = 0
in Proposition 7.19.11 and comparing with Corollary 7.21.3 yields the following
result.

7.21.5 Corollary. For any X e Par we have

Y~^ maj(r)

where T ranges over all SYTs of shape k.

From Corollary 7.21.5 we obtain the explicit formula for fx mentioned after
Corollary 7.16.3 and thus also an enumeration of the combinatorial objects given
in Proposition 7.10.3. This remarkable result is known as the hook-length formula.

7.21.6 Corollary. Let k h n. Then

Proof. Set q = 1 in Corollary 7.21.5. Alternatively, by equation (7.29) we can
restate Corollary 7.21.3 for k h n as

tnqb(X)

Now let q = 1 and use the interpretation of ex given by Proposition 7.8.4(a) •

We may regard both Corollaries 7.21.3 and 7.21.5 as ^-analogues of the hook-
length formula. Corollary 7.21.3 is the symmetric function g-analogue, while
Corollary 7.21.5 is the combinatorial ^-analogue.

Theorem 7.21.2 is a completely satisfactory generating function for column-
strict plane partitions, but how is it related to ordinary plane partitions? The answer
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7.27 Plane Partitions with Bounded Part Size 311

is that for rectangular shapes k = (cr) there is a simple bijection between column-
strict plane partitions of shape (cr > and ordinary plane partitions of shape (cr), and
this bijection has an easily computable effect on the largest part and the sum of
the parts. These assertions will be explained in the proof of the following theorem,
which is the main result of this section.

7.21.7 Theorem. Fix r, c, t with r < c. Then

neB(r,c,t)

_ [t + l][t + 2]2 • . . [t + r]r[t + r + I f • • • [t + c]r[t + c + If"1 • • • [t + c + r - 1]

[1][2]2 • • • [rY[r + \f • • • [c]r[c + I ] ' " 1 • • • [c + r - 1]

(7.107)

where [i] = 1 — ql.

Proof. Let X = (cr), a rectangular shape with r rows and c columns. Note that
the assumption r < c entails no loss of generality since we can always replace A.
with Xr. Let TC = (n^) be a column-strict plane partition of shape k, allowing 0 as
a part. Define n* = (TT*J) by 7t*j = 7T/; — r + i. We have simply applied to each
column of n the usual method of converting a strictly decreasing sequence into a
weakly decreasing one. For instance, if

6 6 4 4 4 3

it =4 3 3 2 2 1

2 2 1 1 0 0

then

4 4 2 2 2 1

7T* = 3 2 2 1 1 0.

2 2 1 1 0 0

It is clear that n* is a plane partition satisfying

< r, €2(7r*) < c,

max(7r*) = max(7r) — r -f 1, |7T*| = |7r| — I )c.

Moreover, given such a plane partition 7r*, we can recover n by TXIJ = n*j +r — i.
Hence we obtain from Theorem 7.21.2 that

7tC.B(r,c,t)
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378 7 Symmetric Functions

Note that b({cr)) = (r
2)c. Moreover, the multiset of hook lengths of {cr) is

{1, 22, 3 3 , . . . , r r , (r + l ) r , . . . , c\ (c + I / " 1 , (c + 2 ) r ~ 2 , . . . , c + r - 1}, and the
multiset of contents is obtained by subtracting r from the hook lengths. Substituting
these values of c(u) and h(u) into (7.108) completes the proof. •

The reader can check that an alternative way of writing the generating function
(7.107) that shows more clearly the symmetry between r, c, and t (but that has ret
factors in the numerator and denominator rather than re factors) is given by

YI q i n i = n n n [ * + J - + k ~1] (7.109)
7teB(r,c,t) i = l y = l k=l V + J + ^ "" 2J

Theorem 7.21.7 can be interpreted in terms of the theory of P-partitions de-
veloped in Section 4.5. A plane partition n satisfying l\(n) < r, ^(TT) < c, and
max(7r) < t may be regarded as an order-reversing map n : r x c —> [0, i\. In
other words, if P is the poset r x c, then it is just a P-partition with largest part
at most t. Thus in particular the number of such it is just Q(P, t + 1), where Q
denotes the order polynomial. Setting q = 1 and t = m — 1 in (7.107) yields

£2(r x c, m)

_ m(m + I)2 • • • (m + r - l)r(m + r)r • • • (m + c - l)r(m + c ) r - 1 • • • (m + c + r - 2)
~ 1 • 22 • • • K(> + l)r • • • cr(c + IK"1 • • • (c + r - 1) '

In particular, all the zeros of £2(r x c, m) are nonpositive integers. Moreover, a
simple extension of Proposition 3.5.1 (see Exercise 4.24(a)) shows that

7teB(r,c,t) /<E/(rxcxt)

the rank-generating function of the distributive lattice / ( r x c x t). Thus equation
(7.109) is equivalent to Exercises 3.27(b) and 4.25(f)(i). Setting # = 1 in (7.110)
and (7.109) yields the elegant formula

r e t

7.22 Reverse Plane Partitions and the Hillman-Grassl
Correspondence

The proof of Theorem 7.21.7 involved a bijection between column-strict plane
partitions of shape (cr) and ordinary plane partitions whose shape is contained in
(cr). It is natural to ask whether we can do a similar bijection for any shape X,
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7.22 Reverse Plane Partitions and the Hillman-Grassl Correspondence 379

thereby obtaining a formula for the generating function

sh(;r)CA
max(7r)<?

where n ranges over all plane partitions whose shape is contained in k and with
largest part < t. Unfortunately the bijection used in the proof of Theorem 7.21.7
does not carry over to nonrectangular shapes. For instance, if k = (2, 1) then we
could associate with the ordinary plane partition (where 0 is allowed as a part)

the column-strict plane partition (also allowing 0 as a part)

/ _ a + 1 b + 1
~~ c

But then there is no n corresponding to n' = 1 . Similarly, if we instead tried

then there is no n corresponding to n' = A (since Q is not a plane partition).
Indeed, the generating function (7.111), even in the case t — oo, does not in general
factor into a simple product (though there does exist a determinantal formula for
(7.111)).

Although there is no such simple correspondence between column-strict plane
partitions and plane partitions of a given shape as was used to prove Theo-
rem 7.21.7, such a correspondence does exist in the reverse situation. This corre-
spondence does not have a uniform effect on the largest part, but it is well behaved
with respect to the sum of the parts. Thus we will get the generating function for
reverse plane partitions of n of shape k. It is easier to work with weak reverse plane
partitions of shape A, for which 0 can be a part. To get from a weak reverse plane
partition of shape A to a (nonweak) reverse plane partition k* of shape k, simply
add 1 to every entry of n. Note that \n*\ = \n | + \k\. Similary define a weak SSYT
to be an SSYT in which 0 is allowed to be a part.

7.22.1 Theorem. Let k e Par. Then
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380 7 Symmetric Functions

where TT ranges over all weak reverse plane partitions of shape X. (If one does not
want to allow 0 as a part, simply multiply by q^.)

Proof Let 7 = {a^) be a weak SSYT of shape X. Define TT = TT(T) by TTU =
ciij — / + 1. Then TT is a weak reverse plane partition of shape X satisfying

This correspondence is easily seen to be a bijection. Hence if 1Z\ (respectively, IZ'y)
denotes the set of all weak reverse plane partitions (respectively, weak SSYTs) of
shape X, then

and the proof follows from Corollary 7.21.3. •

Theorem 7.22.1 is so elegant that we could ask for a simple bijective proof.
Identifying X with its diagram, we want a bijection between weak reverse plane
partitions TT of shape X and functions / : X —• N, such that

We now describe such a bijection, known as the Hillman-Grassl correspondence.
We will successively define pairs (;ro> /O), (TTI, / I ) , . . . , ( ^ , /*), where each

Tti is a weak reverse plane partition of shape A. and f : X —> N. We begin with
TTQ = n and fo(u) = 0 for all u e X. We obtain 7T,-+i from Hi by decreasing h(u{)
of the entries of Hi by 1 for a certain square ut e X (to be explained), and we
define

f Mv)> v ^ "i
= 1

[fi(Ui)+l, V = Ut.

At the end n^ will have every entry equal to 0. Consequently,

and we define / = fk.
It remains to describe the rule for obtaining ni+\ from TCI , and the corresponding

choice of ut e X. We will define a lattice path L in X with steps N or E (i.e., one
square up or one square to the right), beginning at the bottom of a column and
ending at the end of a row of X. The lattice path L begins at the location of the
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7.22 Reverse Plane Partitions and the Hillman-Grassl Correspondence 381

south westernmost nonzero entry of it\. If the path has reached the square (a, b),
then move N if (7ti)ab = {ni)a-\,b > 0; otherwise if (iti)ab > 0 move E. The
lattice path terminates when no further move is possible. Define 7T;+i to be the
array obtained from iii by subtracting 1 from every entry that lies in a square of
the path L. If L begins in column b and ends in row a, then let w,- = (a,b). It is
easy to see that #L = h(ut).

We illustrate this correspondence with a reverse plane partition n of shape
(3,3,1). We indicate the lattice path L in boldface, and the function ft by putting
the value ft(u) in the square u e X:

*i ft

013
244
3
013
244
2
013
133
1
012
022
0
011
011
0
000
001
0
000
000
0

000
000
0
000
000
1
000
100
1
100
100
1
1 10
100
1
120
100
1
120
101
1

We omit the proof that this correspondence is indeed a bijection, except for the
hint that the square ut is in the rightmost column among all the squares u i , . . . , ut?,
and is in the highest row among the squares u\,..., ul in its column.

Now let P be an n-element poset, and let A(V) denote the set of P-partitions
as in Section 4.5. Recall from Theorem 4.5.6 that

oeA{V) ( I - ? ) .

where Wp(l) = e(P)9 the number of linear extensions of / \ If we set P = P*,
the dual of the poset Px defined after Corollary 7.19.5, then the left-hand side of
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382 7 Symmetric Functions

equation (7.112) is just GP(q). Thus we get

71!
(7.113)

giving a proof of the hook-length formula (Corollary 7.21.6) avoiding the use of
determinants.

7.23 Applications to Permutation Enumeration

We have already seen a number of connections between symmetric functions and
permutations (such as the RSK algorithm applied to a permutation matrix, or the
Jordan-Holder set of the labeled poset (PA/M, cox/n)), so it is not too surprising
that the theory of symmetric functions can be used to obtain some results related
to permutation enumeration. Our first result is based on the RSK algorithm, and
requires one additional fact about it.

7.23.1 Lemma. Let w e &n and w —> (P, Q). Then D(P) = D(w~l) and
D{Q) = D(w), where D denotes the descent set.

Proof. Let (Po, GoX • • •, (Pn, Qn) — (P, Q) be the successive pairs of tableaux
obtained in applying the RSK algorithm to w. Let w = w\ • • • wn, and suppose that
for some i we have wi < wl-+\. As observed in the proof of Theorem 7.11.5, the
insertion path of Wi+\ lies to the right of that of wt. Suppose that the shape of P, is
obtained from that of P;_i by adjoining a square in the (a, b) position, so the (a, b)
entry of Q is equal to /. When we insert wi+\ into P,, if an element m is bumped
into row a then it would occupy the (a, b + 1) position without bumping a further
element. Thus i + 1 does not appear in Q in a lower row than /, so i g D(Q).

Similarly if W( > wt+\ then the insertion path of tuj+i lies weakly to the left of
that of Wi. Thus an element must be bumped into row a but not at the end, and hence
must bump an element into row a + 1. This means i e D(Q), so D(w) = D(Q)
as claimed.

The symmetry property Theorem 7.13.1 of the RSK algorithm implies that

w~l —> (Q, P), so by what was just proved we have D(w~l) = P, completing
the proof. •

Recall from Section 7.19 the definition co(S) of a set S c [n - 1], and the
associated definitions of co(w) for w e &n and co(T) when T is an SYT. Similarly
define co'(u;) = co([n — 1] — D(w)). Note that [n — 1] — D(w) is just the ascent
set A(w) of if.

As a corollary to Lemma 7.23.1, we obtain the expansion of the Cauchy product
]~[(1 — xtyj)~l in terms of quasisymmetric functions. (We regard n as fixed, so
all our quasisymmetric functions are of degree n.) This result may be regarded
as giving a generating function for the number of permutations w e<&n such
that D(w~l) = S and D(w) = 7\ since this number is just the coefficient of
La(x)Lp(y) in the expansion below, where a — as and p — fir.
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7.23 Applications to Permutation Enumeration

7.23.2 Theorem. Letn eK Then

k\-n

X\-n

383

(7.114)

(7.115)
we&n

Proof. By the quasisymmetric expansion of sx (Theorem 7.19.7), we have

sh(T')=XXhn

M-n sh(T)=X
sh(T')=k

where sh(7) = k signifies that the sum ranges over all SYT of shape k (and simi-
RSK

larly for sh ( r ) = A.). If w e <&n satisfies w —> (T, Tf), then by Lemma 7.23.1
we have D(w) = T and D(w~l) = T. Hence

/ , / v Lco(<T)(x)LCO(r)(y) = 2 ^ Lco(w-i)(x)Lco(<w)(y),
Xhn sh(T)=k we&n

sh(T')=k

and (7.114) follows. The proof of (7.115) is analogous, using the dual RSK algo-
rithm. Alternatively, apply the extension 6b of co (acting on the v variables only)
given by Exercise 7.94(a) to (7.114). •

Although Theorem 7.23.2 may be regarded as "determining" the number of
permutations w e <&n with D(w~l) = S and D{w) = 7\ a more useful or explicit
expression would be desirable. Such an expression can be given in terms of skew
Schur functions whose shape is a border strip. If en = (a\,..., ott) e Comp(n),
then let Ba denote the border strip with ar squares in row I — i + 1. Regard Ba as
a skew shape, so SBa is a skew Schur function.

7.23.3 Lemma. The Jordan-Holder set £(PBa, coBa) (as defined in Section 7.19)
consists of all permutations w e <5n satisfying co(w~l) = a.

Before proceeding to the proof, let us consider an example. Let a = (3, 1, 2, 3) e
Comp(9). The corresponding Schur labeled border strip is

1 2

5

4

3

7

6

8 9
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384 7 Symmetric Functions

A typical element of £(P, co) is w = 578124963. Then w~l = 459618237, so
D(w~l) = {3,4, 6} and co(w~l) = (3, 1, 2, 3) = a.

Proof of Lemma 7.23.3. A permutation w e &n belongs to £(PBa,(DBa) if and
only if / + 1 follows i in w (regarded as a word w\ • • • wn) whenever / and i + 1
are in the same row, and i + 1 precedes i in w whenever i and i + 1 are in the
same column. Hence i e D(w~l) if and only if i and / + 1 are in the same column,
which is clearly equivalent to i e Sa. D

7.23.4 Corollary. Let a e Comp(n). Then

we&n
a=co(w~l)

Proof. Immediate from Theorem 7.19.7 and Lemma 7.23.3. •

7 . 2 3 . 5 C o r o l l a r y . L e t n e K T h e n

J2 J^ (7.116)
k\-n a€Comp(n)

Proof By Corollary 7.23.4 we have

La(x)sBa(y) =
aeComp(n) we&n

co(w~l)—a

Lco(w-l)(x)Lco(w)(y),
we&n

and the proof follows from Theorem 7.23.2. •

The next corollary gives a formula for the expansion of any symmetric function
in terms of fundamental quasisymmetric functions.

7.23.6 Corollary. For all f e An we have

/ = £ (LsBa)La.
aeComp(n)

Proof Take the scalar product of both sides of equation (7.116) with sx(y) to
obtain the desired result for f = sx- The general case follows by linearity. •

Next we come to an alternative expansion of ^2k\-n
 s*.(x)s*.(y) m terms of qua-

sisymmetric functions.
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7.23 Applications to Permutation Enumeration 385

7.23.7 Corollary. Letn eK Then

M-n

Proof. By Corollary 7.23.6 we have

sB,(y)= J2 {sBa^B,)K.
aeComp(n)

Substitute into the right-hand side of equation (7.116) to complete the proof. •

Write Bs and BT for the border strips Bas and Baj, where as and aT are the
compositions corresponding to S and T as defined in Section 7.19. Comparing
Theorem 7.23.2 with Corollary 7.23.7 yields the following enumerative result.

7.23.8 Corollary. Let S,T ^[n — 1]. Then the number of permutations w e <&n

satisfying D(w~l) = S and D(w) = T is equal to the scalar product (SBS, SBT}-

Theorem 7.23.2 can be specialized in several ways. For instance, we can obtain a
generating function for the joint distribution of the statistics maj(w;) and majCw;"1)
for w e 6* . Write [k]q = 1 - q\ [k]t = 1 - t\ [k]\q = [l]q •. • [k]q, and
[k]\t = [1], • • • [k]t. Recall the notation b(k) = ^ ( / - l ) ^ from equation (7.103).

7.23.9 Corollary. Let

Fn(q,t)=
we&n

Then

"double Eulerian" generating function

CXP f£ n (1 - q")(\ - r»)'

Proo/ Letx, = ^i~1 and y, = t'~l in equation (7.114). By Corollary 7.21.3, the
left-hand side of (7.114) becomes

q, q\ .. .)sx(l, t,
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386 7 Symmetric Functions

On the other hand, by Lemma 7.19.10 the right-hand side of (7.114) becomes

£co(«iri)(l> q, q2, • • .)^co(u;)(l, t, t2, . . .) =
we&n

where comaj(w;) = J2ieD(w)(n ~ *)• If w = wi • • • wn then define u>* = n + 1 —
w n , . . . , n + 1 — wi. The map w; h^ w;* from ©n to itself is a bijection (in fact,
involution), satisfying comaj(u;) = maj(w;*) and (w;"1)* = (it;*)"1. Hence

\ A comajCur^comajCu;) _ \ A majCur^majO)

so equation (7.117) follows. The remainder of the proof is an immediate conse-
quence of Proposition 7.7.4 and Theorem 7.12.1, which assert that

sx(x)sk(y) = J~J(1 - xtyj)'1 = exp ̂  -pn(x)pn(y).^2 J ^ D
AePar n>\ H

It is not necessary to use the theory of symmetric functions to prove Corol-
lary 7.23.9; see for instance Exercise 4.20 (in the case m = 2).

Our second connection between symmetric functions (more accurately, the RSK
algorithm) and permutation enumeration concerns increasing and decreasing sub-
sequences of a permutation. If w — w\ • • • wn e <&n, then let v = w^w^ • • • wtk

be a subsequence of w, i.e., 1 < i\ < ?2 < • • • < ik S n- We say v is increasing if
wtx < Wi2 < • • • < wtk and decreasing if u;̂  > w;2 > • • • > w;̂ . Write is(uO for
the length (number of terms) of the longest increasing subsequence of if. Let n(w)
be the rightmost integer j in w such that the longest increasing subsequence of w
whose last term is j has length /. If, for instance, w = 725481963, then is(w) = 4,
r\{w) = 1, r2(w) = 3, r3(w;) = 6, and r4(w) = 9, while r/(if) is undefined for
/ > 4. Note that in general 1 = ri(w) < r2(w) < • • • < ris(<w)(w).

RSK

7.23.10 Proposition. Let w e <&n and m = is(w). Suppose that w —> (P, Q).
Then the first row of P is equal to r\(w), r2(w), . . . , rm(w).

Proof. The proposition is essentially a restatement of Lemma 7.13.4. An in-
creasing subsequence wix,..., wik of w is equivalent to a chain (fi, wix) < • • • <
(4, u>;J in the inversion poset I(w). If follows that the antichain /7 consists pre-
cisely of those pairs (/, wt) for which the longest increasing subsequence of w
ending at wt has length j . The maximum value of / for such a pair is by definition
Ujn., and the corresponding value of wt is equal to vjnj. Hence Vjn. = rj(w), so
the proof follows from Lemma 7.13.4. •

As an immediate corollary, we obtain a combinatorial interpretation of the length
of the first row of P (or Q) when w ^ (P, Q).
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7.23 Applications to Permutation Enumeration 387

RSK

7.23.11 Corollary. Suppose that w e <&n and w —• (P, Q). Let sh(P) =
sh(<2) = k. Then kx = is(w).

Corollary 7.23.11 can be used to obtain interesting enumerative results con-
cerning the distribution of longest increasing subsequences. A quite general result
is the following, though it is often difficult to extract further information from it.
(See, for instance, Exercise 6.56 and Exercise 7.16.)

7.23.12 Corollary. Let gp(n) denote the number of permutations w e &nfor
which is(w) = p. Then

Spin) = J2 (/X)2-
khn

Proof. There are (/A)2 pairs (P, Q) of SYTs of shape k. The proof now follows
from Corollary 7.23.11. •

If w € &n, let us define the shape sh(w) to be the shape of the SYT P or
RSK

Q when w —> (P, Q). If k = sh(w;) then we have found a simple combina-
torial interpretation of the largest part k\ of A. It is natural to ask for a similar
interpretation of the other parts kt of k. For instance, it is tempting to conjec-
ture that k2 is equal to the length of the longest possible increasing subsequence
that can remain when an increasing subsequence of length k\ is removed from
w. Unfortunately this conjecture is false. For instance, if w = 247951368 then
s h ( » = (5, 3, 1). There is a unique increasing subsequence of w of length 5,
viz., 24568. When this is removed from w, we obtain the sequence 7913, which
has no increasing subsequence of length 3. The correct result is given by the
following fundamental theorem, whose proof is included in Appendix 1 (Theo-
rem Al. 1.1).

7.23.13 Theorem. Let w e <&n and sh(tu) = (ku k2,.. .)• Then for all i > 1,
k\ + • • • + ki is equal to the length of the longest subsequence of w that can be
written as a union ofi increasing subsequences.

For instance, let w = 247951368 as above. The subsequence 24791368 is the
union of the two increasing subsequences 2479 and 1368. Hence k\ + k2 > 8.
In fact w itself cannot be written as a union of two increasing subsequences, so
actually k\ + k2 = 8.

Instead of increasing subsequences we can ask about both increasing and de-
creasing subsequences simultaneously. The key to this question is a further sym-
metry property of the RSK algorithm (in addition to Theorem 7.13.1). We outline
one approach to this symmetry property here, while a different method of proof is
given in Appendix 1 (Corollary Al.2.11). We have denoted the row insertion of
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388 7 Symmetric Functions

the integer k into the SSYT T by T <- k. Assume that all entries of T are distinct
and different from k, and let A: ^ T denote the column insertion of k into T.
This is defined exactly like row insertion, but with the roles of rows and columns
interchanged. Equivalently, if * denotes transpose then

(*-*r) = (7" <-*)'.

We omit the proof, which consists of an elementary but tedious analysis of cases,
of the following fundamental lemma. We are always assuming that our tableaux
have distinct entries, and that this condition is maintained after inserting further
elements.

7.23.14 Lemma. Ifi^j then

j^(T <- 0 = (j -> T) <- i.

In other words, row insertion and column insertion commute with each other.

7.23.15 Lemma. Let

P(iu i2, . . . , ! „ ) = (O'i +- i2) +- i3) < <r- in

P(iU 12, . . . , In) = h -> > (in-2 ""• O'n-1 "^ in))-

Then

Proof. Induction on n. The assertion is clear for n = 1, since P(ii) = P(i\) = ii.
It is also easy to check directly the case n = 2. Now let w > 2 and assume the
assertion for all m < n. We have

P(iu in+i) = P(iu

= P(h,
= [ii -

= I'I - >

= i'i - >

= 11 - >

= i'i - >

= ^(i"i ,

• • • , In

• • • , In

* P(h,
[P(h,
[P(h,
P(h, •

P(I2, •

. . . , ! „

)<"
)<"

, . . ,
, . . ,
+ l)

" In+ 1

" l'n+1

,l"n

,l"n

,l'n

In,

In,

)] <~ l"n+l

) <~ in+l]

) <~ in+l]

in+l)

in+l)

(definition
(induction

(definition

(previous 1

(induction

(definition

(induction

(definition

of*-)
hypothesis)

of P)

emma)

hypothesis)

of*-)
hypothesis)

0f->). D

We now come to the new symmetry property of the RSK algorithm mentioned
above.

nci/

7.23.16 Theorem. Let w = w\W2 • • • wn e <&n and w —> (P, Q). Let wr =
RSK

wn • • • W2W1, the word w written in reverse order. Suppose that wr —> (P*, Q*).
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7.23 Applications to Permutation Enumeration 389

Then P* = Pl, the transpose of P. In particular, sh(w) = sh(wr)r. (The description
ofQ* is more complicated and is discussed in Appendix 1, Section A 1.2. The map
J3H> Q* is called the Schiitzenberger involution.)

Proof. Using the notation of the previous lemma, we have P(w\,..., wn) = P
d P O i , . . . , wny = P*. The proof follows from the previous lemma. •

If we regard a permutation w e <&n as an n x n permutation matrix, then
Theorem 7.13.1 tells us the effect on the RSK algorithm of reflecting w about the
main diagonal, while Theorem 7.23.16 tells us the effect on the RSK algorithm
of reflecting w about a horizontal line. These two reflections generate the entire
eight-element dihedral group D4 of symmetries of the square. Thus every "dihedral
symmetry" of w has a predictable effect on the behavior of the RSK algorithm
(when applied to a permutation).

Since a decreasing subsequence of w becomes an increasing subsequence (in re-
verse order) of wr and vice versa, the following result is an immediate consequence
of Theorem 7.23.13 and Theorem 7.23.16.

7.23.17 Theorem. Let w e e n and sh(w) = k. Then for all i > 1, k\ H h k\
is equal to the length of the longest subsequence of w that can be written as a
union ofi decreasing subsequences. In particular, k[ is the length of the longest
decreasing subsequence ofw.

Write ds(w) for the length of the longest decreasing subsequence of w. In the
same way that Corollary 7.23.12 was obtained from Proposition 7.23.10, we deduce
from both Proposition 7.23.10 and Theorem 7.23.17 the following result.

7.23.18 Corollary. Let gp,q(n) denote the number of permutations w € <Sn

satisfying is(w) = p and ds(w) = q. Then

ki=p, k\=q

7.23.19 Example, (a) If w e &pq+\ then either is(iu) > p or ds(w) > q, since
no partition k h pq + 1 satisfies k\ < p and k[ < q.

(b) Exactly one partition k\- pq satisfies k\=p and k\=q, viz., k={pq). Hence,
assuming p < q (which entails no real loss of generality, since gp,q(n) = gq,p(n))9

we get from Corollary 7.23.18 and the hook-length formula (Corollary 7.21.6) that

gP,q(pq) = 2
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390 7 Symmetric Functions

(c) Let p, q > n. There are exactly p(n) partitions (where p(n) is the number
of partitions of n)\\-p + q+n — 1 satisfying X\= p and k[ = q, viz., k =
(p, 1 + fi\, 1 + /X2,..., 1 + l^iq-i) where / i h n . Write for short X = (p, 1 + /x).
Then

We can combine information concerning descent sets together with increasing
and decreasing subsequences. For instance, the following result should be apparent
to any reader who has followed this section up to here.

7.23.20 Proposition. Let gp,q,s,T(n) denote the number of permutations w e <5n

satisfying is(w) = p, ds(w) = q, D(w~l) = S, D(w) = T. Then for fixed p, q,
andn,

sx(x)sx(y).
S,T khn

kl=p, X\=q

7.24 Enumeration under Group Action

The theory of enumeration under group action, or Poly a theory, is a standard topic
within enumerative combinatorics which is usually presented without the use of
symmetric functions. However, symmetric function theory does lead to a more
natural development and is more convenient for certain extensions of the theory.
Polya theory is centered around a certain generating function ZQ{X) for the cycle
types of elements of a subgroup G of &s, the symmetric group of all permutations
of the finite set S. Actually, there is no need at first for G to be a subgroup, so we
make the definition for any subset of (5 5. (There are in fact interesting results for
certain subsets that aren't subgroups; see for instance Exercise 7.111.)

7.24.1 Definition. Let K be a subset of the symmetric group &S- Define the
augmented cycle indicator ZK of K to be the symmetric function

weK

where p(w) denotes the cycle type of w as in Section 7.7. The cycle indicator
of K is defined by
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7.24 Enumeration under Group Action 391

Thus ZK or ZK is just a generating function for elements of K according to their
cycle type. Note that if n = #S, then ZK and ZK are homogeneous of degree n,
i.e., ZK, ZK € An. In the traditional exposition of Polya theory mentioned above,
the power sum symmetric function pt is replaced by an indeterminate tt, and later
one substitutes pt or a specialization of pt for t\. (We have done this ourselves in
Example 5.2.10.) This approach represents only a change in viewpoint, since the
Pi's are algebraically independent. The cycle indicator, regarded as a polynomial
in the indeterminates t\, t2,..., is then also called the cycle index polynomial of K.
The main result of Polya theory expresses ZG in terms of the monomial symmetric
functions (i.e., gives a combinatorial interpretation of the scalar product (ZG, hx))
when G is a subgroup of ©5.

7.24.2 Example, (a) Let S be the set of vertices of a square, and let G be the
dihedral group of all (Euclidean) symmetries of the square, acting on the vertex
set S. The identity element has cycle indicator p\. The rotations by 90° or 270°
have indicator p$. The rotation by 180° has indicator p\. The horizontal and
vertical reflections also have indicator p\. Finally the two diagonal reflections
have indicator p\pi. Hence

If instead we let G be the group of rotational symmetries of the square, then we
would get

ZG = \{p\ + p\ + 2p4).

(b) Let V be a /^-element vertex set, and let S = ( \ ) . The symmetric group S y
acts naturally on 5, viz., if w e &v and {s, t} e S , then w • {s, t] = {tu • 5, w • f}.
Thus we have a subgroup S ^ = G c <5s = ©(*)• F° r instance, when /? = 4we
have

ZG = £ (pj + 9rfp| + 8/73
2 + 6/?2/?4) •

(c) Let G be the group <&s of all permutations of the n-element set 5, so G = ©„.
Let A. h n. Recall (equation (7.18)) that n\z^1 is the number of permutations
w e <&n of cycle type X. Hence from equation (7.22) we get ZG = hn.

Now let X = {ci, C2,...} be a set of "colors," and let Xs denote the set of all
functions / : S —> X. Think of / as a "coloring" of the set S, where the element
s e S receives the color f(s). Define the weight xf of / e Xs by
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392 7 Symmetric Functions

Thus xf is a monomial of degree n = #S in the variables xi, JC2, . . . , which tells
us for each i how many elements of S are colored ct. There is a natural action of
G on Xs, viz., if u; G G, / G X5, and 5 G 5 , then

(u; •/)(*) = / ( t t w ) .

Let Xs/G denote the set of orbits of this action. In other words, define an equiv-
alence relation ~ on Xs by / ~ g if there exists w e G such that g = w • f.
Then the elements of Xs/ G are the equivalence classes with respect to ~. Note
that if / ~ g then x / = JC*. Hence if O e Xs/G, then we can define x° to be xf

for any f e O. Equivalence classes O are called patterns. The pattern inventory
(also known by various other names, such as store enumerator and configuration
counting series) of G is the generating function

FG(x)= £ x°.
OeXs/G

Thus the coefficient of a monomial JC" in FG(x) is the number of orbits O e Xs/ G
of weight xa . Since the elements of X are all "treated equally," it follows that FG (x)
is a symmetric function. In fact, FG G An, since by definition FG is homogeneous
of degree n.

7.24.3 Example, (a) Traditionally the elements of S have some combinatorial
or geometric structure. For instance, let S be the set of vertices of a square and G
the group of dihedral symmetries as in Example 7.24.2(a). Two colorings of the
vertices are equivalent if there is a symmetry of the square taking one coloring to the
other. Let X f- 4. The coefficient of m^ in FG is the number of inequivalent vertex
colorings (or colorings "up to symmetry") using k( Vs. Here are representatives
(orbit members) of each of these inequivalent colorings (using the colors 1, 2, . . . ) :

11 11 11 21 11 12 12 12 13
11 12 22 12 23 31 34 43 42

Hence

FG = m4 + nt3\ + 2m22 + 2m2n + 3/nmi.

If the group G were instead the group of rotational symmetries of the square, then
we would get the additional inequivalent colorings

11 13 14 14
32 24 23 32'

Hence in this case

FG = m4 + ma + 2m22 + 3ra2ii + 6mnn.
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7.24 Enumeration under Group Action 393

(b) Let V, S, and G be as in Example 7.24.2(b), so S = ( \ ) . Let X = P. A function
f e Xs may be regarded as a graph on the vertex set V, allowing multiple edges
but not loops. Namely, if f({s, t}) = j , then place j — 1 (indistinguishable) edges
between vertices s and t. Two graphs / , g e Xs are equivalent if and only if there
is a permutation w of their vertex set such that w preserves edges, i.e., there are
j edges between s and t if and only if there are j edges between w • s and w • t.
In other words, f ~ gif and only if / and g are isomorphic (as graphs). Thus for
a e Comp(( ^)) the coefficient of the monomial xa in FG is equal to the number
of nonisomorphic loopless graphs with p vertices and a ; edges of multiplicity
j — 1. For the case p = 4 we have

FQ = ni6 -f- m$\ + 2^42 + 3m33 + 2m^\\ + 4m321 H- 6m222

+9m22ii + 15m2iiii

Moreover, FG( lm) is equal to the total number of nonisomorphic loopless graphs
with p vertices and all edges of multiplicity at most m — 1. In particular, FG{\, 1)
is the number of nonisomorphic simple graphs (no loops or multiple edges) on p
vertices. Note that the specialization FG{\m) is obtained by expanding FG in terms
of the power sums pt and setting each pt = m. More generally, the coefficient of
qj in the polynomial FG(1, q,..., qm~l) is the number of nonisomorphic loopless
graphs with p vertices, all edges of multiplicity at most m — 1, and exactly j edges.
Thus for instance when p = 4we get

FG(1, q) = 1 + q + 2q2 + 3q3 + V + q5 + q\

the generating function for nonisomorphic 4-vertex simple graphs by number of
edges.

NOTE. Since traditionally the variables t\, r 2 , . . . of ZG and FG correspond to the
power sums pi, P2,... instead of the arguments x\, JC2, . . . of the /?;'s, what we
write as FG(l, q,..., gm - 1) is traditionally written

(c) Let G be the group <&s of a// permutations of the n-element set S, as in
Example 7.24.2(c). For simplicity take S = [n], so ©5 = &n. Two colorings
f,geXs are equivalent if and only if their coimages have the same type, i.e.,
the multisets {#f~l(c) : c e X] and {#g~l(c) : c e X] are the same. Hence the
coefficient of every monomial xa of degree n in F&n is equal to 1, so

F&n = £^mx = hn.
Xhn

We have defined two symmetric functions ZG and FG associated with the per-
mutation group G. The cycle indicator ZG is defined in terms of the power sum
symmetric functions pk, while the pattern inventory is defined in terms of the
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394 7 Symmetric Functions

monomial symmetric functions m\. The main result of Polya theory is that these
two symmetric functions are equal.

7.24.4 Theorem. Let S be a finite set. For any subgroup G of <E>s we have
ZG = FG.

The proof is based on a simple but fundamental result on permutation groups
known as Burnside's lemma (though see the Notes for the correct attribution).

7.24.5 Lemma. Let Y be a finite set and G a subgroup of (By- For each weG
let

Fix(w) = {yeY: w(y) = y} ,

so #Fix(w) is the number of cycles of length one in the permutation w. Let Y/G
be the set of orbits ofG. Then

#(Y/G) = - 1

In other words, the average number of elements of Y fixed by an element ofG is
equal to the number of orbits.

Proof For y e Y let Gy = {w e G : w(y) = y}, the stabilizer of y. Then

w(y)=y

=—Y y
yeY weG

w(y)=y

1
#G

yeY

Let Gy = {w(y) : w e G}, the orbit of G containing y. The multiset of elements
w(y), weG, contains every element in the orbit Gy the same number of times
[why?], viz., #G/#Gy times. Thus y occurs #G/#Gy times among the elements
w(y), so

#G

#Gy ~~ y'
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7.24 Enumeration under Group Action 395

Hence

^ 1 #G

#G yeY

^ 1

For a fixed orbit 0 e 7 / G , w e have Gy = O if and only if y e O. Hence the term
1/#O appears #(9 times in the last sum above, so the sum is equal to the number
of orbits. •

Proof of Theorem 7.24.4. Let a = (a\, «2, • •.) be a weak composition of n, and
let Ca denote the set of all "colorings" f e Xs with color Cj used a ; times. The
set Ca is invariant under the action of G on Xs. Let u>a denote the action of w on
Ca. We want to apply Burnside's lemma (Lemma 7.24.5) to compute the number
of orbits, so we need to find #Fix(wa).

In order for / e Fix(wa), we must color S so that (a) in any cycle of w, all the
elements get the same color, and (b) the color Cj appears oij times. It follows that

j

where mj(w) is the number of cycles of w of length j . Hence

Now sum over all w e G and divide by #G. The left-hand side becomes ZQ, while
by Burnside's lemma the right-hand side becomes FQ. •

When we put x = lm in Theorem 7.24.4 we get the following result (which can
also be obtained directly from Burnside's theorem).

7.24.6 Corollary. Let Nc(m) be the total number of inequivalent colorings of S
from a set ofm colors. Then

NG(m) = — y^mc(w\
#G *-i

weG

where c(w) is the number of cycles ofw.

NOTE (for algebraists). Let G be a subgroup of <&s as above. Let r = [&s : G],
the index of G in &S- The group (5s acts on the (right) cosets of G, defining
a (transitive) permutation representation of &s. Representing a permutation by
the corresponding permutation matrix gives a linear representation aG : (&s ~^
GL(r, C). This linear representation is equivalent to the induced representation
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396 7 Symmetric Functions

I®5 (the induction of the trivial representation of G to &s). Let xG • &s -* C
denote the character of this representation, i.e., xG(w) — traG(w). If w e &s
and p(w) = X (the cycle type of w), then

G #&s #(eA n G) zx

where ©A denotes the subset (conjugacy class) of <&s of all permutations of cycle
type A. It follows from (7.118) that

ch(X
G) = ZG, (7.119)

the cycle indicator of G, where ch is the characteristic map of Section 7.18. Hence
Polya theory is closely related to the interaction between the representation theory
of the symmetric group and the theory of symmetric functions.

Write

x G =

as the decomposition of the character xG m terms of irreducible characters xk-
Hence ax is the multiplicity of x k in x G> and so ax e N. Since the map ch is linear
and ch(xA) = $A> there follows from equation (7.119) that

( 7 - 1 2 0 )

Thus we have an algebraic interpretation of the expansion of ZG in terms of Schur
functions, showing in particular that the coefficients ax = (ZG, sx) are nonnegative
integers, or equivalently that ZG is ^-integral (which is trivial) and s-positive. No
purely combinatorial or "formal" proof of the s-positivity of ZG is known; all
known proofs (which are essentially equivalent) use representation theory. (The
fact that ax is an integer is immediate from Theorem 7.24.4.) There are a myriad
of other "positivity theorems" in the theory of symmetric functions whose only
known proofs use representation theory.

Notes

A good source of information for the early history of symmetric functions, such
as the fundamental theorem of symmetric functions (Theorem 7.4.4) and the sym-
metry of the matrix (MAAI) (Corollary 7.4.2), is the article [154] by Karl Theodor
Vahlen. In particular, the first published work on symmetric functions is due to
Albert Girard [49] in 1629, who gives an explicit formula expressing pn in terms
of the ex's (which we can obtain by equating coefficients of tn in the formula
5Z«>i n(~l)n~lPntn = log^>oektk)> Other early researchers on symmetric
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Notes 397

functions include Gabriel Cramer, Francesco Faa di Bruno, Isaac Newton, and
Edward Waring.

The earliest reference to Schur functions is the 1815 paper [18] of Augustin
Louis Cauchy. (Cauchy's paper was submitted for publication in 1812.) He defines
Schur functions (though of course not by that name) in the variables x\,..., xn

as the bialternants of Theorem 7.15.1 and proves that they are indeed symmetric
polynomials, and that (using our notation) s\(x\,..., xn) = x\ + • • • + xn and
(more trivially) s\n (x\,..., xn) = x\ • • • xn. The next paper of interest to us is that
of Karl Gustav Jacob Jacobi [64] in 1841, in which he states without proof the
Jacobi-Trudi identity (Theorem 7.16.1) in the case [i — 0, i.e., for ordinary Schur
functions sx (defined as bialternants). In 1864 Jacobi's student Nicolo Trudi [153]
gave a complete proof of the Jacobi-Trudi identity. The dual Jacobi-Trudi identity
(Corollary 7.16.2) is due to Hans Eduard von Nagelsbach [108] in 1871, and was
given a simpler proof in 1875 by Carl Franz Albert Kostka [73]. Our first proof
of the Jacobi-Trudi formula (based on the theory of nonintersecting lattice paths)
follows Ira Martin Gessel and Gerard Xavier Viennot [47][2.5]. See [151, Ch. 4.5]
for an exposition. Our second proof comes from Ian G. Macdonald [96, Ch. I, (5.4)].

The expansion of [~[(1 — xtyj)~l m terms of Schur functions (Theorem 7.12.1)
is universally attributed to Cauchy and is therefore called the "Cauchy identity."
We have been unable, however, to find a clear statement of this identity in the work
of Cauchy. On the other hand, the Cauchy identity is an almost trivial consequence
of two results of Cauchy. The first result is the Binet-Cauchy formula for the
determinant of the product of an m x n matrix and an n x m matrix. (For an
interesting discussion of Cauchy's precise contribution to this formula, see [106,
pp. 92-131]. It is at any rate clear from Cauchy's later work that he was adept at
its use.) The second result of Cauchy [19, eqn. (10)] is the determinant evaluation
(stated slightly differently)

det ! (7.121)

where as is the Vandermonde determinant (equation (7.55)). Applying the Binet-
Cauchy formula to the product A(x)A(y)', where

A(z) =

z\
Z2

Zn Zn '"_

gives

/ i \ n

det( j——J = J2 ax+8(x)ax+8(y)-
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398 7 Symmetric Functions

Hence from (7.121) we have

1

and Cauchy's identity follows from Theorem 7.15.1 (which was Cauchy's defini-
tion of Schur functions).

Kostka [74] [75] was the first person to consider the expansion of Schur functions
into monomials, whence the term "Kostka number" for the numbers Kx^ in the
expansion sx = Yip ^^mti (equation (7.35)). (Foulkes [36, p. 85] suggested
calling the matrix (K^) the Kostka matrix.) In [74] Kostka gives a table of the
Kostka numbers K^ and the entries (K~l)x^ of the inverse Kostka matrix for
X, fi h n < 8. In [75] he extends the tables up to n = 11. Kostka asserts that the
numbers in his tables also give the expansion of the / i / s and m / s in terms of the
sx's; this assertion is equivalent to the orthonormality of the sx's (Corollary 7.12.2).

Oscar Howard Mitchell [103] looked further at Kostka numbers in 1882. He
showed that they were nonnegative without obtaining an explicit combinatorial
interpretation of them, and he evaluated sx(ln) in the form obtained by letting
q —> 1 in equation (7.105). A simpler proof of this evaluation of sx(ln) was later
given by William Woolsey Johnson [66, §13]. Some efforts were subsequently
made to find combinatorial interpretations of Kostka numbers in special cases, a
typical example being Thomas Muir [105]. The first explicit statement of which
we are aware that the Kostka number Kx^ counts SSYTs of shape X and type /x is
due to Dudley Ernest Littlewood [85, Thm. VI] (see also [88, Ch. 10.1, IX]). The
definition of the Gelfand-Tsetlin patterns of equation (7.37) was given by Israel
M. Gelfand and Mikhail L. Tsetlin [45, (3)] in connection with the representation
theory of the Lie algebra sl(n, C).

Skew Schur functions were first investigated by Nagelsbach [108] and Alexander
Craig Aitken [1][2], in the form given by equation (7.68). Aitken proved what in
our notation is the formula cosx/v = sx>/V' (Theorem 7.15.6), and in a later paper
[3] gave the combinatorial interpretation of sx/^ in terms of skew SSYTs. The
connection between skew Schur functions and Littlewood-Richardson coefficients
(Theorem 7.15.4) appears in [88, eqn. VIII, p. 110].

