## Phase Portraits of 1-D Autonomous Equations

In each of the following problems [1]-[5]: (a) find all equilibrium solutions; (b) determine whether each of the equilibrium solutions is stable, asymptotically stable or unstable; and (c) sketch the phase portrait.
[1] $\frac{d P}{d t}=P\left(P^{2}-1\right)(P-3)$.
$[2] \frac{d y}{d t}=-(y-1)(y-3)^{2}$.
[3] $\frac{d y}{d t}=\sin (\pi y)$.
[4] $x^{\prime}(t)=\sin ^{2}(\pi x(t))$.
[5] $\frac{d y}{d t}=f(y)$, where the function $f(y)$ is piecewise defined by:

$$
f(y)= \begin{cases}2 y & y \leq 0 \\ 0 & 0<y<1 \\ 1-y & y \geq 1\end{cases}
$$

[6] An equation $y^{\prime}=f(y)$ has the following phase portrait.

(a) Find all equilibrium solutions.
(b) Determine whether each of the equilibrium solutions is stable, asymptotically stable or unstable.
(c) Graph the solutions $y(t)$ vs $t$, for the initial values $y(1.4)=0, y(0)=0.5, y(0)=1$, $y(0)=1.1, y(0)=1.5, y(-0.5)=1.5, y(0)=2, y(0)=2.5, y(0)=3, y(0)=3.5$, $y(0)=4, y(0)=4.5, y(-1)=4.5$. (Without further quantitative information about the equation and the solution formula, it's clearly impossible to draw accurate graphs of $y(t)$ vs $t$. Here, try to sketch graphs qualitatively to show the correct dynamic properties. The point is that a great deal of info about solution dynamics can be read off from one simple figure of phase portrait.)
[7] Several solution graphs $y(t)$ vs $t$ are given below, for an equation $y^{\prime}=f(y)$.

(a) Find all equilibrium solutions in the interval $-4<y<4$;
(b) Determine whether each of the above equilibrium solutions is stable, asymptotically stable or unstable;
(c) Sketch phase portrait on the interval $-4<y<4$.

## Answers:

[1] There are four equilibrium solutions: $P=-1,0,1,3$. The equilibria $P=-1$ and $P=1$ are asymptotically stable. The equilibria $P=0$ and $P=3$ are unstable.

[2] There are two equilibrium solutions: $y=1,3$. The equilibrium $y=1$ is asymptotically stable. The equilibrium $y=3$ is unstable.

[3] There are infinitely many equilibrium solutions: any integer is an equilibrium. Among these equilibria, odd integers $y= \pm 1, \pm 3, \pm 5, \cdots$ are asymptotically stable, while even integers $y=0, \pm 2, \pm 4, \pm 6, \cdots$ are unstable.

[4] There are infinitely many equilibrium solutions: any integer is an equilibrium. All equilibria are unstable.

[5] There are infinitely many (actually a continuum of) equilibrium solutions: each point $y$ in the closed interval $0 \leq y \leq 1$ is an equilibrium. The equilibrium $y=0$ is unstable. All other equilibria $0<y \leq 1$ are stable but not asymptotically stable.

[6] There are three equilibria: $y=1,2,4$. The equilibrium $y=4$ is asymptotically stable. The equilibria $y=1$ and $y=2$ are unstable.

A rough sketch of the solution graphs is given below.


Besides the monotone properties and dynamic behavior of the solutions, also note that the solution graphs between $2<y<4$ should be all congruent. Indeed, they are horizontal translations of each other. This also holds for each of the following intervals: $1<y<2$, $4<y<\infty$, and $-\infty<y<1$.
[7] There are three equilibria: $y=-2,0,2$. The equilibria $y=-2$ and $y=2$ are asymptotically stable. The equilibrium $y=0$ is unstable.


