Just as in Example 2, we substitute $\phi(t)$ into y'' + y = 0 to find that

$$\underbrace{-2\cos t + 3\sin t}_{\phi''(t)} + \underbrace{2\cos t - 3\sin t}_{\phi(t)} = 0$$

for all t. Therefore $\phi(t)$ is a solution of y'' + y = 0 on $-\infty < t < \infty$. Next we must check to see if the initial conditions specified in the initial value problem (29) are satisfied. Since

$$\phi(0) = 2\cos 0 - 3\sin 0 = 2$$

and

$$\phi'(0) = -2\sin 0 - 3\cos 0 = -3,$$

we conclude that $\phi(t)$ is a solution of the initial value problem (29).

PROBLEMS

22)

23)

(24)

ns

(26)

con-

that

inte-

a set

on

(8)

ion to

(29)

In each of Problems 1 through 6, determine the order of the given differential equation; also state whether the equation is linear or nonlinear.

1.
$$t^2 \frac{d^2 y}{dt^2} + t \frac{dy}{dt} + 2y = \sin t$$

2.
$$(1+y^2)\frac{d^2y}{dt^2} + t\frac{dy}{dt} + y = e^t$$

3.
$$\frac{d^4y}{dt^4} + \frac{d^3y}{dt^3} + \frac{d^2y}{dt^2} + \frac{dy}{dt} + y = 1$$

$$\frac{dy}{dt} + ty^2 = 0$$

6.
$$\frac{d^3y}{dt^3} + t\frac{dy}{dt} + (\cos^2 t)y = t^3$$

Show that Eq. (10) can be matched to each equation in Problems 7 through 12 by a suitable choice of n, coefficients a_0, a_1, \ldots, a_n , and function g. In each case, state whether the equation is homogeneous or nonhomogeneous.

7.
$$\frac{dQ}{dt} = -\left(\frac{1}{1+t}\right)Q + 2\sin t$$

8.
$$\frac{d^2y}{dt^2} = ty$$

9.
$$x^2 \frac{d^2y}{dx^2} - 3x \frac{dy}{dx} + 4y = \ln x$$
, $x > 0$

10.
$$\frac{d}{dx} \left[(1 - x^2) \frac{d}{dx} P_n \right] + n(n+1) P_n = 0, \quad n \text{ constant}$$

11.
$$\frac{d^4y}{dt^4} + (\cos t)\frac{d^2y}{dt^2} + y = e^{-t}\sin t$$

12.
$$\frac{d}{dx} \left[p(x) \frac{dy}{dx} \right] - q(x)y + \lambda r(x)y = 0$$
, λ constant

In each of Problems 13 through 20, verify that each given function is a solution of the differential equation.

13.
$$y'' - y = 0$$
; $y_1(t) = e^t$, $y_2(t) = \cosh t$

14.
$$y'' + 2y' - 3y = 0$$
; $y_1(t) = e^{-3t}$, $y_2(t) = e^t$

15.
$$ty' - y = t^2$$
; $y = 3t + t^2$

16.
$$y'''' + 4y''' + 3y = t;$$
 $y_1(t) = t/3,$

$$y_2(t) = e^{-t} + t/3$$

17.
$$2t^2y'' + 3ty' - y = 0$$
, $t > 0$; $y_1(t) = t^{1/2}$,

18.
$$t^2y'' + 5ty' + 4y = 0$$
, $t > 0$; $y_1(t) = t^{-2}$,

$$y_2(t) = t^{-2} \ln t$$

19.
$$y'' + y = \sec t$$
, $0 < t < \pi/2$;

$$y = (\cos t) \ln \cos t + t \sin t$$

20.
$$y' - 2ty = 1$$
; $y = e^{t^2} \int_0^t e^{-s^2} ds + e^{t^2}$

In each of Problems 21 through 24, determine the values of r for which the given differential equation has solutions of the form $y = e^{rt}$.

21.
$$y' + 2y = 0$$

22.
$$y'' - y = 0$$

23.
$$y'' + y' - 6y = 0$$

24.
$$y''' - 3y'' + 2y' = 0$$

In each of Problems 25 and 26, determine the values of r for which the given differential equation has solutions of the form $y = t^r$ for t > 0.

25.
$$t^2y'' + 4ty' + 2y = 0$$

26.
$$t^2y'' - 4ty' + 4y = 0$$

In Problems 27 through 31, verify that y(t) satisfies the given differential equation. Then determine a value of the constant C so that y(t) satisfies the given initial condition.

27.
$$y' + 2y = 0$$
; $y(t) = Ce^{-2t}$, $y(0) = 1$

28.
$$y' + (\sin t)y = 0;$$
 $y(t) = Ce^{\cos t}, \quad y(\pi) = 1$

29.
$$y' + (2/t)y = (\cos t)/t^2$$
; $y(t) = (\sin t)/t^2 + C/t^2$, $y(1) = \frac{1}{2}$

30.
$$ty' + (t+1)y = t$$
; $y(t) = (1 - 1/t) + Ce^{-t}/t$, $y(\ln 2) = 1$

31.
$$2y' + ty = 2$$
; $y = e^{-t^2/4} \int_0^t e^{s^2/4} ds + Ce^{-t^2/4}$, $y(0) = 1$

32. Verify that the function $\phi(t) = c_1 e^{-t} + c_2 e^{-2t}$ is a solution of the linear equation

$$y'' + 3y' + 2y = 0$$

for any choice of the constants c_1 and c_2 . Determine c_1 and c_2 so that each of the following initial conditions is satisfied:

(a)
$$y(0) = -1$$
, $y'(0) = 4$

(b)
$$y(0) = 2$$
, $y'(0) = 0$

33. Verify that the function $\phi(t) = c_1 e^t + c_2 t e^t$ is a solution of the linear equation

$$y'' - 2y' + y = 0$$

for any choice of the constants c_1 and c_2 . Determine c_1 and c_2 so that each of the following initial conditions is satisfied:

(a)
$$y(0) = 3$$
, $y'(0) = 1$

(b)
$$y(0) = 1$$
, $y'(0) = -4$

34. Verify that the function $\phi(t) = c_1 e^{-t} \cos 2t + c_2 e^{-t} \sin 2t$ is a solution of the linear equation

$$y'' + 2y' + 5y = 0$$

for any choice of the constants c_1 and c_2 . Determine c_1 and c_2 so that each of the following initial conditions is satisfied:

(a)
$$y(0) = 1$$
, $y'(0) = 1$

(b)
$$y(0) = 2$$
, $y'(0) = 5$