While the work described above was being carried out, a completely indepen-
dent but ultimately equivalent avenue of research was being developed by a group
of geometers. Certain enumerative questions involving intersections of subspaces
of a vector space were reduced to algebraic computations formally the same as
basic results in the theory of Schur functions. This general approach to enumera-
tive geometry was first developed by Hermann Casar Hannibal Schubert (see [68]
for references) and is now known as the Schubert calculus. It is not our intention
to explain the Schubert calculus and its connections with symmetric functions
here, but we will briefly mention the main highlights. The geometric result equiv-
alent to Pieri's rule (Theorem 7.15.7) was given in 1893 by Mario Pieri [118]. A
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determinantal formula expressing a Schubert cycle in terms of special Schubert
cycles was published in 1903 by Giovanni Zeno Giambelli [48]. This formula was
formally the same as the Jacobi-Trudi identity (Theorem 7.16.1), thereby establish-
ing the formal equivalence (though no one realized it yet) of the Schubert calculus
with the algebra of Schur functions. The work of classical geometers such as Schu-
bert, Pieri, and Giambelli on the Schubert calculus was vindicated rigorously by
Charles Ehresmann [28], Bartel Leendert van der Waerden [158], William Vallance
Douglas Hodge [61] [62] et al. The formal equivalence between Schubert calculus
and the algebra of Schur functions was first pointed out by Leonce Lesieur [84]
in 1947. Conceptual explanations of this seeming "coincidence" were first given
by Geoffrey Horrocks [63] and James B. Carrell [17]. More details of this his-
tory are discussed by William Fulton [41, pp. 278-279]. For three surveys of the
Schubert calculus, the third one focusing on the connections with combinatorics,
see [68][69][148].

The idea of unifying much of the theory of symmetric functions using linear
algebra (scalar product, dual bases, involution, etc.) is due to Philip Hall in his im-
portant paper [54]. This paper was overlooked (undoubtedly because of its obscure
place of publication) until an exposition (with most of the missing proofs filled in)
was given by Stanley [145]. Stanley learned of Hall's paper from Robert James
McEliece, who studied with Hall during the 1964-65 academic year in Cambridge
(England). A later exposition of Hall's work was given by Macdonald [94].

The RSK algorithm (known by a variety of other names: either "correspondence"
or "algorithm" in connection with some subset of the names Robinson, Schensted,
and Knuth) was first described, in a rather vague form, by Gilbert de Beauregard
Robinson [131, §5], as a tool in an attempted proof of the Littlewood-Richardson
rule (Appendix 1, §A1.3). (See the Notes to Appendix 1 for the history of the
Littlewood-Richardson rule.) The RSK algorithm was later rediscovered by Craige
Eugene Schensted (see below), but no one actually analyzed Robinson's work until
this was done by Marc A. A. van Leeuwen [82, §7]. It is interesting to note that
Robinson says in a footnote on page 754 that "I am indebted for this association I
to Mr. D. E. Littlewood." Van Leeuwen's analysis makes it clear that "association

RSK

I" gives the recording tableau Q of the RSK algorithm w —> (P, Q). Thus it
RSK

might be correct to say that if w e <&n and w —> (P, Q), then the definition of
P is due to Robinson, while the definition of Q is due to Littlewood.

No further work related to Robinson's construction was done until Schensted
published his seminal paper [136] in 1961. (For some information about the unusual

* life of Schensted, see [7].) Schensted's purpose was the enumeration of permu-
tations in <E>n according to the length of their longest increasing and decreasing
subsequences. For further information see the discussion of Section 7.23 below.
According to Knuth [71, p. 726], the connection between the work of Robinson
and that of Schensted was first pointed out by Marcel Paul Schutzenberger, though
as mentioned above the first person to describe this connection precisely was van
Leeuwen.
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Robinson states on page 755 of his paper [131] on the RSK algorithm that "it
RSK 1 RSK

is not difficult to see" that if w —> (P, Q), then w~l —> (Q, P). No indica-
tion of a proof of this fundamental result (our Theorem 7.13.1) is given. A proof
was finally given by Schiitzenberger [140] in 1963. Schiitzenberger was the first
to realize the great significance of Schensted's work for the theory of symmetric
functions and the symmetric group. Our first proof of Theorem 7.13.1 follows Don-
ald Ervin Knuth [71, §4][72, Ch. 5.1.4]. Corollary 7.13.8, which we derived from
Theorem 7.13.1, was first proved by Issai Schur [138] (repeated in [5.53, VII.47]).

The theory of growth diagrams, which we used for our second proof of The-
orem 7.13.1, was developed by Sergey V. Fomin [31][32][33][34]. Some further
work was done by Thomas W. Roby [132] [133]. Before Fomin a different "geo-
metric" theory of the RSK algorithm had been developed by Viennot [155] [156].

The extension of the RSK algorithm from permutations to arbitrary sequences of
nonnegative integers (or from permutation matrices to N-matrices of finite support)
is due to Knuth [71]. Although, as pointed out by Lemma 7.11.6, this extension
is actually equivalent to the original case, it is essential to use the more general
form when dealing with symmetric functions. Thus for instance we obtained a
direct bijective proof of the Cauchy identity (Theorem 7.12.1), as first done by
Knuth [71, p. 726]. Knuth's paper deals with a number of further topics related to
the RSK algorithm, in particular, a proof of the symmetry result Theorem 7.13.1
(working directly with N-matrices of finite support and not reducing to the case
of permutations), the definition and basic properties of the dual RSK algorithm
of Section 7.14, and the definition and basic properties of Knuth equivalence,
as discussed in Appendix 1. Some further variations of the RSK algorithm were
given by William H. Burge [13] (see Exercises 7.28(c,e) and 7.29(a,b)). For good
overviews of more recent work related to the RSK algorithm, see [134] [83].

By this time the work described above had entered the general consciousness
of algebraic and enumerative combinatorics, and the floodgates were opened. We
will not attempt a survey of the enormous amount of more recent work done on
symmetric functions, Young tableaux, the RSK algorithm, etc., but we will give
some references to work discussed in the text. For further developments, see the
end of these Notes, the Exercises to this chapter, and the Notes to Appendix 1.

Standard Young tableaux (SYT) were first enumerated by Percy Alexander
MacMahon [99, p. 175] (see also [101, § 103]). MacMahon formulated his result in
terms of the ballot sequences or lattice permutations of Proposition 7.10.3(c,d), and
stated the result not in terms of the product of hook lengths as in Corollary 7.21.6,
but rather using the right-hand side of the case q = 1 of equation (7.101). The
formulation in terms of hook lengths is due to James Sutherland Frame and ap-
pears first in the paper [38, Thm. 1] of Frame, Robinson, and Robert McDowell
Thrall; hence it is sometimes called the "Frame-Robinson-Thrall hook-length for-
mula." (The actual definition of standard Young tableaux is due to Alfred Young
[162, p. 258].) Independently of MacMahon, Ferdinand Georg Frobenius [5.27,
eqn. (6)] obtained the same formula for the degree of the irreducible character x x
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of <&n as MacMahon obtained for the number of lattice permutations of type X.
Frobenius was apparently unaware of the combinatorial significance of deg / \
but Young showed in [162, pp. 260-261] that deg xk was the number of SYT of
shape A, thereby giving an independent proof of MacMahon's result. (Young also
provided his own proof of MacMahon's result in [162, Thm. II].) A number of
other proofs of the hook-length formula were subsequently found. Curtis Greene,
Albert Nijenhuis, and Herbert Saul Wilf [51] gave an elegant probabilistic proof.
The proof we gave in Section 7.22 based on the Hillman-Grassl correspondence
appears in [60] and shows very clearly the role of hook lengths, though the proof is
not completely bijective. A bijective version was later given by Christian Kratten-
thaler [76]. Completely bijective proofs of the hook-length formula were first given
by Deborah Franzblau and Doron Zeilberger [39] and by Jeffrey Brian Remmel
[127]. An exceptionally elegant bijective proof was later found by Jean-Christophe
Novelli, Igor Pak, and Alexander V. Stoyanovskii [113].

For more information on the Hopf algebra approach to symmetric functions
mentioned at the end of Section 7.15 see [163].

The determinantal formula (7.71) for /^ / /x is due to Aitken [3, p. 310], who
deduced it just as we have done from the Jacobi-Trudi identity for s^/^ (Theo-
rem 7.16.1). Aitken's result was rediscovered by Walter Feit [30]. A generalization
due to Germain Kreweras is given by Exercise 3.63.

The theory of representations of finite groups was developed by Frobenius; see
[24] [56] [57] [58] [59] for an interesting discussion of this development. In partic-
ular, Frobenius computed the irreducible characters of <&>n (in the form given by
Corollary 7.17.4 or equation (7.77)) in [5.27]. Much subsequent work on the rep-
resentation theory of &n was done by Alfred Young; see Sagan [135] for a nice
exposition of Young's work and its connection with symmetric functions. The
Murnaghan-Nakayama rule (regarded as the formula (7.75) for XA(A0) is actually
due to Littlewood and Archibald Read Richardson [89, §11]. Statements of this
rule by Francis Dominic Murnaghan and Tadasi Nakayama are given in [107, (13)]
and [109, §9].

The definition of quasisymmetric functions is due to Gessel, though they had ap-
peared implicitly in earlier work. Gessel used quasisymmetric functions to prove
such results as our Corollaries 7.23.6 and 7.23.8. The basic results on (P, oo)-
partitions used here (Theorem 7.19.4 and Corollary 7.19.5) were given by Stanley
[3.28, Ch. 2][3.29, Ch. 1], though not using the language of quasisymmetric func-
tions. Proposition 7.19.11 seems to be due to George Lusztig (unpublished) and
Stanley [149, Prop. 4.11]. Further work on quasisymmetric functions appears e.g.
in [26] [102] and the references given there.

Plane partitions were discovered by MacMahon in a series of papers which were
not appreciated until much later. (See MacMahon's book [101, §§IX and X] for
an exposition of his results.) MacMahon's first paper dealing with plane partitions
was [98]. In Article 43 of this paper he gives the definition of a plane partition
(though not yet with that name), and then goes on to discuss the six aspects of a
plane partition. In Article 51 he conjectures that the generating function for plane
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partitions is the product

(1 - X)"1 (1 - x 2 ) - 2 (1 - X3)"3 (1 - x4)-4 • • •

(our Corollary 7.20.3). He also suggests (but doesn't call it a conjecture) that the
generating function for r -dimensional partitions (whose diagram would be a finite
order ideal of Nr+1) is

Y\{1 - x1)'^ . (7.122)

MacMahon apparently never realized that this generating function, even for r = 3,
is incorrect, though he does mention in [101, vol. 2, footnote on p. 175] that an
even stronger result is false. (When r = 3, the smallest exponent n for which the
coefficient of xn in (7.122) fails to be the number of 3-dimensional partitions of
n is n = 6.) The incorrectness of (7.122) was first shown by Atkin et al. [6] and
later by E. M. Wright [160]. V. S. Nanda [110][lll] erroneously assumes (7.122)
to be correct for r = 3, stating in [110, p. 593] that

MacMahon has not given a rigorous derivation of the generating function for solid partitions.
But a simple reasoning as in the case of plane partitions leads to the generating function

1

for solid partitions when there is no restriction on part magnitude.

Further computations by Knuth [70] show how useless it seems to write the gener-
ating function for 3-dimensional partitions in the form ]~[/>1(l — xl)ai. Returning
to the paper [98] of MacMahon, in Article 52 he conjectures our Theorem 7.20.1,
Corollary 7.20.2, and finally Theorem 7.21.7 (which includes all the previous
conjectures as special cases). MacMahon goes on in Articles 56-62 to prove his
conjecture in the case of plane partitions with at most 2 rows and c columns (the
case r = 2 of our Theorem 7.20.1), mentioning on page 662 that an independent
solution was obtained by Andrew Russell Forsyth. (Though a publication reference
is given to Forsyth's paper, apparently it never actually appeared.)

We will not attempt to describe MacMahon's subsequent work on plane partitions,
except to say that the culmination of his work appears in [101, Art. 495], in which
he proves his main conjecture from his first paper [98] on plane partitions, viz., our
Theorem 7.21.7. MacMahon's proof is quite lengthy and indirect. We can regard
a plane partition whose shape is contained in the partition X \- p as a Px-partition
(in the sense of Section 4.5), where / \ is the poset defined after Corollary 7.19.5.
(We regard Px as a natural partial order on [p], as in Section 4.5.) MacMahon
anticipates the theory of P -partitions (as pointed out in the Notes to Chapter 4) by
essentially establishing Exercise 4.24(b) for P = Pk. He manages to convert this
expression into a determinant, and then to evaluate the determinant when A = (cr >.
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Some interesting recent work on the shape of the diagram of a "typical" plane par-
tition fitting in an r x c x t box was done by Henry Cohn, Michael Larsen, and
James Propp [23].

The theory of plane partitions stayed rather dormant until the early 1960s, when
Basil Gordon and his students made a number of new contributions (but with-
out using symmetric functions). For further discussion and references to the work
of Gordon, see [146]. Also about this time Carlitz [16] gave a simpler proof of
MacMahon's main result (our Theorem 7.21.7). (Limiting cases had earlier been
given simpler proofs by Chaundy [21].) Then in 1972 Edward Anton Bender and
Knuth [8], in an important paper, showed the connection between the theory of
symmetric functions and the enumeration of plane partitions. They gave simple
proofs, based on the RSK algorithm, of many of the results (and some generaliza-
tions) of Gordon et ai, as well as the first bijective proof (the same proof that we
give) of our Theorem 7.20.1 in the case q — \. The introduction of the variable q
in Theorem 7.20.1 and related results to keep track of the trace of a plane partition
is due to Stanley [146, Thm. 19.3][147].

The "hook-content formula" for ^ ( 1 , q,..., qn~l) (Theorem 7.21.2) was first
stated explicitly by Stanley [3.28, Thm. V.2.3][3.29, Prop. 21.3][146, Thm. 15.3].
Earlier a less explicit statement (using the right-hand side of our equation (7.101)
instead of the left-hand side) was given by Littlewood and Richardson [90, Thm. I]
[88, I. on p. 124]. A bijective proof based on an involution principle argument
was given by Remmel and Roger Whitney [128]. Krattenthaler [77] then gave a
bijective proof not involving the involution principle, and generalized it in [78].
Finally Krattenthaler [79] gave a bijective proof of Theorem 7.21.2 analogous to
the Novelli-Pak-Stoyanovskii proof [113] of the hook-length formula.

The generating function for symmetric plane partitions with at most r rows (the
case q — \ of Theorem 7.20.4) was conjectured by MacMahon [100, p. 153][101,
Art. 520] and first proved by Gordon [50]. Bender and Knuth [8, pp. 42-43]
give the same proof as ours based on the RSK algorithm. MacMahon actually
makes a stronger conjecture, viz., an explicit formula for the generating function
for symmetric plane partitions with at most r rows and largest part at most m (the
symmetric analogue of our Theorem 7.21.7). This result proved to be considerably
less tractable than the unrestricted (i.e., nonsymmetric) case; it was first proved
by George E. Andrews [4] [5]. A subsequent proof based on the Weyl character
formula for type Bn was given by Macdonald [92, Exam. 1.5.17, p. 52][96, Exam.
1.5.17, pp. 84-85]. A somewhat different proof based on representation theory
is due to Robert Alan Proctor [121, Prop. 7.2]. For further information related
to the enumeration of symmetry classes of plane partitions, see the solution to
Exercise 7.103(b).

The generating function (7.112) for reverse plane partitions of a fixed shape was
first obtained by Stanley [3.28, Cor. V.2.6, p. 174][146, Prop. 18.3]; the proof is
the same as our first proof of Theorem 7.22.1 (based on symmetric functions). The
elegant bijective proof given after our first proof is due to Abraham P. Hillman and
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404 7 Symmetric Functions

Richard M. Grassl [60]. A different bijective proof was later given by Remmel and
Whitney [129].

The fundamental result relating the RSK algorithm to descent sets (Lemma
7.23.1) is due to Schutzenberger [140, Remarque 2] and was independently dis-
covered later by Herbert Owen Foulkes [37, Thm. 8.1]. Foulkes anticipated The-
orem 7.23.2 and its corollaries, but the first explicit statement of results of this
nature is due to Gessel [46]. The basic connection between the RSK algorithm and

RS1C

increasing and decreasing subsequences (viz., that if w —> (P, Q) where P and
Q have shape A, then is(w) = X\ and ds(w) = X[) is the main result of Schensted
[136]. Schensted's purpose in writing his paper was to obtain a formula for the
number of w e &n satisfying is(w) = p and ds(u>) = q9 which he gave as his
Theorem 7.3 (our Corollary 7.23.18). Theorems 7.23.13 and 7.23.17 are due to
Greene; see Appendix 1 for further details. Example 7.23.19(a) is a famous result
of Paul Erdos and George Szekeres [29, eqn. (8)] which was later given an elegant
simple proof by Abraham Seidenberg [141]. Example 7.23.19(b) was posed as a
problem by Stanley Rabinowitz [122] and solved by Stanley [144].

Burnside's lemma (Lemma 7.24.5) was actually first stated and proved by Frobe-
nius [40, end of §4]. Frobenius in turn credits Cauchy [20, p. 286] for proving the
lemma in the transitive case. Burnside, in the first edition of his book [14, §§118-
119], attributes the lemma to Frobenius, but in the second edition [15] this citation
is absent. For more on the history of Burnside's lemma, see [112] and [161].
Many authors (e.g., [67]) now call this result the Cauchy-Frobenius lemma. The
cycle indicator ZG(X) (where G is a subgroup of &n) was first considered by
J. Howard Redfield [124], who called it the group reduction function, denoted
Grf(G). George Polya [119] independently defined the cycle indicator, proved the
fundamental Theorem 7.24.4, and gave numerous applications. For an English
translation of Polya's paper, see [120]. Much of Polya's work was anticipated by
Redfield. For interesting historical information about the work of Redfield and its
relation to Polya theory, see [53] [55] [91] [125] (all in the same issue of Journal
of Graph Theory). Subsequent to Polya's work there have been a huge number of
expositions, applications, and generalizations of Polya theory. We mention here
only the nice survey [12] by Nicolaas Govert de Bruijn and the paper [123] by
Ronald C. Read, who was the first to consider the relevance of Schur functions to
Polya theory.

Appendix 1 has its own Notes, so now we discuss Appendix 2. The main result of
Appendix 2, the classification of the rational representations of GL(n, C) and the
determination of their characters (Theorem A2.4), appears in the masterful doctoral
dissertation of Schur [137]. He later gave a simpler proof [139] along the lines of
the proof we have sketched. A slight refinement was given by Hermann Weyl [159,
Thm. 4.4.C]. For a modern treatment of the work of Schur, see for instance [96,
Ch. I, App. A]. Plethysm was introduced by D. E. Littlewood [86, p. 329] (see also
[88, p. 289]). The term "plethysm" was suggested to Littlewood [87, p. 274] by
M. L. Clark, after the Greek wordplethysmos (n'kr}9vo\±6q) for "multiplication."
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The connection between plethysm and wreath products (Theorem A2.8) is implicit
in the determination of the characters of the wreath product G§<5n by Wilhelm
Specht [143]. The special case when x = 1^* an(* ̂  = I//1 f°r subgroups G and H
of &k and &n, respectively, is equivalent to Poly a's derivation of the cycle index of
his so-called Kranz group (Kranzgruppe) [119, pp. 178-180]. Explicit statements
of Theorem A2.8 (though not stated in the language of symmetric functions) may
be found in [93, Rink. 6.9][65, Ch. 5.4][96, App. A, (6.2)].

What should the reader who is interested in learning further about symmetric
functions do next? An important topic, not treated at all here, is the myriad gen-
eralizations and variations of Schur functions. We present a short list, with some
basic references (which are only provided as a means of entry into the subjects),
of some of these generalizations.

• Hall-Littlewood symmetric functions [96, Ch. Ill]
• Shifted Schur functions (corresponding to shifted shapes), also called Schur

P- and Q-functions [52][96, Ch. III.8]
• Super-Schur functions [9][96, Exam. 1.3.23, pp. 58-60]
• Zonal symmetric functions [96, Ch. VII]
• Jack symmetric functions [96, Ch. VI. 10] [150]
• Macdonald symmetric functions [43][96, Ch. VI][115]
• Wreath-product Schur functions S^D <g) • • • (g> s^n [96, Ch. I, App. B][114]
• Orthogonal and symplectic Schur functions [152]
• Flag Schur functions (or multi-Schur functions) [157] [95, Ch. Ill] [126]
• Factorial Schur functions and variations [10][11][22][97, §§4-6, 9][104]
• Shifted Schur functions (corresponding to "shifted" variables) [116] [117]
• Noncommutative Schur functions of Gelfand, Krob, Lascoux, Leclerc, Retakh,

and Thibon [44] [80] [27] [81]
• Noncommutative Schur functions of Fomin and Greene [35]
• Modular Schur functions (implicit in [25, §3.7])
• GL(n, F^-invariant Schur functions of Macdonald [97, §7]
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Chapter 7: Appendix 1

Knuth Equivalence, Jeu de Taquin, and the
Littlewood-Richardson Rule

(by Sergey Fomin)

This Appendix is devoted to the study of several combinatorial constructions in-
volving standard Young tableaux (S YTs) that lead to the proof of the Littlewood-
Richardson rule, a combinatorial rule describing the coefficients in the Schur func-
tion expansion of an arbitrary skew Schur function (or in a product of two ordinary
Schur functions).

Most of what follows can be straightforwardly generalized to semistandard
Young tableaux (SSYTs). We do not do it here, in order to simplify the present-
ation.

Al.l Knuth Equivalence and Greene's Theorem
RSK

The RSK algorithm w —> (P, Q) associates to a permutation w e <E>n a pair
of SYTs: the insertion tableau P and the recording tableau Q\ these tableaux
have the same shape sh(u;). In this section, we examine the following two quest-
ions:

• What are the conditions for two permutations to have the same shape sh(»?
• What are the conditions for two permutations to have the same insertion

tableau PI

The first question has an answer involving a particular family of poset-theoretic
invariants of permutations. The equivalence relation appearing in the second ques-
tion can be described in terms of certain elementary transformations that change
three consecutive entries of a permutation. We first state these two results, and
devote the rest of this section to their proof.

For a permutation w = w\ • • • wn e &n and k e N, let 4 = h(w) denote
the maximal number of elements in a union of k increasing subsequences of w.
Analogously, let £>/ be the maximal size of a union of / decreasing subsequences
of w. For example, for w = 236145 e <&6, we have: /o = 0, I\ = 4,12 = h —
" - = 6; Do = 0, £>i = 2, D2 = 4, D3 = 5, D4 = D5 = • • • = 6.

413
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414 Chapter 7: Appendix 1

Al.1.1 Theorem (Greene's theorem). Let w e <&n and sh(w;) = X. Then, for
any positive integer k and I,

h(w) = A.i + • • • + A* ,

Di(w) = A; + • • • + x[.
(A1.123)

(Note that Theorem Al.1.1 is a restatement of Theorems 7.23.13 and 7.23.17.)
To illustrate, take w = 236145. Then w

P =

RSK

1

2

3

6

4 5
Q =

(P, Q) with

sh(iu) = A. = (4, 2).

To obtain the numbers 4 , we count boxes in the first several rows of the shape:
0,4, 6, 6, Analogously, counting boxes in the first several columns of A gives
0, 2, 4, 5, 6, 6 , . . . , agreeing with our previous computations.

Theorem Al.1.1 implies that two permutations have the same shape sh(w) if
and only if the values I\, h,... (or D\, D2, . . . ) computed for these permutations
are the same. Another direct implication of Theorem Al.1.1 is given below.

Al.1.2 Corollary. For any permutation w, the sequences (I\, I2 — h, h — h,...)
and (Di, D2 — D\, D3 — D2,...) define conjugate partitions.

To formulate an answer to the second question posed at the beginning of this
section, we will need the following definition.

Al.1.3 Definition. A Knuth transformation of a permutation is its transformation
into another permutation that has one of the following forms:

• ••acb • - - • ••cab • -• • ••bac • •• •••bca • • •

•••cab • • • •• • acb • • • •••bca • • • • • • bac • ••

(A1.124)

where a < b < c (all other entries remain intact). Thus each Knuth transformation
switches two adjacent entries a and c provided an entry b satisfying a < b < c is
located next to a or c. Two permutations u,v e <&n are called Knuth-equivalent
(denoted u ~ v) if one of them can be obtained from another by a sequence of
Knuth transformations.

For example, the six permutations in (A 1.125) below form a Knuth equivalence
class; the ones that differ by a single Knuth transformation are connected by
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Al.l Knuth Equivalence and Greene's Theorem 415

an edge.

51243

I
54123 51423

15243

I
15423

12543

(A1.125)

Al.1.4 Theorem. Permutations are Knuth-equivalent if and only if their inser-
tion tableaux coincide.

Permutations u and v are said to be dual Knuth-equivalent if u ~ l

v-

~l For
instance, 34521 is dual Knuth-equivalent to 12543. Recall the following symmetry
of the RSK algorithm (see Theorem 7.13.1): the recording tableau for a permuta-
tion w is nothing but the insertion tableau for w~l. Thus Theorem Al.1.4 implies
that permutations have the same recording tableaux if and only if they are dual
Knuth-equivalent.

Knuth equivalence classes can be given a more detailed description, which is
provided in Theorem A 1.1.6 below.

Al.1.5 Definition. Let T be a tableau. The reading word of T (denoted reading
(T)) is the sequence of entries of T obtained by concatenating the rows of T bottom
to top. For example, the tableau

3

4

5

7

1

6

9

2

8

has the reading word 479356812.

In what follows, we say that a tableau has a straight shape if its shape is a
Young (or Ferrers) diagram. Observe that any straight-shape tableau T is uniquely
reconstructed from its reading word. Indeed, to break a word w = reading(r) into
segments representing the rows of 7\ simply locate the descents of w.

Al.1.6 Theorem. Each Knuth equivalence class contains exactly one reading
word of a straight-shape SYT(call this tableau T), and consists of all permutations
whose insertion tableau is T.

For example, the only reading word in the Knuth equivalence class shown
in (Al. 125) is

54123 = reading(J), T = 2JI
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416 Chapter 7: Appendix 1

There are indeed six permutations with insertion tableau T (since / s h ( r ) = 6), and
these are exactly the ones appearing in (A1.125).

Proofs of Theorems Al.1.1, Al.1.4, andAl.1.6

Al.1.7 Lemma. For any k, the values h(w) and Dk(w) are invariant under
Knuth transformations of a permutation w.

Proof It is enough to prove the invariance of the numbers /*, since replacing
a permutation w = w\ • • • wn by w' = wn • • • w\ interchanges Ik and Dk, while
clearly u ~ v o u' ~ v'. We need to show that Ik does not change under each of
the two types of Knuth transformations:

u = • • • acb • • • -> v = • • • cab • • •, a < b < c,

and

u = • - • bac • • • -> v = • • • bca • • •, a < b < c

(cf. (A 1.124)). Since these two cases are completely analogous, let us concentrate
on the first one. Let h(u) = m. Obviously, h(v) < m. Moreover, the only situ-
ation where we may possibly have Ik(v) < m is the following: every collection
{<7i,..., Ok] of k disjoint increasing subsequences of u which jointly cover m el-
ements has an element (say, &\) containing both a and c. Suppose this situation
does indeed take place, and consider such a collection {o\,..., Ok)- If b does not
belong to any <j;, then simply replace c by b in o\, arriving at a contradiction with
our assumption. We thus may assume that b belongs, say, to cr2:

<*\ = (««, <-" <uis <a <c < uis+3 < - - -)

cr2 = (uh < • • • < ujt < b < ujt+2 < - . . ) .

Then the increasing subsequences a[ and a'2 defined by

o[ = (uh < • • • <uis <a <b < uit+2 < • • •)

o'2 = {uh < <ujt <c < uis+3 < • • •)

will jointly cover the same elements of u as o\ and a2 do. The collection {o[, o'^o^,
..., ak} will cover m elements, while not containing a subsequence to which both
a and c belong. This contradicts our assumption, and the proof follows. •

We next show that the RSK insertion algorithm can be viewed as a sequence of
Knuth transformations.
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A 1.1 Knuth Equivalence and Greene's Theorem 417

Al.1.8 Lemma. Any permutation is Knuth-equivalent to the reading word of its
insertion tableau.

Proof. Recall from Section 7.11 that P <- k denotes the result of inserting k
into P. To prove the lemma, it suffices to show that, for any (straight-shape) SYT P
and any positive integer k, we have

reading(P) • k - reading(F <- k), (A1.126)

where • stands for concatenation. Because of the row-by-row nature of the RSK
insertion algorithm, it is enough to check (A 1.126) for a single-row tableau. This
is a straightforward verification. •

Al.1.9 Corollary. Let P be the insertion tableau for w. Then the permutations
w and reading(P) have the same values of parameters Ik and Dk, for all k.

Proof Directly follows from Lemmas A1.1.7 and Al.1.8. •

Al.1.10 Lemma. Let w be the reading word of a straight-shape SYT T. Then
T is the insertion tableau for w.

Proof. In the special case of a tableau word, the RSK insertion process is very
simple: increasing segments of the word are consecutively placed atop each other,
eventually forming the original tableau. •

Proof of Theorem ALL 1. In view of Corollary Al.1.9 and Lemma Al.1.10, we
may assume that w is a reading word of a straight-shape SYT T. To illustrate, let

T =
(A1.127)

then w = 592671348. Note that each row of T becomes an increasing subsequence
in w = reading(r). Thus, for any k,

h(w)>ki + . . .+A* . (A1.128)

Furthermore, the entries of each column of T form a decreasing subsequence in w.
Therefore, for any /,

Di(w)>\\ + ...+A.J . (A1.129)

1

2

5

3

6

9

4

7

8
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418 Chapter 7: Appendix 1

Let us now consider a box lying at the border of the shape X (such as the boxes
containing the entries 5, 9, 6, 7,4, 8 in the example (A1.127)). Assume that this
box is located in row k and column /. Then

(A.1 + • • • + h) + (A.; + • • • + A.{) = n + kl . (A1.130)

Combining (A1.128), (A1.129), and (A1.130), we obtain

Ik(w) + Dt(w) >n+kl .

On the other hand, an increasing and a decreasing subsequences may have at most
one element in common. Hence

Ik(w) + Di(w) <n + kl

for any k and /. Comparing this with the previous inequality, we conclude that
Ik(w) + Dt(w) = n + kl, and moreover both (A1.128) and (A1.129) are actually
equalities for the chosen values of k and /. Since every row and every column of X
contain at least one box that lies on the border, the identities (Al. 123) hold for any
fcand/. •

Al.1.11 Corollary. The shape sh(w) is invariant under Knuth transformations.

Proof. In view of Theorem A 1.1.1, the shape sh(if) is uniquely determined by
the values I\(w), h(w),..., so the claim follows by Lemma Al.1.7. •

We will now show that a much stronger result holds.

Al.1.12 Corollary. The insertion tableau P of a permutation w is invariant
under Knuth transformations ofw.

Proof For k = 1 , . . . , « , let w{k) denote the permutation in <&k formed by the
entries 1 , . . . , k of w. (For example, if w = 236145 then iy(4) = 2314.) Let

RSK RSK

us write w —> (P, Q) and w^) —> (A*)» 2(*))- Then P(k) is nothing but the
tableau formed by the k smallest entries of P, since the larger entries do not
interfere with the part of the insertion process that involves smaller entries. Now
the crucial observation is the following: any Knuth transformation of w either does
not change w^) or else transforms the latter into a Knuth-equivalent permutation.
By Corollary Al.1.11, this does not affect the shape sh(w;(̂ )) = sh(P(^)). Since the
tableau P can be viewed as a sequence of shapes

0 c sh(Pa)) c sh(P(2)) c • • • c sh(P(n)) = sh(P),
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A1.2 Jeu de Taquin 419

and since all these shapes are unchanged by Knuth transformations, the proof
follows. D

Proof of Theorems ALIA and Al. 1.6. It follows from Lemma A 1.1.8 and Corol-
lary A1.1.12 that two permutations are Knuth equivalent if and only if they have the
same insertion tableau (whose reading word also belongs to the same equivalence
class). Finally, two distinct reading words may not be Knuth-equivalent, since by
Lemma A1.1.10 they have different insertion tableaux. •

A1.2 Jeu de Taquin

The constructions of the previous section are intimately related to the remarkable
jeu de taquin equivalence relation among skew tableaux. In this section, we es-
tablish the fundamental properties of this equivalence, which will then be used in
Section A 1.3 to prove the main result - the Littlewood-Richardson rule.

Jeu de taquin, or the "teasing game," is a particular set of rules for transforming
skew tableaux by viewing their entries as separate pieces that can be moved around
on the "checkerboard" of the coordinate plane. These rules are designed so that
the property of being a tableau was preserved. The concept of jeu de taquin is
intuitively quite simple, and is probably best understood by looking at concrete
examples. Still, we begin with a formal description.

Al.2.1 Definition. Let k/fi be a skew shape. (In Figure Al-10, X//JL is composed
of the boxes made of solid lines segments.) Consider the boxes b that can be added
to A//x, so that b shares at least one edge with A//x, and {b} U k/[i is a valid skew
shape. (In Figure Al-10, these boxes are made of dotted line segments.)

i •

! • !

o

O

i
•

o

o |
::i:

o |

Figure Al-10. Adding boxes to a skew shape.
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420 Chapter 7: Appendix 1

Two types of such boxes may occur, depending on the side of X//JL that they are
on. We mark by a bullet • the dashed boxes that share a lower or a right edge
with A//z, while those that share an upper or a left edge are marked by a circle o.

Suppose we are given an SYT T of shape A//z. To each box b marked • or o,
we will associate a transformation jdt^(T) of T called a jeu de taquin slide of T
into b. The definitions of the slides into inner boxes marked • and the outer boxes
marked o are completely analogous, so we will only discuss the first of these
cases, and then provide examples illustrating both of them. Thus let us consider a
box bo marked • . There is at least one box b\ in A.//X that is adjacent to bo (i.e.,
such that bo and b\ share an edge); if there are two such boxes, then let b\ be the
one with a smaller entry. Move the entry occupying b\ into b0. Then look at the
tableau entries to the right and below b\, and repeat the same procedure: if there
is a unique such entry, then move it into b\; if there are two to choose from, then
move the smaller one. This will vacate some box bi, and the process will continue
until it reaches the outer boundary. The resulting tableau (indeed, it will be an
SYT) is jdtfc(r), by definition.

For example, take

T =

a

2

4

1

5

8

3

6

11

7

9

b

10

(A1.131)

(the boxes a and b are not included in T). Then

JdtaCT) = 1

2

4

3

5

8

6

9

11

7 10 and

11

10

(A1.132)

Al.2.2 Definition. Tableaux T and T are called jeu de taquin equivalent (de-
noted T ~ T') if one can be obtained from another by a sequence of jeu de taquin
slides.

jdt
Note that ~ is a symmetric (and obviously transitive) relation, since any jeu de

taquin slide can be reversed by performing a slide into the box that was vacated at
the previous stage. For instance, in the example (A1.131) we have jdtc(jdta(r)) =
T, where c is the box occupied by 9 in T.

Al.2.3 Lemma. Each jeu de taquin slide converts the reading word of a tableau
into a Knuth-equivalent one: reading(jdt^(r)) ~ reading(r).
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A1.2 Jeu de Taquin 421

Proof. Let us verify that at every step of the sliding process, the reading word is
transformed into a Knuth-equivalent one. The horizontal slides do not change the
reading word at all. A vertical slide of the form

a

i

b

j k

c

I
d

m

e

replaces the segment

of the reading word by the segment

a

i

b

j

k c

I
d

m

e

/ • • • jkl • • • ma " -be" -d

-ma - -bkc-.d.

To show that these two segments are Knuth-equivalent, we may use Theorem A1.1.4.
Indeed, one easily checks that both segments have insertion tableau

a

i

b

j

k

I
c

m

d

and the lemma follows. •

The following result is sometimes called "the fundamental theorem of jeu de
taquin."

Al.2.4 Theorem. Each jeu de taquin equivalence class contains exactly one
straight-shape tableau.

Proof. If T is a tableau of a skew shape A//x, then performing consecutive slides
into all boxes of /x (in any allowable order) will result in a straight-shape tableau,
which is jeu de taquin equivalent to T. The uniqueness of such representative in
a given equivalence class follows directly from Lemma A 1.2.3 and the second
statement of Theorem A1.1.4. •

We will use the notation jdt(7) to denote the unique straight-shape tableau
in the jeu de taquin equivalence class of a given (skew) tableau T. Note that
Lemma Al.2.3 implies that

reading(jdt(r)) ~ reading(J). (A1.133)

Al.2.5 Corollary. Two standard tableaux are jeu de taquin equivalent if and
only if their reading words are Knuth-equivalent.
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422 Chapter 7: Appendix 1

Proof. Let T and V be standard tableaux. Then

jdt(r)=jdt(n (by Theorem Al.2.4)

reading(jdt(r)) ~ reading(jdt(:T)) (by Theorem Al. 1.4)

reading(r) ~ reading(r') (by(A1.133)). D

A 1.2.6 Corollary. For a permutation w = w\ • • -wn € &n, let Tw denote the
skew tableau

W2

Then]dt(Tw) is the insertion tableau for w.

XT

Proof By Lemma A 1.2.3, reading^d^T^)) ~ reading(ru;) = w, and the corol-
lary follows from Theorem A1.1.4. •

Similarly to the RSK algorithm, jeu de taquin can be described in terms of
growth diagrams (cf. Section 7.13). This is best explained by an example. The
tableau

(A1.134)T =

I2
3

1

4

can be viewed as a sequence of shapes:

1
_l

1

2

1

2

3

1

2

3

1

4

(disregard the entries, which are only shown to make the rules transparent), or as
a sequence of partitions:

21 —31 —311 —321 —331 . (A1.135)
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A1.2 Jeu de Taquin

Consider the sequence of jeu de taquin slides

423

2

3

1

4

2

1

3

4

2

1

3

4 ^ rr3 4

Replace each of these tableaux by the corresponding sequence of partitions, place
these sequences on top of each other and rotate the resulting table to obtain the
growth diagram shown in Figure A1-11.

Its upper left row (or perhaps it should be called column) corresponds to the orig-
inal tableau T (cf. (A1.134)-(A1.135)). The lower right row is the tableau jdt(J)
obtained as a result of this sequence of slides, and the lower left row

0 — 1 — 1 1 —21

R jdt(D

Figure A1 -11. Growth diagram for jeu de taquin.
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424 Chapter 7: Appendix 1

encodes the tableau

R =

which records the order in which the slides were performed: we first made a slide
into the box occupied by 3, then into the box occupied by 2, and finally, into the
one occupied by 1.

Note that by virtue of Theorem Al.2.4, the resulting tableau jduT) does not
depend on the order in which the slides were performed, i.e., it does not depend
on the tableau R.

Growth diagrams for sequences of jeu de taquin slides can be described by very
simple local rules. First of all, it is easy to verify that whenever shape X covers /x
in a growth diagram, A. can be obtained by from /x by adding a single box. Another
property of jeu de taquin growth is stated below.

Al.2.7 Proposition. Let

be a fragment of a jeu de taquin growth diagram. (Thus both \x and X cover v in
the Young lattice, while p covers both /x and X.) Then X is uniquely determined
from v, /x, and p, according to the following rule:

• if /x is the only shape of its size that contains v and is contained

( A

• otherwise there is a unique such shape different from /JL> and this

is X.

In other words, /x ^ X if and only if the interval [v, p] in the Young lattice is
isomorphic to a product of two 2-element chains.

Proof Suppose we are given a tableau T of shape A//x and a box b such that
jdt^(r) is well-defined. Encode T as a sequence of shapes, and place these shapes
on top of each other - and all together on top of the shape /x \ {b}, as shown in
Figure Al-12. We have to show that repeatedly applying the local rules (A1.136)
will produce a tableau (encoded by the lower-right row in Figure Al-12) which is
exactly }dtb(T). Verification of this reformulation of the definition of jeu de taquin
is straightforward, and is left to the reader. •
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A 1.2 Jeu de Taquin 425

Figure Al-12. Jeu de taquin slide via local transformations.

The growth-diagram interpretation exhibits an important (and not obvious from
the original description) symmetry of jeu de taquin, which will play a role in the
next section. Notice that the rule (Al. 136) is symmetric in /x and A; in other words,
X is computed from v, /x, and p in exactly the same way as /i is computed from v,
k, and p. As a consequence, the "recording" tableau R in Figure Al-11 is equal to
jdt(S), where S is the skew tableau encoded by the upper-right side of the growth
diagram (cf. also Figure A1-14).

The Schtitzenberger Involution

This part of the appendix describes an involution on the set of S YTs of a given shape
that is associated with the name of M. P. Schutzenberger, and plays an important
role in combinatorics, representation theory, and algebraic geometry. The material
of this section is not used in the forthcoming proof of the Littlewood-Richardson
rule.

Al.2.8 Definition. Let Q be an SYT of shape A, and let b be its corner box
occupied by entry 1. Define

where Q is the skew SYT of shape A/(I) obtained from Q by removing the box b
and subsequently decreasing all the remaining entries by 1. The evacuation tableau
evac(g) is by definition the SYT (of shape k) that is encoded by the sequence of
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0 , , Q. (A1.137)

The map Q \-> evac(<2) is called the Schutzenberger involution. This terminology
is justified by the following fact.

Al.2.9 Proposition. The map Q h* evac(<2) is an involution.

Before proving this proposition, let us illustrate Definition A1.2.8 by an example.
Take

Q =

Repeatedly applying the operator A, we obtain the tableaux

1

3

5

2

6

4

7 (A1.138)

1

2

4

3

5

6 1

3

2

4

5 1

2

3 4 1 2 3 1 2

(A1.139)

The sequence of their shapes (in the reverse order; cf. (A1.137)) encodes the tableau

evac(<2) = 1

4

6

2

5

3

7 (A 1.140)-

The reader is encouraged to verify that applying the same procedure to the tableau
(A1.140) recovers (A1.138): evac(evac(<2)) = Q.

Proof. The involution property becomes less mysterious if one reformulates Def-
inition Al.2.8 in terms of growth diagrams. This can be done as follows. The
tableaux in (A 1.137) can be viewed as sequences of shapes. Let us combine these
sequences into a single triangular growth diagram, as shown in Figure A1-13. The
rows of this diagram that go in the northeast direction correspond to the tableaux
in (A1.137). The whole growth diagram can be reconstructed from its left side
(which encodes the original tableau Q) using the local rule (A1.136), together
with the fact that all the tableaux in the bottom row are obviously empty. Then
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A 1.2 Jeu de Taquin All

Figure Al-13. The Schutzenberger involution.

the right side of the diagram is, by definition, the encoding of evac(<2). Since the
rule (A1.136) is symmetric under interchanging X and /x, applying the same pro-
cedure to the tableau evac(Q) would result in the mirror image of the same growth
diagram, with its left and right sides interchanged. This proves that Q H* evac(Q)
is an involution. •

The following theorem provides a direct interpretation for the Schutzenberger
involution in terms of the RSK algorithm; it also suggests another proof of Propo-
sition A 1.2.9.

For a permutation w = w\W2---wn e <5n, let w$ e <5n be given by

Equivalently, w^ = wowwo, where WQ denotes the permutation n n — l • • • 2 1.
For example, if w = 3547126, then w* = 2671435.

RS1C

Al.2.10 Theorem. Ifw ^ (P, Q), then w* (evac(P), evac(Q)).
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To illustrate, let w = 3547126. Then

w
RSK

RSK

1

3

5

1

2

6

2

4

3

4

6

7

5

7

G-

- evac (P ) , Q* —

1

3

5

1

4

6

2

6

4

7

2

5

3

7
= evac(G)

Proof. The nature of RSK insertion, Knuth equivalence, and jeu de taquin is
such that these operations commute with removing the entries that are less than (or
larger than) an arbitrary threshold value a. For instance, if we remove all entries
of w that are larger than a (thus obtaining a permutation w<a e &a), then the
insertion tableau P<a of w<a can be obtained from P by simply removing the
boxes containing the entries a + 1 , . . . , n.

Less trivially, Corollary A 1.2.6 implies that the insertion tableau for a permu-
tation w>a is equal to jdt(P>a), where w>a and P>a are obtained by removing the
smallest a entries from w and P, respectively, and subtracting a from the remaining
entries.

Let w$ ^ (P*, G*). By Theorem Al.1.1, the shape sh(w*) of P* can be
described in terms of the parameters hiufi) that count how many elements can be
covered by a union oik increasing subsequences of uA The argument used above
shows that the shape of a partial tableau P<y has a similar description in terms
of increasing subsequences of w^ with entries not exceeding j . Note that these
subsequences correspond to increasing subsequences of w with entries > n — j .
Therefore

sh(P^) = sh(w>n-j) = sh(jdt(/>>„_,)) = sh(evac(P)<,),

so P$ = evac(P).
By Theorem 7.13.1, the recording tableau for w coincides with the insertion

tableau for w~l. We already proved that as we pass from w to w^, the insertion
tableau is replaced by its image under Schiitzenberger involution. Since (w;"1)^ =
(w^)~l, the same happens to the recording tableau. D

The following corollary of Theorem A 1.2.10 is a reformulation of Theorem
7.23.16.

RSK

Al.2.11 Corollary. Let w = wx • • • wn —> (P, Q). Then

= wn

RSK
*,evac(G)').
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A1.3 The Littlewood-Richardson Rule 429

Proof. While replacing w by wwo, we interchange increasing and decreasing
subsequences, and each tableau P<j gets transposed. Hence the insertion tableau
for wWQ is P*. As to the recording tableau, we have

wowwo —• (evac(P), evac(g)) (by Theorem Al.2.10)

= » wow-lwo - ^ (evac(G), evac(P)) (by Theorem 7.13.1)

= » WQW~1 —> (evac(Q)f, • • •) (using what we just proved)
RSK

> > (• • • , evac(<2/) (by Theorem 7.13.1),

as desired. •

A1.3 The Littlewood-Richardson Rule

The Littlewood-Richardson coefficients c^v were defined in Section 7.15 (see
(7.64)) as the structure constants for the multiplication in the basis of Schur
functions:

or as coefficients in the expansion of a skew Schur function in this basis:

E<^v. (A1.142)

The celebrated Littlewood-Richardson rule is a combinatorial description of the
coefficients c^v. In this section, we prove the rule in two different versions. Three
more variations are then stated without proof.

A 1.3.1 Theorem (the Littlewood-Richardson rule: jeu de taquin version). Fix
an SYT P of shape v. The Littlewood-Richardson coefficient c^v is equal to the
number of SYT of shape k/fi that are jeu de taquin equivalent to P.

We will first illustrate Theorem A 1.3.1 by an example, and then prove it.

Al.3.2 Example. Let X = (4, 4, 2, 1), /x = (2, 1), and v = (4, 3, 1). Consider
the tableau

P =
(A1.143)

1

5

8

2

6

3

7

4

of shape v. (According to Theorem A 1.3.1, an SYT P of shape v can be chosen
arbitrarily. This special choice of P will later play a role in another version of the
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Littlewood-Richardson rule.) There are exactly two SYTs T of shape X//JL such
that jdt(J) = P, namely,

1

5

2

8

3

6

4

7 and

1

8

2

5

3

6

4

7
(A1.144)

Hence c* v = 2.

Proof of Theorem Al.3.1. We may assume that |//,| + |v| = |A|, since otherwise
the theorem simply tells that 0 = 0. Let us then count the number of jeu de taquin
growths of the form shown in Figure A1-14. (The shapes X, /x, and v, and the
tableau P are fixed, while the tableaux R, S, and T are not.)

This number can be found in two different ways, which correspond to recon-
structing the growth diagram from its left and right boundary, respectively, using
the local rule (A1.136). First, we could count the SYTs T of shape X/fi such that
p = jdt(r). For each such T, there are / ^ possible choices for R. On the other
hand, in order to define the values at the right boundary, we only need to pick an

P=)dt(T)
R = jdt(S)

Figure A1-14. Counting jeu de taquin growths.
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A1.3 The Littlewood-Richardson Rule 431

SYT S of shape X/v such that jdt(S) has shape /x. Comparing the two counts, we
obtain

#{SYT T of shape A//x : jdt(7) = P] • f*

= #{SYT S of shape X/v : sh(jdt(5)) = /x}. (A1.145)

This identity implies that the number

C*v = #{SYTs T of shape A//x : jdt(T) = P] (A1.146)

only depends on the shape v of P, but not on P itself. (As an aside, notice that the
right-hand side of (A1.145) equals C ^ • / " , implying that C*v = C^.)

To prove the theorem, we will need the expansion of a skew Schur function in
terms of fundamental quasisymmetric functions that was given in Theorem 7.19.7:

(A1.147)

where the sum is over all S YTs T of shape A//x, and co(!T) denotes the composition
corresponding to the descent set D(T) of T.

One easily checks that a jeu de taquin slide never changes the relative position
of k and k + 1, implying that the descent set of a skew tableau is invariant under
jeu de taquin slides. Therefore the expansion (A1.147) can be rewritten as

where the sum is over all SYTs P of n = |A//x| boxes. In view of (A1.146), this
can be further transformed into

vhn

where the internal sum is over all SYTs P of shape v. Using (A 1.147) for the
shape v, we obtain

v\~n

Comparing this with (A1.142), we conclude that c^v = C*v, which completes the
proof of Theorem A1.3.1. •
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432 Chapter 7: Appendix 1

The Littlewood-Richardson coefficients c* v are among the most important fam-
ilies of combinatorial numbers. They appear in the following contexts, among
others:

• as coefficients in decompositions of tensor products of irreducible GLn-modules;
• as coefficients in decompositions of skew Specht modules into irreducibles;
• as coefficients in decompositions of <&n -representations induced from Young

subgroups;
• as intersection numbers in the Schubert calculus on a Grassmannian.

Note that Theorem Al .3.1 readily implies that the Littlewood-Richardson coef-
ficients c* v are nonnegative integers, a property that is hard to deduce directly from
the definitions (A1.141)-(A1.142). Although nonnegativity immediately follows
from each of the four interpretations of the c^v listed in the previous paragraph,
none of these interpretations provides by itself a combinatorial rule that can be
used to compute the c^v. (Note that the third interpretation corresponds to Corol-
lary 7.18.6. Moreover, the first interpretation is discussed in Appendix 2.)

There are many other ways to describe the Littlewood-Richardson coefficients
as enumerative combinatorial constants. Once we know that c^v is the cardinality of
a certain set, then any bijection between this set and another family of combinatorial
objects leads to a new description of c^v. Perhaps the most well-known of such
reformulations is the one given in Theorem Al.3.3 below.

Recall from Section 7.10 (see Proposition 7.10.3(d)) that a lattice permutation
(or Yamanouchi word, or ballot sequence) is a sequence a\a2 • • • an such that in
any initial factor a\a2 • • • aj, the number of /'s is at least as great as the number
of / + l's (for all /). We will also need the notion of a reverse reading word of a
tableau, which is simply its reading word (cf. Definition A 1.1.5) read backwards.

Al.3.3 Theorem (the Littlewood-Richardson rule). The Littlewood-Richardson
coefficient c^v is equal to the number of semistandard Young tableaux of shape k/fj,
and type v whose reverse reading word is a lattice permutation.

Al.3.4 Example. Semistandard Young tableaux with the lattice permutation
property described in Theorem Al.3.3 are sometimes called Littlewood-Richardson
tableaux, or Littlewood-Richardson fillings of the shape k/fi. For the data in Ex-
ample Al.3.2, there are two such tableaux (thus ck = 2):

1

2

1

3

1

2

1

2
and

1

3

1

2

1

2

1

2 (A1.148)
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A13 The Littlewood-Richardson Rule 433

The corresponding reverse reading words 11221312 and 11221213 are indeed
lattice permutations (of type v). Note that the Littlewood-Richardson tableaux
(A1.148) can be obtained from (A1.144) by replacing the entries 1, 2, 3, 4 by 1,
the entries 5, 6, 7 by 2, and the entry 8 by 3.

We are going to deduce Theorem Al .3.3 from Theorem Al .3.1. This will require
some preliminary work.

Through the end of this section, a partition v = (v i , . . . , Vk) is assumed fixed,
and we use the notation

No = 0 , N\ = v\, N2 = v\ + v2 , Af3 = v\ + v2 + v3,... .

Let Pv denote the particular SYT of shape v obtained by placing the entries
1, 2 , . . . , n in the boxes of v row by row, beginning with the top row. For in-
stance, if v = (4, 3, 1), then Pv is given by (A1.143). In general, the i-th row of Pv

will be

(A1.149)

for/ = 1 , . . . , * .
Let Cv denote the set of all Littlewood-Richardson tableaux of type v and any

shape whatsoever. The following construction will be needed in order to relate the
concept of a Littlewood-Richardson tableau to jeu de taquin.

Al.3.5 Definition. Take any SSYT L of type v (in particular, L could be a
Littlewood-Richardson tableau in Cv). For any /, the entries of L that are equal
to i form a horizontal strip. Replace the Ts in L by 1 , . . . , N\, the 2's by N\ +
1 , . . . , N2, etc., so that the numbers increase left-to-right within each of these
horizontal strips. Let us denote the resulting SYT by st(L) and call it the standard-
ization of L. For example, applying this procedure to the Littlewood-Richardson
tableaux (A 1.148) would give the tableaux in (A 1.144).

Al.3.6 Lemma. A skew SYT T is a standardization of some Littlewood-
Richardson tableau of type v (i.e., T e st(£v)j if and only if the following condition
holds, for i = 1 , . . . , k — 1:

the partial tableaux formed by the entries N(-\ + 1 , . . . , N(+\
( A l . 1 D\J)

ofT and Pv, respectively, are jeu de taquin equivalent.

Proof First observe that an SYT L is a standardization of some SSYT of type v
(not necessarily a Littlewood-Richardson one) if and only if each of its partial
tableaux formed by the entries iV/_i + 1 , . . . , Nt is jeu de taquin equivalent to the
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434 Chapter 7: Appendix 1

tableau (A1.149), i.e., to the *th row of Pv. This condition is obviously satisfied
whenever (A1.150) holds. A Littlewood-Richardson tableau L should also satisfy
a lattice permutation condition, which is a certain restriction on the partial tableaux
formed by the entries of L which are equal to i or i + 1, for / = 1 , . . . , k — 1. One
easily checks that the standardization map translates this condition into (A1.150).

•

A 1.3.7 Lemma. The set st(£v) of standardizations of Littlewood-Richardson
tableaux of type v coincides with the jeu de taquin equivalence class of Pv.

Proof The condition (A1.150) is clearly invariant under jeu de taquin slides;
hence the set st(£v) is a union of jeu de taquin equivalence classes. By Theorem
A 1.2.4, it is then enough to show that Pv is the unique straight-shape tableau in
st(£v).

Consider the SSYT L of type v and shape v obtained by placing /'s in row i
of v, for every /. It is straightforward to check that L is the only straight-shape
Littlewood-Richardson tableau of type v. Since st(L) = Pv, the lemma follows.

•

Proof of Theorem A 1.3.3. We need to show that c*v equals the number of
Littlewood-Richardson tableaux of shape X/fi and type v. This is done as follows:

c£v = #{SYT T : sh(r) = X/fi, T ~ Pv] (by Theorem Al.3.1)

= #{T e st(£v) : sh(T) = A//x} (by Lemma Al.3.7)

= #{L e Cv : sh(L) = X/fi] (since st is injective on Cv).

•

Variations of the Littlewood-Richardson Rule

Note that a Littlewood-Richardson coefficient c* v can be defined as a scalar prod-
uct: c*v = (sx/fi, sv). The following two variations of the Littlewood-Richardson
rule, stated without proof, provide combinatorial descriptions of more general in-
tertwining numbers {so, sa), for arbitrary skew shapes 0 and a. (Recall from the
discussion after equation (7.64) that (se, sa) is actually a special case of (s^/fi, s^).
However, regarding (SQ, sa) in this way obscures the symmetry between 6 and a
that appears in Theorems Al.3.8 and Al.3.9 below.)

We will say that a box a is located (weakly) northwest of box b if a occupies
a row above b, or the same row as b, and also a column to the left of b, or the
same column as b. In a similar fashion, we define what it means for one box to be
(weakly) southwest of another.
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A 1.3 The Littlewood-Richardson Rule 435

Al.3.8 Theorem. For a pair of skew shapes 0 and a, the intertwining num-
ber {SQ, sa) is equal to the number ofbijective maps f : 0 ->• o satisfying the
following conditions:

(i) if box a is located (weakly) northwest of box b, then f(a) is (weakly) southwest
off(b);

(ii) if f{a) is located (weakly) northwest of f(b), then a is (weakly) southwest
ofb.

(Note that condition (ii) is the same as (i) imposed on the inverse map f~l.)
To illustrate, take the shapes 0 = (4, 3, 1) and a = (4,4, 2, l)/(2,1) (cf.

Examples Al.3.2 and Al.3.4). Then there are two bijections 6 -+ a satisfying
conditions (i)-(ii) of Theorem Al.3.8, which are described by

1

5

8

2

6

3

7

4 _ ,

5

1

6

2

8

3

7

4

and

1

5

8

2

6

3

7

4 _ ^

5

1

8

2

6

3

7

4

(here each box on the left-hand side is mapped to the box with the same label on
the right-hand side). Thus in this case (SQ, SG) = 2 .

Al.3.9 Theorem. For a pair of skew shapes 0 and cr, the intertwining num-
ber (se, sa) is equal to the number of pairs (P, Q) of standard Young tableaux of
shapes 0 and a, respectively, such that the reverse reading words of P and Q are
permutations inverse to each other.

(In this theorem, reverse reading words could be replaced by ordinary reading
words.)

For 0 = (4, 3, 1) and o = (4,4, 2, l)/(2, 1), there are two pairs of tableaux
(P, Q) satisfying the conditions of Theorem Al.3.9:

P = 1

3

6

2

4

5

8

7

l

5

2

8

3

6

4

7
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and

P - 1

3

8

2

4

Chapter 7: Appendix 1

5

6
7 , Q =

1

8

2

5

3

6

4

7

with reverse reading words w = 75218436, w~l = 43762815 and w = 75216438,
w~l = 43762518, respectively.

The last version of the Littlewood-Richardson rule that we are going to discuss
exhibits certain symmetries of the coefficients c*v that were hidden in the previous
versions. Let A, \x, and v be partitions with at most r parts satisfying | A. | = |/x| + |v|.
Define the vectors / = ( / i , . . . , /r_i),m = (mi , . . . , mr_i),and« = (n\,..., nr-\)
by

H — ^r—i A.r—i+\ »

(A1.151)

(It is possible to show that the Littlewood-Richardson coefficient c^v is in fact
equal to the dimension of the space of SLr -invariants in the tensor product of three
irreducible 5Lr-modules naturally associated to /, m, and n.)

The construction below is due to A. Berenstein and A. Zelevinsky, which ex-
plains our choice of terminology.

Al.3.10 Definition. Let / = (lu . . . , /r_i), m = (mu . . . , mr_i), and n =
( « ! , . . . , nr-\) be vectors with nonnegative integer components. A BZ pattern
of type (r, /, m, n) is a collection of integers (yijj) indexed by the set

{(/ , j , k ) e l ? : 0 < i J , k < r , i + j + k = r } \

and subject to certain linear equations and inequalities to be stated below. It is
convenient to view (yij,k) as a triangular array, as shown in Figure Al-15.

In order to form a BZ pattern, the integers yij,k should satisfy the following
restrictions. First, the sums of entries along every line of the array that goes in
one of the three distinguished directions (excluding the sides of the triangle) are
prescribed:

• the sums in the horizontal rows are equal to l\,..., lr-\, top down;
• the sums in the columns going northwest are equal to m i , . . . , mr_ i, left to right;
• the sums in the columns going southwest are equal to n \,..., nr_i, right to left.
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0 1 1

\ \ \

/ \
y

/
\/

\
//o\

/
\ /

/ o \

1 0 1

\ \ \

/ = (1, 2, 0), m = (1, 1, 0), n = (1, 2, 1)

Figure Al-15. BZ-patterns for r = 4, A = (4, 4, 2, 1), /x = (2, 1, 0, 0), v = (4, 3, 1, 0).

Second, in each of the 3r — 3 sums above, the partial sum of several first entries,
looking in the direction indicated by an arrow (see Figure Al-15), should be
nonnegative. Figure Al-15 shows the two BZ patterns for the data from Examples
A1.3.2andA1.3.4.

Al.3.11 Theorem. The Littlewood-Richardson coefficient c^v is equal to the
number of BZ patterns of type (r,l,m, n), where the vectors /, m, and n are defined

It is clear from this description that the Littlewood-Richardson coefficient in
question is invariant under cyclic permutations of/, m, and n. It is possible to show
that c^v is in fact symmetric as a function of /, m, and n, and is also invariant under
simultaneous rearrangement of the entries of each of the vectors /, m, and n in
reverse order.

ACKNOWLEDGMENTS. I am grateful to Curtis Greene and Andrei Zelevinsky for a
number of valuable suggestions and corrections.

Notes

Theorem Al.1.1 was proved by C. Greene [6], generalizing C. E. Schensted's
result [7.136]. Corollary Al. 1.2 can be extended to arbitrary finite posets, as shown
by C. Greene and D. J. Kleitman [7][8] (see also [2]).

Knuth equivalence and Theorems A 1.1.4 and Al. 1.6 are due to D. E. Knuth
[7.71], who studied this equivalence in a more general setting, with permutations
replaced by arbitrary words in the alphabet {1 , . . . ,«} . It is often useful to work in
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the plactic monoid [12], which is the quotient of the free monoid with generators
1 , . . . , n under the Knuth equivalence.

Jeu de taquin was invented by M. P. Schiitzenberger [17], as was the involution
that bears his name [7.140]. Theorem A 1.2.4 was proved by M. P. Schiitzenberger
[17] and G. Thomas [18][19], and Theorem Al.2.10 by M. P. Schutzenberger
[7.140]. The growth-diagram interpretation of jeu de taquin was suggested in [7.32].
These constructions can be generalized to arbitrary finite posets (cf. [16]), although
the analogue of Theorem A 1.2.4 does not generally hold.

The Littlewood-Richardson rule was discovered by D. E. Littlewood and A. R.
Richardson [7.89]. First complete proofs were given by M. P. Schutzenberger [17]
and G. Thomas [18][20]. An incomplete proof published by G. de B. Robinson
[7.131] and reproduced by D. E. Littlewood [7.88, Ch. 6.3, Thm. V] was made
precise by I. G. Macdonald [7.92, Ch. 1.9] [7.96, Ch. 1.9] The proof given here is
based on a combination of ideas taken from [17], [7.32], and [9].

Theorem A1.3.8 appeared in [3], and is a version of a result by A. Zelevinsky [22]
(cf. also D. E. White [21]); the idea goes back to G. D. James and M. H. Peel [10].
Theorem Al.3.9 is a result of S. V. Kerov [11] and A. M. Garsia and J. B. Remmel
[5]. Theorem Al.3.11 is due to A. D. Berenstein and A. Zelevinsky [1], who also
gave reformulations exhibiting other symmetries of the Littlewood-Richardson
coefficients.

Other versions of the Littlewood-Richardson rule, along with alternative proofs,
can be found in [3][7.35] [4, Ch. 5.2-5.3] [7.65, 2.8.13] [14] [15, Thm. 4.9.4],
among other sources. The history of the rule is presented in [13, pp. 3-7]. Generali-
zations and variations of the Littlewood-Richardson rule are numerous, and we
do not attempt at reviewing them here.
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Chapter 7: Appendix 2

The Characters of GL (n, C)

In this appendix we state without proof the fundamental connection between Schur
functions and the characters of the general linear group GL(w, C). By definition,
GL(rc, C) is the group of all invertible n x n matrices with complex entries (under
the operation of matrix multiplication). If V is an ^-dimensional complex vector
space, then after choosing an ordered basis for V we can identify GL(«, C) with the
group GL(V) of invertible linear transformations A : V -> V (under the operation
of composition of linear transformations).

A linear representation of GL(V) is a homomorphism (p : GL(V) -> GL(W),
where W is a complex vector space. From now on we assume that all represen-
tations arc finite-dimensional, i.e., dim W < oo. We call dim W the dimension of
the representation cp, denoted dim (p. The representation cp is & polynomial (respec-
tively, rational) representation if, after choosing ordered bases for V and W, the
entries of q>(A) are polynomials (respectively, rational functions) in the entries of
A e GL(n, C). It is clear that the notion of polynomial or rational representation is
independent of the choice of ordered bases of V and W, since linear combinations
of polynomials (respectively, rational functions) remain polynomials (respectively,
rational functions). In general we do not distinguish between representations of
GL(V) and the obvious analogous notion of a representation of GL(«, C). We
say that the representation (p is homogeneous of degree m if (piotA) = am(p(A)
for all a G C* = C — {0}. If (p is a polynomial (or rational) representation, then
this condition is equivalent to saying that each entry of cp(A) is a homogeneous
polynomial (or rational function) of degree m.

NOTE. Often the dimension of a representation cp is called its degree, so do not
be confused by our different use of the term "degree."

A2.1 Example. Let n = 2, and define <p : GL(2, C) -> GL(3, C) by

(A2.152)A-
a2 lab b2'

ac ad + be bd

c2 led d2

440
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One can directly check that <p is a group homomorphism. Since the entries of the
matrix on the right-hand side of (A2.152) are homogeneous polynomials of degree
two in a, b, c, d, it follows that cp is a homogeneous polynomial representation of
dimension three and degree two.

A2.2 Example. Here are some simple examples of representations illustrating
the terms defined above. In all these examples we take A e GL(n, C).

• (p(A) = 1 G C (the trivial representation). This is a homogeneous polynomial
representation of dimension one and degree zero.

• (p(A) = A (the defining representation). This is a homogeneous polynomial
representation of dimension n and degree one.

• cp(A) = (det A)m, where m e Z. If m > 0, then this is a homogeneous polyno-
mial representation of dimension one and degree mn. If m < 0 then (p is rational,
but not polynomial. The degree remains mn.

• (p(A) = |det A\^. Not a rational representation. It has dimension one and is
not homogeneous. (The equation cp(aA) = an^cp(A) only holds when a is a
positive real number.)

• (p(A) = A"1. Not a representation.
• cp(A) — (A~l)\ where l denotes transpose. A homogeneous rational (but not

polynomial) representation of dimension n and degree — 1. To see this, one needs
the formula for the entries of the inverse of a matrix mentioned in the proof of
Theorem 4.7.2.

• (p(A) = (det A)mA, where m e N. A homogeneous polynomial representation
of dimension n and degree mn + 1.

• cp{A) — A, where " denotes complex conjugation. A nonrational representation
of dimension n, and not homogeneous.

• (p(A) = [cr(a(j)], where a is a field automorphism of C which is not the identity
or complex conjugation (so a is necessarily discontinuous). This representation
(of dimension n) is not only nonrational, but is not continuous.

• <p(A) = l lQg^etAl A representation of dimension two that isn't homogeneous

or rational, though it is continuous.

Note that many of the pathological examples given above disappear when we
consider SL(n, C) := {A e GL(n, C) : det A = 1} instead of GL(n, C). We will
have more to say about SL(«, C) later.

Consider the representation cp of Example A2.1. One can check that if the matrix

A =

has eigenvalues 0\ and 62, then <p(A) has eigenvalues #{% 6162, and Q\. This com-
putation illustrates the following fundamental result.
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A2.3 Proposition. If cp is a homogeneous rational representation ofGL(V) of
dimension N and degree m, then there exists a multiset Ad^ofN Laurent mono-
mials xa = x"1 .. .x%n of degree m (i.e., ^2 at = m) with the following property.
IfAG GL(V) has eigenvalues 0\,..., 0n, then the eigenvalues ofcp(A) are given
by 0a, for all xa e M.^. Moreover, if cp is a polynomial representation, then the
Laurent monomials xa e Ai^ are actual monomials (no negative exponents).

If cp is a rational representation of GL(n, C), then define its character char (p to
be the Laurent polynomial

= (char<p)(jc)= ] T xa. (A2.153)

Thus if A € GL(n, C) has eigenvalues 0u...,0n, then (char<p)(0) = tr<p(A).
Note that an immediate consequence of this definition is the fact that if cp =
^ © ^ 2 0 " ' 0 ^ (direct sum of rational representations), then

char<p = char^i + char<p2 H h char^m.

We are now ready to state the main theorem on rational and polynomial represen-
tations of GL(n, C).

A2.4 Theorem. (I) Every rational representation <p : GL( V) -> GL(W) is com-
pletely reducible, i.e., every QAJyy invariant sub space ofW has aGL(V)-invariant
complement. Hence cp is a direct sum of irreducible representations.
(II) Let <p : GL(V) -+ GL(W) and cp': GL(V) -^ GUW) be rational representa-
tions ofGL(V). Then <p and <p' are equivalent (i.e., there is a bijective linear trans-
formation a : W -> W such that a(cp(A)(v)) = cpf(A)(a(v)) for all A e GL(V)
and v € W) if and only if char (p = char^/.
(III) Irreducible rational representations ip of GL(V) are homogeneous, and
char^ is a symmetric (homogeneous) Laurent polynomial in x\,..., xn. Hence
char \js € A™ if}// is a homogeneous polynomial representation of degree m.
(IV) (The main result.) The irreducible polynomial representations cpx o/GL(V)
can be indexed by partitions k of length at most n so that

char</ =sx(xl,...,xn).

(V) Every irreducible rational representation cp ofGL(V) is of the form (p(A) =
(det A)m(p\A) for some m e Z and some irreducible polynomial representation
cpf of Gh(V). The corresponding characters are hence related by

It follows from the above theorem that if cp is a polynomial representation of

Cambridge Books Online © Cambridge University Press, 2010Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511609589.006
Downloaded from https://www.cambridge.org/core. Access paid by the UC Berkeley Library, on 26 Jun 2019 at 21:59:31, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511609589.006
https://www.cambridge.org/core


Chapter 7: Appendix 2 443

GL( V), then the multiplicity of the irreducible character <px in <p is given by

{<p,<px) = (char<p,^).

Let us consider some simple examples.

• If cp(A) = 1 (the trivial representation), then char<p = 50 = 1. The representa-
tion is irreducible. (The main theorem is hardly needed for irreducibility - any
linear representation of dimension one of any group is irreducible.)

• If cp(A) = A (the defining representation), then char (p — x\ + • • • + xn = s\
(understood to be in the variables x\,..., xn). The representation is irreducible.

• If <p(A) = (det A)m for m e Z, then char <p = (x{ • • • xn)
m. If m > 0, then

char<p = sx, where A = (mn). The representation is irreducible for any m.
• If cp(A) = (A~lY, then charcp = (JCI • • • xn)~

l = (x\ • • • xn)~
xs®. The represen-

tation is irreducible.

For a somewhat more substantial example, let End(V) denote the set of all linear
transformations X: V -> V. Consider the action of GL(V) on End(V) given by
A • X = AXA~l. This is called the adjoint representation of GL(V), denoted
ad. Note that dim ad = dimEnd(V) = n2. To compute char(ad), first choose an
ordered basis for V, so we can identify End( V) with Mat(n), the ring of all n x n
complex matrices. Let A = diag(#i,..., 0n), the diagonal matrix with diagonal
entries 0\,..., 0n. Let Etj be the matrix in Mat(n) with a 1 in the (i, ^-position,
and 0's elsewhere. Observe that

Hence the Etj 's are eigenvectors for ad(A), with eigenvalues OfiJ1. We have found
n2 linearly independent eigenvectors, so

where /, j range from 1 to n. It follows that

char(ad) =

\ - l (n — l)(x\ • • • xn) + > —(xi • • • xn)

= s$ + (x\ - - - xn) S2\n-2. (A2.154)

It follows that ad has two irreducible components, one being the trivial repre-
sentation (with character SQ). In other words, the space Mat(n) contains a one-

Cambridge Books Online © Cambridge University Press, 2010Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511609589.006
Downloaded from https://www.cambridge.org/core. Access paid by the UC Berkeley Library, on 26 Jun 2019 at 21:59:31, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511609589.006
https://www.cambridge.org/core


444 Chapter 7: Appendix 2

dimensional subspace invariant under the action of GL(n, C). This space consists of
the scalar multiples of the identity matrix. The GL(rc, C)-invariant irreducible sub-
space complementary to these diagonal matrices consists of the matrices of trace 0.

The classical definition of Schur functions (Theorem 7.15.1) may be regarded
as giving a formula for char <pk as a quotient ax+s/as of two determinants. Readers
familiar with the representation theory of semisimple Lie algebras or Lie groups
will recognize this formula as the Weyl character formula for the group GL(n, C).
The factorization as = PII-<y-(jcf- — Xj) of the denominator is just the Weyl de-
nominator formula for GL(TZ, C). Now note that for any polynomial (or rational)
representation <p of GL(n, C), we have by the definition (A2.153) of char <p that

dimcp = (char^)(ln). (A2.155)

Thus in particular sx(ln) = dim char cpx. The formula for sx(ln) obtained by sub-
stituting q = 1 in equation (7.105) is equivalent to the Weyl dimension formula
for GL(n, C). Corollary 7.21.4 is an alternative form of this formula.

Idea of Proof of Theorem A2.4. Although we will not prove Theorem A2.4 here,
let us say a few words about the structure of the proof. Let V be an n-dimensional
complex vector space. Then GL( V) acts diagonally on the A>th tensor power V®*,
i.e,

A • (v\ 0 • • • 0 vk) = (A • v\) 0 • • • 0 (A • vk), (A2.156)

and the symmetric group S& acts on V®k by permuting tensor coordinates, i.e.,

w • (vi 0 • • • 0 vk) = vw-\a) 0 • • • 0 vw-i(k). (A2.157)

The actions of GL(V) and (&k commute, so we have an action of &k x GL(V)
on V®k. A crucial fact is that the actions of GL( V) and &k centralize each other,
i.e., the (invertible) linear transformations V®k —> V®k that commute with the (&k
action are just those given by (A2.156), while conversely the linear transforma-
tions that commute with the GL(V) action are those generated (as a C-algebra)
by (A2.157). From this it can be shown that V®k decomposes into irreducible
<&k x GL(V)-modules as follows:

j J k 0 FA), (A2.158)

where \J denotes direct sum. Here the MA's are nonisomorphic irreducible <&k
modules, the FA's are nonisomorphic irreducible GL(V) modules, and X ranges
over some index set. We know (Theorem 7.18.5) that the irreducible representa-
tions of &k are indexed by partitions A. of k, so we choose the indexing so that Mx

is the irreducible ©^-module corresponding to X h k via Theorem 7.18.5. Thus we
have constructed irreducible (or possibly 0) GL(V)-modules Fx. These modules
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afford polynomial representations <p\ and the nonzero ones are inequivalent. (The
argument below shows that Fx ^ 0 if and only if l(X) <n.)

Next we compute the character of cpx. Let w x A be an element of &k x GL( V),
and let tr(w x A) denote the trace of w x A acting on V®k. Then by equation
(A2.158)wehave

tr(w x A) = ] £ X V ) • tr(/(A)).

Let A have eigenvalues 0 = (# i , , . . , 0n). A straightforward computation shows
that tr(w x A) = pP(w)(0), so

A

But we know (Corollary 7.17.4) that

Since the xA's are linearly independent, we conclude char<pA = sA. A separate
argument shows that there are no other irreducible polynomial characters, and the
(sketched) proof is complete. •

The special linear group SL(rc, C) is defined to be the subgroup of GL(w, C)
consisting of the matrices in GL(n, C) of determinant one. It is sometimes more
convenient to work with SL(n, C) rather than GL(n, C), so we will discuss the
basics of the representation theory of SL(«, C). The main result is the following.

A2.5 Theorem. Let X e Par with £(k) < n. Then the restriction ofcpk to SL(n, C)
remains irreducible. The representations cpx for l(X) < n — 1 are all inequivalent.

= 7i, then

as representations of SL(n, C). Every polynomial (or rational) representation of
SL(n, C) is a direct sum of irreducible representations (px for t{X) < n — 1.

If 0\,..., 0n are the eigenvalues of A e SL(n, C), then 0\ • • • 6n = 1. Hence it is
natural to define the character char cp of a polynomial representation cp of SL(n, C)
as lying in the ring En = An/(x\ • • • xn — 1), the ring of symmetric functions in
the variables * i , . . . , xn, modulo the relation x\--xn = L A C-basis for this
ring consists of Schur functions s^ with l(k) < n — 1, and two polynomial repre-
sentations of SL(n, C) are equivalent if and only if they have the same character
(regarded as lying in Sn).

As an example of a computation of an SL(n, C) character, define the adjoint
representation of SL(n, C) to be the action of SL(n, C) on the set Endo(V) of
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linear transformations X : V ^ V of trace 0 given by A - X = AX A'1. In other
words, we restrict the adjoint representation of GL(n, C) to the subgroup SL(n, C)
and its action to the subspace of End(V) consisting of linear transformations of
trace 0 (the Lie algebra si(V)). From equation (A2.154) we saw that Endo(V)
was an irreducible subspace for the adjoint action of GL(w, C), with character
(JCI • • xn)~

ls2\n-2 € An. Hence the adjoint action of SL(n, C) is irreducible, with
character 5"2i«-2 G Sn.

We conclude this appendix by discussing the connections between representa-
tion theory and two operations on symmetric functions. The first operation is the
usual product fg. Let <p : GL(V) -> GL(W) and <p' : GL(V) -> GL(W') be two
polynomial representations of GL( V). The tensor product representation

cp 0 <p' : GL(V) -* GL(W 0 W')

is defined by A • (w 0 w') = (A • w) 0 (A • w') (and extended to all of W 0 W
by bilinearity). If B : W -> W and B' : W -> Wf are linear transformations
with eigenvalues 6\,..., ON and O'v ..., 0r

N,, respectively, then the eigenvalues of
B 0 B' are the numbers ft^j. It follows that

char(<p 0 (pf) = char<̂ ? • char<^/.

In particular if A., /x, v are partitions of length at most n = dim V, then the multi-
plicity of (px in <p̂  0 cpv is just the Littlewood-Richardson coefficient

Hence the Littlewood-Richardson coefficients have a simple interpretation in-
volving the representation theory of GL(n, C), showing in particular that they are
nonnegative. Thus we have seen three fundamental ways to show that c^v > 0:
(a) combinatorially, via the Littlewood-Richardson rule (Theorem Al.3.1), (b)
algebraically, using the representation theory of the symmetric group (see Corol-
lary 7.18.6), and (c) algebraically, using the representation theory of the general
linear group (as done just above). The two methods (b) and (c) are in a sense
"dual" to each other, the duality arising from the pairing (A2.158) of irreducible
representations of &k and GL( V).

The second operation on symmetric functions we are considering here would
appear at first sight rather unmotivated without understanding the connection with
representation theory. Suppose that we have polynomial representations cp : GL( V)
- • GL(W) and f : GL{W)->GL{Y). Then the composition fcp : GL(V)-»
GL(F) defines a polynomial representation of GL(V). We want to compute its
character. Suppose that A e GL(V) has eigenvalues 0\,..., 0n. Then by Proposi-
tion A2.3 the eigenvalues of <p(A) are the monomials 0a for xa e M<p. Similarly,
if B has eigenvalues ? i , . . . , f#, then the eigenvalues of ir(B) are the monomials
£b for xb e Mf. Hence if we denote the monomials 6a by 6al,..., 0aN (in some
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order), then the eigenvalues of ^cp(A) are just the monomials

xb\Xi=eai, xb eM^

Thus if / = ]Cj=i ^ = cnar<P and g = char x/r, then we get

char(i/r<p) = g(0a\ . . . , 0aN). (A2.159)

This formula leads us to the following definition.

A2.6 Definition. Suppose that the symmetric function / e A is a sum of mono-
mials, say, / = J2i>ixa'• Given g e A, define the plethysm g[f] (sometimes
denoted / o g) by

g[f]=g(xa\xa\...).

(For the etymology of the term "plethysm," see the Notes.)
For instance, since s\ — x\ + X2 + • • •, we have g[s\] = g(x\, #2, . . .) = g.

More generally, from pn = x" + JĈ  + • • • we have

/[p»] = / ( * " , * 5 . • • •) = Y,x"in = P»[f]- (A2.160)

Clearly by definition of plethysm we have

(af + bg)[h]=af[h] + bg[h], a,beQ (A2.161)

= f[h]-g[h]. (A2.162)

We can use equation (A2.160) to define pn[f] for any f e A, and then equations
(A2.161) and (A2.162) allow us to define g[f] for any / , g e A. Specifically, if
8 = E A CA/?A, then

A i = l

For instance, using Proposition 7.7.6 and equation (7.19), we have

Ahn

Ahn

Ahn
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Hence from equations (A2.161) and (A2.162) it follows that

f[-sx] = (-l)nco(f) for any/ e A\ (A2.163)

Certain symmetric function identities can often be recast in the language of
plethysm. As just one example, Corollary 7.13.8 states that

We leave for the reader to see that this identity is equivalent to the plethystic
formula

(A2.164)

Returning to the representation-theoretic significance of plethysm, when we
compare equation (A2.159) with the definition of plethysm (Definition A2.4), we
see that

char(i/^) = (char ty) [char (p].

Here it is understood that the variables are restricted to x\,..., xn (where cp is a
representation of GL(n, C)). Many symmetric function identities thereby acquire
a representation-theoretic significance. For instance, let H(x) — ho + h\ + • • •.
Readers with a sufficient algebraic background will recognize H(x\,..., xn) as
the character of GL(V), where dim V = n, acting on the symmetric algebra S(V).
Similarly, (e\ + e2)(x\,..., xn) is the character of GL(V) acting on V 0 A2(V),
where A2 denotes the second exterior power. Hence equation (A2.164) is equiv-
alent to the assertion that the action of GL(V) on S(V 0 A2(V)) contains every
irreducible polynomial representation of GL(V) exactly once (and contains no
non-polynomial representation).

An important property of plethysm is given by the following result.

A2.7 Theorem. Let f and g be N-linear combinations of Schur functions. Then
the plethysm g[f] is also an N-linear combination of Schur functions.

Proof. Since / is an N-linear combination of Schur functions, for any m e P
we have that f(x\,..., xm) is the character of a polynomial representation cp :
GL(m, C) -> GL(n, C) for n sufficiently large. Similarly, g(x\,..., xn) is the
character of a polynomial representation ^ • GL(n, C) -> GL(F). Hence the
plethysm g[f](x\,..., xn) is the character of the composition i/rcp and so is an
N-linear combination of Schur functions. Now let n —> oo. •
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No proof is known of Theorem A2.7 that doesn't use representation theory. In
particular, a combinatorial rule for expanding the plethysm sn[sm], analogous to
the Littlewood-Richardson rule, is not known. Finding such a rule remains one of
the outstanding open problems in the theory of symmetric functions.

Just as we defined in Section 7.18 an "induction product" of characters of sym-
metric groups to correspond to ordinary product of symmetric functions, we can
ask whether there is some kind of product of <5n characters that corresponds
to plethysm. We will briefly sketch the answer to this question, assuming some
knowledge of group theory. Suppose that n = km. We may regard the group &£
as a (Young) subgroup of <&n in a natural way. Let N = N(&%) denote the nor-
malizer of &™ in &n. Thus N is isomorphic to the wreath product &k § &m (also
denoted <5* * 6m> &k ~ ©m» 6 i t w r 6 m , and &m[&k])> Given representations
a : &k -* GL(V) and p : &m -> GL(W), there is a natural (functorial) way to
define a representation a§p:N^ GL( V<8>m 0 W), as follows: we can regard in an
obvious way an element of N as a pair (/, v), where / : [m] -> <&k and v e <&m.
Then define

(/, v) • (*i (8) • • • (8) xm 0 y) = ( /( lK-i(i)) ® • • • 0 (f(m)xv-Hm)) 0 (v • v).

If Xa denotes the character of a representation a, then set xa § Xp = Xa§p- We can
now state the main result connecting plethysm with representations of <&n.

A2.8 Theorem. Let x be a character of&k and 6 a character of<Bm. Then

A2.9 Example. A \-factor (or complete matching) on [2n] is a graph with the
vertex set [2n] and with n vertex-disjoint edges. Let On denote the set of all
1-factors on [2n]. The symmetric group &2n acts on On by permuting vertices.
How does the character \jsn of this action decompose into irreducibles? The action
of <&2n on On is transitive, and the stabilizer of the 1-factor with edges {1,2},
{3,4} , . . . , {In — 1, In} is precisely the subgroup N(&£). Hence

ch Vn = ch 1 ^ } = (ch l e j [ c h l e 2 ] = hn[h2].

Now

n>0 i<j

Putting q — 0 in equation (7.202) shows that
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Hence we get

1 if A = 2/x for some /x h i

0 otherwise.

Exercises
7.1. [1] True or false? The Ferrers diagram of the partition (4, 4, 3) is given by

7.2. Let Par(ft) denote the set of all partitions of n with the dominance ordering.
a. [2] Show that Par(fl) is a lattice.
b. [2+] Show that Par(n) is self-dual.
c. [2+] Find the smallest value of n for which Par(n) is not graded.
d. [2+] Show that the maximum number of elements covered by an element

of Par(n) is \\{Jl + 8n - 3)J.
e. [2+] Show that the shortest maximal chain in Par(n) has length In — 4 for

n > 3.
f. [3—] Show that the longest maximal chain in Par(n) has length

wheren = ( m ^ ) + r, 0 < r < m.

7.3. [2+] Expand the power series J~J£>1C1 + M + xf) in terms of the elementary
symmetric functions.

7.4. [2+] Show that

7.5. [2+] Prove the identity

7.6. [2+] Let w; G ©„ have cycle type A. Give a direct bijective proof of Proposi-
tion 7.7.3, i.e., the number of elements v e <&n commuting with w is equal to
Zk = lmirai !2m2m2!---, where mt = m,-(A.).

7.7. [2+] Let ^2" denote the subspace of An consisting of all / e A" satisfying

For instance, m\ = x\ + x2 H G ̂ 2!. Find a "simple" basis for Qn. Express
the dimension of £ln in terms of the number of partitions of n with a suitable
restriction.
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7.8. [2+] Let / e An, and for any g e An define gk e Ank by

Show that

7.9. [2+] Let A be a partition of n of length I. Define the forgotten symmetric
function fx by

fx = ex co(mx),

where Sx = (— l)n~£ as usual. (Sometimes fx is defined just as a)(mx).) Let
fx = ^2^ a^fi m fi - Show that ax^ is equal to the number of distinct permutations
(«i, a2, • • •, o^) of the sequence (X\, A.2,..., A.̂ ) such that

{ax+a2 +--+cti : 1 < i < € } 2 {/xj + /x2 + • • • + /x;- : 1 <j <l(fi)}.

For instance, if X = (3, 2, 1, 1) and /x = (5, 2), then a ^ = 5, corresponding
to (3, 2, 1, 1), (2, 3, 1, 1), (1, 1, 3, 2), (1, 3, 1, 2), and (3, 1, 1, 2).

7.10. [3—] Let X G Par, and define the symmetric power series

a
where a ranges over all distinct permutations of (A.i, A.2,.. .)• ̂ m d a formula
for coAx(x) and a>Bx(x) in terms of A^(xYs and B^(xYs. For instance,

= Bi(x)
(oAn{x) = A2(x)An(x)
coA2{x) = \

In general, express the answer in terms of the coefficients ax^ defined in Exer-
cise 7.9.

7.11. [2+] Let q be an indeterminate. Find the Schur function expansion of X^hn

7.12. [3—] Prove the converse to Proposition 7.10.5, i.e., if /x, X h n and /x < A.
(dominance order), then Kxn ^ 0.

7.13. a. [3—] Let Xh n and /x h n, with A. 7̂  («). Suppose that X\ ^ ji\ and X[ ^
/Xj. Show that Kx/j, = 1 if and only if X = ((m + l)m> for some m (son =
m{m-\-1)), and /x = (mm+1). (Note that /x is assumed to be ^partition, not
just a composition.) Note that this result gives a complete characterization
of when KXfl = 1, since if A4 = /xi then Kx^ = #(A2,A3,...),(M2,/X3,...)' while
if Aj = /x[ = t then A\M = K^-i^.^Xt-iUtn-x,...,^-!)-

b. [5—] Find a "reasonable" characterization of partitions A, /x, v for which
the Littlewood-Richardson coefficient cx is equal to one.
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7.14. a. [2] Show that the number of SSYTs of type (r, r, r) (i.e., with r l ' s , r 2's,
and r 3's, and no other parts) is equal to

^[4r3 + 18r2 + 28r + 15 + ( - l ) r ] .

b. [3+] Fix n > 1. Show that there are polynomials Pn(r) of degree (!J) and
Qnir) of degree ( ^ - ^ J ) - 1 such that the number of SSYTs of type
(r, r , . . . , r) (ifc times) is given by Pn(r) + ( - l ) r gn(r). (The most difficult
part is the degree of Qn(r).)

7.15. a. [2+] Let p be prime. Let Mp(n) denote the number of partitions X of n
such that the number fx of SYTs of shape X is relatively prime to p. Let

n — a0 + a\p + a2p
2 H , 0 < a,- < /? - 1,

the base /? expansion of n. Let P(JC) = Y\n>\ ^ "" jcn)~1- Show that

Mp(n) = PJ (coefficient of jca> in P(^)^) .

b. [1+] Deduce from (a) that if n = p*1 + pkl -\ with k\ < k2 < • • •,
then Mp(n) = pkl+k2+~\

7.16. a. [3] Let Bk = X^A ̂ » summed over all partitions with at most k parts. Let

n=0

Show that

B2m = det(Q_y- + c

= h - det(c/_;-

where/i = E«>o*»-
b. [3—] Let yk(n) be the number of SYTs with n entries and at most k rows,

and let Cn denote the Catalan number ^ (2
n

n). Deduce from (a) that

i +2)!

c. [2]-[3+] Give combinatorial proofs of the above formulas for y2{n),...,
ys(n). Also give a simple symmetric function proof of the formula for y2(n),
by considering the product s\n/
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d. [3] Let Rk(x, y) = ^ A Sx(x)sx(y), summed over all partitions with at most
k parts. Let

oo

Ai = J2hl+i(x)hl(y).
1=0

Show that Rk(x, y) = det(A7_;)f j=l.
e. [2+] Let Uk(n) be the number of pairs of SYTs of the same shape with n

entries each and at most k rows. Deduce from (c) that U2(n) = Cn and

u3(n) =
( 7 1 6 6 )

f. [2], [5—] Give combinatorial proofs of the above formulas for u-iiri) and

7.17. a. [3—] Let W,-(n) be the number of ways to draw / diagonals in a convex
n-gon such that no two diagonals intersect in their interiors. Give a bijective
proof that Wi(n) is the number of standard Young tableaux of shape ((/ +

2 3
I)2, ln-l~3) (i.e., two parts equal to i + 1 and n — i — 3 parts equal to 1;
when / = 0 there are n — 1 parts equal to 1).

b. [2—] Deduce from (a) and the hook-length formula (Corollary 7.21.6) that

in agreement with equation (6.74).

7.18. [3—] Solve the following chess problem:

Serieshelpmate in 25. How many solutions?

The definition of serieshelpmate is given in Exercise 6.23.

7.19. [3—] Let a be a skew shape, regarded as a subset of P x P. For instance, 32/1 =
{(1, 2), (1, 3), (2, 1), (2, 2)}. Let pa(n) be the number of pairs (A, /x) of par-
titions for which /x C X, /x h n, and A//x is a translate of a. For instance, if
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a = 32/1 then pa{6) = 3, corresponding to k/p = 532/51, 43111/21111,
541/321. Suppose that the smallest rectangle containing a has r rows and s
columns, and that t is the smallest integer for which a — p/v with v h t.
Show that

, , , n [s~l]l[r-l]l

where [*]! = n?=i(l-01")-
7.20. a. [2] Let X h n. Show that [ f l i^ iW-)"1]^?» *A.) is equal to the number

of partitions of the set [n] of type X (i.e., with block sizes k\, X2,.. .)•
b. [2+] Let T be an SYT of shape X h n. For each entry of T not in the first

column, let / ( / ) be the number of entries j in the column immediately to the
left of i and in a row not above i9 for which j < i. Define f(T) = Yii /(0»
where i ranges over all entries of T not in the first column. For instance, if

1368
T = 247 ,

5

then /(3) = 2, /(4) = 1, /(6) = 2, /(7) = 1, /(8) = 2, and / ( 7 ) = 8.
Show that

£/CO= ri ( m' ( A ) ! r l (^i'M'

where T ranges over all SYTs of shape X.
c. [3—] Generalize (b) to SSYTs T of a given shape X and type /x (so (b) is

the special case /x = (ln)).
7.21. [3] Let X h n. An assignment w h-> aH of the distinct integers 1, 2 , . . . , n

to the squares u e X is a balanced tableau of shape A if for each M G X the
number <zM is the fc-th largest number in the hook of M, where k is the leg length
(number of squares directly below M, counting u itself) of the hook of u. For
instance, the balanced tableaux of shape (3, 2) are

421 423 425 435 321
53 51 31 21 54 '

Let bx be the number of balanced tableaux of shape X. Show that bx = / \
the number of SYTs of shape X.

7.22. Let S( denote the adjacent transposition (/, / +1) e <Sn, for 1 < i < n — 1. Let
w e <&n. It is easy to see that the smallest integer p for which w is a product
of p adjacent transpositions is equal to £(w), the number of inversions of w
(defined in Section 1.3 and there denoted / (w)). A reduced decomposition of w
is a sequence a = (a\,..., ap)9 where p = £(w), such that w = sax • • • sOp.
As usual, define the descent set D(a) = {i: 1 < i < p — 1 and at > fl,+i};
and write co(a) for the composition co(D(a)) e Comp(p), as defined in
Section 7.19.
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a. [1+] Let R(w) denote the set of reduced decompositions of w, and r(w) =
#R(w). Define the quasisymmetric function

w = / j ^co(a)*

aeR(w)

Show that r(w) = [x\X2 • • • xp]Fw. (La is defined in equation (7.89).)
b. [3] Show that Fw e Ap, i.e., Fw is a homogeneous symmetric function of

degree p. Hence if Fw = X!AI-/? CU^5A> then

c. [ 3 - ] Define

ri(w) = #{7 : j <

^•(w;) = #{7 : 7 > / and fly < #,}, 1 < i < n.

Thus ^ ^ - ( i t ; ) = J2isi(w) = ^(^)- Let A.(u;) denote the partition
obtained by arranging the numbers r\(w),... ,rn(w) in descending order
(and ignoring any O's). Let /JL(W) denote the conjugate to the partition n'{w)
obtained by arranging the numbers s\(w),..., sn(w) in descending order.
Show that if cwv ^ 0 then /JL(W) < v < X(w) (dominance order). More-
over, cw^W) = cWjx(W) — 1- Hence Fw is a single Schur function sv (in
which case r(w) = fv) if and only if /JL(W) = X(w) = v.

d. [3—] Show that k(w) = /JL(W) if and only if w = w\ • • • wn is 2143-
avoiding, i.e., there do not exist a < b < c < d such that W\, < wa <
Wd < wc 2143-avoiding permutations are also called vexillary, after the
Latin word vexillum for "flag," because the Schubert polynomial indexed by
a vexillary permutation is a flag Schur function; we will not define "Schubert
polynomial" and "flag Schur function" here.

e. [3] Let v{n) be the number of vexillary permutations in <E>n. Show that

v(n) =
Xhn

A more explicit formula for v(n) then follows from equation (7.166).
f. [2—] Let wo = n, n — 1 , . . . , 1, the permutation in <Sn with the maxi-

mum number of inversions. Deduce from (c) that the number of reduced
decompositions of WQ is given by

• - 3 . -

g. [3+] Let p = (2) . Show that

E fn\ T-r 2JC + i + / — 1

(au...,ap)£R(w0)
 V ' l<i<j<n l ^ J

(7.168)
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Note that taking the coefficient of xp on both sides gives (f). Moreover,
setting x = 0 yields

(7.169)
—* * \ ) I

h. [3] Show that cwx > 0 for all w e Bn and k h £(tu).

7.23. [3—] Let P be a finite graded poset of rank n. A symmetric chain decomposi-
tion of P is a partition of P into chains X( < */+i < • • • < xn-t such that Xj
has rank j . Let M denote the (finite) multiset {lai, 2*2, . . . , £"*}, and let #M

denote the set of all submultisets of M, ordered by inclusion. (Thus BM is just
a product of chains of lengths a\, #2, • • •, &k •) Associate with each submultiset
jV = { l \ . . . , l ^ } e BM the two-line array iu# whose first line consists of
a\ l's, then #2 2's, etc., and whose second line has at — b{ O's followed by b[
1 's below the / 's in the first line. Call two submultisets Af and N' equivalent if,
when the RSK algorithm is applied to w^ and w^, the same second tableau is
obtained. This definition of equivalence partitions BM into equivalence classes.
Show that they form a symmetric chain decomposition of BM.

7.24. a. [1] Let U : A —> A and D : A -> A be linear transformations defined by
and

where 3/3/?i is applied to / written as a polynomial in the p,-'s. Show that
DU — UD = / , the identity operator.

b. [1] Show that DUk = ifct/*"1 + I/*D.
c. [2] Deduce from (a) and (b) that if I e N then

(U + Df = Y" — UlDj.

d. [2+] An oscillating tableau (or up-down tableau) of shape k and length I is
a sequence 0 = A0, X1, . . . , kl = k of partitions such that for all 1 < / <
€ — 1, the diagram of A/ is obtained from that of kl~l by either adding one
square or removing one square. (If we add a square each time, then I = |A.|
and we have an SYT of shape k.) Clearly if such an oscillating tableau
exists, then I = \k\+ Ir for some r e N. Deduce from (c) that the number
f t of oscillating tableaux of shape k and length I — \k\ + 2r is given by

1 (l-2r)lr\2r'

e. [3—] Give a bijective proof of (d).

7.25. a. [3] Let f2k(n) be the number of ways to choose the diagram of a partition k
of n, then add or remove one square at a time for a total of 2k times, always
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keeping the diagram of a partition, and ending back at X. Show that

(Note that the case n = 0, obtained by setting q = 0, coincides with the
case A = 0 of Exercise 7.24(d).)

b. [3—] Let g2k(n) be the number of ways to choose the diagram of a partition
X of n, then remove a square, then add a square, then remove a square, etc.,
for a total of & additions and k removals, always keeping the diagram of a
partition, and ending back at X. For instance, go(n) — p(n), the number of
partitions of n. Show that

n

gikin) = J^(PU) - PU ~ OX* " if-
7=0

7.26. [3+] Given u = (/, j) e X h w, define the arm /e«gr/i a(w) = A.,- — y
and the leg length l(u) = Xf- — i. Note that the hook length h(u) satisfies
h(u) = 0(M) + £(w) + 1. Prove the identity

rflW) (i-oa-9)
7.27. [3] Prove the following identities (combinatorially if possible). Here a and i

are fixed partitions.

(a)

»> i :
n>0

(d) ^T s*./ot'(x)S),>/p(y) = I PJ(1 + ^y; ) I X I

=n ((i -
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(AC.X n>\ ij

( n i
/JLC.X n>l\ i<j i I

RSK

7.28. a. [3-] Suppose that in the RSK algorithm A —> (P, Q), the matrix A is
symmetric (so P — Q). Show that tr(A) is the number of columns of P of
odd length.

b. [2-] Verify the identity

Y\ 1 ^ ^ (7-170)

where c(A) denotes the number of parts of Xf that are odd.
c. [1] Deduce that

KJ V-

where 2/x = (2/xi, 2/x2, . . . ) .
d. [2—] Fix A: > 0. Evaluate the sum a(n, k) = J ^ fx, where A ranges over

all partitions of n with k odd parts.
e. [2] What identity results when we apply co to (7.170)?

7.29. a. [3-] Show that

where X ranges over all self-conjugate partitions.
b. [3-] Show that

I KJ A

where X ranges over all partitions whose Frobenius notation (as defined in
Exercise 7.39) has the form

X = (a\ + 1 • • • otr + 1 | a\ - • • ar).

c. [3-] Show that

where o(X) is the number of odd parts of A, and X runs over all partitions
satisfying

Xi — A./+1 = 0, 1 (mod 4), X( even

Xt — Xi+\ = 1,2 (mod 4), A./ odd.
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7.30. a. [2] Let k = (k\,..., kn) and /x = (/^i,. . . , iin) be partitions of length at
most n related by

A.,- + /i - i = d(/z, H- n - i), 1 < i < n,

for some fixed d e P. Show that

, . . . , xn) - s^ (xf,..., x*
xd -xd

b. [1+] Suppose thatA. = (d(n- l ) , d(n-2), ...,d, 0). Deduce from (a) that

sk(xu...,xn)=

c. [3-] It follows from (b) that the number of SSYTs of shape X = (d(n -
1). d(n—2),..., d) and type a = (ot\, <X2, • • •, <*n) (where a\-\ \-an =
d(^)) is equal to the number of ways of orienting the edges of the graph
on the vertex set {1, 2 , . . . , n] with d — 1 edges between any two distinct
vertices, such that vertex i has outdegree at for 1 < i < n. Give a direct
combinatorial proof.

7.31. [3] Let p be aprime, and let Ap denote the matrix K7'*]^io»where f = e2ni/p.
Show that every minor of Ap is nonzero. Equivalently, every square submatrix
B of Ap is invertible. (HINT. Use Theorem 7.15.1.)

7.32. a. [2+] Let k and /JL be partitions of length at most n. Show that

n
M

-i • (7.172)

b. [2] Deduce from (a) that

sk(\,q,q\...,qn-\qn-\q»)

sx(l,q
2,q\...,q"-2,q"-\q"+l)

7.33. a. [2+] Let 8 = (n - 1, n - 2 , . . . , 1). Let t(n) denote the number of dis-
tinct monomials appearing in s$(x\,..., xn), i.e., the number of sequences
a = ( a i , . . . , an) for which ^ a ^ 0. For example, t(3) = 7. Show
that f («) is equal to the number of labeled forests on n vertices, which by
equation (5.42) and Proposition 5.3.2 is given by

- 2
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460 Chapter 7

b. [3-] Let k e P. Generalize (a) to sks(x\,..., xn).
c. [5—] Can anything be said in general about the number of distinct mono-

mials in Sx(x\,..., xn) for arbitrary A?
7.34. [3—] Let A and ji be partitions of length at most n. Show that in the ring An

(i.e., using only n variables), we have

7.35. a. [2] If R is a ring, then an additive group homomorphism D : R -* R is
called a derivation if D(fg) = (D/)g + /(Dg)forall / ,g G R. Show that
the linear transformation A —>> A defined by D(^) = j^/i is a derivation.

b. [2] Show that the bilinear operation [/, g] on A given by [sx , £/J = £>,/1 sM —
sx.Sfi/i defines a Lie algebra structure on A. (In other words, verify the Jacobi
identity [/, [g, ft]] + [g, [ft, / ] ] + [ft, [/, #]] = 0.)

c. [3—] Let pm = (ra, m — 1 , . . . , 1). Show that

7.36. [2] Let D^ : A -> A be the linear transformation given by D^{sx) = ^/^«
Show that D^Dy = DVD^.

7.37. a. [2+] Let a8 = Fl!<;<./<«(•*' ~ -̂ y). as in equation (7.53). Write down
a formula that expresses aj in terms of the power sums pi(x\,..., xn),
1 < i < 2n — 2. (You don't need to compute explicitly the coefficients in
the expansion of a\ in terms of power sums; just some formula involving
only power sums is wanted.)

b. [3-] Let aj = Ylkhn(n-i) OA(*i, • • •, xn), where cx e Z. Show that if A
is the partition ((n — l)n), then

c. [3] More generally, if X = ((/i + i - I f , (i - I)1"), 1 < i < n, then

ex = (-l)^(w-1)(rt-2/)[l • 3 • 5 • • • (2/ - 1)] • [1 • 3 • 5 • • • (2(n - i) - 1)].

d. [3] Suppose that X = \i + ((n - 2)n) = (m + n - 2 , . . . , /xw + n - 2),
so /x I- n. Show that

where c(s) is the content of s, and / A is the number of SYTs of shape A.
e. [3-] Show that if X^2S = 2(n - l,/i - 2 , . . . , 1), then cx==0

(mod 3).

7.38. a. [3] Fix 0 < k < (2), and let £(w) denote the number of inversions of the
permutation w e <£5M. Let A and \JL be partitions of length at most n, with
[X C A. Define the symmetric function

h / k = ( 1 ) 2

Thus /̂/Lt,ik is a "truncation" of the Jacobi-Trudi expansion (7.69) of s\
Show that tx/fitk is ̂ -positive.

Cambridge Books Online © Cambridge University Press, 2010Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511609589.006
Downloaded from https://www.cambridge.org/core. Access paid by the UC Berkeley Library, on 26 Jun 2019 at 21:59:31, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511609589.006
https://www.cambridge.org/core


Exercises 461

b. [5—] Is there a "nice" combinatorial interpretation of the scalar product

7.39. [3—] Let A. be a partition of rank r. For 1 < i < r define a, = A.,- — i and
fa = A • — /. The Frobenius notation for A. is the array

X = (a i«2 ••• a r | j 8 i & ••• AO. (7.173)
For instance,

(7, 7, 5, 4, 4, 2, 1, 1) = (6 5 2 0 | 7 4 2 1).

Note that if a, b € N, then {a \ b) is the Frobenius notation for the hook shape
{a + 1, 1*). It is easy to see that any array (7.173) of integers satisfying a\ >
ai > • • • > ar > 0 and P\ > fc > • • • > fir > 0 is the Frobenius notation
of a unique partition of rank r. Show that if A = (a\ -• <xr\Pi -• /*r)>then

= dQt(siaiWj))
r
ij:=v

7.40. [3—] Let u be a square of (the diagram of) the partition X. Given (/,,/) € X,
let #(/ , 7) be the border strip of X whose top square is in row / of X and whose
bottom square is in column j of A.. Let r be the rank of X. Show that

7.41. [2+] Let l(X) < m and Xx <n. Define

X = (n-Xm,n- Xm-i,...,«- A.i).

Give simple algebraic and combinatorial proofs that

(XiX2 ' ' ' Xm)nSx(Xil, . . . , X~l) = S~x(Xu • . • , Xm).

7.42. [2+] Show that

summed over all partitions X with £(X) < m and X\ < n, where X is defined
in Exercise 7.41 above.

7.43. [3—] Let \j/ : A -> Q[£] be the specialization (homomorphism) defined by
r/r(pn) = 1 - ( - O n , n > 0. Show that

(l + 0 , A. = (n - k, lfc), 0 < k < n - 1

0 otherwise.

7.44. Define a specialization £ : A -> Q[f] by

g (gy |)
n\

Let A. h n in (b)-(d) below.
a. [2+] Show that

where An(/) denotes an Eulerian polynomial (Section 1.3).
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462 Chapter 7

b. [3-] Show that

Zx V~""v e(w)

n\
p(w)=X

where e(w) = #{i : w(i) > i], the number of excedances of it;.
c. [2+] Show that

wzen
c(u;)>rank(A)

where c(w) is the number of cycles of w.
d. [2+] Show that

.,n _ tr-mm

where K l denotes the inverse of the Kostka matrix

7.45. [3—] Suppose that n = ab, where a, b £ P. If / is a symmetric function of
degree «, then let Ta(f) be the symmetric function obtained from / by ex-
panding / in terms of monomials, dividing the exponents of these monomials
by a, and then throwing away all terms whose exponents are not all integers.
Thus Ta(f) is a symmetric function of degree b. (For instance, Ta(pn) = Pb,
and T2(p\) = mi + 6mn.) Show that if A h n, then Ta(sx) is ^-positive.

7.46. [3—] Recursively define symmetric functions qn by

X\-n

where q\ = q\xq\2 • • •. Show that for n > 2, the symmetric function — qn is
s -positive.

7.47. Let G be a graph (without loops or multiple edges) on the ̂ -element vertex set
V. A proper coloring of G is a map K : V —> P such that if {u, v] is an edge of
G, then K(U) ^ K(V). Define JC* = fit *f* (*\ a monomial of degree d. Let
XG = J2K **' summed over all proper colorings of G. Thus the coefficient of
x\xX22 - - - in XG is the number of proper colorings of G such that a, vertices
are colored / for all / > 1. Clearly XG e Ad.
a. [1] Show that XG(ln) = XG(«), where XG denotes the chromatic poly-

nomial of G (defined in Exercise 3.44). For this reason XG is called the
chromatic symmetric function of G.

b. [5] If T and T are nonisomorphic trees, then is it true that Xj ^ X^?
c. [2—] A stable partition of G is a partition 7T of V such that every block

B of 7r is sta&/e (or independent), i.e., no two vertices of 5 are connected
by an edge. Given a partition A = ( l n2 r 2 • • •) of d, define the augmented
monomial symmetric function fhx by nix = ri! r2! • • • m^. Show that

XhG
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where ax is the number of stable partitions of G of type X (i.e., with block
sizes A.i, A.2,.. .)•

d. [2+] A connected partition of G is a partition n of V such that the re-
striction of G to every block of n is connected. Let LQ denote the lattice
of all connected partitions of G ordered by refinement (as defined in Exer-
cise 3.44). Show that

where /x denotes the Mobius function of LQ-
e. [2—] Deduce from equation (7.174) and Proposition 3.10.1 that coXG is

p-positive.
f. [3—] Show that XQ is L-positive, i.e., a nonnegative linear combination of

the fundamental quasisymmetric functions La (defined in equation (7.89)),
where a € Comp(J).

g. [3] let XQ = ^2x\-d cxex, and fix k e P. Show that the integer J^ x\-d cx
•c(A)=K

is equal to the number sink(G, k) of acyclic orientations of G with exactly
k sinks. (A sink is a vertex « with no edge u —> u. In particular, an isolated
vertex of G is a sink in any acyclic orientation of G.)

h. [3] Let P be a ^-element poset, and let inc(P) denote its incomparability
graph, i.e., the vertices of inc(P) are the elements of P , with u and v con-
nected by an edge if u and v are incomparable in P . A P-tableau of shape
A. h d is a map r : P - • P satisfying: (i) If r(w) = r(v) then w < v or
u < M (in other words, r is a proper coloring of inc(P)), (ii) #T~~1(J) = X,
for all /, and (iii) if r~l(i) = \u\, W2, . . . , Mx,} with u\ < U2 < • • • < uXi

and r~l(i + 1) = {v\, V2,..., t>A,+i} with i>i < i>2 < • • • < UAJ+1> then
for all / and all 1 < j < X/+i we require that Vj yi Uj. Let fp denote the
number of P-tableaux of shape X. (Note that if P is a chain, then fp = / \
the number of S YTs of shape X.) Define P to be (3 + l)-free if it contains no
induced subposet isomorphic to 3 + 1 (the disjoint union of a three-element
chain and a one-element chain). Show that if P is (3 + l)-free, then

Xim(P) = 7,/pSx-
k\-d

i. [2+] Let P be a (3 + l)-free poset, and let c\ denote the number of / -element
chains in P (so in particular CQ = 1). Deduce from (h) and Exercise 7.9l(e)
that every zero of the polynomial C(t) — ^ C[tl is real.

j . [5] Suppose that P is a (3 + l)-free poset. Is it true that XQ is ^-positive?
k. [3—] Let Pd be a d-element path. Show that

] XPd • td = Jr1- . l 7. (7.175)

In particular, Xpd is ^-positive (a special case of (j)). Similarly, let Cj be a
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464 Chapter 7

d-vertex cycle. Show that

d>2 Z^i>iv» A^**

1. [3—] Show that if the complement of G is triangle-free (equivalently, G
contains no stable 3-element set of vertices), then XG is ^-positive.

m. [5] Suppose that G is clawfree, i.e., has no induced subgraph isomorphic to
the complete bipartite graph ^13. Is it true that XG is s-positive?

7.48. Let P be a finite graded poset of rank n with 6 and 1. Define a formal power
series FP in the variables x\, x2,... by the formula

FP = J2 xfoA)xfut2) • • • xp
k
(tk~utk\ (7.176)

where p(s,t) denotes the rank (length) of the interval [s,t]. (The sum ranges
over all multichains from 6 to 1 of all possible lengths k > 1 such that 1 occurs
with multiplicity one.)
a. [2] Note that Fp is a homogeneous quasisymmetric function of degree n.

Show that

2
yeComp(n)

where (i) fip(Sy) is the rank-selected Mobius invariant (now called the flag
h-vector) of P, as defined in Section 3.12, (ii) Sy is the subset of [n — 1]
associated with y, as defined in Section 7.19, and (iii) Ly is given by (7.89).

b. [2+] Define

where /x denotes the Mobius function of P. Show that

FP = {-\)n Y. PP^Y)LY>
yeComp(n)

where5y = [n -l]-Sy. Deduce that if FP e An,thenFP = (-l)ncoFP.
c. [2+] Define P to be locally rank-symmetric if every interval of P is rank-

symmetric, i.e., has the same number of elements of rank i as of corank i for
all /. For instance, if P is locally self-dual (i.e., every interval is self-dual),
then P is locally rank-symmetric. Show that if P is locally rank-symmetric,
then FP e An.

d. [2] Let P = (^1 + 1) x • • • x {fjbi + 1), a product of chains of cardinalities
/xi + l,...,/X£ + l. Show that P is locally self-dual, and that Fp = h^.

e. [3+] Let P be the lattice of subgroups of a finite abelian /?-group G of type
[i. Show that P is locally-self dual, and that

khn
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Exercises 465

where K^ip) is a polynomial in p with nonnegative integer coefficients
satisfying £ ^ ( 1 ) = K^ (a Kostka number). (The most difficult part is the
nonnegativity of the coefficients of K^ip).)

f. [3—] Let P = NCn+i, the lattice of noncrossing partitions of [n + 1], as
defined in Exercises 3.68 and 5.35. Show that NCn+i is locally self-dual,
and that

X\-n

mi(k)\.'.mn(k)\

1

Here ml (X) denotes the number of parts of k equal to i. Show also that

— t)){~l)

n>0

where E(t) = Y^n>o en*n> H(t) = J2n>o hntn, and ( -1 ) denotes composi-
tional inverse with respect to the variable t.
[3—] Let m, n e N. Define the shuffle poset (or poset of shuffles) Wmn

as follows. Let A = [a\,..., am} and B = {b\,..., bn] be two or-
dered alphabets. The elements of Wmn consist of all shuffles of sub words
of the words a\ • • • am and b\ - - - bn, i.e, words whose restriction to the
letters in A is a subword of a\ • • - am, and similarly for B. Some ex-
amples of elements of Wmn are 0 (the empty word), b^b^a^b^a^a^,
and a±a$a%b\. Define v to cover u in Wmn if v can be obtained from
u either by deleting an element from A or inserting an element of B.
Thus Wmn has minimum element a\a2 • • • am and maximum b\b2- • -bn.
Figure 7-16 shows the shuffle poset W21, with A = {a, &} and 5 = {x}.
Show that Wmn is locally rank-symmetric (though not in general locally
self-dual), and that

Fw^ =

7.49. [3] Write Fn as short for the symmetric function F^cn+i of Exercise 7.48(f).
Let \js : A —> A be the homomorphism defined by ^r{hn) — Fn. Show that for
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466 Chapter 7

xab

Figure 7-16. The shuffle poset W2\.

every skew shape k//i, the symmetric function (— I V ^ V C ^ / M ) is s-positive,
where v(k/ii) is the number of nonzero entries below the main diagonal in the
Jacobi-Trudi matrix for Sx/^.

7.50. [2] Let k h N. Evaluate the sum

c(w)

where c{w) denotes the number of cycles of w. (Use the case q = 1 of Theo-
rem 7.21.2.)

7.51. [2+] Show that if k h TV then

= fk (b(kf) - b(k)l

where b(jjL) is defined by equation (7.103).
7.52. [2+] Let k be a partition of N of rank r. For 1 < i < r, let /z, = h(i, /), the

hook length of k at (/, /). Set /i = (/zi, \±2,..., /xr), so /x is also a partition
of Af. Show that

where / = J^=1(A- — /). Moreover, if xX(v) ¥" 0» m e n show that v <
(dominance order).

7.53. [2+] Let A be a partition of N of rank r. Show that

- 1)!(A; - 1)!,

where w ranges over all permutations in <&N with exactly r cycles, and where
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7.54. [ 3 - ] Prove the converse to Proposition 7.17.7, i.e., if k h n and XXO) = 0
whenever /x has an even part, then n = (™) and A. = (m — 1, m — 2 , . . . , 1)
for some m.

7.55. a. [2+] Let pk : Bn -+ GL(m, C) be an irreducible representation of &n

with character xk (so m = f k ) . Show that px(Gn) C SL(m, C) if and
only if

where £(A) is defined by equation (7.103).
b. [5—] Is there a simpler criterion? Is it possible to count the number of A.'s

satisfying (7.177)?

7.56. a. [2—] Given a skew shape #, let 0r denote the skew shape obtained by ro-
tating 0 180°. For instance (432/2)r = 442/21. Show that se = sOr.

b. [1+] Let a = (a\,..., otk) be a composition, and let a = (a^, • • • > <*i)-
Show that SBa — SB& , where Bp denotes the border strip corresponding to
f$ as defined in Section 7.23.

7.57. [2] Let k h n. How many border strips does k have? In other words, how many
partitions /JL are there such that ji c k and k/fiisa. (nonempty) border strip?

7.58. [2] Show that the number of odd hook lengths minus the number of even hook
lengths of a partition k is a triangular number.

7.59. This exercise deals with some basic combinatorial properties of border strips
and hooks. Let k be a partition, and let p e P. As noted in the solution to
Exercise 7.57, there is a simple bijection between p-hooks (i.e., hooks of size
p) of k and border strips of k of size p. Let D\ denote the diagram of k
with its left-hand edge and upper edge extended to infinity, as shown in Fig-
ure 7-17 for A. = (3,3,1). Put a 0 next to each vertical edge of the "lower
envelope" of Dx (whose definition should be clear from Figure 7-17), and a
1 next to each horizontal edge. If we read these numbers as we move north
and east along the lower envelope, then we obtain an infinite binary sequence
Cx = • • • C-2C^\CQC\C2 • • •. For instance,

C331 = ...0010110011 ••• .

We regard a translate • • • b-\bob\ • • • of C\, where bj = cm + , for some fixed
m € Z, as being the same as C\. Thus the choice of which term of C\ is labeled
c0 is arbitrary. Clearly the map l h > C\ is a one-to-one correspondence be-
tween partitions and infinite binary sequences beginning with infinitely many
0's and ending with infinitely many l's. The size \k\ of k is equal to the number
of pairs / < j with c, = 1 and Cj = 0.
a. [2—] Show that there is a (natural) one-to-one correpondence between the

p-hooks of k and integers i such that c, = 1 and ct+p = 0.
b. [2] Show that removing a border strip of size p from k is equivalent to choos-

ing i with ct = 1 and ci+p = 0, and then replacing Q with 0 and ci+p with 1.
c. [2] Let 0 be a border strip of k of size p , and let k\0 denote the partition

obtained by removing 0 from k. Show that A.\0 has exactly one less hook
length divisible by p than k.
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0

0

1
0

1

1 1 •••
0

0

Figure 7-17. The coding Ck of the partition k = (3, 3, 1).

d. [2+] Start with a partition k, and continually remove border strips of size p
until unable to do so. Show that the partition /x that remains is independent
of the order in which the border strips are removed. The partition /x is called
the p-core of A, and a partition with no border strips (or hooks) of size p
(equivalently, of size divisible by p) is called a p-core.

e. [2+] Let \x be a p-core. Let YptfJL be the set of all partitions whose p-core
is /x. Define k < v in Yp^ if k can be obtained from v by removing border
strips of size p. Show that Yp^ = Yk, where Y denotes Young's lattice.
Deduce that if f^in) is the number of partitions of n with p-core \x, then

n>0
"=*IMI n o - (7.178)

f. [2+] Let n e P . Show that the following three numbers are equal,
(i) The number of p-cores of size n.

(ii) The number of solutions {x\,..., xp-\) e Np~l to the equation

(iii) The coefficient of xn in

g. [2] When p — 2, find all partitions in (f)(i) explicitly. What identity results
from the equality of (i) and (iii)?

h. [2] Let Cp(ri) be the set of all k \- pn whose p-core is empty. Let / * be
the number of border strip tableaux r of shape k such that all the border
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strips appearing in r are of size p. Show that

(/*)2 = pn
n\. (7.179)

teCp(n)

7.60. a. [2+] Let 0 = X/fi be a border strip of size rs, where r, 5 e P. Show that
there are partitions /x = /x°C/x1 C • • • C /xr = A. such that each skew
shape /I1

 //JL1"1 is a border strip of size s. Deduce in particular that if m is
a hook length of X and k\my then A: is also a hook length of A.

b. [2+] Let A,/x h n , with £(/JL) = L Show that if X*O) / 0, then the
product Hx(q) := I L e ^ 1

 - ? * ( M ) ) is divisible (mZfa]) by nf= 1(l - ^ ' ) .
Here A(M) denotes the hook length of X at u.

7.61. [3-] Let X h jfc/t. Show that

and give a rule for deciding which. In particular, show that this number is 0
unless X has an empty &-core.

7.62. [2] Show that if X h n and /x h k < n, then

Here /xln~* denotes the partition /x U (ln - / : ) .
7.63. a. [2+] For A h n define

where ^Dn denotes the set of all derangements (permutations without fixed
points) in <Bn. Show that

Xhn k=0

b. [2+] Deduce from (a) that for 1 < k < n,

where Dj = #^D; (discussed in Example 2.2.1).
7.64. a. [2] For a skew shape X//JL where |A//x| = n, define the skew character

XX/tM of e n by ch xA//x = *x//x. so deg xV / x = /A//x- Now fix n and set
m = \\{n + 2)J. Define the skew shape

_ (m, m - 1 , . . . , l)/(m - 2, m - 3, . . . , 1), n odd
" "" { (m, m - 1 , . . . , 2)/(m - 2, m - 3 , . . . , 1), n even.
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470 Chapter 7

Thus rn is a "staircase border strip," e.g.,

Let En = deg x Xn • Show that En is an Euler number, as defined at the end
of Chapter 3.16, so

E xn

En— = tan* + sec*.
n>0

b. [2+] Show that if n — 2k + 1 and /x h n, then

10 if \x has an even part
[(— \)k+rE2r+\ if/xhas2r + 1 odd parts and no even parts.

c. [2+] Show that if n = 2k and \x h n, then

if /x has 2r odd parts and e even parts.
7.65. a. [2+] Let ^rn be a character of <&n for each n eF. Let us call the sequence

\fri, T/<2, . . . elementary if for all w; G <5n we have that ifn(w) is equal either
to d= deg \jsm for some m < n or to 0. For instance, the characters of the
regular representations are elementary, as are the skew characters xTn °f
Exercise 7.64. Now define ^rn by the condition that for \\- n, (i/rn, x

X) is
equal to the number of S YTs of shape A whose largest descent has the same
parity as n, where by convention every SYT has a descent at 0. For instance,
fx = 0, ^2 = X2, f3 = X2\ V = X4 + X31 + X22 + X211. Show that
x/fi, T/^, . . . is elementary, with deg \jsn = Dn, the number of derangements
(permutations without fixed points) in S r t . Find irn(w) explicitly.

b. [5—] What other "interesting" elementary sequences are there? Can all el-
ementary sequences be completely classified?

7.66. a. [3—] Let X//JL be a skew shape. Define a border strip decomposition of X/fi
to be a partitioning of the squares of X//JL into (nonempty) border strips. (We
are not concerned with inserting the border strips in a particular order, as is
the case for border strip tableaux.) For instance, Figure 7-18 shows a border
strip decomposition of the shape 8877/211. Show that the number d(X/fi)
of border strip decompositions of A//x is a product of Fibonacci numbers.
For instance, J(8877/211) = 2 • 32 • 5 • 82 • 13 • 212 • 34.

b. [3—] More generally, let
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Figure 7-18. A border strip decomposition of the shape 8877/211.

where K ranges over all border strip decompositions of X//JL and #K is the
number of border strips appearing in K. Show that Dx/^iq) is a product of
polynomials of the form ]T. ( m p )ql.

7.67. a. [2—] LetO < s < n — land A h n. Show that if w e <&n is an n -cycle, then

x V) =
0

if X = {n-s, Is

otherwise.

b. [3] Let G be a finite group with conjugacy classes C\,..., Ct. Fix w in
some class Ck, and let i\,..., im € [t]. Let x l , • • •, Xt be the irreducible
characters of G, and set Jr = deg xr'• Write //" for the common value of
Xr at any u 6 C/. Show that the number of m-tuples (u\,..., um) 6 Gm

such that Uj € Cj;. and Mi • • • um — w is equal to

nm
7 = 1

jm—l ' (7.180)

c. [2] Fix m > 1. Use (a) and (b) to show that the number of m -tuples
(MI, . . . , um) of n-cycles U[ e <5n satisfying u\U2 • • • um = 1 is equal to

(n -(m-2)
(7.181)

d. [2+] When m = 3, show that the above sum is equal to 0 if n is even, and
to 2(n - l)\2/(n + 1) if n is odd.

7.68. a. [3—] Let G be a finite group of order g. Given w e G, let f(w) be the
number of pairs (w, v) e G x G satisfying w = uvu~lv~l (the commutator
of u and v). Thus / is a class function on G and hence a linear combination
Y^ cx X °f irreducible characters x of G. Show that the multiplicity cx of x
in / is equal to g/x (!)• Since x (1) I g, it follows that / is a character of G.
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472 Chapter 7

b. [5] Find an explicit G-module M whose character is / . This would provide
a new proof of the basic result that x( l) divides the order of G.

c. [2] Deduce from (a) that

~7 z2 Pp(uvu-lv-l) = 22HxSx, (7.182)
U' U,V€&n Ah/2

where Hx denotes the product of the hook lengths of A.
d. [2+] Let n be an odd positive integer. Show that the number /„ of ways to

write the n-cycle (1, 2 , . . . , n) e <&n in the form uvu~lv~l (w, v e ©„)
is equal to In • n\/(n + 1).

e. [1+] Let K(W) denote the number of cycles of a permutation w e <&n.
Deduce from (c) that

u,ve&n k\-n tek

where c(t) denotes the content of the square t.
f. [3—] Show that if «, v are chosen at random (uniformly, independently)

from <&n, then the expected number En of cycles of uvu~l v~l is

/ odd

(7.183)

where Hn denotes the harmonic series Hn = 1 + ^ + ••• + £. Note that
Hn is the expected number of cycles of a random permutation in <5n, so the
remaining terms in (7.183) are a "correction."

g. [3—] Fix j G P. Show that if u, v are chosen at random (uniformly, inde-
pendently) from <&n, then the expected number enj of j -cycles of u vu ~l v ~l

is given by

where J^r indicates that we are to omit the term / = 2j —n — 1 when 2j > n.

7.69. a. [2+] Expand ^ ^2we& PP(w2) m terms of Schur functions.
b. [2] Show that the column sums of the character table of <5n are non-

negative. These are the numbers Ylx.\-n Xk(w)> where w e <&n is fixed.
(For the row sums of the character table of a finite group, see
Exercise 7.7 l(b).)

c. [3] Let A: be a positive integer. Show that ^2we& pp(w
k) is a nonnegative

integer linear combination of Schur functions. Equivalently, the function
rk = rn,k : &n -> Z defined by

rk{w) = #{M e <&>n : uk = w}

is a character of <&n.
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d. [3—] Let G be a finite group, and let / i , . . . , fm be class functions on G.
Define a class function F = Ffu_jm by

Let x be an irreducible character of G. Show that

( h ) </i'X)-"(/».X>. (7-184)

e. [2—] Show that equation (7.184) in the case G = <Bn and m = 2 is equiv-
alent to the following result. Let sx = HxSx, called an augmented Schur
function. Define a bilinear product • on An by

where the sum ranges over all w, V G <£>n such that p(u) = X and
p(v) = fx. Then for A, /x h n we have

^ n ^ = <WA, (7.185)

i.e., the augmented Schur functions are orthogonal idempotents with respect
to D.

f. [1+] Let (<2i, . . . , am) G Zm, and define a class function h — hai a on
e n by

Show that h is a character of <&n.
g. [2] Let G be any finite group, and let w e G. Find the number of pairs

(u,v)eGxG satisfying w = uvu2vuv.
h. [2—] Fix w e &n. Show that the number f{w) of solutions (u,v) e

&n x &n to the equation w = uvu~lv~l is equal to the number g(w) of
solutions (w, i>) G ©n x Sw to the equation w = w2u2. Give an algebraic
and a bijective proof.

i. [2+] Let y = y(x\,..., xr) be an element of the free group Fr on the
generators x\,..., xr. If G is a finite group and u> e G, let

Gr : y(uu . . . , wr) =

Write JC = xi and j = JC2, and let k e P. Show that for y = xyhxy~h

and y = jcy^x"1}'"^, the class functions fYiGn are characters of <&n (for
all n G P).
[3] Preserve the notation of (i). Suppose that all characters of G are integer-
valued, in which case we say that G is an IC-group. (Equivalently, if two
elements of G generate the same cyclic subgroup, then they are conjugate.
See e.g. [142, Chap. 13.1, Cor. 2].) Show that for all y e Fr and all finite
/C-groups G, the class function fyc is a difference of two characters of G.

Even more strongly, when r = 1 show that fYtG is a difference of two
characters for any finite group G. Morever, for each conjugacy class C; in
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474 Chapter 7

G, define the class function gi by

0 otherwise.

If G is an /C-group, then it follows easily from the orthogonality properties
of characters.(see, e.g., [142, p. 20]) that gt is a difference of characters.
Show that if r > 1, then fYic is a Z-linear combination of the g/'s. In
particular, the symmetric function

1

n' (ul,...,ur)€&r
n

is /7-integral (and hence s-integral).
k. [5—] Preserve the notation of (i). For what y is fY,&n a character of <&n for

all n > 1? For what y is fY,G a character of G for all finite groups G?

7.70. [3- ] Let JC(1), . . . , x{k) be disjoint sets of variables, where k e N, and let Hx

denote the product of the hook lengths of k. Show that

Vrn w\-wk=

(7.186)

Note that the case k = 2 is just the Cauchy identity (in virtue of Proposi-
tion 7.7.4). What do the cases k = 0 and k = 1 say?

7.71. a. [2+] Show that the following two characters of a finite group G are the same:
(i) The character of the action of G on itself given by conjugation (in

other words, the permutation representation p : G —>• <&G defined by
p(x)(y) — xyx~l, where <&G is the group of permutations of G).

(ii) J2X XX* where x ranges over all irreducible characters of G.
b. [2+] Denote the above character by \jrG, and let x be an irreducible char-

acter of G. Show that

where K ranges over all conjugacy classes of G and x(K) denotes x(w)
for some w e K. Thus (T/'G* X) is the row sum of row x °f the character
table of G. It is not a priori obvious that these row sums are nonnegative.
(For the column sums of the character table of &n, see Exercise 7.69(b).)

c. [2] Now let G = <Sn, and write tyn — tyc- Show that ch x//n = XIxi-/i P*->
s o E n > o c h ^ « = n«>i(1 ~ Pi)'1-

d. [3] Show that Kx := (V^ Xk) > 0, with the sole exception n = 2,
A = (1,1).

e. [5—] Is there a "nice" combinatorial interpretation of the numbers K)J
7.72. [3—] Let V be a vector space over a field A' of characteristic 0 (Q will do) with

basis V\, . . . , vn. &n acts on V by permuting coordinates, i.e., w-Vi = vw-i^y
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Hence <&n acts on the A>th exterior power AkV in a natural way, viz.,

U)(Vi A Vj A • • •) = Vw-ifl) A Vw-i(j) A • • • .

Show that the character of this action is equal to xX + Xk » where A.; =
<n-y, l>>.(SetxA" '=0.)

7.73. [3—] As in Exercise 7.72, <5n also acts on the polynomial ring K[v\,..., vn]
(= the symmetric algebra S(V*)) in a natural way, viz.,

Let î ^ denote the character of this action on the forms (homogeneous polyno-
mials) of degree k, so deg ifrk = {n+\~l). Show that

where sx(l,q, q2,.. •) is given explicitly by Corollary 7.21.3.
7.74. [3—] Let ^x be the irreducible representation of GL(n, C) with character

Sx(x\,..., xn), as explained in Appendix 2. We may regard <&n as the subgroup
of GL(n, C) consisting of the n x n permutation matrices. Thus cpk restricts to
a representation of <3n; let £jx denote its character. Show that for \x h n,

(ch$k,sll) = (sx,sll[h]), (7.187)

where s^h] denotes the plethysm of s^ with the symmetric function h =
ho + h\-\-h2-\ . Note that Exercise 7.72 corresponds to the case X = (1*),
while Exercise 7.73 corresponds to A. = (k).

7.75. a. [2+] Fix positive integers n and k. Let M denote the multiset {lw, 2 " , . . . ,
kn}. The action of <&k on [k] induces an action of <&k on the set ( . ) of
j -element submultisets of M. Let Vj(k) denote the multiplicity of the irre-
ducible character xA (where X h k) in the character of this action. Show that

j

b. [3—] Let QS denote the Q-vector space with basis S. Define a linear map

Uj(X) =J^Y,
YDX

where X e (M) and Y ranges over all elements of ( . ^ ) that contain X.
Show that Uj commutes with the action of ©*, and that if j < kn/2 then
Uj is injective.

c. [2+] Deduce that if ^ ( 1 , q,...,qn) = Yl)n=oaj(li> t h e n aJ = a^-j
(this is easy to do directly) and ao < a\ < • - - < a\kn/2\ • In other words,
the polynomial $x(l> q, . • •, qn) is symmetric and unimodal.

d. [2—] Show that the #-binomial coefficient (£) is symmetric and unimodal.
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476 Chapter 7

7.76. a. [2] The rank of a finite group G acting transitively on a set T is defined
to be the number of orbits of G acting in the obvious way on T x T, i.e.,
w(s, t) — (W'S, w-t). Thus G is doubly transitive if and only if rank G = 2.
Let x be the character of the action of G on T. Show that (x, X) = rank G.

b. [2] Find the rank of the natural action of <E>n on the set &n / <&a of left cosets
of the Young subgroup <&a.

c. [2+] Give a direct bijective proof of (b).
7.77. a. [3—] If H and K are subgroups of a group G, then a double coset of (if, K)

isasetHwK = [uwv\u e H, v e A'} for a fixed u; e G. The distinct dou-
ble cosets of (//, K) partition G into pairwise disjoint nonempty subsets
(not necessarily of the same cardinality). Show that when G is finite, the
number of double cosets of (H, AT) is given by

(indgln, indgl*).

b. [2+] For any G (not necessarily finite), show that the number of double
cosets of (//, H) is equal to the rank (as defined in Exercise 7.76) of G
acting on G/H by left multiplication.

c. [2+] Let G = &n, and let H and K be Young subgroups, say H = &a

and K = <S .̂ Interpret the number of double cosets of (if, K) in a simple
combinatorial way, and give a combinatorial proof.

7.78. Let / and g be class functions (over Z or a field of characteristic 0) on a
finite group G. Define the Krone eke r (or tensor) product fg by fg(w) =
f(w)g(w), so / g is also a class function. Given (finite-dimensional) represen-
tations <p : G -> GL(V)and/0 : G -> GL(W), then define the tensor product
representation <p ® p : G —• GL(V 0 W) by

w)'(i(8))') = wj'X(8)^1)' (diagonal action).

Let Xcp and Xp denote the characters of <p and p, respectively. Then the character
Xcp®p of ^ 0 p is just the Kronecker product Xy>Xp> so x^Xp is a nonnegative
integer linear combination of irreducible characters. In particular, for G = Sr t

and X, /x h ft, we have

x"xM = ^ ^ v X v , (7.188)

for certain nonnegative integers gx/xv Define the internal product s^ * s^ by

and extend to all of A by bilinearity. Clearly * is associative and commutative,
and/* n */ = / f o r / e An.
a. [2—] Show that gx^v is invariant under permuting the indices A, \i, v.
b. [2-] Show that

SA. * fy = ch x ^ := — YJ Xk

n' we&n

c. [2] Show that if / G An then en * f = cof.
d. [2] Show that px^p^ = Zx
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e. [2] Let A(JC) (g) A(y) be defined as at the end of Section 7.15, with the scalar
product such that the elements slJi(x)sv(y) form an orthonormal basis. Let
xy denote the set of variables xtyj. Show that for any f,g,h € A we have

(ftxy),g(x)h(y)) = (f,g*h),
where the first scalar product takes place in A(x) 0 A(y) and the second
in A. This gives a "basis-free" definition of the internal product, analogous
to equation (7.67) for the ordinary product.

f. [2+] Show that

(1 - xtyjZkY1 = ^2sk * sfM(x)sk(y)sfl(z)

g. [2+] More generally, show that if x^l\ ..., x^ are disjoint sets of variables,
then

= £
7.79. a. [3-] Show that if (sk, s^ * sv) # 0, then i(k) < i(fi)l(y).

b. [3—] Suppose that l(k) < ab. Show that there exist partitions /x, v satisfy-
ing t(/ji) < a, t(y) < b, and (sk, s^* sv) ^ 0 .

c. [3] Prove the following strengthening of (a) and (b): for fixed /x, v h n, we
have

msix{l(k): (sA, Sfj, * sv) ^ 0} = |/x fl v'|,

where /x fl vr is obtained by intersecting the diagrams of [X and v'. Dually,
we have

max{^i: {sk, s^ * sv) ^ 0} = |/z fl v\.

7.80. a. [3-] Let k, \L, v h n satisfy sk * ̂  = flSy for some a e P. Show that one
of k or /x is equal to (ft) or (ln), and that a = 1.

b. [3] Let A, /x, v, a h n, where v ^ a, satisfy Sx * s^ = a5v + bsa for
some a, Z? e P. Show that one of k or /x has nontrivial (i.e., not (w) or (ln))
rectangular shape, and the other is equal to (n — 1, 1) or (2, lw~2), and that
a = 6 = 1.

7.81. [2+] Show that for khn,

Sk *S«-1,1 = S\Sx/\ — Sk-

7.82. a. [2] Show that

X * Sk = FT 7 x'
AePar \li>\(1 ~ Pi)

where * denotes internal product.
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b. [ 3 - ] Show that

7.83. a. [2+] Let x and x// be irreducible characters of a finite group G. Show that
X "if is contained in the regular representation, i.e., (xV^'0) < 0(1) f° r anY
irreducible character 0 of G.

b. [1+] Deduce from (a) that if A, /x, v h w, then (sx * sM, sv) < fv (the
number of SYTs of shape v).

7.84. a. [2+] Let A, /x h n9 with £(A) = £. Show that

summed over all sequences (/x°, / x 1 , . . . , /x^) of partitions such that 0 =
/x° C /x1 C • • • C /x£ = /x and j/xV/x1""11 = A.,- for all / > 1.

b. [2+] Let A, /x h rc. Show that

where A ranges over all n x n N-matrices (ay) with row(A) = X and
col(A) = /x.

7.85. [3] Fix n > 1. Given a = (a\,..., ak) e ¥k with a\ + • • • + ak = n,
let B(a) denote the border strip whose /th row has a,- squares. Let 5 =
{ o f i , « i + « 2 , . . . , « i H-«2H hofit—1} ^ [n — 1] and define 55 = 5fi(a),the
skew Schur function of shape B(a). Now let S, T c [« — 1] and A h n, and
let * denote internal product. Show that {ss * ST, sy) is equal to the number of
triples u, v,w 6 S n such that uvw = 1, D(u) = S, D(v) = 7\ and if w; is
inserted into X from right to left and from bottom to top, an SYT results. Note
that the hook shapes (n — k, \k) are border strips, so we have a combinatorial
interpretation of the coefficients gx^v when /x and v are hooks.

Example. Let n = 3 and S = T = {1}, so ss = ST = $21- There are four
triples u,v,w e ©3 such that uvw = 1 and D(u) = D(u) = {1}. In only
one of these can we get an SYT by inserting w as required, viz., u = 312,
i> = 213, w; = 321. We can insert w exactly once into each X h 3, viz.,

123 12 1
3 2 .

3

Hence S21 * 2̂1 = ^3 + 2̂1 + 1̂11 •

7.86. a. [3—] Given A, /x h n, define

= sx * fy(l, tf, I2, • • •)•

Show that Gx^(q) = Px^(q)Hx(q)~\ where PXfl € Zfe] and //A(^) is
defined in Exercise 7.60(b).

b. [2+] Show that Px^l) = / M , the number of SYTs of shape /x.
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c. [3] Show that if /x = (n - k, lk), then Px^{q) is the coefficient of tk in the
product

f ] (ql-l+tqj-1).

d. [5] Show that the coefficients of Px^iq) are nonnegative. This has been
checked for n < 9. Note that (c) shows that the coefficients of P^ are
indeed nonnegative when \x is a hook.

7.87. [3—] Let JC, j , z be three sets of variables. Show that

nn n
r>\ a\,...,ar

sx *fy
k,/Ji,V

Here a\,..., ar range independently over the positive integers and puiz) =

7.88. a. [3—] Let Cn be the cyclic subgroup of S n of order n generated by an
n-cycle w. Let x be the character of Cn defined by x(w) = e2ni^n. Let
\jrm — \jsmn denote the induction of xm to ©n, for m e Z. Show that

i,d))pn
d
/d, (7.189)

/ ! ^ 0 ( d / ( f n , d ) )

where 0 denotes Euler's totient function and (m, d) denotes the greatest
common divisor of m and d.

b. [3—] Show that {\lrm,sx) is equal to the number of SYTs T of shape X
satisfying maj(7) = m (mod n).

c. [2—] Deduce from (a) and (b) that the number of SYTs T of shape X sat-
isfying maj(J) = m (mod n) depends only on X and gcd(m, n). Is there a
bijective proof?

d. [3+] Let yk{X) denote the number of SYTs T of shape X satisfying maj(J) = 1
(mod k). Show that if X h n then

> yn(X).

e. [2+] Let

n>\

—— l0g(l
d>\

and let// := 1 +/zi +/i2 + - • •• Show that J[H - 1] = ( / f - l ) [ 7 ] = Ai,
where brackets denote plethysm. In other words, J and H — 1 are plethystic
inverses of one another.
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7.89. a. [3—] Let a < b < c < • • • be an ordered alphabet. A Lyndon word is a word
w\ W2 - • • wn in the alphabet which is lexicographically strictly less than all
its nonidentity cyclic shifts. Thus aabcaabbc is not a Lyndon word, since its
cyclic shift aabbcaabc is lexicographically smaller; nor is abab a Lyndon
word, since it is equal to its cyclic shift of length two. Let f(ot) be the number
of Lyndon words with a\ a's, a2 b's, etc., where a = («i, a2, • • •)• Define

(7.190)

where a ranges over all weak compositions of n. For instance, L3 =
W2i + 2m\\\. Show that

J2{d)n/d (7.191)

where //, denotes the classical Mobius function of number theory.
b. [1+] Show that Ln = ch(i/f), where V" denotes the character of <&n obtained

by inducing from a cyclic subgroup Cn generated by an rc-cycle w to <&n

the character x denned by x(w) = e2ni/n. Deduce that (Ln, sx) e N for
every kh n.

c. [1+] Even more strongly, show that (Ln, sx) is the number of standard
Young tableaux T of shape k satisfying maj(T) = 1 (mod n).

d. [3—] Show that every word w in the letters a, b,... can be factored uniquely
into a weakly decreasing (in lexicographic order) product of Lyndon words.
For example, bccbbcbaccaccabaabaa has the factorization bcc • bbc • b •
ace • ace • ab • aab - a - a.

e. [2+] Given a word w as above, define its Lyndon type x(w) to be the par-
tition whose parts are the lengths of the Lyndon words in the factorization
of w into a weakly decreasing product of Lyndon words. For instance,
x(dbca) = (2, 1, 1). Show that

Px(w) = n]-hn,

where w ranges over all permutations of n ordered letters. In other words,
the distribution by Lyndon type of the permutations of an (ordered) n-set
coincides with the distribution by cycle length.

f. [3—] Let M be a finite multiset on the set {a, b,...}. Define

w

where w ranges over all permutations of M. Thus by (e), tM is a multiset ana-
logue of the cycle indicator of <&>n. Define L^m^ to be the plethysm hm [Li ] (as
defined in Appendix 2). If A = (lmi2m2 • • -),thenletLx = L(i«i)L(2»2) • • •-
If M = {ari, bri,...} and /x is the partition with parts r\, r2,..., then show
that tM(y) is the coefficient of m^(x) in Y^\ Lx(x)px(y).

g. [3-] Show that

Lk(x)pk(y) = ^2px(x)Lx(y).
x

h. [2+] Deduce that tM is s-positive (and s-integral).
i. [5—] Is there a "nice" combinatorial interpretation of the coefficients
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7.90. a. [2] Let a = ( « i , . . . , o^) be a sequence of positive integers summing to n
andlet|A//x| = n.LetS = {a\,a\+ot2,..., ct\ H ha^-i}. Show that
the number of (skew) SYTs r of shape A//x satisfying D{x) c 5* (where
D(T) denotes the descent set of r) is equal to the Kostka number Kx/^^a-
Give a simple bijective proof.

b. [2] Use (a) to give a simple direct proof of Proposition 7.19.9.

7.91. Let F(t) = Y2j>o fjtJ ^e a formal power series, where /o = 1. Expand the
product F(ti)F(F2) • • -as a linear combination of Schur functions sx(h, t2,.. .)•
The coefficient of sx(t\, t2,...) is called (in the terminology of D. E. Little-
wood [88, pp. 99-100 and Chap. VII]) the Schur function (indexed by X) of
the series F, and we will denote it by s[. Equivalently, if R is a (commuta-
tive) ring containing f\, f2,... and cp : A —> R is the homomorphism defined
by cp(hj) = fj, then s[ = cp(sx). Extend the definition of s[ by defining
uF = cp{u) for any u G AR.

a. [1] Show that if F(t) = ]~[/>1(l - x(t)~\ then j f = ^(JC). What if

b. [1] Show that if F(t) = Y\"=1(l - qi"lt)~l
9 then

where b(k), C(M), and /i(w) have the same meaning as in Theorem 7.21.2.
c. [2+] Deduce from (b) that if

- yg*t

then

d. [2-] Show that in general if F(t) = J2j>o fjfi a n d ^ ) = *>tnen

e. [3+] Suppose that F(t) is a nonconstant polynomial with complex coeffi-
cients (with F(0) = 1 as usual), so that s[ is just a complex number. Show
that the following four conditions are equivalent,
(i) Every zero of F(t) is a negative real number.

(ii) For all partitions A, s[ is a nonnegative real number. Equivalently, when
the product F(t\)F(t2) • • • is expanded as a linear combination of Schur
functions sx(?i, *2> • • -X aU the coefficients are nonnegative real num-
bers. In other words, F(t\)F(t2) • • • is s-positive.

(iii) When the product F(t\)F(t2) • • • is expanded as a linear combination
of elementary symmetric functions ex(t\ ,h,.. .)> all the coefficients are
nonnegative real numbers. In other words, F(t\)F(t2) • • • is ̂ -positive.
Equivalently, mf is a nonnegative real number for all partitions X.

(iv) All coefficients of F{t) are nonnegative real numbers, and the matrix
A = (p^_;)"ylo ^s positive semidefinite. Here we set p$ = deg F.
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7.92. a. [3+] Let A = (atj) be an n x n real matrix such that every minor (= deter-
minant of a square submatrix) is nonnegative. Define the symmetric function

Show that FA is s-positive.
b. [5] Show that FA is /z-positive.

7.93. [2+] Let u = u\ • • • um e e m and v = v\ • • • vn e &[m+i,m+n]- Let sh(w, v)
denote the set of shuffles of the words u\- • -um and v\ • • • vn, i.e., sh(w, i>)
consists of all permutations w\ • • • w m + n of [m + n] such that u\ - - -um and
i>i • • • vn are subsequences of w. Hence in particular #sh(w, v) = ( m ^ n ) . Let
a = co(«) and P = co(u), as defined at the beginning of Section 7.19. Show
that

LaLp =

7.94. a. [2+] Let Q denote the ring of quasisymmetric functions (over Q), and de-
fine a linear involution co: Q —> Qbyd>(La) = L«, where if a e Comp(n)
then Sa = [n — 1] — Sa. Show that co is an automorphism of Q, and that
co restricted to A coincides with the involution co.

b. [3—] Let P be a finite graded poset of rank n with 6 and 1. Let / € I(P)
(the incidence algebra of P) satisfy f(t,t)= 1 for all t e P. Define

Ff=

using the same notation as equation (7.176). Clearly Ff G Qn. Show that
co(Ff) = ( - I f F/-i. Note that Exercise 7.48(b) is the special case / = f.

7.95. a. [2] Given S1 c [rc — 1], let a = co(S) be the corresponding composition
of n, as defined at the beginning of Section 7.19. Let Ba be the border
strip whose i-th row from the bottom has length a,-, and write Ps as short
for the poset Psa (where Px/^ is defined after Corollary 7.19.5). Given
w = W\W2 • • • wn G <Sn, let cow be the labeling of Ps obtained by insert-
ing the numbers wt into the squares of Ba from bottom to top and from left
to right. For instance, if a = (2, 3, 1) (so S = {2, 5}) and w — 426315,
then (Ps,cow) looks as follows:
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Show that the Jordan-Holder set C(Ps, cow) consists of all permutations
v e <&n such that D(wv~l) = S.

b. [2+] Deduce from (a) the following statement. Given w e <&n and S,T c
[n — 1], define

f(w, 5, T) = #{(II, i ; ) G 6 n x 6 n : M i ; = w, D(M) = S, D(v) = T}.

Then / ( tu , S, T) = / ( u / , S, T) whenever D(w) = D{wf).

7.96. [3] For w € <3n let LCO(W) denote the quasisymmetric function given by equa-
tion (7.89), where co(u;) is defined at the beginning of Section 7.19. Define

we&n

regarded as an element of the group algebra Q<&n with coefficients in the ring
Q of quasisymmetric functions. Thus Tn acts on Q<&n by left multiplication.
Show that the eigenvalues of Tn are the power sums p\ with multiplicity n\/zx,
the number of permutations w e <&n of cycle type X. What are the eigenvectors?

7.97. a. [2] Fix r, c, and A. = (A.i, A 2 , . . . ) h t. Let f(n) be the number of plane
partitions 7r = (TCIJ) of n with main diagonal (7Tn, n'22, •. 0 = A and with
at most r rows and at most c columns. Set F(x) = X!n>o f(n)*n, and show
that

F(x) = Jc"f
 ^ ( J C , JC2, . . . , 2

b. [2+] Show that if g(n) is the number of symmetric plane partitions with
main diagonal X, then

n>0

7.98. a. [2+] Given X h w and (/, ; ) e K define

where the jcm's are indeterminates and the product ranges over all squares
(k, I) e X in the hook of (/, j), i.e., such that either k = i and / > j , or
I = j and k > / . I f now n = (7T/7) is a reverse plane partition of shape X
(allowing 0 as a part), then define

Show that

uek

where n ranges over all reverse plane partitions of shape X (allowing 0 as
a part).

b. [3—] State and prove an analogous result for symmetric reverse plane par-
titions of shape X (where X = X').
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7.99. [2+] Let Kt(n) be the number of plane partitions of n with trace t. Show that
if 0 < n < t, then Kt(n + t) is equal to the coefficient of xn in the expansion

- JC1')-1"-1 = 1 + 2x + 6x2 + 14JC3 + 33JC4 + 7OJC5 + 149x6 + • • • .

7.100. a. [3—] Let A and B be two N-matrices with the same support, i.e., aij ^ 0

if and only btj # 0. If A —-> (P , Q) and B -^> (P ' , £ 0 , then show that
P and P ' have the same first columns, and that Q and Q' have the same
first columns.

b. [2+] Let h(n) denote the number of plane partitions it = (TT^) whose
shape is contained in X and that satisfy n = tr(7r) := 7t\\ + 7T22 + • • •.
Show that tx{n) is a polynomial function of n of degree \k\ — 1.

c. [2+] Show that if X is an a x b rectangle (i.e., k has a parts, all equal to
Z?), then

ab- 1

7.101. a. [3—] Let 8n be the staircase shape (n — l,n — 2 , . . . , 1), and let fn(m)
denote the number of plane partitions, allowing 0 as a part, of shape 8n and
with largest part at most m. For instance, it follows from Exercise 6.19(vv)
that /„(!) = Cn (a Catalan number). Show that

um)=Y\—- i n ,-+,-•! ) = n
(7.193)

b. [3—] More generally, let gMdtim) denote the number of plane partitions,
allowing 0 as a part, of shape X = (M—d, M—2d,..., M—td). Show that

gMdiQn) = I I ^ , / x " I I
£+c(u)>kt

(7.194)

where c(u) denotes the content of the square u.

7.102. a. [2-] For k e Par, let n be large enough that n + c(u) > 0 for all u e k.
(Specifically, n > l(k).) Define

Show that h,n(q) is a polynomial in q with nonnegative integer coefficients.
b. [3—] Generalize (a) to skew shapes A.//X. Here we define c{u) for u e k/\x

by restriction from k. (For example, 21/1 has contents 1 and —1, so we
must take n > 2.) Thus if
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then show that tx/^,n(q) is a polynomial in q with nonnegative integer co-
efficients. More precisely,

summed over all reverse SSYT T = (7};) (allowing 0 as a part) of shape
X/fji such that 7/; < n + fit — i. For instance, if X/fi = 32/1 and n = 2,
then the tableaux enumerated by £32/1,2(4) are given by

00 00 00 00 00
01 11 02 12 22 *

Hence ^2/1,2(4) = q + 2q2+q3 + qA.
7.103. a. [3+] Let A(r) be the number of plane partitions it with at most r rows

such that it is symmetric and every row of it is a self-conjugate partition.
(It follows that it has at most r columns and largest part at most r.) Such
plane partitions are called totally symmetric. Show that

Atr)= • • ' • + ' ' + * - 1

b. [3+] Let B(r) be the number of plane partitions as in (a) which are also
self-complementary (as defined in Exercise 7.106(b)). Show that

B(r) =

c. [4—] A monotone triangle of order r is a Gelf and-Tsetlin pattern (as defined
in Section 7.10) with first row 1, 2, . . . , r, for which every row is strictly
increasing. Let M{r) be the number of monotone triangles of order r. For
instance, M(3) = 7, corresponding to

123
12

1

123
12

2

123
13
1

123
13
2

123
13

3

123
23
2

123
23
3

Show that M(r) = B(r).
d. [3] Let P be a poset with 1. The MacNeille completion L(P) of P (men-

tioned in the solution to Exercise 3.12) is the meet semilattice of 2P (the
boolean algebra of all subsets of P) that is generated by the principal or-
der ideals of P. Let Pn denote the Bruhat order of the symmetric group
&n, as defined in Exercise 3.75(a). Show that #L(Pn) = M{n). Figure
7-19 shows L{P^), with the elements of P4 indicated by open circles.

7.104. [3+] Write f(n) ~ g(n) if lim^oo f(ri)/g(ri) = 1. Let a(ri) denote the
number of plane partitions of n. Show that

a{n) ~ £(3)1/362-u/36n-25/36exp(3 • 2-^^O)1/3n2/3 + 2C),

where £ denotes the Riemann zeta function and

-I
00 y log y dy

V = -0.0827105718 • • •.
e2ny _ X
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3421 4312

2431 4213

1432 3214

1342 2314

1243 2134

1234

Figure 7-19. The MacNeille completion of the Bruhat order of <E>4.

7.105. [3—] If the partitions A and /x have the same multiset of hook lengths, does it
follow that X and \x are equal or conjugate?

7.106. a. [2] Let v = (cr), the partition with r parts equal to c. Find the expansion
of s^ in terms of Schur functions.

b. [3-] Fix ry c, and t. Let n = (jtij) be a plane partition with at most r
rows, at most c columns, and with largest part at most t. We say that TC
is self-complementary, or more precisely (r, c, ty self-complementary, if
TTij = t — 7Tr-ifC-j for all 1 < / < r and 1 < j < c. In other words, 7r is
invariant under replacing each entry k by t — k (where we regard n as being
an r x c rectangular array) and rotating 180°. For example, the following
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plane partition is self-complementary for (r, c, t) = (4, 5, 6):

" 6 6 5 4 3 "
6 5 5 4 2
4 2 1 1 0

. 3 2 1 0 0 .

Let F(r, c, t) denote the number of plane partitions with at most r rows, at
most c columns, and with largest part at most t. Let G(r, c, t) denote the
number of such plane partitions that are self-complementary. (It is easy to
see that G(r, c, t) ^ 0 if and only if ret is even.) Show that

G(2r, 2c, It) = ¥{r, c, tf (7.195)

Find similar formulas for G(2r, 2c, It + 1) and G(2r, 2c + 1, It + 1).
7.107. a. [2+] Let /x € Par, and let A^ be the infinite shape consisting of the quad-

rant Q = {(/, j) : / < 0, j > 0} with the shape /x removed from the
lower right-hand corner. Thus every square of A^ has a finite hook and
hence a hook length. For instance, when JJL = (3, 1) we get the diagram

10

9

8

6

3

9

8

7

5

2

8

7

6

4

1

6

5

4

2

5

4

3

1

3

2

1

Show that the multiset of hook lengths of A^ is equal to the union of the
multiset of hook lengths of Q (explicitly given by {I1, 22, 33,...}) and the
multiset of hook lengths of \x.

b. [2+] Fix a plane partition /x, and let a^in) be the number of skew plane
partitions of n whose shape is A//x for some k. For instance, «2(2) = 6,
corresponding to

•11 2 - 1 1 1 1 1 J

Show that

!>(«)<?-=(rid - <?')-<) (
n>0 V>1 / \«

c. [3] It follows from (b), Corollary 7.20.3, and Theorem 7.22.1 that
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488 Chapter 7

where a(k) is the the number of plane partitions of £, and b^n — k) is the
number of reverse plane partitions of n—k of shape /z. Find a bijective proof.

7.108. [2-] Let p, q > 2. Find explicitly the number F(p, q) of w e <&P+g with
longest increasing subsequence of length p and longest decreasing subsequence
of lengthy.

7.109. [3] Let E(n) denote the expected length of the longest increasing subsequence
of w G <Sn. Equivalently,

E(n) = —

a. [2-] Show that

£I(/*)2- (7-196)

k\-n

b. [3] Show that limn^oo E(n)/^/n exists.
c. [2] Let a denote the limit in (b). Assuming that a does indeed exist, deduce

from Example 7.23.19(a) that a > 1.
d. [3-] Show that a < e.
e. [3+] Write Xn = ((Xn)i, (An)2,...) for some partition of n that maximizes

fx (over all X h n). Identify kn with the function from R>o to R>o defined
by

Thus /0°° Xn(x) dx = 1. Show that for weak convergence in a certain "rea-
sonable" metric, we have

lim ln = / ,

where y = f(x) is defined parametrically by
2

x = y + 2cos#, y = — (sin# - ^ c o s ^ ) , 0 < ^ < 27r,
71

and /(JC) = 0 for x > 2. Thus / describes the "limiting shape" of the
partitions that maximize fk.

f. [3-] Deduce from (e) that a > 2.
g. [3] Use the RSK algorithm to show that a < 2. Hence a = 2.

7.110. [3-] Let d(T) denote the number of descents of the SYT T. Define

E
XePar I risanSYT

\ of shape A,

Show that

Z =
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Exercises 489

and

z =

where n = |A.|, € = £(A), and A^(^) denotes an Eulerian polynomial.
7.111. Let B be a subset (called a board) of [n] x [71]. Let X = XB be the set of all

permutations w € <&n satisfying w{i) = j => (i, j) G B. Let Zx(x) denote
the augmented cycle indicator of X, as defined in Definition 7.24.1.
a. [2-] Let B = [n] x [w]. Show that Zx = n\hn.
b. [2+] Let X = {w € S n : tt>(n) 7̂  1}. Express Zx in terms of the basis

c. [3] Suppose that there are integers a,b > 0 such that # + b < n and
(/, j) G 5 whenever / < n — a or j > b. Let m = min{<z, b}. Show that
Zx is a nonnegative (integer) linear combination of the symmetric functions
hjhn-j, 0 < j < m. (Note that (b) corresponds to the case a — b = 1.)

d. [5] Let B C [w] x[n], and suppose that the set {(1, n + 1 — j) : (i, j) € B}
is the diagram of a partition. Show that Zx is h-positive.

e. [3—] Let w £ <&n, and let Bw denote the n x n chessboard with w removed,
i.e.,

Bw = {(iJ)e[nf

Show that

where Jx is defined in Exercise 7.63(a).
f. [3—] Let w be an rc-cycle in (e). Show that

where D/_i denotes the number of derangements of [i — 1].
7.112. a. [2+] Define two sequences a\(i2 • • • an and b\b2- - -bn to be equivalent

if one is a cyclic shift (conjugate) of the other. A necklace is an equiva-
lence class of sequences. Show that the number N(n, k) of necklaces of
length n whose terms ("beads") belong to a ^-element alphabet is given
by

N(k,n)=-J\<p{d)knld, (7.197)

where 0 denotes Euler's totient function.
b. [2+] Find a formula for the number of necklaces using n red beads and n

blue beads (and no other beads).
7.113. [2+] Let gt (p) be the number of nonisomorphic graphs (without loops or mul-

tiple edges) with p vertices and / edges. Use Exercise 7.75(c) to show that the
sequence go(p), g\(p), • • •, g(p)(p) is symmetric and unimodal.
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490 Chapter 7

Solutions to Exercises
7.1. True!

HINT: Where is the period at the end of the sentence?

7.2. See T. Brylawski, Discrete Math. 6 (1973), 201-219, and C. Greene and
D. J. Kleitman, Europ. J. Combinatorics 7 (1986), 1-10. Note that Exercise
3.55 is concerned with the Mobius function of Par(rc). (The answer to (c) is
n = 7.)

7.3. Let wbea primitive cube root of unity. Then

1 + Xt + JC?) = - (DXi)(\ -

(-l)m+nco2m+n]

where

2 if m - n = 0 (mod 6)

1 if m — n = 1 (mod 6)

— 1 if m — n = 2 (mod 6)

- 2 ifm - r c = 3 (mod 6)

— 1 ifm—n=4 (mod 6)

1 if m — n = 5 (mod 6).

This result is due to I. M. Gessel.

7.4. One of many ways to prove this formula (known to Jacobi) is to take the formula
sx. = ax+s/as (Theorem 7.15.1), put X = (r), and expand the determinant
<2(r)+s by its last column. For further aspects, see R. A. Gustafson and S. C.
Milne, Advances in Math. 48 (1983), 177-188.

7.5. By setting y\ = t and yi = y^ = • • • = 0 in (7.20) (or by reasoning directly
from (7.11)), we get

(7.198)
n>\ n>0

Differentiate with respect to t and multiply by t to get

n>\

This is equivalent to the stated formula.

7.6. (Sketch.) Let C i , . . . , Cy be the cycles of w of some fixed length / (so j = mi).
Choose a permutation n e <Sy in m,! ways. Choose an element a^ e C*,
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1 < k < j , in imi ways. Do this for all i. Then there is a unique permutation v
commuting with w such that if bk is the least element of C*, then v(bk) =
and all v commuting with w are obtained in this way.

7.7. Answer. A basis consists of {px : A h w, all parts A.,- > 0 are odd}.

Clearly each such px € £2". Conversely, assume that / € Qn but
/ ^ spanQ{/?x : A h «}. We can assume that / = J ^ c^/^, where A ranges
over all partitions of n with at least one even part. Let \x be a /easf element in
dominance order for which cM =̂  0. Then the coefficient of x^x^xjf3 • • • in
/(JCI , — x\, JC3, JC4,...) is nonzero [why?], a contradiction. •

It follows that dim Qn is the number of partitions of n into odd parts. By
a famous theorem of Euler (see for instance item 10 of the Twelvefold Way
in Section 1.4, as well as G. H. Hardy and E. M. Wright, An Introduction to
the Theory of Numbers, fourth edition, Oxford University Press, London, 1960
(Thm. 344), and [1.1, Cor. 1.2]), this is also the number of partitions of n into
distinct parts. A natural basis for Qn (due to Schur) analogous to Schur functions
and indexed by partitions of n into distinct parts appears in [96, Ch. III.8].

7.8. Let / = J2x\-n C*-P^- T h e n <°f = J2xhn C^£*.P^ s o

(cof)k =

On the other hand,

fk =
M-n X\-n

SO (Ofk = J^Xhn c*.£kkPk),. NOW

and the proof follows.

7.9. (Sketch.) From akljL = (fx,h^) we get h^ = J2xa^e^- F r o m (7-13) o r

otherwise, one shows that

Xhn

where Cx is the number of distinct permutations of (A.i , . . . , A.̂ ) (where I =
t(X)) and hence is just the multinomial coefficient

V.

mx{k)\m2(X)\.-.

Since hx and ex are multiplicative, one can compute a^ by expanding /zMl

h^ • • • in terms of the ex's.
Forgotten symmetric functions were first "remembered" by P. Doubilet, Stud-

ies in Applied Math. 51 (1972), 377-396. A different (less straightforward)
proof from that given above appears in this reference.
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492 Chapter 7

7.10. We have

Suppose that A h r . Then [why?]

Hence

A*

E
At ^ePerm(Ai) n> l

where Perm(/z) denotes the set of distinct permutations of (/JL\, 1x2,.. .)• We get

SO

j
Similarly (or because the transition matrix M(f, m) is an involution),

„ , x lU^^ixy^^ reven
[U^A^xy^, rodd.

7.11. Answer: ^"Zo(^ — l ) 7 ^ - ; , ^ • Once this answer is guessed, it can be verified
as follows. We obtain an SSYT of shape (n — j , V) and type /x by choosing
which parts of /x, excluding the part 1, go in the j squares in the first column
below the first row. There are (£( ^ ) such choices, so K^-j^j)^ = (^ {{)•
Hence the coefficient of mM in the claimed answer is given by

and the proof follows.
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7.12. This result was conjectured by E. Snapper, /. Algebra 19 (1971), 520-535
(Conjecture 9.1), and proved independently by R. A. Liebler and M. R. Vitale,
/. Algebra 25 (1973), 487-489, and T. Y. Lam, / PureAppl Algebra 10 (1977),
81-94 (Thm. 1).

7.13. a. See A. D. Berenshtein (= Berenstein) and A. V. Zelevinskii (= Zelevinsky),
Fund. Analysis Appl. 24 (1990), 259-269; Russian original, 1-13.

7.14. a. By Corollary 7.13.7, the number in question is the number S$(r) of 3 x 3
symmetric N-matrices for which every row sum is r. The desired formula
is now an easy consequence of the expression for G${k) following Propo-
sition 4.6.21.

b. Now by Corollary 7.13.7, we are just counting the number Sn(r) ofnxn
symmetric N-matrices for which every row sum is r. Proposition 4.6.21
shows that Sn(r) has the form Pn(r) + (-1)" Qn(r). It is not difficult to
find deg Pn(r), e.g., by arguing as in the proof of Proposition 4.6.19 or by
computing the maximum number of linearly independent n x n symmetric
N-matrices. The value of deg Qnix) is mentioned in the Notes to Chapter
4 as a conjecture. This conjecture was proved by Rong Qing Jia, in For-
mal Power Series and Algebraic Combinatorics, Proceedings of the Fifth
Conference, Florence, Italy, June 21-25, 1993 (A. Barlotti, M. Delest, and
R. Pinzani, eds.), Universita di Firenze, pp. 292-300, using the theory of
multivariate splines. For a related paper, see R. Q. Jia, Trans. Amer. Math.
Soc. 340 (1993), 179-198.

7.15. See I. G. Macdonald, Bull. London Math. Soc. 3 (1971), 189-192. For the case
p = 2, see also J. McKay, J. Algebra 20 (1972), 416-418.

7.16. a. This result was first stated explicitly by E. A. Bender and D. E. Knuth, /.
Combinatorial Theory (A) 13 (1972), 40-54. An earlier Pfaffian expres-
sion for a generalization of Bk was given by B. Gordon and L. Houten, /.
Combinatorial Theory 4 (1968), 81-99. Gordon, /. Combinatorial Theory
11 (1971), 157-168, simplified a special case, which was equivalent to a
specialization of B/^ to a determinant. Bender and Knuth observed that Gor-
don's simplification applied to B^ itself. Further discussion appears in I. M.
Gessel, J. Combinatorial Theory (A) 53 (1990), 257-285 (§6).

b.-c. By Pieri's rule (Thm. 7.15.7), we get

M-n

Now take the coefficient of x\X2 • • • xn on both sides, and the formula for
y2(n) follows. This argument is due to A. Regev, Advances in Math. 41
(1981), 115-136. Regev gives a similar (though more complicated) argu-
ment for & = 3. (See Exercise 7.82(b).) Combinatorial proofs for 2 < k < 5
are due to D. Gouyou-Beauchamps, Europ. J. Combinatorics 10 (1989), 69-
82. Gessel, loc. cit., Thm. 15, deduces the formulas for yk(n), 2 < k < 5,
from (a).

d.-e. See Gessel, loc. cit., §7. In this reference Gessel gives a slightly more
complicated formula than (7.166) for u>$(n), but he subsequently found the
simplification stated here.
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494 Chapter 7

f. The case k = 2 was done in Exercise 6.19(xx). Some formulas for yk(n) and
uk(n) for large k are given by I. P. Goulden, Canad. J. Math. 42 (1990), 763-
774. For some related work (using Corollary 7.23.12), see Exercise 6.56(c).

7.17. See R. Stanley, /. Combinatorial Theory 76 (1996), 169-172. For further in-
formation on Wi(n\ see Exercise 6.33(c).

7.18. Label the Black pawns P i , . . . , B; from the bottom up. When pawn FJ pro-
motes to a rook, call that rook R,. Black's 25 moves are shown in Figure
7-20 as the elements of a poset P. Black can play his moves in any order such
that if u < v in P, then move u must precede move v. Hence the number
of solutions is the number e(P) of linear extensions of P. This number is just
/ (6 '6 '66),the number of SYTsofshape(6, 6, 6, 6), and the hook-length formula
(Corollary 7.21.6) yields the answer 140,229,804. This problem was composed
by K. Vaisanen and appears (Problem 7) in the booklet Queue Problems cited
in the solution to Exercise 6.23.

7.19. Given a, b > 0, consider those A of the form given by Figure 7-21, so a =
for some /JL. Let pa,b,a(n) be the number of such /JL satisfying \/JL\ = n. Then
[why?]

nab+ar+bs

Figure 7-20. The solution poset to Exercise 7.18.
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b

r

a

a

s

t r1
G

a

Figure 7-21. A skew shape A//z.

so

£**<»+'*"=
aab+ar+as

Some simple manipulations show that the right-hand side is equal to the stated
answer [r - l]\[s - l]!/[oo]![r + s - 1]!.

7.20. a. In general, if / e An then (/?", / ) = [x\ • • -xn]f9 as follows e.g. from

equation (7.25). Hence (/??, hk) = [xx • -xn]hk = (Aj "2 ). Since e.g.

by Lemma 5.5.3 the number of partitions of [n] of type A. is (x " ) f]/

nii(X)~l, the result follows.
b. The following argument is due to Dale Worley. Let TT be a partition of [«]

of type A. Label the blocks Bu B2,... where #£,- = A.,-, and if #5/ = #By-
with / < j 9 then min B[ < min 5 7 . Insert the elements of B( in increas-
ing order into row / of A. For instance, B\ = {3, 6, 8}, B2 = {5, 7, 9},
£ 3 = {1, 4}, B4 = {2} gives the array

368

579

14

2
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496 Chapter 7

Sort each column into increasing order. For the above example, we get

148
269
37 '
5

The well-known "non-messing-up theorem" (see D. Gale and R. M. Karp,
/. Comput. System Sci. 6 (1972), 103-115, for a more general result) states
that the rows remain increasing, so an S YT T results. An easy combinatorial
argument shows that the number of times a given S YT T occurs in this way
is f(T), and the proof follows.

c. Let T be an SSYT of shape X and type /JL. Let T(s) denote the entry
in the square s e X of T. Calf s special if s = (/, j), j > 1, and
T(i, j' — 1) < T(i, j). If s is special, then define f(s) exactly as in (b),
i.e., f(s) is the number of squares r in a column immediately to the left of
s and in a row not above s, for which T(r) < T(s). Now set

i f r h a s exactly £(*/,) - l(X) special squares

if Thas more than €(/x) — l(X) special squares.

(One can show that T always has at least £(/x) — l(k) special squares.) Then

J2 f(T) = (rmiXyr1 (Pll, hk), (7.199)
T

where T ranges over all SSYT of shape X and type fi. The right-hand side
of (7.199)is equal to the number of partitions of the multiset {P1 , 2^2,.. .}
into disjoint blocks (where each block is a multiset) of sizes A.i, A.2,

Example. Let X = (4, 2, 1) and /x = (2, 2, 1, 1, 1). There are five T
with exactly t{X) — €(/x) = 2 special squares (whose entries are shown in
boldface below), viz.,

1122 1122 1134 1135 1145
T 34 35 22 22 22

5 4 5 4 3 .

f(T) 1 2 2 2 2

Thus ^2T f(T) = 9, corresponding to the nine partitions of the multiset
{1, 1,2, 2, 3, 4, 5} given by 1122-34-5,1122-35-4,1122-45-3,
1134-22-5,1135-22-4,1145-22-3,2234-11-5,2235-11-4,
2245- 11 - 3 .

The proof of (c) is analogous to that of (b).
NOTE. Parts (b) and (c) were originally proved algebraically. Define Px(x;t)
as in [96, Ch. 3.2], and write

Px(x;t) =

where ot^ € Z[t]. One interprets a^M(l) in two ways, using (4.4) on p.
224 and (5.1 lr) on p. 229 of [96] (note that (4.4) has the typographical
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error Qx(x; t) instead of Q\(y\ OX and the proof follows. (The details are
tedious.)

7.21. See P. H. Edelman and C. Greene, Contemp. Math. 34 (1984), 155-162 (Thm.
2), and Advances in Math. 63 (1987), 42-99 (Thm. 9.3). For a generalization
of balanced tableaux, see S. Fomin, C. Greene, V. Reiner, and M. Shimozono,
Europ. J. Combinatorics 18 (1997), 373-389.

7.22. a. For any a e Comp(p) we have [x\X2 • • • xp]La = 1, and the proof follows
from the definition of Fw.

b. Define an algebra 9tn (over Q, say), called the nilCoxeter algebra of the
symmetric group <5n, as follows. 9tn has n — 1 generators u\,... ,un-i,
subject to the nilCoxeter relations

uf = 0, 1 < i < n

if \i - j \ > 2

i+i, 1 < i < n - 2.

If (a\,..., ap) G R(w), then identify the element uai • • • uQp of 9tn with
if. It is easy to see that this identification is well defined and that then <&n

is a Q-basis for 9t n . Write (f,w) for the coefficient of w when / e 9tw is
expanded in terms of the basis <&n.

Now let x = (JCI, JC2, . . . ) and define A(x) € 9tn ®Q Q[x] and G =
G(x) € «fln <8)Q Q[x] by

2) • • • (1 + xufi

It is immediate from the definition of G that

G = ^ P Fu,-i • w.
ween

The crucial lemma, which has a simple proof by induction on n, asserts
that

A(x)A(y) = A(y)A(x).

From this it follows that Fw e Ap.
The result of this exercise was first given (with a more complicated proof)

by R. Stanley, Europ. J. Combinatorics 5 (1984), 359-372 (Thm. 2.1). The
proof sketched here appears in S. Fomin and R. Stanley, Advances in Math.
103 (1994), 196-207 (after Lemma 2.1).

c. Let w = w\ W2 - - - wn. Let aw be the reduced decompostion of w obtained
by starting with 12 • • • n and first moving wn one step at a time to the last
position, then wn-\ one step at a time to the next-to-last position, etc. For
instance, if w = 361524 then aw = (4, 5, 2, 3, 4, 3, 1, 2). One shows that
LC0(aw) contains the term jc^n(w;)JC2n~l(u;) • • • xk/w\ that Lco(a) contains this
term for no other a e R(w), and that no LC0(a) contains a term whose expo-
nents, arranged in weakly decreasing order, are larger than X(w) in domi-
nance order. Since a < p whenever Kap ^ 0 and since Kpp = 1, we get
that X < X(w) whenever cwx ^ 0 and that cw^{w) = 1- The corresponding
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498 Chapter 7

results for /x( w) are a consequence of the results for k(w) applied to Fw-\, to-
gether with the fact that coFw = Fw-\. (It is easy to deduce that coFw = Fw-\
from Exercise 7.94(a).) For details, see R. Stanley, ibid. (Thm. 4.1).

d. Vexillary permutations (though not yet with that name) were introduced by
A. Lascoux and M. P. Schutzenberger, C. R. Acad. Sci. Paris, Serie 1294
(1982), 447^50 (see Thm. 3.1), and were independently discovered by R.
Stanley, ibid. (Cor. 4.2). In the paper A. Lascoux and M. P. Schutzenberger,
Letters in Math. Physics 10 (1985), 111-124, vexillary permutations are de-
fined to be 2143-avoiding permutations (p. 115), and the equivalence with
the definition we have given is proved as Lemma 2.3. See also (1.27) of I.
G. Macdonald, Notes on Schubert Polynomials, Publications du LACIM 6,
Universite du Quebec a Montreal, 1991.

e. This result is due to J. West, Ph.D. thesis, Massachusetts Institute of Technol-
ogy, 1990 (Cor. 3.1.7), and Discrete Math. 146 (1995), 247-262 (Cor. 3.5).
West gives a bijection between 2143-avoiding permutations and 4321-
avoiding permutations in <&n. The proof then follows from the case p = 3
of Corollary 7.23.12 (replacing X with kf).

f. The permutation tt>o is vexillary, and one easily sees that XWo = IAWQ =
(n - 1, n - 2, . . . , 1). Hence by (c) we get r(w0) = fn-l^n-2—\ and the
proof follows from the hook-length formula (Corollary 7.21.6). This result
is due to R. Stanley, ibid. (Cor. 4.3.).

g. Formula (7.168) is a result of S. Fomin and A. N. Kirillov, J. Algebraic Com-
binatorics 6 (1997), 311-319 (Thm. 1.1). Notice that by (7.193) the product
on the right-hand side of (7.168) is exactly the number of plane partitions of
staircase shape (n — 1, n — 2, . . . , 1) with entries at most x. Formula (7.169)
is due to Macdonald, ibid. (eqn. (6.11)). A simpler proof was given by S.
Fomin and R. Stanley, Advances in Math. 103 (1994), 196-207 (Lemma
2.3). For a generalization, see Exercise 6.19(oo).

h. This result was first proved by P. H. Edelman and C. Greene, Advances
in Math. 63 (1987), 42-99 (Cor. 8.4). For some subsequent proofs and
related work, see W. Kraskiewicz and P. Pragacz, Schubert functors and
Schubert polynomials, preprint, October 1986, 22 pages; W. Kraskiewicz
and P. Pragacz, C. R. Acad. Sci. Paris Sen I Math. 304 (1987), 209-211;
W. Kraskiewicz, Europ. J. Combinatorics 16 (1995), 293-313; S. Fomin
and C. Greene, Discrete Math., to appear (Thm. 1.2 and Example 2.2); V.
Reiner and M. Shimozono, J. Algebraic Combinatorics 4 (1994), 331-351;
ana V. Reiner and M. Shimozono, J. Combinatorial Theory (A) 82 (1998),
1-73.

7.23. This surprising connection between the RSK algorithm and symmetric chain
decompositions is due to K. P. Vo, SIAM J. Algebraic Discrete Methods 2
(1981), 324-332. For the special case when P is a boolean algebra, see also
D. Stanton and D. White, Constructive Combinatorics, Springer-Verlag, New
York, 1986 (Thm. 7.5).

7.24. a.-b. These are simple properties of differentiation having nothing to do with
symmetric functions per se.

c. Straightforward proof by induction on I.
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d. As special cases of Theorem 7.15.7 and Corollary 7.15.9, together with the
fact that (d/dp\)sx = s\/\ (see the solution to Exercise 7.35(a)), we have

where v is obtained from \x by adding a box, and p is obtained from /x
by deleting a box. It follows easily that

Since D\ = 0, it follows from (c) that

r:=(n-i)/2eN

and the proof follows.
The operators U and D are powerful tools for enumerating various

kinds of sequences obtained by adding and removing single squares of
diagrams of partitions. Exercises 7.25-7.27 give some further examples.
From the viewpoint of partially ordered sets, the fundamental property
DU — UD = I holds because Young's lattice Y is a I-differential poset,
i.e., Y is a locally finite poset with 6 such that (i) if A e Y covers exactly k
elements, then A is covered by exactly k +1 elements (see Exercise 3.22),
and (ii) if distinct elements A, \x e Y cover exactly k common elements,
then they are covered by exactly k common elements. (Note that in fact
k = 0 or 1 in (ii).) The general theory of differential posets is developed
in R. Stanley, J. Amer. Math. Soc. 1 (1988), 919-961 (see the top of p. 940
for the present exercise), and R. Stanley, in Invariant Theory and Tableaux
(D. Stanton, ed.), IMA Vols. in Math. Appl. 19, Springer-Verlag, New
York, 1990, pp. 145-165. A generalization was given by I. M. Gessel, J.
Statist Plann. Inference 34 (1993), 125-134. Further references related
to differential posets are S. Fomin, /. Algebraic Combinatorics 3 (1994),
357-404, and 4 (1995), 5^5; S. Fomin, J. Combinatorial Theory (A)
72 (1995), 277-292; R. Kemp, in Proc. Fifth Conf on Formal Power
Series and Algebraic Combinatorics 1993, pp. 71-80; D. Kremer and
K. M. O'Hara, /. Combinatorial Theory (A) 78 (1997), 268-279; T. W.
Roby, Ph.D. thesis, Massachusetts Institute of Technology, 1991; T. W.
Roby, Schensted correspondences for differential posets, preprint; and R.
Stanley, Europ. J. Combin. 11 (1990), 181-188.

e. We want [why?] a bijection between the set O{ of oscillating tableaux
of length I ending at A and pairs (7r, 7), where 7r is a partition of some
subset S (necessarily of even cardinality) of [I] into blocks of size two,
and T is an SYT of shape A on the letters [I] — S. Given an oscillating
tableau 0 = A0, A1, . . . , \ l = A, we will recursively define a sequence
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500 Chapter 7

(7T0, 7b), fa, Ti),..., (TT*, Ti) with fa, Ti) = (7r, T). We leave to the
reader the task of verifying that this construction gives a correct bijection.
Let 7To be the empty partition (of the empty set 0), and let To be the
empty SYT (on the empty alphabet). If A1 D A.1"1, then 7r, = 7T,-_i and
7} is obtained from 7}_i by adding the entry / in the square kl /kl~l. If
A1 C ^ " 1 , then let 7} be the unique SYT (on a suitable alphabet) of shape
X1 such that 7}_i is obtained from 7} by column-inserting some number y.
In this case let nt be obtained from TT;_I by adding the block 5/ = {/, j}.

This bijection is due to S. Sundaram, J. Combinatorial Theory (A) 53
(1990), 209-238. For connections between oscillating tableaux and rep-
resentation theory, see S. Sundaram, in Invariant Theory and Tableaux
(D. Stanton, ed.), IMA Vols. Math. Appl. 19, Springer-Verlag, New York,
1990, pp. 191-225. For an approach to oscillating tableaux based on the
growth diagrams of Section 7.13, see T. W. Roby, Schensted correspon-
dences for differential posets, preprint (§4.2). For the theory of skew
oscillating tableaux, see S. Dulucq and B. E. Sagan, Discrete Math. 139
(1995), 129-142, and T. W. Roby, Discrete Math. 139 (1995), 481-485.
As an example of the above bijection (given by Sundaram in the first
reference above), let the oscillating tableau be (0, 1, 11 ,21 ,211 ,111 ,
11, 21, 22, 221, 211). Then the pairs (Bt, Tt) (where B( is the block
added to 7T,_i to obtain TZI) are given by

1 1 13 13 1 1 17 17 17 171
2

13
2

13
2
4

1
3
4

1
3

17
3

1
3

7 17
3
9

{2,5}{4,6} {3,10}.

Hence

17
r = 8 , TI = {{2,5},{4,6}, {3, 10}}.

9

7.25. a. Let U and D be as in Exercise 7.24. It is easy to see that

k\-n

Now UlD-i(sx) is homogeneous of degree n -\-i — j . Hence setting

k

i=0 v

we get by Exercise 7.24(c) that

fikin) =
Xhn

= t r (r , A"),

where tr(7\ An) denotes the trace of T acting on the space A". Note that

UWpp = (rmbiViPp, (7.200)
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where rai(/x) denotes the number of parts of \x equal to 1, and (mi(/i))/ is
the falling factorial. Since the trace of a linear transformation is the sum of
its eigenvalues, we get

(2*)!
f

(2*)!

Now, writing P(q) = n;>o(l ~ i') '»we have [why?]

E t ) (1 -n>0

Hence

W- or ^--P(?)

(2*)!

completing the proof. This result appears (with a different proof, in the
context of differential posets) in R. Stanley, /. Amen Math. Soc. 1 (1988),
919-961 (Cor. 3.14).

b. It is easy to see that

X\-n

= tr((UD)k,An).

Hence if 0\,..., 0p(n) are the eigenvalues of UD acting on An, then

It follows from the case i = 1 of (7.200) that the eigenvalues of UD are
just the numbers mi(/x), for \i \- n. There are numerous ways to see that

#{/x h n : mi(jLt) = n - ;} = /?(;) - /?O' - 1),

and the proof follows. This result is related to R. Stanley, /. Amer. Math.
Soc. 1 (1988), 919-961 (Thm. 4.1), and R. Stanley, in Invariant Theory and
Tableaux (D. Stanton, ed.), IMA Vols. Math. Appl. 19, Springer-Verlag,
New York, 1990, pp. 145-165 (Prop. 2.9).

7.26. It is surprising that the only known proofs of this elementary identity involve
either deep properties of Macdonald symmetric functions and g-Lagrange
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502 Chapter 7

inversion (A. M. Garsia and M. Haiman, /. Algebraic Combinatorics 5 (1996),
191-244 (Thm. 2.10(a))) or of the Hilbert scheme of points in the plane (M.
Haiman, (t, g)-Catalan numbers and the Hilbert scheme, Discrete Math., to
appear (the case m = 0 of (1.10)). Naturally a more elementary proof would
be desirable.

7.27. Algebraic proofs of (c)-(h) appear in [96, Exams. 1.5.26-1.5.28] and were dis-
covered independently by various persons (Lascoux, Towber, Stanley, Zelevin-
sky). The identities (a) and (b) are easily deduced from (f) and (h) by considering
the exponential specialization of Section 7.8. All the identities (a)-(h) can also
be proved using the operators U and D of Exercise 7.24. See R. Stanley, /. Amer.
Math. Soc. 1 (1988), 919-961 (Thms. 3.2 and 3.11) for two cases. Finally, bi-
jective proofs of (a)-(h), based on a skew generalization of the RSK algorithm,
were given by B. E. Sagan and R. Stanley, /. Combinatorial Theory (A) 55
(1990), 161-193 (Cors. 4.5, 4.2, 6.12, 7.6, 6.4, 6.7, 7.4, and 6.9, respectively).
Related work appears in S. Fomin, J. Algebraic Combinatorics 3 (1994), 357-
404, and 4 (1995), 5-45; and /. Combinatorial Theory (A) 72 (1995), 277-292.

There is a special case of (c) that is especially interesting. Let /3 = 0 and
take the coefficient of x\ • • • xn on both sides. If a h m then we obtain

/Vv" = (»)»/«•
M-n

In particular, ifm=n — l then

Y^k (7.201)

where the sum on the left ranges over all partitions k covering a in Young's
lattice Y. This result has numerous other proofs, including a simple combina-
torial argument using only the fact that if a partition /JL covers k elements in Y,
then it is covered by k + 1 elements. Moreover, in terms of the character theory
developed in Section 7.18, equation (7.201) asserts the obvious fact that

dimind^+ 1x a = (m + l )d imx a .

7.28. a. As in the proof of Theorem 7.13.1, we may assume by Lemma 7.11.6 that if
( " ) is the two-line array associated to A, then u and v have no repeated ele-
ments. The proof is by induction on the length n of u and v, the case n = 0
being trivial. Now (continuing the notation of the proof of Theorem 7.13.1)
tr(A) is equal to the number of antichains // (" ) of odd cardinality [why?],
and thus also equal to the number of antichains // (£) of even cardinality.
Thus by induction, tr(A) is the number of columns of P and Q of even
length. Since the total number of columns of P and Q is the total number
of antichains / / ( " ) , the proof follows by induction. This result is due to M.
P. Schutzenberger [140, p. 127].

A proof can also be given based on the growth diagram of a permuta-
tion w used in the second proof of Theorem 7.13.1. Let w e S n be an
involution, so that the corresponding permutation matrix is symmetric. The
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entire growth diagram Qw will then be symmetric. Let v(i, j) be the parti-
tion appearing in square corner (/, j) of Qw (where the bottom left corner is
(0, 0)). We claim that for 0 < / < «, the number of columns of (the diagram
of) v(i, /) is equal to the number of fixed points k of w satisfying k < i.
The proof is by induction on /, the case i = 0 being trivial. Assume the
assertion for i. Let sab denote the square in the a-th row (from the bottom)
and b-th column (from the left) of Qw. By the induction hypothesis, we are
assuming that the number of columns of v(i, i) of odd length is equal to
the number of fixed points k of w satisfying k < i. Consider the use of the
local rules (L1)-(L4) to define v(i + 1, i + 1). By the symmetry of Qw we
have v(i,i + 1) = v(i + 1, i\ so rule (L3) never occurs. If (LI) applies,
then i + 1 is not a fixed point of w and v{i + 1, i + 1) = v(i, f), as desired.
If (L2) applies, then / + 1 is not a fixed point of u;, and v(i + 1, / + 1)
is obtained from v(/, /) by adding 1 to two consecutive parts. This does
not affect the number of columns of odd length, as desired. Finally, if (L4)
applies then / + 1 is a fixed point of w and v(i + 1, / + 1) is obtained from
v(i, i) by adding a square to the first row. This increases by one the number
of columns of odd length, as desired. Hence the proof follows by induction.

b. The left-hand side of (7.170) is equal to £ A q^^xToMA\ where A ranges
over all symmetric N-matrices of finite support. Now use (a) together with
Corollary 7.13.7.

c. Put q = 0 in (7.170). This identity was first proved by D. E. Littlewood [88,
(11.9;2)] using symmetric functions. A bijective proof based on a version
of the RSK algorithm was given by W. H. Burge [13, §2].

d. Since fx = fk\ we see that a(n, k) = Ylx fk w n e r e ^ n a s & °dd parts.
By letting A be a symmetric permutation matrix in (a) (or by considering
the coefficient of qkx\ • • • xn in (7.170)) we get that a(n, k) is the number
of permutations in <&n of cycle type (2J, lk), where 2j -f k = n. Hence

e. Answer:

Y\(l+qxt)(l-xf)~l • Y\(l-x,Xj)-1 - £]<zo<%(jt), (7.202)
i i<j k

where o(k) denotes the number of odd parts of X.
The case q = 0 appears in [88, (11.9;4)]. A combinatorial proof was given

by Burge, ibid. (§3). For noncombinatorial "modern" proofs of (a)-(e), see
[96, Exams. I.5.4-I.5.10, pp. 76-79].

7.29. a. This result was first proved by D. E. Littlewood [88, (11.9;5) on p. 238]. A
combinatorial proof was given by W. H. Burge, ibid. (§6). For a proof based
on Weyl's denominator formula for the root system Cn, see [96, Exams. 9(c),
pp. 78-79].

There is an interesting connection between the result of this exercise
and algebraic topology. Define the matching complex Mn to be the simpli-
cial complex whose vertices are the two-element subsets of [n], and whose

Cambridge Books Online © Cambridge University Press, 2010Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511609589.006
Downloaded from https://www.cambridge.org/core. Access paid by the UC Berkeley Library, on 26 Jun 2019 at 21:59:31, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511609589.006
https://www.cambridge.org/core


504 Chapter 7

faces consist of sets of pairwise disjoint vertices. The symmetric group <&n

acts naturally on Mn and hence also on its rational (reduced) homology
H*{Mn\ Q). We can therefore ask for the characteristic ch#;(Afn;Q) of
this action on the i-th homology group. Such a result was stated without
proof (in a different form) by T. Jozefiak and J. Weyman, Math. Proc. Camb.
PhilSoc. 103(1988), 193-196 (p. 195). An explicit statement and proof was
given by S. Bouc, J. Algebra 150 (1992), 158-186 (Proposition 4), and later
independently by D. B. Karagueuzian, Ph.D. thesis, Stanford University,
1994. Namely,

Y (7.203)

where A ranges over all self-conjugate partitions of n satisfying / = [ ̂ - J —
[^rank(A)]. (In particular, the action of <&n on the entire homology

H*(Mn;Q) has the elegant characteristic J2 khn
f
 sk-) Now the Hopf trace

formula (see S. Sundaram, Contemp. Math. "l78 (1994), 277-309, for a
discussion of this technique) shows that

£ ( - i y chC,(Mfl;Q) = £ ( - l ) ' ' chHi(Mn;Q),
i i

where C/(Mn; Q) denotes the space of (oriented) rational /-chains of Mn.
The left-hand (respectively, right-hand) side corresponds to the degree n
part of the left-hand (respectively, right-hand) side of equation (7.171).
Thus (7.171) is equivalent to the computation of the <3n-equivariant Eu-
ler characteristic of Afn, while (7.203) is a refinement that gives the actual
homology.

For further information on matching complexes and related complexes
(including chessboard complexes, which are the analogues of Mn for com-
plete bipartite graphs), see A. Bjorner, L. Lovasz, S. T. Vrecica, and R.
Zivaljevic, /. London Math. Soc. 49 (1994), 25-39 (§4); P. F. Garst, Ph.D.
thesis, University of Wisconsin-Madison, 1979, 130 pp.; V. Reiner and J.
Roberts, Minimal resolutions and the homology of matching and chess-
board complexes, preprint, July 1997; and G. M. Ziegler, Israel J. Math.
87 (1994), 97-110. The work of Jozefiak and Weyman, of Bouc, and of
Karagueuzian discussed above computes the homology of matching com-
plexes over Q (with the additional structure of an (&n-action). It is also
interesting to consider their homology over Z. Computations of Bouc, ibid.
(§3.3) and E. Babson, A. Bjorner, S. Linusson, J. Shareshian, and V. Welker,
Complexes of not /-connected graphs, MSRI Preprint No. 1997-054 (Table
3), suggest that torsion only occurs for the prime 3, but this question remains
open.

b. This was proved using symmetric functions by D. E. Littlewood [88,
(11.9;3)], and by a variation of the RSK algorithm by W. H. Burge, ibid. (§5).

c. This result is due to T. Jozefiak and J. Weyman, A dvances in Math. 56(1985),
1-8. For another proof and a number of related results, see A. Lascoux and
P. Pragacz, J. Phys. A 21 (1988), 4105-4114. A further reference is J. B.
Remmel and M. Yang, SIAM J. Discrete Math. 4 (1991), 253-274.

Cambridge Books Online © Cambridge University Press, 2010Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511609589.006
Downloaded from https://www.cambridge.org/core. Access paid by the UC Berkeley Library, on 26 Jun 2019 at 21:59:31, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511609589.006
https://www.cambridge.org/core


Solutions 505

7.30. a. We have X + 8 = d(jx + 8). Hence by Theorem 7.15.1 we get

u ..., xn)

rd d\ id d\

a§ (xx,..., xn j as(x\, • •., xn)

Kd - x d

b. Put \x = 0 in (a).
c. See A.-A. A. Jucis (=Yutsis), Mat. Zametki 27 (1980), 353-359, 492; and

T. S. Sundquist, Ph.D. thesis, University of Minnesota, 1992 (pp. 49-52).

7.31. Let 0<<2i < ^ 2 < ••* < an < P ~ 1 and 0 < b\ < hi < • • • <
bn < p — 1. These two sequences define the submatrix B = [£ajbk]nj k=\-

h

Let x = (JCI, . . . , x n ) and define the mat r ix B(x) = [JC • * ] " ^=i» s o ^ —
5 ( a f l ) L A ( Z l ^ 2 & ) B f hffl»).LetA. = (Z?n-«+l, ^ n _ i - « + 2 , . . . , &i).Byfheorem7.15.1
we have

Since rii<y<ik<» Uaj ~ ?*) ^ °' w e n e e d t 0 s h o w t h a t ^(ffll, • • •, r n ) #
0. Suppose the contrary. Then q = f is a zero of the integer polynomial

^(^ f l l , . . . , qa») = L(q)(l + q + •

for some L(^) € Z[q]. Putting ^ = 1 gives ^ ( l n ) = 0 (mod p). But by
equation (7.105) we have

irr1 ^ °(mod P^

a contradiction.
This result was first proved (in a different way) by N. G. Cebotarev in 1948.

For further proofs and references, see M. Newman, Lin. Multilin. Algebra 3
(1975/76), 259-262. The proof given here was found by R. Stanley in 1990.

7.32. a. Write the Schur functions appearing in (7.172) as quotients of determinants
using Theorem 7.15.1. The numerators are transposes of each other, while
the denominators can be evaluated from equation (7.105). This result, as
well as the two examples in (b), is due to J. R. Stembridge (private com-
munication). Stembridge's work was done in the more general context of
characters of arbitrary complex semisimple Lie algebras.

b. Let ji = (1) and fi = (21n~2), respectively, in (a).

7.33. a. It follows from Exercise 7.30(c) that t(n) is the number of outdegree se-
quences ( « i , . . . , an) of a tournament on the vertex set [n]. Now use Exer-
cise 4.32.
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506 Chapter 7

b. Let tk(n) be the number of distinct monomials appearing in Sks(x\, - - -,
xn). By a straightforward generalization of Exercise 7.30(c), tk(n) is the
number of outdegree sequences of (loopless) directed graphs on n vertices
with exactly k edges (ignoring direction) between any two distinct vertices.
Applying Exercise 4.32(b) to the undirected graph T onn vertices with k
edges between any two distinct vertices shows that tk(n) is the number of
forests on n vertices whose edges are A:-colored. Hence

7.34. See [96, Exams. 3.8, pp. 46-47]. This result is essentially due to Jacobi [64].

7.35. a. The easy way is to show that D = d/dp\ (acting on polynomials in
Pi > Pi, - • •)• See [96, Exam. 1.5.3c, pp. 75-76]. One only needs to check that

a

which is routine.
One can also give a direct combinatorial proof, based on the Little-

wood-Richardson rule (Appendix 1, Section A1.3).
b. If D is any derivation on a ring R, then a simple formal computation shows

that setting [f,g] = (Df)g — f(Dg) defines a Lie algebra structure.
c. This identity first arose in the context of the Korteweg-deVries equation

in M. Adler and J. Moser, Commun. Math. Phys. 61 (1978), 1-30. A com-
binatorial proof was given by I. P. Goulden, Europ. J. Combinatorics 9
(1988), 161-168. For additional information and references, see B. Leclerc,
Discrete Math. 153 (1996), 213-227.

7.36. Use the fact that D^ is adjoint to the homomorphism M^ which multiplies by
s^ (Theorem 7.15.3). Since M^ and Mv commute, so do D^ and Dv.

7.37. a. We have a8 = det Vn, where Vn denotes the Vandermonde matrix (x"~*)n
v

Then Vl
n Vn = (p2n-i-j)

ni, with the (temporary) convention p0 = n. Take
the determinant of both sides to get the expansion aj = det(/?2«-i-y)- This
result is due to C. W. Borchardt, Crelle's J. 30 (1845), 38^5, and /. de
Math. 12 (1845), 50-67.

b. In Exercise 7.42 set m = n and yj = —qxj to obtain

xx • • • xn(l - qf \\{Xi - qxj) =

where x = (x\, . . . , xn). Now

= {sx, sx>)n by Exercise 7.56(a)

1, X = X'C:{nn)

0 otherwise.

(See D. E. Littlewood, J. London Math. Soc. 28 (1953), 494-500 (Thm.
Ill), for a different argument.) Hence the coefficient of 5(n«) in x\ • • • xn
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(i - qf Y\i^xi - <IXJ)
 is equal t o

J2 (-if1 = (1 " <7)d - q3) • • • (1 - qln~l) [why?].
\e(nn)
x=x'

Divide by (1 — qf and set q = 1 to get that the coefficient of £(„«) in
x\'"Xna\ is equal to (-1)©1 . 3 • • • (2#i - 1). (The sign (-1)© arises
because aj = (— 1)© f ^ y 0c/ —JCy)-) This is equivalent [why?] to the state-
ment that the coefficient ofs^n-iyi) in a1 is also (—1)^)1 • 3 • • • (2n — 1).

c. This result follows from Theorem 11.4 or Example 11.6(a) of J. R. Stem-
bridge, Ph.D. thesis, Massachusetts Institute of Technology, 1985.

d. This is the case q = 1 of J. R. Stembridge, Trans. Amer. Math. Soc. 299
(1987), 319-350 (Cor. 6.2). A formula for ex is unknown in general. A
further reference is A. N. Kirillov, Adv. Sen Math. Phys. 16 (1992), 545-
579. For some of the sophisticated algebra related to the symmetric function
a], see P. Hanlon, Advances in Math. 84 (1990), 91-134, and B. Kostant,
Advances in Math. 125 (1997), 275-350 (see especially §5).

e. Set F(q) = f l ^ t e ~ q*j)- L e t & = e2ni/3- s i n c e

(*/ - COXj)(Xj - COXi) = -O) (xf + XiXj + XJ) ,

we have

F(co) = (-cop Y\ (xf + xiXj + xj)

using Exercise 7.30(b). By considering the largest exponent in dominance
order of the monomials appearing in the expansion of F(q), we see that

It follows that in the Schur function expansion of F(q), all coefficients
except that of S28 vanish at q = a>. Hence (since these coefficients are
polynomials with integer coefficients) they are divisible by q2 + q + 1.
Now put q = 1. This result was discovered empirically by J. Stembridge
(private communication dated 13 May 1998) and proved by R. Stanley. For
somewhat related results see [96, Ex. 1.3.17, pp. 50-51].

7.38. a. For N sufficiently large (viz., N > |A//x|), let V be a complex Af-
dimensional vector space, and let Fk/fl denote a GL( V)-module with char-
acter s^/pixi,..., XN) (using the results and terminology of Appendix 2).
For a (weak) composition a = (o?i, o?2, •. .)> let Sa denote the GL(V)-
module with character ha (so Sa = Sai (V) <8> Sa2(V) ® • • •, where Sl (V)
denotes the i-th symmetric power of V). For 0 < j < Q), define the
GL(V)-module

jj — TT ^+8

we&n
i(w)=j

where ]_] denotes direct sum, and where 8 is as in equation (7.69). The idea
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508 Chapter 7

of the proof is to define an exact sequence (of GL( V)-modules)

0 -> / © -> • Jl -> J° -> FV/X -* 0. (7.204)

The existence of such an exact sequence solves the problem at hand by an
obvious extension of Exercise 2.3(b) from vector spaces to GL( V)-modules.
The existence of the exact sequence (7.204) for the case \x = 0 was stated
by A. Lascoux, These, Universite Paris VII, 1977, but without defining
the maps. Actually, Lascoux considers the dual situation corresponding to
Corollary 7.70, but the Schur positivity of t^/^k and that of coitx/^k) are
equivalent. A rigorous treatment of Lascoux's work (for both the stated
and the dual case) was subsequently given by K. Akin, J. Algebra 117
(1988), 494-503; in Contemporary Math. 88 (1989), pp. 209-217; and /.
Algebra 152 (1992), 417-426. An independent treatment, for general X//x,
was given by A. V. Zelevinskii (= Zelevinsky), Functional Anal. Appl. 21
(1987), 152-154.

7.39. This is a result of G. Z. Giambelli, Atti Torino 38 (1903), 823-844. See also
[96, Exam. 1.3.9, p. 47].

7.40. This is a result of A. Lascoux and P. Pragacz, Europ. J. Combinatorics 9 (1988),
561-574. See also [96, Exams. 1.5.20-1.5.22, pp. 87-89].

7.41. Algebraic proof. By the classical definition of Schur functions (Theorem
7.15.1) we have

Cxi -x Yldet(x~iXj+m~J)}m

(y v v»c (v~l v ~ ^ K l m) \ { iL

= s~k(xu...,xm).

Combinatorial proof. Given an SSYT T of shape A, let /x 1 , . . . , /x" be the
columns of T (left to right). Let fx1 be the column whose entries are the com-
plement in [m] of the entries of / / , arranged in increasing order. Let t have
columns \xn, jln~l,..., p}. The map T i-» T' yields the desired bijection. As
an example, let m = 6, n = 7, and

11234
_ 33446
~ 455 '
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Then

T' —
1 —

m n

1111122
2222345
333566
4456
55
66

A.

7.42. In the identity

(obtained by specializing Theorem 7.14.3), replace yj by yjl, multiply by
Cyi • • • yn)

m, and use Exercise 7.41. See [96, Exam. 1.4(5), p. 67].
7.43. Note that

f{pn) = coypn(x, y)\Xl=i, yi=t ,
xi=yiz=0 if i>0

where x = (x\, X2,...), y = (y\, yi,...)» and coy denotes the involution co
acting on the y variables only. Hence (using equation (7.66)),

= sx(x, y) ^i=i, yi=t
Xi=yi=0 if i

= E l = l ) ' \(
x/=0ifi>0/ \

Now ^(1) = 0 unless /x consists of a single row, in which case fy(l)= 1.
Similarly, s^/^if) = 0 unless A//x is a vertical strip, in which case Sx'/^it) =
^ | x^ l.Thusif^(l)^7At/(0 ^ 0, then A = {n-k, lk) for some 0 < A: < n - l ,
and either \i = {n—k)or JJL = (n—A; — 1), in which case s^{\ )sx'/lJL'{t) = t^^.
From this the proof is immediate.

Suppose that / = J2^\-n ciisv Applying yjr and dividing by 1 + t yields

l n-\

Hence this exercise can be a useful tool for evaluating hook coefficients of
Schur function expansions. See Exercise 7.86(c) for an example.

7.44. This interesting specialization is due to F. Brenti, Pacific J. Math. 157 (1993),
1-28. Parts (a)-(d) appear as Theorem 4.1, Theorem 4.2, Proposition 4.5, and
Proposition 4.8, respectively.
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510 Chapter 7

7.45. Let Sx = Ylfihab ^/*m/*> s o K*.fi is a Kostka number. Thus

vhb

If follows that for each p h b we have

using the bilinearity of the scalar product together with Corollary 7.12.4 and
the orthonormality of Schur functions (Corollary 7.12.2).

Consider the algebra endomorphism <pa of the ring A defined by <pa(hi) =
ha(. If we apply (pa to the Jacobi-Trudi identity defining sp (Theorem 7.16.1),
then we obtain the Jacobi-Trudi matrix for the skew Schur function of skew
shape [ap + (a - 1)8]/(a - 1)8, where if l(p) = I then 8 = (I - 1, i -
2 , . . . , 1,0). Hence

<Pa(Sp) = S(ap+(a-l)8)/(a-l)8-

Thus

5 ^ p , mv)hav = (pa I ^2(sp, mv)hv 1
\ v I

= <Pa(Sp)

= S(ap+(a-l)8)/(a-l)8-

It follows that

{Ta(Sx), Sp) = (s\S(a-l)8, Sap+(a-l)s) »

a Littlewood-Richardson coefficient. Such coefficients are always nonnegative
(see Corollary 7.18.6 and Appendix 1, Section A1.3), and the proof follows.

This result is due independently to R. Stanley, Electron. J. Combinatorics
3(2), R6 (1996), 22 pp. (Thm. 2.4), and to P. Littelmann, as a simple conse-
quence of his path model theory developed in Ann. Math. 142 (1995), 499-525.
More explicit statements appear in papers by Littelmann: /. Amer. Math. Soc.
11 (1998), 551-567 (§2); The path model, the quantum Frobenius map and
Standard Monomial Theory, in Algebraic Groups and Their Representations
(R. Carter and J. Saxl, eds.), Kluwer, Dordrecht, to appear.
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7.46. This result was conjectured by C. Reutenauer, Advances in Math. 110 (1995),
234-246 (Conjecture 2), and proved independently by W. F. Doran, /. Com-
binatorial Theory (A) 74 (1996), 342-344, and by T. Scharf and J.-Y. Thibon,
unpublished. Doran defines a symmetric function

f(n,k)= J2 ft
:Xi>0}>k

and shows that

i = 2

It follows by induction that for k > 2 the symmetric function — f(n, k) is a
nonnegative linear combination of Schur functions. Since qn = / ( n , «), the
proof is complete.

7.47. a. The symmetric function XG was first defined by R. Stanley, Advances in
Math. I l l (1995), 166-194. (The reference in parentheses preceding the so-
lutions to (b)-(g) and (j)-(k) below refers to the preceding reference.) The
fact that XG(ln) = XGQ*) is stated as Proposition 2.2, and is immediate
from the definitions.

b. (p. 170) This question has been checked to be true for trees with at most
nine vertices by T. Chow. Note that all trees with d vertices have the same
chromatic polynomial, viz., n(n — l)d~l.

c. (Proposition 2.4) The coefficient of a monomial xl
lx2

2 • • • in XG is equal
to the number of ways to choose a stable partition n of G of type A =
(V12n • • •), and then for each / to color some block of size A; with the color
/. Once we choose n we have r\! r^\ • • • ways to choose the coloring, and
the proof follows.

d. (Theorem 2.6) The solution is analogous to the solution of Exercise 3.44.
By a coloring of G, we mean any map K : V —> P. (Note that "coloring" in
Exercise 3.44 is here called "proper coloring.") Given a e LQ, define Xa =
^2K xK, summed over all colorings K of G such that (i) if u and v are in the
same block of a then K(U) = /c(u), and (ii) if u and v are in different blocks
and there is an edge with vertices u and u, then K(U) ^ K(V). Given any
K : V -> P, there is a unique a e LG such that K indexes one of the terms
appearing in the definition of Xa. It follows that for any n € LG we have

Ptype(Tr) = J/^ XQ-
cr>7t

By Mobius inversion (Proposition 3.72),

But XQ = XG, and the proof follows.
e. (Corollary 2.7) Since for any k h d we have e\ = (— i ) r f -W (see equation

(7.19)), there follows %pe(^) = ( - l ) " H 7 r | . Now use Proposition 3.10.1,
Proposition 7.7.5, and equation (7.174).
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512 Chapter 7

f. (Theorem 3.1 and equation (8)) Let P be a ^-element poset. Fix an order-
reversing bijection co : P -> [d]. Let

summed over all strict order-preserving maps K : P -> P. By Corollary
7.19.5, we have

XP= J2
7T€£(P,(O)

so in particular Xp is L-positive. Now let o be an acyclic orientation of
G and K a proper coloring. We say that K is o-compatible if K{U) < K(V)
whenever (v, u) is an edge of o (i.e., the edge uv of G is directed from
v to u). It is easy to see that every proper coloring K is compatible with
exactly one acyclic orientation o. Hence if Xo = ^2KxK, summed over
all o-compatible proper colorings K, then XG = J20 ^°> summed over all
acyclic orientations of G. Let o denote the transitive and reflexive closure
of o. Since o is acyclic, o is a poset and X-o — Xo. Since X-o is L-positive
by (7.205), it follows that XG is L-positive.
(Theorem 3.3) The idea of the proof is to define (using the notation of
Section 7.19) a linear operator cp : Qd -> Q[t] by

\t{t-\)\ a = (/ + l , l , l , . . . , l )
(p(La)=\ .

[0 otherwise.
One then shows that (p(ex) = t^k) and

from which the proof follows. It would be interesting to have a more con-
ceptual proof.

h. This beautiful result is due to V. N. Gasharov, Discrete Math. 157 (1996),
193-197, using an involution principle argument. For the case when P is
a chain, a bijective proof follows immediately from the RSK algorithm.
Thus it is natural to ask for a generalization of the RSK algorithm that
proves the general case of Gasharov's result. When the poset P also con-
tains no induced subposet isomorphic to the poset of Figure 7-22., such a
generalization was given by T. S. Sundquist, D. G. Wagner, and J. West, J.
Combinatorial Theory (A) 79 (1997), 36-52.

i. Let V be the vertex set of G = inc(P). If a : V - • N, then define Ga to
be the graph obtained from G by replacing each vertex v of G by a clique
(complete subgraph) Ka(V) of size a(v), and placing edges connecting every
vertex of Ka(V) to every vertex of Ka(u) if uv is an edge of G. (If a(v) = 0
then we are simply deleting the vertex v.) It follows from the definition of
XGa that

It is easy to see that each Ga is the incomparability graph of a (3 + l)-free
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Figure 7-22. An obstruction to a generalized RSK algorithm.

poset. Hence by (h) the product f|t C(xi) is s-positive. The result now fol-
lows from Exercise 7.9l(e). This argument appears in R. Stanley, Graph
colorings and related symmetric functions: ideas and applications, Discrete
Math., to appear (Cor. 2.9). A different proof was given by M. Skandera in
1998.

j . (Conjecture 5.1) An equivalent conjecture appeared in R. Stanley and J.
R. Stembridge, /. Combinatorial Theory (A) 62 (1993), 261-279 (Conjec-
ture 5.5), in the context of "immanants of Jacobi-Trudi matrices." A special
case of the conjecture asserts that for any fixed k, d > 1, the symmetric
function F^d = Y^xhxii' *' **</> *s ^-positive, where the sum ranges over
all sequences /1 , i2»• • •, h such that any k consecutive terms are all distinct.
Even the case k = 3 remains open. For the case k = 2, see equation (7.175).

k. (Propositions 5.3 and 5.4) Let X h d. The number bx of connected partitions
of Pd (as defined in (d)) of type X is just the number of distinct permutations
of the parts of X. Hence if X = ( l r i2 r 2 • • •), then bx = (r^ ). Since Pd

is a tree, the lattice Lpd is just a boolean algebra, so by Example 3.8.3 we
get /x(6, n) = %pe(7r)« Hence from equation (7.174) there follows

SO

d>0
Pd • td =

I - Pit + p2t
2 - p3t

3 +

The proof now follows by applying the involution co to equation (7.165).
A second proof appears in the reference given in (a). The result (stated

in a different form) seems first to have been proved by L. Carlitz, R. A.
Scoville, and T. Vaughan, Manuscripta Math. 19 (1976), 211-243 (p. 242).
A combinatorial proof was given by J. Dollhopf, I. P. Goulden, and C.
Greene, in preparation. The generating function (7.175) (or its image un-
der the involution co) appears in (seemingly) completely unrelated contexts
in R. Stanley, in Graph Theory and Its Applications: East and West, Ann.
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514 Chapter 7

New York Acad. Sci. 576,1989, pp. 500-535 (based on work of C. Procesi;
for further references see J. R. Stembridge, Advances in Math. 106 (1994),
244-301 (p. 266)), and in [6.28, Thm. 14.2.4].

The formula for C</ can be deduced from that of Pd by using Corollary
4.7.3. See p. 190 of the reference in (a) for details.

1. In fact, XG is a nonnegative linear combination of the symmetric functions
eted-i. In the special case when the complement of G is bipartite, this re-
sult follows from R. Stanley and J. R. Stembridge, ibid., Theorem 7.4.3, and
was given a different proof in R. Stanley, Advances in Math. I l l (1995),
166-194 (Cor. 3.6). It was observed by T. Chow that this second proof only
requires that the complement of G be triangle-free.

: m. This question is due to V. N. Gasharov and appears in R. Stanley, Graph
colorings and related symmetric functions: ideas and applications, Discrete
Math., to appear (Conjecture 1.4). If this question has an affirmative an-
swer, then the following conjecture (first mentioned as an open question
by Y. O. Hamidoune, J. Combinatorial Theory (B) 50 (1990), 241-244 (p.
242)) would follow in the same manner as (i). Let G be a clawfree graph,
and let C( be the number of stable /-element subsets of the vertex set of G.
Then every zero of the polynomial £^ c,-f! is real.

7.48. The theory of locally rank-symmetric posets developed in this exercise first
appeared in R. Stanley, Electron. J. Combinatorics 3, R6 (1996), 22 pp. The
definition of FP was suggested by R.Ehrenborg, A dvancesinMath. 119(1996),
1-25 (Def. 4.1).
a. By considering the support of the multichain 6 = to < h < • • • < tk~\ <

tk = 1, we get

F*>= E E « ^ - C 8 ' ^ (7-206)

where ap(S) is defined in Section 3.12 (and is now called the flag f-vector
of P). Since aP(S) = J2TCS PP(T) (equation (3.33)), we need to show
that for each T C [n - 1],

E Xh Xi2

2
5={mi,...,m7}<

But this is a routine verification, looking at all possible ways of choosing
each symbol < to be either < or = in the definition (7.89) of L$. See R.
Stanley, ibid. (Prop. 1.3).

b. This result is the special case / = £ of Exercise 7.94(b). For a simplified
version of the proof of Exercise 7.94(b) for the case at hand, see R. Simion
and R. Stanley, Discrete Math. 204 (1999), 369-396 (Proposition 4.7.1).

c. It follows from (7.206) that FP e An if and only if for all S = { m i , . . . ,
mj}< ^ [« — 1], we have that as(P) depends only on the multiset {mi,
ni2 — mi, m3 — m 2 , . . . , n — nij}, not on the order of its elements
R. Stanley, Electron. J. Combinatorics, 3, R6 (1996), 22 pp., Cor. 1.2. Now
use Exercise 3.65 (which applies to locally rank-symmetric posets, though
it is stated only for locally self-dual posets).

d. Ibid. (Prop. 3.3).
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e. Ibid. (Thm. 3.5). This result holds for a class of lattices, known as q-semipri-
mary lattices of type fi, more general than the subgroup lattices stated
here. See the reference for further details. The polynomials K^iq) =
q^K^il/q) (where b(X) = J^(i — 1)A,- as usual) are known as Kostka
polynomials or Kostka-Foulkes polynomials. They occur in a variety of com-
binatorial and algebraic contexts and have many fascinating properties. For
some further information on Kostka polynomials, see e.g. [96, Ch. 3.6], as
well as A. M. Garsia and C. Procesi, Advances in Math. 94 (1992), 82-138;
G.-N. Han, Prepubl. Inst. Reck Math. Av. 1994/21,71-85; and S. V. Kerov,
A. N. Kirillov, and N. Yu. Reshetikhin, Zap. Nauchn. Sem. Leningrad Otdel
Mat. Inst. Steklov (LOMI) 155 (1986), 50-64, 193.

f. See R. Stanley, Electron. J. Combinatorics 4, R20 (1997), 14 pp. Some
generalizations of NCn+i related to root systems are discussed in §5 of that
reference.

g. See the reference cited in (b). Shuffle posets were first considered by C.
Greene, J. Combinatorial Theory (A) 47 (1988), 191-206. A generalization
was given by W. F. Doran, /. Combinatorial Theory (A) 66 (1994), 118-
136.

7.49. This result was proved by C. Lenart, Lagrange inversion and Schur functions,
preprint, 1998, by an intersecting lattice path argument.

7.50. In equation (7.78), set x\ — • • • = xn = 1 and xn+\ = xn+2 = • • • = 0 to get

• we&N

Now use Corollary 7.21.4 to get

• n 4- c(u)
(7.207)

(Of course a polynomial identity holding for all n e P holds everywhere, i.e.,
when n is an indeterminate.)

7.51. Take the coefficient of nN~l on both sides of equation (7.207), and the proof
follows after some simple manipulation using the fact that ^2uek

 c(u) =

b(kf) - b{k) (see [96, Exam. 3, p. 11]). This elegant proof is due to S. Sun-
daram and others. For other proofs, see [96, Exam. 7, pp. 117-118] and W. M.
Benyon and G. Lusztig, Math. Proc. Camb. Phil. Soc. 84 (1978), 417-426 (pp.
419-420). One can also use Exercise 7.62 to get xk(2ln~2) = fx/1 - fx/u.
Clearly f^1 + fxfn = fx. To compute / x / 2 , see [72, Exer. 19, p. 70].

7.52. Define the depth d(u) of a square u — (i, j) of (the diagram of) k to be the
smallest integer k > 0 f or which u + (k, k) $ k. The number of squares of
depth k is just //,#. Moreover, if we successively remove border strips from A,
then the fc-th border strip removed contains no squares of depth greater than
k. Hence the first k border strips removed contain a total of no more than
Mi 4- • • • 4- fjLk squares. It is then immediate from the Murnaghan-Nakayama
rule (Corollary 7.17.5) that if xA(^) ¥" 0,thenv < /x. Now k contains a unique
border strip B\ of size ii\\k — B\ contains a unique border strip Bi of size /X2,
etc. Since ht(Bt) = kf

t — i, we obtain from the Murnaghan-Nakayama rule the
stated formula xX(/>0 = (— l)r-
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7.53. Consider equation (7.207). The coefficient of nr on the left-hand side is equal
to \/N\ times the sum J^w xX(w)we are trying to evaluate. If now £(v) > r,
then by Exercise 7.52 we have xX(v) = 0. Hence the left-hand side of (7.207)
is divisible by nr. There are r factors equal to n in the numerator of the right-
hand side, coming from the r diagonal terms u — (i, i). Hence the coefficient
of nr on the right-hand side is given by

II uex c{u) fx

NI y

It is easy to see that this last product is just (-l) ' ( x ) f[;=i(^ ~ lV-(K ~ 1)!»
and the proof follows.

7.54. Assume that XA(A0 = 0 whenever some nonzero /x, is even. Since xA (A0 =
£x XA(M), it follows that A = A/. If X ^ (m, m — 1 , . . . , 1), then X has a border
strip of even length. Let B be a maximum-size border strip of even length.
Since any even border strip of a self-conjugate partition can be extended either
up to the first row or down to the first column and remain even, it follows that
there exist exactly two maximum-size even border strips B, B\ symmetrically
placed on the boundary of X, and ht(£) # ht(#') (mod 2). Let | B | = 2r. Then
(by the Murnaghan-Nakayama rule) for all v h n — 2r we have

0 = X
X(2r U v) = ± [X A "V) - Xk~B\v)l

Let a = X - £, so a' = X - B'. Then for all v we get that xa(v) = xa'0>).
Hence a = a!, which is impossible. This argument is due to to S. Sundaram
(1984).

7.55. a. Since B n is generated by transpositions (even adjacent transpositions), we
have pk((&n) C SL(m, C) if and only if det px{w) — 1, where w has cycle
type (2r~2>. Now tr px(w) = xA(21n"2),sopA(w;)has|[/A+xA(21n"2)]
eigenvalues equal to 1 and \[fk — xA(21n~2)] eigenvalues equal to —1.
Hence px(<&n) C SL(m, C) if and only if \[fx - xx(21n"2)] is even,
and the proof follows from Exercise 7.51. This result is due to L. Solomon
(unpublished).

7.56. a. If we rotate 180° an SSYT of shape 0, then we obtain a reverse SSYT of
shape 6r, and conversely. Now use Proposition 7.10.4.

b. Use (a) and the fact that {BaJ = #«.

7.57. Let u e X. Let u\ be the lowest square of X in the same column as w, and let u2

be the rightmost square of X in the same row as u. Then there is a border strip
Bu beginning at u\ and ending at u2, and this establishes a bijection between
th^ squares and the border strips of X. Hence the number of border strips is n.
Note also that #BU = h(u), the hook length at u.

7.58. Suppose X has an even hook length. It is easy to see that X then has a hook of
length two. Remove it from the diagram of A. The resulting diagram has one less
even hook length and one less odd hook length than X (see Exercise 7.59(c)),
so the number of odd hook lengths minus the number of even hook lengths is
unchanged. Continue removing hooks of length two until all hook lengths are
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odd. The resulting partition must then be of the form (k, k — 1 , . . . , 1) for some
k. For references, see the solution to Exercise 7.59.

7.59. The code C\ of the partition X was first defined by S. Comet, Numer. Math. 1
(1959), 90-109, and was further developed by J. B. Olsson, Math. Scand.
61 (1987), 223-247. A technique equivalent to the code of a partition is
the theory of bead configurations and abaci, developed in G. D. James and
A. Kerber, The Representation Theory of the Symmetric Group, Addison-
Wesley, 1981 (Ch. 2.7), based on work of T. Nakayama, H. K. Farahat,
G. D. James, B. Wagner, G. de B. Robinson, and D. E. Littlewood.

a.-b. These are straightforward consequences of the relevant definitions.
c. This follows easily from (a) and (b).

d. Let C[ be the subsequence • • • Cj-2PCj-pCjCj+pCj+2P • • * of C\. The op-
eration described in (b) is equivalent to choosing some 0 < j < p, and
then replacing two consecutive terms 10 in CJ

X with 01. From this it is clear
that any order of performing such operations will result in the same final
sequence C£ for which no further operations are possible. If C£ = CM

then by (b) we have that /x is the (unique) p-core of X. For a very general
approach to uniqueness results such as this exercise or Exercise 3.9(a), see
K. Eriksson, Ph.D. thesis, Kungl. Tekniska Hogskolan, Stockholm, 1993,
and Discrete Math. 153(1996), 105-122.

e. If p = 1 then clearly /x = 0 and Y\$ = Y. Suppose that C[ = C^J , where

C[ is defined in (d). Then (d) shows that the map X i-> (A,0, X1,..., A/"1),

where X has fixed p-core /x, is a bijection between Yp^ and Yk, with

|A| = p(\X°\ + • • • + I**"11) + IMI- (7.208)

Equation (7.178) is immediate from (7.208).
The sequence (A.0, . . . , Xp~l) is known as the p-quotient of X. The

theory of p-cores and p-quotients was originally developed by T.
Nakayama, Japan. J. Math. 17 (1940), 165-184, 411-^23; an exposition
appears in G. D James and A. Kerber, ibid. (Ch. 2.7). An explicit statement
of the isomorphism between YQ and Yk (which trivially generalizes to 0
replaced with any p-core /x) was first given by S. Fomin and D. W. Stanton,
Rim hook lattices, St. Petersburg Math. J. 9 (1998), to appear (Thm. 1.2).

f. Suppose that /x is a p-core. Let X( be the number of squares in the first
column of /x whose hook length is = / (mod p). Then (x\,..., xp-\) sat-
isfies the equation in (ii), and every solution (JCI, . . . , xp-\) G N^"1 to (ii)
is obtained exactly once in this way. Thus (i) = (ii).

Now let g(n) be the number in (i). Sum equation (7.178) over all /?-cores
/x. Since ^P^ f^{n) = p(n) (the number of partitions of n), we get

•v PI Y

— x )
-p

as desired.

Cambridge Books Online © Cambridge University Press, 2010Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511609589.006
Downloaded from https://www.cambridge.org/core. Access paid by the UC Berkeley Library, on 26 Jun 2019 at 21:59:31, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511609589.006
https://www.cambridge.org/core


518 Chapter 7

g. The only partitions with no even hook length are the "staircases" (n,n —
1 , . . . ,1) . Hence we get

2'I
1 1 1 _

I-*2

n>0

an identity due to C. F. Gauss (see e.g. [1.1, Cor. 2.10]).

h. The bijection Y® - ^ Yk shows that the left-hand side of (7.179) is given
by the sum ^2te^Y

k)n
 e(02> where (Yk)n is the set of elements of Yk of rank

72, and e(t) is the number of saturated chains of Yk between 6 and t. Hence

keCp(n)
= E E-E[L " i

- 1 ' 1

= pnn\ [why?].

This exercise gives a glimpse of a body of results concerned with hook lengths
divisible by p. Some references not already mentioned include J. B. Olsson,
Math. Scand. 38 (1976), 25-42; A. N. Kirillov, A. Lascoux, B. Leclerc, and
J.-Y. Thibon, C R. Acad. ScL Paris, Sen 7318 (1994), 395-400; D. W. Stanton
and D. E. White, J. Combinatorial Theory (A) 40 (1985), 211-247; [96, Exams.
1.1.8-1.1.11, pp. 12-16]. (Numerous other examples in [96] are related.)

7.60. a. Let the successive squares of 6, reading from left to right and bottom to
top, be Mi, U2,..., urs. By induction on r it suffices to find a border strip
k/fjir~l of X contained in 6 such that |A//xr~11 = s and such that when we
remove X//xr~1 from #, the connected components thus formed (either one
or two of them) will have a number of squares divisible by s.

Define 6t = {K,-,_,+I, uis-s+2,..., uis], 1 < i < r. Let j be the

least positive integer for which UjS+\ does not lie to the right of Ujs.
The integer j exists since urs+\ is undefined and hence doesn't lie to
the right of urs. Since j is minimal, Ujs-s+\ lies to the right of UjS-s.
Hence 0j is a border strip with the desired properties. This argument, due to
A. M. Garsia and R. Stanley, appears in R. Stanley, Linear and Multilinear
Algebra 16 (1984), 3-27 (Lemma 7.3). Since the size (number of squares) of
a border strip of A is a hook length of A (see the solution to Exercise 7.57), the
second assertion of the exercise follows. One could also solve this exercise
using Exercise 7.59(a)-(b).

b. Regarding s as fixed, define for any integer k

0 otherwise.

Relabel the /x/'s so that / x i , . . . , /x; are not divisible by s and

111 are, where I = 1(/JL). If X^if1) ¥" 0> t n e n by the Murnaghan-Nakayama
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rule (Corollary 7.17.5) there exists a border strip tableau of shape X and type
/x. By (a), there exists a border strip tableau of shape X and type ( /xi , . . . , /x7,
s, s,..., s), where the number of ^'s is m := ]T- /x*. It follows from Exer-
cise 7.59(c) that to remove m successive border strips of size s from X, we
must have m < hs(X),the number of hook lengths of X divisible by s. Now
the multiplicity of a primitive 5-th root of unity f as a zero of f ] (l — q^ )
is equal to #{/: s | /x,-}, while the multiplicity of £ as a zero of Hx(q) is
hs(X). Clearly

#{i : s\ /x;} < ra,

and the proof follows. This result first appeared in R. Stanley, ibid. (Cor. 7.5).
7.61. See, e.g., D. G. Duncan, /. London Math. Soc. 27 (1952), 235-236, or Y. M.

Chen, A. M. Garsia, and J. B. Remmel, Contemp. Math. 34 (1984), 109-153.
In general, for any / e A we have (f(xk), sx) = 0 unless X has an empty

fc-core. To see this, it suffices by linearity to assume / = p ^ . Then

(Pp(xk), sx) = (pkll9 sx) = XX(^M).

By the Murnaghan-Nakayama rule (Corollary 7.17.5), xA(^M) = 0 unless
there exists a border strip tableau of shape X and type fc/x. By Exercise
7.60(a), there then exists a border strip tableau of shape X and type {km) (where
X f- km). Hence X has an empty A:-core.

7.62. Compute xk(^n~k) by the Murnaghan-Nakayama rule (Corollary 7.17.5),
choosing a = (/xi, / x 2 , . . . , 1, 1 , . . . , 1).

7.63. a. It follows from the Murnaghan-Nakayama rule (Corollary 7.17.5) that

dx = n\sx\Pl=o,p2=P3=- ..=i. (7.209)

From Proposition 7.7.4 and Theorem 7.12.1 we have

^Tsx(x)sx(y) = exp^2-pn(x)pn(y).
X n>\ H

Set px(y) = 0 and p2(y) = p3(y) = • • • = 1 to get

n>2

n>0

It is now a simple matter to pick out the degree n terms to obtain the stated
result.

b. It is easy to see from Pieri's rule (Theorem 7.15.7) that

. k s _ { ( " - * ) - k>0

\ 1 *' U,ln~J)I ~ | / n - l \ u_n
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520 Chapter 7

Hence from (a) we get

using equation (2.11). This result was first obtained (stated slightly differ-
ently, and with a different proof) by S. Okazaki, Ph.D. thesis, Massachusetts
Institute of Technology; 1992 (Cor. 1.3).

7.64. a. Just read an SYT of shape rn from right to left and from top to bottom,
to obtain an alternating permutation of [n] (as defined at the end of Sec-
tion 3.16). This procedure establishes a bijection between SYT of shape xn

and alternating permutations of [n]. Since En is the number of alternating
permutations of [n] (as shown at the end of Section 3.16), the result follows.

b. Apply the Murnaghan-Nakayama rule (Corollary 7.17.5) to the skew shape
rn. When n is odd, rn has no even-length border strips, so assume \JL has
2r + 1 odd parts. Consider a border strip tableau B of type /x, such as

3
3

1
3

1
1

1
1

2
5

2
2

4

c.

so /A = (5, 3, 3, 1,1). Reading the numbers from right to left and from top
to bottom without repetition (e.g., here we get 4 2 5 1 3) gives an alternating
permutation, and always ht(#) — k — r. This gives the desired bijection.
Similar to (b), though a little more complicated.

Parts (b) and (c) are originally due to H. O. Foulkes, Discrete Math. 15
(1976), 311-324, who gave a more complicated proof.

Another approach was suggested by I. M. Gessel. Using e.g. the Jacobi-
Trudi identity, one shows that

h M tn —
1 v^

One can expand the right-hand side in terms of the /? /s and compute coef-
ficients explicitly.

Cambridge Books Online © Cambridge University Press, 2010Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511609589.006
Downloaded from https://www.cambridge.org/core. Access paid by the UC Berkeley Library, on 26 Jun 2019 at 21:59:31, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511609589.006
https://www.cambridge.org/core


Solutions 521

7.65. a. First one shows that

k=0

after which it is easy to compute the character values irn(w). The symmetric
function ch \jfn was first considered by I. M. Gessel and C. Reutenauer, /.
Combinatorial Theory (A) 64 (1993), 189-215 (Thm. 1, p. 206). Note that
it follows from the equation deg \jrn = Dn that Dn is equal to the number
of w G &n whose largest descent has the same parity as n. This fact was
first shown by J. Desarmenien, in Actes S6 Seminaire Lotharingien, Publ.
229/S08, IRMA, Strasbourg, 1984, pp. 11-16. A generalization was given
by J. Desarmenien and M. L. Wachs, in Actes 19^ Seminaire Lotharingien,
Publ. 361/S19, IRMA, Strasbourg, 1988, pp. 13-21.

7.66. a. We will illustrate the proof with the example X/fi — 8877/211. Consider
the ten zigzag dashed paths in Figure 7-23.. Each such path consists of a
number of horizontal or vertical steps (or edges) from the interior of a square
to the interior of an adjacent square. Every border strip of a border-strip de-
composition of X//JL cannot contain three consecutive squares that a dashed
path passes through. Equivalently, let S be the set of edges e of the dashed
paths with the property that the two squares through which e passes belongs
to the same border strip. Then S cannot contain two consecutive edges of
any dashed path. Conversely, if we choose a subset S of the edges of the
dashed paths such that S contains no two consecutive edges on any dashed
path, then there is a unique border-strip decomposition of A//x with the
following property: Let e be any edge of a dashed path, and let u and v be
the two squares through which e passes. Then u and v belong to the same
border strip if and only if e € S.

It follows that d(k/IJL) is equal to the number of ways to choose 5. The
number of ways to choose a set of edges, no two consecutive, from a path

1
1
1
1
L

1
1
1
1

— '

— — -

1
1

" "• 1
1 1
1 ,_
1
1

1
1
1
1

— •

• — —

1 _

1
1

1

1

"* 1
1 1
1 L

— •

1

1
1

. 1
1 1
1
1
1
_ _ .

1
1
1
1

— '

1
1
1 - -
1
1

1

1

1

. 1
1 1
1
1
1
1

— •

1
1
1

— 1 1

]
1

1

1
1
1

1
1
1

1

Figure 7-23. Dashed paths corresponding to the shape 8877/211.
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522 Chapter 7

of length n is the Fibonacci number FM+2 (see Exercise 1.14(a)), and the
proof follows.

This exercise is actually a special case of Supplementary Exercise 3.14
from Volume 1 (second printing), which appeared in R. Stanley, Problem
10199, Amer. Math. Monthly 99 (1992), 162; solution by W. Y. C. Chen,
101 (1994), 278-279.

b. If P is a path of length m — 1, then it follows from Exercise 1.13 that
^2T q#T = Y^t (m^l)q\ where T ranges over all sets of edges, no two
consecutive, of P. The proof is now a straightforward generalization of (a).

7.67. a. Immediate from the Murnaghan-Nakayama rule (Corollary 7.17.5).
b. Identify each Ct with the sum of its elements in the group algebra CG. We

use the standard result (e.g., [15, §229 and §236]) that the elements

J C i ' l<r<t, (7.210)

form a complete set of orthogonal idempotents for the center of CG. By the
orthogonality of characters, inverting (7.210) yields

Since the Z^'s are orthogonal idempotents (i.e., ErEs = 8rsEr), it follows
that

2\G\

t t

1^1 k=\ r=l ar

Expanding in terms of the basis G and taking the coefficient of w on both
sides completes the argument. This result appears for instance in [67, Thm.
6.3.1] (in a somewhat more general form). Another reference is I. M. Isaacs,
Character Theory of Finite Groups, Academic Press, New York, 1976;
reprinted by Dover, New York, 1994 (Problem 3.9).

c. In (b) let G = <&n and let C , , , . . . , Cf-m all be the conjugacy class consisting
of the n-cycles. Let C& be the conjugacy class consisting of the identity
element. Then equation (7.180) reduces immediately to (7.181), using the
fact that x ( n " 5 ' r ) ( l n ) = f<»-s>1') = (n-1).

This argument appears in R. Stanley! Discrete Math. 37 (1981), 255-
262. A survey of work related to the multiplication of conjugacy classes
in B n appears in A. Goupil, Contemp. Math. 178 (1994), 129-143. For
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some recent work not mentioned in this survey, see I. P. Goulden, Trans.
Amer. Math. Soc. 344 (1994), 421-440; I. P. Goulden and D. M. Jackson,
/. Algebra 166 (1994), 364-378; D. M. Jackson, Tran. Amer. Math. Soc.
299 (1987), 785-801; D. M. Jackson and T. I. Visentin, Trans. Amer. Math.
Soc. 322 (1990), 353-363, 365-376; S. V. Kerov, C. R. Acad. Sci. Paris,
Sen 7316 (1993), 303-308 (Prop. 2.2); D. Zagier, Nieuw Arch. Wish. (4) 13
(1995), 489-495; and [96, Exams. I.7.24-I.7.25, pp. 131-134].

d. When n is even, the terms indexed by / and n — l — i cancel, so the sum is
0. Alternatively, the product of three n -cycles is an odd permutation (when
n is even) and hence cannot equal the identity permutation. When n is odd,
the asserted result is equivalent to the identity

-1)* 2(r + 1)

n - = -7TT' reven'
where we have set r = n — 1. Recall the beta function integral

Multiply by (— 1)*, sum on k from 0 to n, bring the sum inside the integral,
evaluate the sum explicitly, and integrate to get the stated result. This ar-
gument was suggested by D. W. Stanton. Of course equation (7.211) is not
new, and there are many other ways to prove it. An independent derivation
of this exercise is due to A. D. Mednykh, Comm. Alg. 18 (1990), 1517-1533
(eqn. (32)).

7.68. a. Note that uvu~lv~l = u(vu~lv~l), a product of u and a conjugate of
u~l. Let C and C be the conjugacy classes of G containing u and w"1,
respectively (so \C\ = \C\). If y is a fixed conjugate of w"1, then there are
|G|/ |C| elements v e G satisfying y = vu~lv~l. Hence

f(w) = 2 ^ TTrMu, y)eCxC : w = uy}, (7.212)
/"• I ^ I

where C ranges over the conjugacy classes of G. Let x 1 , . . . , xf denote
the irreducible characters of G, and let Xc denote the value of x r at any
element of C. By Exercise 7.67(b) we have

|C|2 J ^ 1
#{(M, y)eC XC : w = uy} = —— V — xr

c Xc Xr(^X

since \C\ = \C\ and xr(v~l) = xr(v)- Hence

r=\
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524 Chapter 7

so

by the orthogonality of characters, and the proof follows. This result was
known to many researchers in finite groups. A closely related problem ap-
pears in the book of I. M. Isaacs cited above (Problem 3.10). It is also
implicit in M. Leitz, Arch. Math. (Basel) 67 (1996), 275-280, and some of
the references given there.

b. This problem has been looked at by a number of group theorists, such as J.
L. Alperin, I. M. Isaacs, and L. Solomon.

c. For any class function F on <&n we have

khn

Now let F = f (as defined in (a)).
d. For any class function g on &n and any w e ©„, we have g(w) =

(g, px). Hence by equation (7.182), we have

khn

By Exercise 7.67(a) there follows

n-\

f = ^^(—l)kH
k=0

n-\

= ^^(—l)kn(n — k — 1)! k\.
k=0

Now use equation (7.211). This result is equivalent to equation (43) in A.
D. Mednykh, Comm. Alg. 18 (1990), 1517-1533.

e. Put x\ = • • • =xq = 1 and xt =0 for / > q in (7.182) and use Corol-
lary 7.21.4.

f. It follows from (e) that

1 d - (7.213)
\ dq khn tek q=\

There are three cases: (i) No content of A is equal to — 1. Then X = («),
and the contribution of X to En in equation (7.213) is Hn.

(ii) A has exactly one content equal to — 1. Then X has the form (a, b, \k),
where a > b > 0, k > 0, and a + b + k = n.ln this case the contribution
of X to En is

[ I tt()] ( l ) k \ ( b l ) \ k \ (7.214)
tek

^ ( 2 1
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(iii) k has more than one content equal to —1. Then the contribution of
k to En is 0.

When we sum (7.214) over all (a, b, k) satisfying a > b > 0, k > 0,
and a + b + k — n, then it is not hard to see (using equation (7.211)) that
we get the right-hand side of (7.183) except for the term Hn, which already
arose from k = (n).

g. Let Vj be the functional on symmetric functions defined by

where g\Pi=\ indicates that we are to expand g as a polynomial in the
and then set each pt = 1. Thus from (7.182) we have

Let mjifi) denote the number of parts of [i equal to j , and note that

But from J2n hn = exp (J2n Pn/n) there follows

-—hn = -hn-j.
fyj J

Hence from the linearity of F7 we get that for any f e An,

By Theorem 7.17.1 we have

summed over all partitions p 2 ( n — j) for which p/(n — j) is a border
strip B of size j . For each — 1 < i < j — 1 there is exactly one such border
strip Bt with / + 1 squares in the first column, except that B2j-n-\ does not
exist when 2j > n. Write pl for the partition p for which p/(n — j) = Bt.
It follows that for k h n,

otherwise.

(This formula can also be obtained by showing that d/dpj is adjoint to
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526 Chapter 7

multiplication by 4/?7, and that ^ lp/=i == 0 unless k = (n).) In particular,

When i = — 1 we have p~l = (n) and

When 0 < j < y — 1 (omitting i = 2j'•— n — 1 when 2y > «) it is not hard to
check (considering separately the cases 2y < n + i and 2y > n + i +1) that

1 nh,(B,.)w (-!)'(" -J+i

and the proof follows. This result is due to R. Stanley and J. R. Stem-
bridge (unpublished). For the problem of computing the expected number
of j -cycles of more general expressions than uvu~lv~l, see A. Nica, Ran-
dom Structures and Algorithms 5 (1994), 703-730.

7.69. a. The square of a cycle of odd length n is an n -cycle, while the square of a
cycle of even length n is the product of two cycles of length n/2. It then
follows from the exponential formula (Corollary 5.1.9) that

E ^ E pp^ = exp E \p* + E
n>0

\n odd

n>\

n>0 Xhn

the last step by Corollary 7.13.8, so we get

1

b. Let f(w) — J2xt-n X W ' so ch / = £ ^ s^- We need to show that ch /
is p-positive, i.e., a nonnegative linear combination of p^'s. Now use (a).
This argument shows in fact that

V^ Xx(w) = #{w € &n : w = u2}.
M-n
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See also [96, Exam. 11, p. 120]. More generally, it follows from the work
of Frobenius and Schur (see Isaacs, ibid. (Ch. 4) for an exposition) that if
G is a finite group for which every complex representation is equivalent to
a real representation, then for any l u e G w e have

J2 = #{w € G : w = w2},

where G denotes the set of irreducible characters of G.
c. This is a result of T. Scharf, Bayreuther Math. Schr., No. 38 (1991), 99-207,

and/ Algebra 139 (1991), 446-457. (See also [67, §6.2].) Scharf shows the
following. Let Par^(n) be the set of all partitions of n all of whose parts di-
vide k. For each A e Park(n), choose an element wk € <&n of cycle type A.
Let f = e2nitk. Define a one-dimensional character \/rx on the cyclic group
generated by w\ by

where I = £(k). This character extends naturally to a one-dimensional
character \/rx of the centralizer C{wx) of M;*. Then

= £'*

Hence /> is a character of <5n, and the proof follows.
A proof based more on the theory of symmetric functions was given by

J.-Y. Thibon, Bayreuther Math. Schrift., no. 40 (1992), 177-201 (Cor. 5.2).
We give a somewhat simplified version of this proof (generalizing the ar-
gument in (a)) as follows. Let ^,n = chrn .̂ Since the &-th power of an
n-cycle is a product of (n, k) cycles of length n/(n, k) (where (n, k) denotes
the g.c.d. of n and &), it follows immediately from the exponential formula
(Corollary 5.1.9) that

^ & - (7-215)

n>0 n>\ U

Let Ld be the symmetric function of equation (7.191). A simple inclu-
sion-exclusion argument shows that

n>\ n d\k n>\ n

where Ld(xn) = L^(x", x%,...). Equation (7.215) is then equivalent to the
plethystic formula

(7.217)
/i>0 n>0

Equivalently, if h = JI«>o hn, then

d\k

Cambridge Books Online © Cambridge University Press, 2010Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511609589.006
Downloaded from https://www.cambridge.org/core. Access paid by the UC Berkeley Library, on 26 Jun 2019 at 21:59:31, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511609589.006
https://www.cambridge.org/core


528 Chapter 7

Now hn is just the Schur function sn, while Ld is a nonnegative (integer)
linear combination of Schur functions by Exercise 7.89(b). Hence by Theo-
rem A2.5 of Appendix 2, the right-hand side of (7.217) is also a nonnegative
linear combination of Schur functions, and the proof follows. We don't know
whether /> (extended in an obvious way to any finite group) is a character
of any finite group G for which every representation can be realized over
Z. (The quaternion group of order eight shows that it does not suffice just
to assume that G is an /C-group, as defined in (j).)

d. It suffices by iteration to assume that m = 2 (though the general case can
also be proved directly). Let a = f\ and b = /2. We follow the notation of
Exercise 7.67(b). We have

t t

h(w) = ^2YlaibJ^Ui ^ G G x G '' u e Ch v G CJ' uv = w}'

By Exercise 7.67(b), we have

#{(M, V) G G x G : u e Ci, v e Cj, uv = w]

Hence

l£l
dr

and the proof is complete. It is possible to view this result as a special case
of the theorem that the Fourier transform converts convolution to multipli-
cation.

e. Define \//k: <&n -> Z by fx(w) = 1 if p(w) = A., and x//k(w) = 0
otherwise. It is then easy to check that

ch F^x^ = (ch fk)U (ch t») .

By bilinearity we get ch Ff,g = (ch /)D(chg) for any class functions / , g
on Bn. Now put f = xX>g = X̂ > and use (7.184) to deduce (7.185). The
steps can be reversed to deduce (7.184) from (7.185).

f. Letting r* be as in (c), we have

h(w)=

The proof now follows from parts (c) and (f).
Some results closely related to (d) and (f) appear in A. Kerber and B.

Wagner, Arch. Math. (Basel) 35 (1980), 252-262. Indeed, if one uses the
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fact (Isaacs, ibid., Lemma 4.4, p. 49) that for any finite group G and any
irreducible character / we have

then Satz 1 of Kerber and Wagner is equivalent to our (d) when ft = ra..
Another related paper (though not as closely) is L. Solomon, Arch. Math.
(Basel) 20 (1969), 241-247.

g. Let a = uvu and b = uv. Then u = b~la and i> = a~lb2, so as (w, v)
ranges over G x G, so does (a, &). But uvu2vuv = a&2, which is clearly
equidistributed over G. Thus we get

#{(«, v) € G x G : w = uvu2vuv] = |G|.

The main point is that the substitution w = ^-1fl and v = a~xb2 is in-
vertible because the homomorphism cp : F2 -> F2 (where F2 is the free
group on generators x, y) defined by cp(x) = y~lx and <p(y) = jc-1y2

is an automorphism of F2. For the classification of automorphisms of free
groups, see e.g. M. Hall, Jr., The Theory of Groups, Macmillan, New York,
1959 (Thm. 7.3.4).

h. We get from Exercise 7.68(a) and parts (a) and (d) of this exercise that
(/, x

k) = (g, Xk) ~ Hk for all A. h n, so the proof follows.
For a bijective proof, note that every element in <5n is conjugate to

its inverse. Hence we may replace the equation w = u(vu~lv~l) with
w = u(vuv~l) and maintain a simple bijection between the solutions to
the two equations. Now let a = uv and v = b~l. Since u = ab and v = b~l,
the elements a and b range over <&n as u and v do. Hence we may replace
the equation w = uvuv~l with w = {ab)b~l{ab)b — a2b2, and the result
follows. This argument is valid in any (finite) group for which every element
is conjugate to its inverse, or equivalently (since x (w~l) = % (w)) for which
every character is real, such as a (finite) Coxeter group. The case w = 1 was
treated in Exercise 5.12 for any finite group G.

i. For y = xykxy~k the second argument in (h) generalizes easily. Namely,
let a = xyk and b = y~l to get fY,en — f&&*,&„, which is a character by
(f). For y = xykx~xy~k, note that as in (7.212) we have

where r& is defined in (c). Reasoning exactly as in the solution to Exer-
cise 7.68(a) shows that

for every irreducible character / of G. Since T> is a character when G = &n

by (c), it follows that / is also a character. Similar reasoning shows that if
{$ is any word in the letters x\,..., xr and if x is a letter different from the
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530 Chapter 7

jt;'s, then

ifi,X) = —(ffi,X2)-

j . When r — \ (so fY,G — rk for some k e G), it follows from the work of
Frobenius, Sitz. Kb'ngl. Preufi. Akad. Wissen, Berlin (1907), 428-437; Ges.
Abh., vol. Ill, Art. 78, pp. 394-403, that rk is a difference of two characters.
A sketched proof appears in Isaacs, ibid. (Problem 4.7). When r > 1, then
it suffices to show (since fY,G is a class function) that for fixed /,

#{(i*i , . . . , ur) e Gr : y ( m , . . . , ur) e Ct} = 0 (mod |G|).

But this is exactly the special case m = 1 of Theorem 1 of L. Solomon,
Arch. Math. (Basel) 20 (1969), 241-247. For a closely related result, see I.
M. Isaacs, Canad. J. Math. 22 (1970), 1040-1046 (Thm. B).

k. If y — x2y2x2y2, x2y^x2y~3, or x2y2x2y3, then we don't know whether
fY,&n is a character for all n. (The case x2y2x2y2 has been checked for
n < 16, and the other two for n < 7.) On the other hand, if y = x y~lx2y,
x2y3x~2y~3, or x2y3x5 j 4 , then fYt6n is not a character for all n. Note also
that for a word like / = Xj x\ x\ x\ x\ x\ x* x\ (where every exponent
occurs an even number of times), it follows from (d) that fY^G is a character
for all finite groups G.

7.70. Let / x 1 , . . . , jxh h n. By Corollary 7.17.5, when the left-hand side of equation
(7.186) is expanded in terms of power sums, the coefficient Q of p ^ ^

is given by

khn 1 = 1

Let CM denote the conjugacy class of <&n consisting of permutations of cycle
type fi. Since \C^\ = nl/z^ (by equation (7.18)), fk = n\/Hx (by Corol-
lary 7.21.6), and xA(l r t) = fx (equation (7.79)), we have

k \

E 1 ' " • V):

Comparing with equation (7.180) (and using the fact that the xA 's are the irre-
ducible characters of <&n (Theorem 7.18.5) and that they are real), we see that

Q = ~ # { ( u > i , . . . , wk) € e * : wi"-wk = id},

as desired.
The case k = 0 is equivalent to Corollary 7.12.6, while the case k = 1 is

equivalent to Corollary 7.12.5.
Equation (7.186) first appeared in P. J. Hanlon, R. Stanley, and J. R. Stem-

bridge, Contemporary Math. 138 (1992), 151-174 (Prop. 2.2), in connection
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with the distribution of the eigenvalues of the matrix AUBU*, where A and
B are fixed n x n Hermitian matrices, and U is a random n x n matrix whose
entries are independent standard complex normal random variables.

7.71. a. By the orthogonality of characters,

the order of the centralizer C(w) of w (the number of v e G commuting with
w). This is just the number of fixed points of the action of w on G by conjuga-
tion (the number of v e G such that wvw~l = v). Since the number of fixed
points of an element w acting on a set is its character value, (i) and (ii) agree.

b. Let G denote the set of irreducible characters of G. Then

, X> =

But [G : C(w)] is the number of conjugates of w. Thus the previous sum
becomes J^K X(K)-

c. We have

1

d. See A. Frumkin, Israel J. Math. (1) 55 (1986), 121-128; T. Scharf, Arch.
Math. (Basel) 54 (1990), 427-^29; and Y. Roichman, Israel J. Math. 97
(1997), 305-316.

e. For some related work, see H. Decoste, Series Indicatrices d'Especes
Ponderees et q-Analogues, Publications du LACIM, vol. 2, Universite du
Quebec a Montreal, 1989 (Example 3.7).

7.72. Let A* A denote the action of A on A* V. If A has eigenvalues 0\,..., 0n, then
AkA has eigenvalues 0^ • • • %, 1 < i\ < • • • < ik <n. Hence

* A^A) (-q)k = (1 - 0xq) • • • (1 - 0n?) = det(/ - qA). (7.218)

Now if w € ©„ has cycle type /x = (/xi, /^2, •. •) with €(/x) = £, then
det(/ - qw) = (l - #Ml) (l - q^2) • • • ( ! - q^). Hence writing Wk for the
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532 Chapter 7

character of <&n acting on A* V, we have
n

^ ^k(w)(-q)k = (l - #Ml) (l - q^1) • • • (l — q^), (7.219)

so

Note that since Pj(-qx) = (— iyqjpj(x)anda>(pj) = (—iy-1p7, we have

(1 - qJ)Pj(x) = <OyPk(X, y)\y=-qx,

where a^ denotes o> acting on the y -variables only. Hence

(ch **) ( - (Oyln- w Jy=-qx

= (Dyhn(x, y)\y=-qx (by Proposition 7.7.6)

n

= toy ^2 Sj(x)sn-j(y)\y=-qx (by (7.66))
7=0

n

= Y] Sj(x)sin-j(y)\y==_qx (by Theorem 7.14.5)

7=0

It is a simple matter to multiply Sj by Si«-; by Pieri's rule (Theorem 7.15.7)
and collect terms to get

whence ch ^ = ^ + ^A*-1 and ^ = xA* + x**"1.
Note that this result is equivalent to A*x("~U) = ^<f|-*'1*>. The result of

this exercise is due to A. C. Aitken, Proc. Edinburgh Math. Soc. (2) 7 (1946),
196-203.

7.73. The argument is similar to that of Exercise 7.72. Let Sk A denote the action
of A on Sk V*, the space of homogeneous forms of degree k in the variables
v\,...,vn. Analogously to (7.218) and (7.219) we get

(tvSkA)qk =
{^ .{i-0nq) det(/-<?A)

and
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Hence

PfjLi ' ' ' Pfie

n\ /^ (i-qmy

wee*

khn

by Proposition 7.7.4 and Theorem 7.12.1.
This result is due to A. C. Aitken, Proc. Edinburgh Math. Soc. (2) 5 (1937),

1-13 (Thm. 2). For a "modern" A-ring proof of this exercise and the previous
one (Exercise 7.72), see J.-Y. Thibon, Bayreuth Math. Schr., No. 40 (1992),
177-201 (§3).

7.74, Let the permutation w G @n, regarded as an element of GL(n,C), have
eigenvalues 9\,...,9n. Then ^(w) — Sx(0\,..., 9n). Let p(w) =
p2(w),...). Since

we get by the Cauchy identity (Theorem 7.12.1) that

1

Taking the characteristic of both sides yields

2

7
' W£&n

\L\-n

and the proof follows.
Equation (7.187) appears in T. Scharf and J.-Y. Thibon, Advances in Math.

104 (1994), 30-58 (Thm. 5.1). The correspondence sy. H> ch^x is a spe-
cial case of the operation of inner plethysm, defined as follows. Let a :
&n -> GL(N, C) be any (finite-dimensional) representation of &n, and let
(p : GL(AT, C) -> GL(M, C) be a polynomial representation of GL(N, C).
The composition (per is then a representation of <5rt, and we define the inner
plethysm / O g of the symmetric functions / = ch a and g = char (p by

/ O g = ch<pa.
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534 Chapter 7

In particular,

since the character of the defining representation <&n -> GL(n, C) of <5n is
given by xn + X^"1 '1^ I n n e r plethysm was introduced by D. E. Littlewood,
Canad. J. Math. 10 (1958), 1-16, 17-32. For further information and refer-
ences, see T. Scharf and J.-Y. Thibon, ibid.

7.75. a. An orbit O^ of the action of <&k on ( M ) is specified by a partition \x —
(lmi2m2 • • • nmn) h j , where X! ™; = * and £(/z) = ]T rnt < k. Here OM

consists of those submultisets N e (M) with m,- elements of multiplicity
/. For instance, the orbit containing {1, 1, 1, 1, 3,4,4, 5, 5, 5, 5, 7, 8} cor-
responds to the partition /x = (I3, 21, 42) h 13. The characteristic ch(C?M)
of the action of <&k on O^ is just hmihmi • • • hmnhk-i(ji) [why?]. Hence
(setting r = k-

mu...,mn>0
r>0

where f\k denotes the degree k part of the symmetric function / . We get

Y\(l-XiXl-qXi)---(l-q»x

"~* (by (7.44)),

and the proof follows.
b. It is easy to see that Uj commutes with the action of <&k. A proof of injectiv-

ity for j < kn/2 involving only elementary linear algebra is a special case of
the argument given in §6 of R. A. Proctor, M. E. Saks, and D. G. Sturtevant,
DiscreteMath. 30(1980), 173-180. For some related work see R. A. Proctor,
/. Combinatorial Theory (A) 54 (1990), 235-247 (especially Cor. 1).

c. We omit the easy proof that aj = akn-j- Let j < \_kn/2\. Since Uj
commutes with the action of <&k and is injective, it is an injective map of
Sk-modules. Thus every irreducible representation of <&k occurs at least
as often in Q ( ^ ) as in Q ( ^ ) , so by (a) we get aj < aj+\.

The unimodality of ^ ( 1 , q,..., qn) was first proved (though not stated
explicitly in terms of Schur functions) by E. B. Dynkin, Dokl Akad. Nauk
SSSR (N.S.) 71 (1950), 221-224, and Amer. Math. Soc. Translations, Se-
ries 2 6 (1957), 245-378 (p. 332) (translated from Trudy Moskov. Mat.
Obsc. 1 (1957), 39-156), in the context of the representation theory of
semisimple Lie groups. For a statement of Dynkin's result avoiding the lan-
guage of representation theory, see R. Stanley, in Young Day Proceedings
(T. V. Narayana, R. M. Mathsen, and J. G. Williams, eds.), Dekker, New
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York/Basel, 1980, pp. 127-136. An elegant version of Dynkin's proof, in
the special case we are considering here, is given in [96, Exam. 1.8.4, pp.
137-13 8]. It is based on Theorem A2.5 of Appendix 2. A proof similar to the
one given here (but using wreath products instead of multisets) appears in
A. Kerber and K.-J. Thurlings, Bayreuther Math. Schr. 21 (1986), 156-278
(Satz 2.2). For further information see R. Stanley, Ann. New YorkAcad. Sci.
576, 1989, pp. 500-535. No proof of the unimodality of ^ ( 1 , q,...,qn)
is known that does not involve representation theory (or even more sophis-
ticated tools), but see (d) below for a special case for which simpler proofs
are known.

d. Apply (c) to S\k(\, q, . . . , qn~l) or ,s*(l, q,..., qn~k+l), where these spe-
cializations are evaluated in Proposition 7.8.3. This result goes back to J.
J. Sylvester, Phil. Mag. 5 (1878), 178-188; in Collected Math. Papers, vol.
3, Chelsea, New York, 1973, pp. 117-126. A number of other proofs have
subsequently been given, as discussed in R. Stanley, ibid. In particular, a
long-sought-for combinatorial proof was found by K. M. O'Hara, /. Com-
binatorial Theory (A) 53 (1990), 29-52; an exposition was given by D.
Zeilberger, Amer. Math. Monthly 96 (1989), 590-602.

7.76. a. Let fw denote the number of fixed points of w e G acting on 7\ so
fw = x(w).Thus

\A ' A/ M-/^ ' ' J W'#G rweG

On the other hand, the number of fixed points of w acting on T x T is just f%.
Thus by Burnside's lemma (Lemma 7.24.5), the above sum is the rank of G.

b. Let Xa denote the character of this action, so by Corollary 7.18.3 we have
ch Xa = ha. Since ch is an isometry (Proposition 7.18.1) the rank of <&n

acting on &n/&a is given by (ha, ha), which by equation (7.31) is the
number of N-matrices A with row(A) = col(A) = a.

c. The left cosets of <&a are indexed in a natural way by permutations of the
multiset Ma = { l a \ 2012,...}, and the action of <&n on <&n/<&a corre-
sponds to the action of <E>n on Ma by permuting coordinates. Hence the
action of <Bn on T x T is equivalent to the action of <&n by column per-
mutations on the set o f 2 x n matrices

\ax a2

••• b n y

where each row is a permutation of Ma. Associate with B the matrix A
whose (/, j) entry is the number of columns of B equal to '.. This estab-
lishes the desired bijection between the orbits of <&n acting onT x T and
the N-matrices A with row(A) = col(A) = a.

7.77. a. We have

(indg 1*. ind£ lK) = (indg 1H 0 ind£ 1K, lG).

Now the representation ind^ 1# (g)ind^ IK is a permutation representation,
obtained by letting G act on pairs {aH, b K) of left cosets by w- {a H, bK) =
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536 Chapter 7

(waH, wbK). Hence the multiplicity of the trivial representation is the
number of orbits of this action. When are two elements in the same orbit?
Every orbit contains an element of the form (H, bK), so we are asking for
what u,v € G can we find w € G such that w • (H, uK) = (H, vK).
Since wH = H we have w e H, so we want to know when we can find
h e H with huk = vkf for k, kf e K. But clearly this conditions holds if
andonlyif HuK = HvK, so the number of orbits is the number of double
cosets as desired.

This result can be considerably strengthened, as part of a theory developed
by G. Mackey. See for example C. W. Curtis and I. Reiner, Representation
Theory of Finite Groups and Associative Algebras, Wiley (Interscience),
New York, 1962, reprinted 1988 (§10C), and [142, §7.3].

b. The argument given in (a) shows that the number of double cosets of (//, if)
is the number of orbits of G acting diagonally onG/H x G/H. This latter
number is just what is meant by the rank of G acting on G/H.

c. Since ch(ind|" l6y) = hY (by Corollary 7.18.3), the number of double
cosets of (H, K) is by (a) and Proposition 7.18.1 given by (ha, h$), the
number of N-matrices A with row(A) = a and col(A) = ft (by (7.31)).
The solution to Exercise 7.76(c) generalizes straightforwardly to give a
combinatorial proof of the present exercise.

7.78. a. Because all characters of S n are real, we have

Q. — / Y * y/* Y
v \

6A/XV — \ A A » A /

which clearly has the desired symmetry.
b. We have

* Sp —

c. By linearity, we may take / = s^. Using (b) and the fact that en = si«, we get

1 Y^
e n * s x - - ^

ween

_ 1

~ ~n\
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d. Let g, / iGAn .We claim that

(g*h,pv) = (g,pv).(h\pv). (7.220)

By bilinearity, it suffices to take g = sx and h = sfM. Equation (7.220) then
follows from (7.78) and (b). Now let g = px and h = p ^ .

e. Note that pv(xy) = pv(x)pv(y). Hence equation (7.220) is equivalent to the
desired result when / = p v , so the general case follows by linearity.

f. One way to set up this computation is as follows:

£
n>0 X,fji,v\-n \/>hn

n>0 p\-n

xiJ^X^iPKix)

by arguing as in the proof of Proposition 7.7.4.
g. Straightforward generalization of (f).

The internal product of symmetric functions was first defined by J. H.
Redfield [124] (denoted something like TS0), and later independently by D.
E. Littlewood, J. London Math. Soc. 31 (1956), 89-93.

7.79. a. Let xy have the meaning of Exercise 7.78(e). By the Cauchy identity (The-
orem 7.12.1) applied to the two sets of variables xtyj and Zk, we have

Comparing with Exercise 7.78(f), we get

* sv

y).

Suppose that (s^, ̂ *^ v ) = gx^ ^ 0. Let a = £(ii),b = l(v), and restrict
the variables to x = (x\,..., xa) and y = (y\,..., yi,). Then s^x) ^ 0
and sv(y) ^ 0, so sx(xy) ^ 0. But sx(xy) is a Schur function in the ab
variables xiyj, so if sx(xy) ^ 0 then l(k) < ab.
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538 Chapter 7

b. We can reverse the argument in (a). In equation (7.221) take x = (JC i , . . . , xa)
and y = (y\,..., yb). Since l(k) < ab, we have sx(xy) ^ 0. Hence some
term gxtlvsfJi(x)sv(y) ^ 0, so l(fi) < a and l(v) < b. The results of this
exercise (parts (a) and (b)) were first obtained (in another way) by A. Regev,
/. Algebra 154 (1993), 125-140.

c. See Y. Dvir, /. Algebra 154 (1993), 125-140. For a continuation, see
Y. Dvir, Europ. J. Combinatorics 15 (1994), 449-457.

7.80. These results are due to C. Bessenrodt and A. S. Kleshchev, On Kronecker
products of complex representations of the symmetric and alternating groups,
Pacific J. Math., to appear.

7.81. Since xn~U(^) = ^i(^) - 1 [why?], there follows for f € An the formula

d
/*sn-i,i = Pi — / - / ,

dpi

where we are regarding / as a polynomial in the power sums. Since

SA = Sx/\
dpi

(see the solution to Exercise 7.35), the result follows.

7.82. a. Immediate consequence of Exercises 7.71(a)(ii) and 7.71(c).
b. This result is implicit in C. Procesi, Advances in Math. 19 (1976), 306-

381, and J. Algebra 87 (1984), 342-359 (§2). An explicit statement and
proof appears in A. Regev, Linear and Multilinear Algebra 21 (1987), 1-28
(Cor. 2.14), and 29-39 (Thm. 1).

7.83. a. We have

Hence by the Cauchy-Schwarz inequality,

^ |x0(w)|2 (since ty is irreducible)

X(w)\l (since |0(u;)| < 0(1))
" w

 WGG

= 0(D2(X,X)

= 0(1)2 (since x is irreducible).

This result appears in I. M. Isaacs, Character Theory of Finite Groups,
Academic Press, New York, 1976; reprinted by Dover, New York, 1994
(Problem 4.12).

b. Immediate from (a), equation (7.79), and the fact that
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7.84. a. By Exercise 7.78(e) we have

{hk * Sp, sv) - (hx * sv, Sp) [why?]

= (hx(x)sv(y),sfl(xy)).

Ordering the variables xy as X\y\ < x\yi < • • • < X2J1 < -̂ 2̂ 2 < • • •, it
follows from equation (7.66) that

and the proof follows easily. See [96, Exam. I.7.23(d), p. 130].
b. Let v h n. By Exercise 7.78(e) we have

(mV9 hk * /iM) = (mv(xy)9 hx(x)h^(

Now

A ij

= / ,

where A ranges over all N-matrices (0,7) such that the decreasing rearrange-
ment of the aij 's is v. The proof now follows easily for the duality between
the bases {mj and {hx} (equation (7.30)). See [96, Exam. I.7.23(e), p. 131].

* 7.85. See [46, Corollary 15]. For some further evaluations of g^v. see J. B. Remmel
and T. Whitehead, Bull. Belgian Math. Soc. 1 (1994), 649-683; E. Vallejo,
On the Kronecker product of irreducible characters of the symmetric group,
preprint; and the references given there. One of the main open problems in
the combinatorial representation theory of <Bn is to obtain a combinatorial
interpretation of gXflv in general.

7.86. a. By Exercise 7.78(b) we have

V ' " l W ' " A (7.222)

where p(w) = (pi,. •., />*) with pt > 0. It follows from Exercise 7.60(b)
that the denominators of the nonzero terms in the above sum are all divisors
of Hx{q), and the proof follows. This result was first given in R. Stanley,
Linear and Multilinear Algebra 16 (1984), 29-34 (Proposition 8.2(i)). For
algebraic and geometric aspects of this exercise, see P. J. Hanlon, Adv. in
Math. 56 (1985), 238-282; J. R. Stembridge, /. Combin. Theory (A) 46
(1987), 79-120; R. K. Brylinski, in Lecture Notes in Math. 1404, Springer-
Verlag, Berlin/New York, 1989, pp. 35-94; and R. K. Brylinski, Advances
in Math. 100 (1993), 28-52.
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5 4 0 Chapter 7

b. Multiply (7.222) by H\(q) and set q = 1. All terms vanish except the term
indexed by w — id, yielding

c. Let xy have the meaning of Exercise 7.78(e). Let x/r = i/r, be the specializa-
tion of Exercise 7.43, acting on the y variables only; and let psn and ps be the
principal specialization and stable principal specialization of Section 7.8,
acting on the x variables only. By computing directly the case / = pk, we
see that for any / e A and n e F ,

ps V-," f(xy) = psN f(x). (7.223)

Now by Exercise 7.78(f) we have

( * s(M

Apply the specialization ps^. By equation (7.223) we get

sx(h q,...9 qN~l) = ^T(sk * SpXh q, q2, . . . ) f-

Using Theorem 7.21.2, Corollary 7.21.3, and Exercise 7.43, we have

Multiply by J~J(1 — qh<<h^) and set t = — qN. We obtain a polynomial
identity in t valid for infinitely many values of t (viz., t = — qN) and hence
valid when t is an indeterminate. Therefore

f]
which is easily seen to be equivalent to the stated result.

This result is due to A. Lascoux (private communication). His proof uses
the machinery of X-rings. Since we have not introduced this machinery here,
we have given a "naive" version of Lascoux's proof. However, the A.-ring
approach does give a more natural and elegant proof. For more information
on Airings, see D. Knutson, Lecture Notes in Math. 308, Springer-Verlag,
Berlin/Heidelberg/New York, 1973.

d. This deceptively simple statement follows from [96, Exam. VI.8.3, pp.
362-363] and a conjecture of I. G. Macdonald, in Actes 2(f Seminaire
Lotharingien, Publ. I.R.M.A. Strasbourg, 372/S-20,1988, pp. 131-171 (§6),
and [96, (8.18?), p. 355]. Part (b) suggests that the coefficients of P^(q)
count some statistic on SYTs of shape £t, but such an interpretation remains
open. See also A. N. Kirillov, Adv. Ser. Math. Phys. 16 (1992), 545-579.

7.87. SeeTheorem5.1 ofR.Stanley,LinearandMultilinearAlgebra 16(1984),3-27.
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7.88. a. It follows immediately from the standard formula for an induced character
(e.g., Isaacs, ibid. (Def. 5.1) or [142, Prop. 20]) that

" d\n

where £ ranges over all primitive <i-th roots of unity. The result now follows
from the well-known fact (see C. A. Nicol and H. S. Vandiver, Proc. Nat.
Acad. Sci. 40 (1954), 825-835) that the above sum over £ is equal to

4>(d)

Equation (7.189) is due to H. O. Foulkes, in Combinatorics (D. J. A. Welsh
and D. R. Woodall, eds.), The Institute for Mathematics and Its Applications,
Southend-on-Sea, Essex, 1972, pp. 141-154 (Thm. 1).

b. (sketch) Let Qm be the operator on A[[q]] defined by

Q«/(?) = ^J2 £~m/(^)>

regarding n as fixed. Thus Qm picks out from the power series f(q) those
terms whose exponents are congruent to m modulo n. Apply Qm to the
identity

where [j] = 1 — qj. The coefficient of Sx on the left-hand side is equal
to the number of SYT T of shape X satisfying maj(7) = m (mod n). The
coefficient of px on the right-hand side is given by

0, X # {dn/d)

Z2 ^primitive f "\ X = (dn/ ),
d-th root of 1

and the proof follows from (a). This result was first proved independently
by W. Kraskiewicz and J. Weyman, Algebra of coinvariants and the action
of Coxeter element, preprint, and by R. Stanley (unpublished). The proof by
Stanley is the one given here. A similar proof appears in [130, Cor. 8.10].
Kraskiewicz and Weyman extend the result to the Weyl groups of type Bn

and Dn.
c. Regarding n as fixed, the expression (7.189) for tym depends only on (m, n),

and the proof follows from (b). A bijective proof is not known.
d. M. Kontsevich, in The Gelfand Mathematical Seminars, 1990-1992 (L.

Corwin et cU.9 eds.), Birkhauser, Boston, 1993, pp. 173-187, mentions (p.
181) a certain representation of <&n of dimension (n — 2)!, described more
explicitly (as an action on the multilinear part of the free Lie algebra on n — 1
generators) by E. Getzler and M. M. Kapranov, in Geometry, Topology, and
Physics, International Press, Cambridge, Massachusetts, 1995, pp. 167-201.
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542 Chapter 7

We will not give the definition here, but it follows from the definition that
the characteristic Wn of this action is given by

Wn = p\Ln-i - Lni

using the notation (7.191). It is easy to show from Exercise 7.89(c) that
(piLn-\, Sx) = j n - i (A), while Exercise 7.89(c) itself asserts that (Ln , sx.) =
;yn(A), and the proof follows. No combinatorial proof is known.

The symmetric function Wn has subsequently appeared in a surprising
number of disparate circumstances, and the &n -module for which it is the
characteristic is known as the Whitehouse module. Some references include

: E. Babson, A. Bjorner, S. Linusson, J. Shareshian, and V. Welker, Complexes
of not /-connected graphs, MSRI preprint No. 1997-054,31 pp.; P. Hanlon,
J. Combinatorial Theory (A) 74 (1996), 301-320; P. Hanlon and R. Stanley,
A g-deformation of a trivial symmetric group action, Trans. Amer. Math.
Soc, to appear; O. Mathieu, Comm. Math. Phys. 176 (1996), 467-474; C.
A. Robinson, Sonderforschungsbereich 343, Universitat Bielefeld, preprint
92-083, 1992; C. A. Robinson and S. Whitehouse, J. Pure Appl. Algebra
111 (1996), 245-253; S. Sundaram, Homotopy of non-modular partitions
and the Whitehouse module, J. Algebraic Combinatorics, to appear; S. Sun-
daram, On the topology of two partition posets with forbidden block sizes,
preprint, 1 May 1998; V. Turchin, Homology isomorphism of the complex
of 2-connected graphs and the graph-complex of trees, preprint; S. White-
house, Ph.D. thesis, Warwick University, 1994; and S. Whitehouse, J. Pure
Appl. Algebra 115 (1996), 309-321.

e. We have

Putting N = kd gives

N>\ n>\ niy d\N

«>1 n

explog(l + /?i)

whence (// — l)[J] = p\. Since the invertible elements of A with respect
to plethysm form a group, it follows also that J[H — 1] = p\t completing
the proof.
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The result of this exercise is due to C. C. Cadogan, /. Combinatorial The-
ory (B) 11 (1971), 193-200 (§3). For further aspects and a generalization,
see A. R. Calderbank, P. Hanlon, and R. W. Robinson, Proc. London Math.
Soc. (3) 53 (1986), 288-320.

7.89. a. This result can be proved by a straightforward use of the Principle of
Inclusion-Exclusion. It is equivalent to enumerating primitive necklaces of
length n by the number of occurrences of each color. In this form equation
(7.191) appears in [130, Thm. 7.2].

b. This is the special case m = 1 of Exercise 7.88(a).
c. Let m = 1 in Exercise 7.88(b).
d. See e.g. [4.21, Thm. 5.1.5] or [130, (7.4.1)].
e. This result follows easily from Proposition 1.3.1.
f. This result is a consequence e.g. of I. M. Gessel and C. Reutenauer, /.

Combinatorial Theory (A) 64 (1993), 189-215 (Thm. 3.6).
g. This key "reciprocity theorem" appears in T. Scharf and J.-Y. Thibon, Ad-

vances in Math. 104 (1994), 30-58 (Rmk. 3.11). A simpler proof was later
given by I. M. Gessel (unpublished).

h. By (f) and (g) we have

But px is clearly ra-positive, so (px, h^) > 0. Moreover, Lx is s-positive
by (b) and the fact (Appendix 2, Theorem A2.5) that the plethysm of s-
positive symmetric functions remains s-positive. Hence (Lx^s^) > 0, so
(tM > S/z) > 0 as desired. This result was originally conjectured by R. Stanley
and proved by Scharf and Thibon, ibid. (Example 3.15).

7.90. a. Given the SYT r with D(r) c S, replace 1, 2 , . . . , a\ in r by l's; re-
place a\ + 1, ct\ + 2, . . . , a\ + G?2 by 2's, etc. This gives an SSYT of type
(«!,...,(**), and the correspondence is a bijection. Compare the discussion
preceding Lemma 7.11.6.

b. Let x' be the transpose of r, of shape A//JU/. The condition i € D{x) is
equivalents/ £ D(rr),i.e., D(r') c {1,. . . , i - l , i + l , . . . , n-l}.Thus
by (a), the number of r of shape A.//X with / e D(x) is the Kostka number
Kkf/ii',a> where a = (1, 1, . . . , 1, 2, 1 , . . . , 1). But Kx'/^,a is independent
of the order of the entries of a.

7.91. a. The first statement is immediate from the Cauchy identity (Theorem
7.12.1). Similarly, if F{t) = ]~];>i (1 + *i*), then it follows from the dual
Cauchy identity (Theorem 7.14.3) that s[ — sx>(x).

b. Immediate consequence of (a) and Theorem 7.21.2.
c. Write FytZ(t) for F{t). Note that s[ is a polynomial Px(y, z) in y and z.

When y = 1 and z = qn then the problem reduces to (b). Since a polyno-
mial in one variable is determined by any infinite set of its values, it follows
that (7.192) holds for Fhz(t). Now for any F(t) let G(t) = F(yt). Clearly
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544 Chapter 7

sx = ylX]s[. Since FytZ(t) = Fhz/y(yt\ we get

1 _ zQdu)n y—
1 1 1 - ah{u)

This result is equivalent to that of D. E. Littlewood and A. R. Richardson,
Quart. J. Math. (Oxford) 6 (1935), 184-198 (Thm. IX) (repeated in [88, II.
on p. 125]), and also appears in [96, Exam. 1.3, p. 45].

d. Apply the homomorphism <p to the Jacobi-Trudi identity (Theorem
7.16.1).

e. It is trivial that (iii) =>• (ii), since e\ is Schur-positive by the dual Jacobi-
Trudi identity (Corollary 7.16.2).

Assume (i), so F(t) = YYid + Yj*)> where each Yj > 0. Then

from which it follows that (i) =>> (iii).
Assume (i). Clearly the coefficients of F(t) are then nonnegative real

numbers. Let the zeros of F(t) be 0\,..., #„, and define the Vandermonde
matrix V = ( t f j ) "^ . Then V is a real matrix and A = VV, so A is
semidefinite. Hence (i) ==> (iv).

The difficult implications are (ii) =>• (i) and (iv) =» (i). The first of these
implications is equivalent to a fundamental result of M. Aissen,
I. J. Schoenberg, and A. Whitney, J. Analyse Math. 2 (1952), 93-103. This
result states that if ao, a\,..., am € R, then every zero of the polynomial
F(t) = ao + a\t + ••• + amtm is a nonpositive real number if and only
if every minor of the (infinite) Toeplitz matrix A = [aj-i]tj>o (where
we set ak = 0 if k < 0 or k > m) is nonnegative. To see the connec-
tion with the problem under consideration, suppose that a$ = 1, so that
at ~ et(Yu • • •. Ym): where - y f 1 , . . . , - y ^ 1 are the zeros of F(t). By
the dual Jacobi-Trudi identity (Corollary 7.16.2), every minor of A is a skew
Schur function s^/^iYi»• • •» YmY Since skew Schur functions are ^-positive
(by Corollary 7.18.6 or Theorem A1.3.1), it follows that if (ii) holds then ev-
ery minor of A is nonnegative. Hence by the Aissen-Schoenberg-Whitney
theorem and the fact that F(0) = 1, every zero of F(t) is a negative real
number.

The above formulation of the Aissen-Schoenberg-Whitney theorem in
terms of symmetric functions seems first to have been stated explicitly in R.
Stanley, Graph colorings and related symmetric functions: ideas and appli-
cations, Discrete Math., to appear (Thm. 2.11). An extension to arbitrary
Toeplitz matrices (not just those with finitely many nonzero diagonals) was
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given by A. Edrei, Canad. J. Math. 5 (1953), 86-94, and Trans. Amer. Math.
Soc. 74 (1953), 367-383, thereby proving a conjecture of Aissen, Schoen-
berg, and Whitney. The same result was rediscovered by E. Thoma, Math.
Zeitschrift 85 (1964), 40-61, in the context of the characters of the infinite
symmetric group. A matrix all of whose minors are nonnegative is called
a totally positive (or sometimes totally nonnegative) matrix. Such matrices
have been extensively investigated; see, e.g., S. Karlin, Total Positivity, vol.
1, Stanford University Press, Stanford, California, 1968; T. Ando, Linear
Algebra Appl. 90 (1987), 165-219; J. R. Stembridge, Bull. London Math.
Soc. 23 (1991), 422-428; B. Kostant,/. Amer. Math. Soc. 8 (1995), 181-186;
F. Brenti, J. Combinatorial Theory (A) 71 (1995), 175-218; A. D. Beren-
stein, S. Fomin, and A. Zelevinsky, Advances in Math. 122 (1996), 49-149;
A. Okounkov, Zapiski Nauchnyh Seminarov POMI240 (1997), 167-230;
and some of the papers, in Total Positivity and Its Applications (Jaca, 1994),
Mathematics and Its Applications 359, Kluwer, Dordrecht, 1996. For an in-
teresting generalization of the Aissen-Schoenberg-Whitney-Edrei-Thoma
theorem, see S. Kerov, A. Okounkov, and G. Olshanski, Internat. Math. Res.
Notices (1998), no. 4, 173-179.

The equivalence of (i)-(iii) suggests that it might be possible to prove
combinatorially that certain polynomials F(t) have real zeros. Assuming
that F(0) = 1, one wants to interpret combinatorially the coefficients of the
product F(t\)F{t2) • • • when expanded in terms of Schur functions or ele-
mentary symmetric functions, thereby showing that they are nonnegative.
For an example of such an argument, see Exercise 7.47(i).

The implication (iv) => (i) is a consequence of the work of A. Hur-
witz, E. J. Routh, J. C. F. Sturm, and others on the zeros of polynomials.
It seems first to have been explicitly stated by F. R. Gantmacher, The The-
ory of Matrices, vol. 2, Chelsea, New York, 1959 (Cor. on p. 203). Since
a real symmetric matrix (a,y)" ; = 1 is semidefinite if and only if the leading

principal minors det(ai ;)^=1 are nonnegative, condition (iv) yields n — 1
inequalities (in addition to the nonnegativity of the coefficients) on the coef-
ficients of F(t) that are necessary and sufficient for every zero of F(t) to be
a negative real number. (There are n — 1 rather than n inequalities because
«n=/>o = d e g F > 0 . )

7.92. a. See J. R. Stembridge, Bull. London Math. Soc. 23 (1991), 422^28. A dif-
ferent proof was later given by B. Kostant, /. Amer. Math. Soc. 8 (1995),
181-186. Note that the matrices A of this exercise are the totally positive
matrices discussed in the solution to Exercise 7.9l(e).

b. See J. R. Stembridge, Canad. J. Math. 44 (1992), 1079-1099 (Conjec-
ture 2.1). Exercise 7.111(d) is a special case. An even stronger conjecture
involving Kazhdan-Lusztig theory appears in M. Haiman, /. Amer. Math.
Soc. 6 (1993), 569-595 (Conjecture 2.1).

7.93. Let (P, CD) be the labeled poset that is a disjoint union of chains t\ < • • • < tm

and t[ < - • • < t'n with co(ti) = ut and co(tj) = Vj. It is immediate from the
definition of a reverse (P, &>)-partition and from the definition (7.95)
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that

On the other hand, we have C(P,co) = sh(w, u), and the proof follows from
Corollary 7.19.5.

7.94. a. Preserve the notation of Exercise 7.93. By that exercise, we have

wesh(u,v)

On the other hand we have

cb(La)cb(Lp) = LaLp

wesh(v,u)

where v G <5n and u G <&[n+\,n+m] satisfy co(D) = ft and co(w) = a.
But then the natural bijection <p : sh(w, v) —>• sh(D, M) satisfies co(u;) =
co(<p(w)) for K; G sh(«, v). Hence cb(LaLp) = cb(La)cb(Lp). Since the
L a 's form a basis for Q and o> is linear, it follows that cb is an endomor-
phism of Q. Since cb is an involution, it is in fact an automorphism. Now let
a = (1, 1 , . . . , 1) G Comp(n), so a = (n). Then La — en and L« = /zw.
Hence a>(en) = hn. Since d> is an automorphism we have cb(ex) = h\ for
all A G Par, so O>|A = co-

b. First Proof. If C : 6 = *o < l̂ < • * * < h = 1 is a chain of P , then write

/(C) = /(fo, ^O/tt, fe) • •' /(fc-i, fc).
Also for a = (c*i , . . . , cik) £ Comp(n) let Ca denote the set of all chains
6 = to < t\ < • • • < tic = 1 of P for which p(ti) — p(ti-\) = « | . Hence

a€Comp(n

where M a is given by equation (7.87). Now let / = 1 + g, so f~l —
l - g + g2 Then

f-\O = (i-g + g
2 )(t0, h)..-{\-g + g2 )(**_!, tk)

where D > C indicates that D is a chain refining C, and where l(D)
denotes the length of D. Hence

Now sum first over D. If D G C^, then a satisfies Sa ^ 5^. Moreover,
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so we get

E E
i-l)^ f(D)

( - D ^ ' ^ W ) (by (7.91)).
l]

Let f = [n - 1] - T. By (a) we get

£ J>D # 5 W) E E (-i)#
peComp(n

/3eComp(n) DeC^ Tc.[n-l)

But

1° otherwise.

Since 5^ D T = 0 if and only if Sp C f, we get

6F/-= E E^-1^/^) E (-D"^
/3eComp(n)

= (-1)" J2 E /(°)Mco(« (by (7.91))

completing the proof.

Second Proof (Sketch). Let mGP. We see immediately from the
relevant definitions that

Ffm(x) = Ff(mxl (7.224)

where mx denotes the multiset of variables consisting of m JCI'S, m *2's,
etc., in that order. If for any G e Qn we expand g{mx) in terms of some
basis for Qn, then the coefficients will be polynomials in m. One can show
(using the basis {La}) that setting m = — 1 yields (— \)nw(G). (Compare
equation (A2.163) of Appendix 2.) Similarly if we expand the left-hand
side of (7.224) in terms of some basis for Qn, then the coefficients will
be polynomials in m, and setting m = — 1 yields Ff-\(x). Hence the proof
follows by setting m = - 1 in (7.224).

7.95. a. This is a straightforward generalization of Lemma 7.23.3. Regarding Ps
as the border strip Ba, we have that a permutation v e S n belongs to

Cambridge Books Online © Cambridge University Press, 2010Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511609589.006
Downloaded from https://www.cambridge.org/core. Access paid by the UC Berkeley Library, on 26 Jun 2019 at 21:59:31, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511609589.006
https://www.cambridge.org/core


548 Chapter 7

, cow) if and only if wi+\ follows w, in v whenever w,- is to the left
of Wi+i in the same row, and iu,-+i precedes wi in v whenever u>, is below
Wi+\ in the same column. This condition is easily seen to be equivalent to
D(wv'1) = S.

b. The set Ar(Ps, cow) of reverse (/>$, a^-partitions depends on S and on the
set of those pairs (w, v) e Ps x F5 for which w< u and &>«,(«) > o>u,(i;).
This set of pairs in turn depends only on D(w). Hence by Corollary 7.19.5
the multiset M — {D(v): v G C(Ps, cow)} depends only on S and D(w).
By (a), we have M = {D(v): D(wv~l) = S}. Letting u = wv~l, we get
that the number of w, v for which D(u) = S, D(v) = T, and uv = w
depends only on M, V, and D(w), as was to be proved.

This result may be formulated algebraically as follows. In the group al-
gebra Q S n of ©n, define for each S c. [n — I]

Bs=
w: D(w)=S

Then the algebra Vn generated by the Bs's is equal (as a set) to their linear
span. In other words, dim£>n = 2""1. The algebra Vn is known as the
descent algebra of (Sn and has many remarkable properties. It was first
defined (for any finite Coxeter group) by L. Solomon, /. Algebra 41 (1976),
255-268. For a connection between descent algebras and quasisymmetric
functions, see C. Malvenuto and C. Reutenauer, /. Algebra 177 (1995), 967-
982. The proof that d\mVn = 2n~l given here is due to I. M. Gessel. A
good reference to the descent algebra is [130, Ch. 9].

7.96. This result is implicit in A. M. Garsia and C. Reutenauer, Advances in Math.
77 (1989), 189-262 (Thm. 4.4).

7.97. a. It follows from the four equations beginning with (7.98) that

P,Q

\ P I \ Q I

where P ranges over all reverse SSYT of shape k and largest part at most
c, while Q ranges over all reverse SSYT of shape X and largest part at most
r. The sum over P is thus just Sx(x, x2,..., xr\ while the sum over Q is
sx(x, x2,..., ;cc), and the proof follows.

b. The proof is parallel to that of (a), using the correspondence 7r H> a defined
in the second proof of Theorem 7.20.4.

7.98. a. This formula can be proved by generalizing the proof of Theorem 7.22.1 (the
Hillman-Grassl algorithm). See E. R. Gansner, J. Combinatorial Theory (A)
30 (1981), 71-89 (Thm. 5.1).

b. See the above reference (Thm. 6.1).

7.99. From the proof of Theorem 7.20.1 we have

t,n>0
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where each ar; for 1,7 > 1 ranges over the set N. Putting q/x for q gives

Kt(n + t)qlxn =

The condition that n < t becomes

or equivalently,

where J^' indicates that the term (i, 7) = (1, 1) is missing. Hence

l-q\}

From this the desired conclusion is immediate.
This result was first proved (by a more complicated method) in R. Stanley,

/. Combinatorial Theory (A) 14 (1973), 53-64 (Cor. 5.3(v)).
The result of this exercise is equivalent to the formula

Kt(n + 0 = ] P p(k)a(n - k), 0<n<t,

where p(k) denotes the number of partitions of k and a(n — k) the number of
plane partitions of n — k. Is there a direct bijective proof?

7.100. a. Let A —• (P, Q). Proposition 7.23.10 tells us the first row of P. The-
orem 7.23.16 then allows us to describe the first column of P directly in
terms of A. Using Theorem 7.13.1 we can then describe the first column of
Q also in terms of A. These are all the ingredients necessary for the proof,
though we omit the details.

b. The result of (a) applies equally well to the "reverse" version of the RSK
algorithm used in the proof of Theorem 7.20.1. Hence the merged plane par-
titions 7r(P, Q) and n(P\ Q') (as defined in the proof of Theorem 7.20.1)
will have the same first column, so the row conjugates 7r'(P, Q) and
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xf(Pf, Q') will have the same shape. In other words, the shape sh(7r/) de-
pends only on the support supp(A). Since under the correspondence A i-» it'
we have tr(7r') = ]T aij, it follows that there is a collection S of finite sub-
sets of P x P such that the following condition holds: sh(7r') c A. and
tr(7rO = n if and only if supp(A) e S and J2aU = n.If S C W2 with
#S = k, then the number of N-matrices of support S and element sum n is
just (^~j), the number of compositions of n into k parts. Thus we get

h(n) =

which is a polynomial in n. Given that t\ (n) is a polynomial, there are several
ways to see that its degree is | X \ — 1. For instance, Theorem 4.5.4 (or the more
general Corollary 7.19.5) allows the generating function ^ n h(n)xn to be
expressed as a sum of fx rational functions of the form xa/(l —xbl) • ••(1 —
xbm) where X h m, from which it is immediate that deg tx = |A.| — 1. See
E. R. Gansner, Illinois J. Math. 25 (1981), 533-554.

c. The condition that n' fits in an a x b rectangle is equivalent (by the proof
of Theorem 7.20.1) to max{7 : (/, j) e supp(A)} < b and max{/: (/, j) €
supp(A)} < a. Hence t^){n) is equal to the number of a x b N-matrices
whose entries sum to n, which is just ( a ^ " 7 1 )•

7.101. Equation (7.193) was stated without proof (with a misprint) by R. Stanley,
in Combinatoire et Representation du Groupe Symetrique (Strasbourg 1976),
Lecture Notes in Math. 579, Springer-Verlag, Berlin/Heidelberg/New York,
1977, pp. 217-251 (Thm. 4.3(b)). The first proof was given by R. A.
Proctor, in Lie Algebras and Related Topics (D. J. Britten, F. W. Lemire, and R.
V. Moody, eds.), CMS Conf. Proc. 5, American Mathematical Society, Prov-
idence, 1986, pp. 357-360, and Invent. Math. 92 (1988), 307-332 (Cor. 4.1).
Proctor actually proves the case d — 1 of equation (7.194), and later states
(immediately after Cor. 4.1) equation (7.194) in its full generality. Proctor's
proof is based on representation theory; the number fn(m) is in fact the dimen-
sion of the irreducible representation of the symplectic group Sp(2(rc — 1), C)
(or Lie algebra $p(2(n — 1), C)) with highest weight mkn-\, where Xn-\ de-
notes the (n — l)-st fundamental weight. (See also Exercise 6.25(c).) Proctor
proves the more general case d = 1 of (7.194) also using representation theory,
but when M — I is even this involves the construction of a non-semisimple
analogue sp(2n -f-1, C) of the symplectic Lie algebra sp(2n, C). Proctor's un-
published proof of the general case of (7.194) uses entirely different techniques,
viz., the evaluation of the q = 1 case of MacMahon's determinantal expression
(P. A. MacMahon, Phil. Trans. Roy. Soc. London (A) 111 (1911), 345-373
(p. 367); Collected Works, vol. 1 (G. E. Andrews, ed.), MIT Press, Cam-
bridge, Massachusetts, 1978, pp. 1406-1434 (p. 1428)) for the polynomial
Y^n <Z|7r|> summed over all plane partitions, allowing 0 as a part, of an ar-
bitrary shape {i. Subsequently a much more general determinant evaluation
was given by C. Krattenthaler, Manuscripta Math. 69 (1990), 173-202, and
in Number-Theoretic Analysis (H. Hlawka and R. F. Tichy, eds.), Lecture
Notes in Math. 1452, Springer-Verlag, Berlin/Heidelberg/New York, 1990,

Cambridge Books Online © Cambridge University Press, 2010Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511609589.006
Downloaded from https://www.cambridge.org/core. Access paid by the UC Berkeley Library, on 26 Jun 2019 at 21:59:31, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511609589.006
https://www.cambridge.org/core


Solutions 551

pp. 121-131 (though in the special case of (7.194) Krattenthaler does not state
the result in the elegant form we have given, due to Proctor). For some further
applications of representation theory to the enumeration of plane partitions, see
R. A. Proctor, Europ. J. Combinatorics 11 (1990), 289-300.

7.102. a. By Theorem 7.21.2 and Corollary 7.21.3 we have

which clearly has the desired properties.
b. By the Jacobi-Trudi identity (Theorem 7.16.1) and the specialization

ht(hq,...) = l/[i]! (where [i]! = (1 - q){\ - q2) • • • (1 - q% we
have

It is not hard to see that

-qn+c(u)) u n ( n+Xi~i

It follows that

The proof now follows from a straightforward application of Theorem 2.7.1.
(In fact, equation (7.225) is a specialization of a result known as the "Jacobi-
Trudi identity for flag Schur functions," due to I. M. Gessel and appearing in
M. L. Wachs, J. Combinatorial Theory (A) 40 (1985), 276-289 (Thm. 3.5).)
The proof we have just given is due to H. L. Wolfgang (private communi-
cation, 13 November 1996). A version of the proof, based on the theory of
Schubert polynomials, appears in S. C. Billey, W. Jockusch, and R. Stanley,

= 7. Algebraic Combinatorics 2 (1993), 345-375 (Thm. 3.1). Is there a "nice"
bijective proof?

7.103. a. This result was conjectured by I. G. Macdonald and proved by J. R. Stem-
bridge, Advances in Math. I l l (1995), 227-243.

b. This result was conjectured by D. P. Robbins and R. Stanley, and proved by
G. E. Andrews, /. Combinatorial Theory (A) 66 (1994), 28-39.

Both (a) and (b) (as well as Theorem 7.20.4 and Exercise 7.106(b)) are part
of the subject of the enumeration of symmetry classes of plane partitions.
For an overview of this subject (written when most of the current theorems
were conjectures), see R. Stanley, /. Combinatorial Theory (A) 43 (1986),
103-113; Erratum, 44 (1987), 310. All ten symmetry classes discussed in
this paper have now been enumerated, though the #-enumeration of totally
symmetric plane partitions (i.e., the plane partitions of (a)) remains open. For
a recent paper with further references, see G. Kuperberg, J. Combinatorial
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Theory (A) 75 (1996), 295-315. For an entertaining account of the numbers
B(r) of (b), see D. P. Robbins, Math. Intelligencer 13 (1991), 12-19.

c. This intriguing and surprisingly difficult result was conjectured by W. H.
Mills, D. P. Robbins, and H. Rumsey, Jr., Invent. Math. 66 (1982), 73-
87 (Conjecture 1), and /. Combinatorial Theory (A) 34 (1983), 340-359
(Conjecture 1). It was first proved by D. Zeilberger, Electron. J. Combi-
natorics 3 (1996), R13, 84 pp.; also published in The Foata Festschrift (J.
Desarmenien, A. Kerber, and V. Strehl, eds.), Imprimerie Louis-Jean, Gap,
France, 1996, pp. 289-372. A simpler proof was later given by G. Kuper-
berg, Int. Math. Res. Notices (3), 1996, 139-150. For more information
concerning this result, see the paper of Robbins cited in (b). For a textbook
devoted to symmetry classes of plane partitions, monotone triangles, and
related topics, see D. M. Bressoud, Proofs and Confirmations: The Story
of the Alternating Sign Matrix Conjecture, Cambridge University Press and
Mathematical Association of America, to appear.

d. If w = w\ • • • wn 6 S n , then associate with w the monotone triangle
mt(u;) = (aij(w))\<i<j<n whose i-th row consists of the numbers w\, W2,
. . . , wn-i+i in increasing order. It was shown by C. Ehresmann, Ann. Math.
35 (1934), 396-443 (§20) that the set {mt(w) : w e S n } , ordered com-
ponentwise, is isomorphic to Pn. Given triangular arrays a = (atj) and
b = (by), define the meet a A b to be the triangular array (min{fll;, £|;}).
It is not difficult to check that the set of all arrays obtained by repeatedly
taking meets of the triangles mt(u;), w e S n , coincides with the set of
monotone triangles. Hence L(Pn) is a completion of Pn, and it is not hard
to show that it is in fact the MacNeille completion. The surprising formula
#L(Pn) = M(n) is due to A. Lascoux and M. P. Schiitzenberger, Elec-
tron. J. Combinatorics 3 (1996), R27, 35 pp.; also published in The Foata
Festschrift (J. Desarmenien, A. Kerber, and V. Strehl, eds.), Imprimerie
Louis-Jean, Gap, France, 1996, pp. 653-685. Note also the unexpected fact
that L(Pn) is a distributive lattice.

7.104. This is a result of E.M. Wright, Quart. J. Math. Oxford (2) 2 (1931), 177-189.

7.105. Yes if n < 14, but no for n = 14, an example being k = (5, 5, 2, 1, 1) and
ix = (4,4, 3, 1, 1, 1). These results are due to L. A. Shepp, private communi-
cation, 1975.

7.106. a. It is a straightforward application of the Littlewood-Richardson rule (Ap-
pendix 1, Section A 1.3) that

Sv = 2 ^ •S(c+A.,,c+A.2,...,c+A.r,c-A.r,c-A.r_i,...,c-A.1)- (7 .226)

A direct bijective proof using jeu de taquin (essentially a proof of the
Littlewood-Richardson rule in the special case si) can also be given; see
R. Stanley, /. Combinatorial Theory (A) 43 (1986), 103-113; Erratum, 44
(1987), 310.

b. Let n be a (2r, 2c, 2f )-self-complementary plane partition. Add 2r — i to ev-
ery entry of the i-th row of n to obtain a reverse column-strict plane partition
a of shape ((2c)2r), allowing 0 as a part, with largest part at most 2r+2t — 1.
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Let T be the subarray of a consisting of all entries less than r + 1 . Then r is a
(rotated) SSYT (allowing 0 as a part) with largest part at most r + t — I and
whose shape is one of the partitions [i such that s^ is a term of the sum in
equation (7.226). Conversely, given such an SSYT, we can reverse the steps
to obtain a (2r, 2c, 20-self-complementary plane partition. It follows that

But s{cr)(lr+t) = F(r, c, t)9 since an SSYT with < r rows, < c columns,
and largest part < r + t — 1 (allowing 0 as a part) can be converted to a
plane partition with < r rows, < c columns, and largest part < r + t by
subtracting r — i from the entries in the i-th row and rotating 180°. Hence
we get equation (7.195).

In a similar manner we obtain

G(2r + 1, 2c, 20 = F(r, c, O ^ + 1, c, f)

G(2r + 1, 2c + 1, 0 = Fir + 1, c, 0^(>\ c + 1,

These results appear in R. Stanley, ibid. (eqns. (3a)-(3c)).

7.107. a. Let / z ^ denote the partition whose diagram is an n x n square (with n
sufficiently large) with the shape \x removed from the bottom right-hand
corner. By Exercise 7.41 we have

Put Xj = ql~x. By Theorem 7.21.2 we get

_ nn+c(u) ___ 1 _ n-n-c{v)

<f' ' '

for some A: € Z. The right-hand side is equal to qm Y[vefl (1 - qn+c(v))/
(1 - qh(v)) for some m G Z, so

1 - <7*(M) L f 1 - <7A(U)

Putting q = 0 shows that A: — m = 0 . Now as n —• oo, it is easily seen that

n
n o - ̂ w) - n (i - ^w)

and the proof follows.
A bijective proof of this exercise was first given by D. E. White (pri-

vate communication). We sketch another such proof (found in collaboration
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with C. Bessenrodt) using the binary sequence coding C^ of \x explained
in Exercise 7.59. By considering the sequences C^ and C^ together with
Exercise 7.59(a), one sees that we need to prove bijectively the following.

Lemma. Let C be a binary sequence • • • C-\CQC\ • • • beginning with in-
finitely many O's and ending with infinitely many l's. For each p > 1,
let rp(C) be the number of integers i such that C{ = 0 and Ci+p = 1, and
let sp(C) be the number of integers i such that c,-=l and Ct+p = 0. Then

C C

Proof First note that the case p = 1 is easy to prove bijectively. But when
we apply the case p = 1 to each of the subsequences Cj = {cPi+ ;}/GZ,
where 0 < j < /?, then we obtain the stated result. •

C. Bessenrodt has observed that the present exercise is equivalent to the
statement that for each p > 1, the number of ways to add a border strip
of size p to /x is exactly p more than the number of border strips of ji of
size p. Note that the case p = 1 is the familiar fact (see Exercise 3.22(c))
that in Young's lattice the element /JL is covered by one more element than it

covers. The general case then follows from the isomorphism Yp$ —^ Yp

of Exercise 7.59(e). For related work see C. Bessenrodt, On hooks of Young
diagrams, preprint.

b. A weak reverse plane partition of shape iuln\ rotated 180°, is just a skew
plane partition of shape (/in)//x. Hence by Theorem 7.22.1,

w

Now let n -> oo and use (a).
c. Such a proof was given by K.Kadell,/ Combinatorial Theory (A) 11X1997),

110-133 (§6).

7.108. The only partition of p + q with largest part p and with q parts is (p, 2,
lq~2). Hence by Theorem 7.23.13, we have

pq{p + q -Dip- 2)\(q-2)\

7.109. a. Immediate from Corollary 7.23.12.
b. This result was first shown by J. M. Hammersley, in Proc. Sixth Berkeley

Symposium on Mathematical Statistics and Probability, vol. 1, University
of California Press, Berkeley/Los Angeles, 1972, pp. 345-394 (Thm. 4),
using subadditive ergodic theory.

c. If w = w\W2 • • - wn € <SW, then let wr = wn • • • W2W\. It follows from
Example 7.23.19(a) that is(w) • is(wr) > n. Hence (using the arithmetic-
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geometric-mean inequality),

n\ 2

1
> — Y\ y/is(w) • is(W)

and the proof follows. By a more sophisticated argument Hammersley, ibid.
(p. 360), shows that a > n/2= 1.57 •••, and explains how this bound
can be improved to *J%Jn'= 1.59 ••• (also done independently by D. H.
Blackwell).

d. The number of subsequences of w € <5n of length k is (£ ), and the proba-
bility that a specified one of them is increasing is I/A:!. Hence the probability
that is(u;) > k cannot exceed ~~ (£) , and the proof can be completed by a
judicious use of Stirling's formula. This argument is due to Hammersley,
ibid. (Thm. 6).

e. This result was proved independently by B. F. Logan and L. A. Shepp,
Advances in Math. 26 (1977), 206-222, and by A. M. Vershik and S. V.
Kerov, Dokl Akad. Nauk SSSR 233 (1977), 1024-1027, English translation
in Soviet Math. Dokl. 18 (1977), 527-531.

f. Roughly speaking, most of the contribution to the sum on the right-hand
side of (7.196) comes from terms indexed by A. "near" Xn. Moreover, since
H2k\-n(fX)2 = n - a n c * t n e number of terms of this sum is small compared
with n!, we see that (/*" )2 is "near" n!. Thus the largest part (kn)\ of kn is
"near" a*Jn. Since lim^^o /(•*) = 2, it follows that (Xn)\ is asymptotically
at least as large as 2^/n, so a > 2. For rigorous treatments of this argument,
see the two papers cited in (e) above.

g. See A. M. Vershik and S. V. Kerov, ibid.
Much further work has been subsequently done on the problems of esti-

mating E(n) and describing Xn, and the closely related problem of finding
the "typical" shape of a permutation w G &n (i.e., the shape of the SYT P or
Q obtained from w via the RSK algorithm). See for instance S. V. Kerov and
A. M. Vershik, SIAMJ. Alg. Disc. Meth. 7 (1986), 116-124; J. M. Steele, in
Discrete Probability and Applications (Minneapolis, MN, 1993), IMA Vol.
Math. Appl. 72, Springer, New York, 1995, pp. 111-131; D. Aldous and P.
Diaconis, Probab. Theory Related Fields 103 (1995), 199-213; J. H. Kim, J.
Combinatorial Theory (A) 76 (1996), 148-155; T. Seppalainen, Electron. J.
Probab. 1 (1996), no. 5,51 pp.; B. Bollobas and S. Janson, in Combinatorics,
Geometry and Probability (Cambridge, 1993), Cambridge University Press,
Cambridge, 1997, pp. 121-128; and J. Baik, P. Deift, and K. Johansson, On
the distribution of the length of the longest increasing subsequence of a
random permutation, preprint dated May 11, 1998. In this last paper the
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following remarkable result is proved. Let u{x) be the (unique) solution of
the Painleve" II equation

uxx = 2M3 + JCW, and u ~ Ai(x) as x —> oo,

where Ai(jc) is the Airy function. Let Ln denote the length of the longest
increasing subsequence of a random permutation w e <E>n. Then

lim Probl v < t) = expl - / (x - t)u{xfdx I .
«->oo \ fli/o / \ Jt )

In particular, the variance of Ln is an explicit constant times n1/3.

7.110. From equation (7.96) there follows

1 — q Y ^ m

V m>0

Z =
' k \shT=X

1 — Q x-^

^ A m>0

m>0

the last step by the Cauchy identity (Theorem 7.12.1). Note that

Hence

Z = X~± 1 ' = 1 - % ° ( 1 ( 1 - y ' - i 5 '
 ( 7 2 2 7 )

Now note that from the generating function for the Eulerian polynomials given
in Exercise 3.8l(c) we get
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Letting H(z) = X^n>0 snz
n, the right-hand side of (7.227) can be written as

z (l-g)ff(l-g)

By equation (7.198) we have

—

so we get

Expanding by the multinomial theorem shows that the coefficient of p^ is

as desired. This argument was done in collaboration with I. M. Gessel.

7.111. a. We have X = <5rt. Hence the formula Zx = n \hn is equivalent to equation

C7-22)-
b. Let Yt = {w e &n: w{n) = /}. Clearly ZYl = Zy2 = • • • = Zyn_p while

by (a) we have ZYn = (n - 1)! hn-ih\. But

n\hn = Z[n]x[n] = Zy, + • • • + Zyn,

so

Zx = Z[n]x[n] — ZYX

= n\hn
 l—[n\hn-(n - l)!An_iAi]

n - 1
= n(n - 2)(n - 2)\hn + (n - 2)\hn.xhx.

c. The /z-positivity of Zx is equivalent to Exercise 7.47(1) in the case when
the complement of G is bipartite. See the solution to that exercise for refer-
ences. It follows from this solution that moreover the only /i^'s appearing
in Zx are of the form hjhn-j.

d. This result is equivalent to Exercise 7.47(j) in the special case that P is also
(2 + 2)-free. (It is also a special case of Exercise 7.92(a).) See R. Stanley
and J. R. Stembridge, 7. Combinatorial Theory (A) 62 (1993), 261-279 (§5).
The weaker result that Zx is s-positive follows from Exercise 7.47(h) and
also from Exercise 7.92(a).

e. In equation (7.186) put k = 3, JC(1) = JC, JC(2) = y9 pi(x(3)) = 0, p2(x
{3)) =

^ =l,w\ = v, and W2 = w. Using equation (7.209) we get

#A-^(*)SAO0= — J2 P
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558 Chapter 7

Hence (since (p^, pv) = z^S^),

ZBw(x) = (-7 T] Hkdksk(x)sx(y), pP(W)(y)) ,
\nlTyn ly

where (, ) y indicates that we are taking the scalar product with respect
to the y variables only. Since pa = X^x XX(a)sx (Corollary 7.17.4) and
fk = n\/Hx (Corollary 7.21.6), we get

as desired. This formula is a result of S. Okazaki, Ph.D. thesis,
Massachusetts Institute of Technology, 1992 (Thm. 1.2).

f. Follows easily from (e) and Exercise 7.63(b). See Okazaki, ibid. (Thm.
1.6). Note that this result implies that Zj^is s-positive when w is an n-
cycle. In general, ZBw need not be s-positive, e.g., if if = id G ©2> then
ZBW = s2 - ^ n -

7.112. a. Let G be the subgroup of <Bn generated by the H-cycle (1, 2 , . . . , n). A
necklace with beads from an alphabet A is just an orbit of the action of G
on A^n\ the set of functions [n] —• A. Hence by Corollary 7.24.6, we have

nweG

Since G has (j)(d) elements of cycle type (dn/d), the proof follows. The
enumeration (7.197) of necklaces is due to P. A. MacMahon, Proc. London
Math. Soc. 23 (1892), 305-313 (p. 308); in Collected Papers (G. E. An-
drews, ed.), MIT Press, Cambridge, 1978, pp. 468-476, and is a precursor
of Polya's theory of enumeration under group action. MacMahon mentions
that the enumeration of necklaces according to the number of beads of each
color (and hence including (b) as a special case) had earlier been done by
M. E. Jablonski and M. Moreau, independently.

b. By Theorem 7.24.4, we want the coefficient of JC ĴC^ in

It is easy to see that this coefficient is just

7.113. Let V be a /^-element set, and let G be the group of permutations of S = (v
2 )

induced by permutations of V, as in Example 7.24.2(b). By Example 7.24.3(b)
we have

I = 0
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Solutions 559

By equation (7.120) we have

ZG(l,q) = Yl fl^(l,9),
Ah©

where ̂  € N. By Exercise 7.75(c) each polynomial sx(l, q) is symmetric and
unimodal, with center of symmetry | ( 2 )• Hence the same is true of ZG(1 , q),
and the proof follows.

This result (in a more general form that can be proved in the same way as
above) is due to D. Livingstone and A. Wagner, Math. Z. 90 (1965), 393-403.
For further references and ramifications, see R. Stanley, Ann. New YorkAcad.
Set 576 (1989), 500-535 (esp. Thm. 10) and Discrete Appl. Math. 34 (1991),
241-277 (§3).
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