
Math 142

Homework 9 – Due April 24, 2018
Jamie Conway

1. Armstrong, page 223 #12 (it may help to do some of the below problems first)

2. There is an operation on knots called the connected sum. It is defined on Armstrong,
page 225 (first paragraph; ignore the first sentence). Although in the book it is writ-
ten as K + K ′, it is more common nowadays to see it written as K#K ′. It’s not
proved there, but this operation is well-defined, commutative, and associative on iso-
topy classes of knots.1 The below image captures what’s happening.
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shows that balls meeting the knots in unknotted spanning arcs are essentially 
unique, so that the addition of oriented knots is (up to equivalence, of course) well 
defined. It is immediate that this addition is commutative, and it is easily seen to 
be associative. The unknot is a zero for this addition, but it will be seen a little later 
that no knot other than the unknot has an additive inverse. 

= 

Figure 1.6 

Definition 1.3. A knot K is a prime knot ifit is not the unknot, and K = K J + K2 
implies that K\ or K2 is the unknot. 

(Whereas "irreducible" might be a better term than "prime", this is traditional 
terminology, and it transpires that prime knots do have the usual algebraic property 
of primeness.) 

Fairly simple knots can be defined by drawing diagrams, and to refuse to do this 
would be pedantic in the extreme. The crossing number of a knot is the minimal 
number of crossings needed for a diagram of the knot. Table 1.1 is a table of 
diagrams of all knots with crossing number at most 8. There are 35 such knots. 
Following traditional expediency, the unknot is omitted, only prime knots are 
included and all orientations are neglected (so that each diagram represents one, 
two or four oriented knots in oriented S3 by means of the above operations rand p). 
A notation such as "85" beside a diagram simply means that it shows the fifth knot 
with crossing number 8 in a traditional ordering (begun in the nineteenth century 
by P. G. Tait [118] and C. N. Little [92]). Such terminology and tables of diagrams 
exist for knots up to eleven crossings. It is easy to tabulate knot diagrams and, 
for low numbers of crossings, to be confident that a list is complete; the difficulty 
comes in proving that the entries are prime and that the tabulation contains no 
duplicates. This is accomplished by associating to a knot some "invariant"-a 
well-defined mathematical entity such as a a number, a polynomial, or a group-­
and proving the invariants are distinct. Many such invariants are discussed later. 
Recent calculations by M. B. Thistlethwaite have produced the data in Table 1.2 
for the number of prime knots (with the above conventions that neglect orientation) 
for crossing number up to 15. The table has been checked by J. Hoste and J. Weeks 
using totally independent methods from those ofThistlethwaite. 

TABLE 1.2. 

Crossing 
number 3 4 5 6 7 8 9 10 11 12 13 14 15 

Number 
of knots 2 3 7 21 49 165 552 2176 9988 46972 253293 

#

(a) Let c3(K) be the number of 3–colourings of K (including the trivial colourings).
Show that c3(K) is a power of three.

(b) Find a formula for c3(K#K ′) in terms of c3(K) and c3(K
′).

(c) If K is a 3–colourable knot, show that K#K is not isotopic to K. (This might
help with Armstrong page 223 #12.)

3. The crossing number c(K) of a knot or link is the minimal number of crossings that
can appear in a nice diagram of K.

(a) What is the crossing number of the unknot? Show that if K is a knot, then
c(K) ≤ 2 implies that K is the unknot (“is” in this context means “is isotopic
to”). Show that c(K) = 3 if and only if K is (one of the two) trefoils. If you’re
brave, show that c(K) = 4 if and only if K is the figure-eight knot.

Hint: draw the crossings first, and then figure out how to connect the loose ends
to get a knot. Remember that for this question, you’re looking for a knot, not a
link, and once you’ve drawn the crossings, no other edges can cross.

(b) Show that c(K#K ′) ≤ c(K) + c(K ′) (assuming the connected sum operation is
well defined). (Showing that equality holds is an open problem.)

1Think about it! To define this more generally than in the textbook, you want to take the connected sum
of two copies of S3, one containing K, the other containing K ′. Choose the balls such that they intersect
the knots in a simple arc (homeomorphic to the vertical line between antipidal points). Then choose the
homeomorphism of the boundary spheres such that the points where the arcs hit the spheres are identified
appropriately (ie. there are two choices, and you want to choose the one that doesn’t give you a twist.



4. Given a link with two components (ie. a subset of R3 homeomorphic to S1
∐

S1), call
the components K1 and K2. Choose a direction for each component (it’s now called
an oriented link). For every crossing that involves K1 and K2, we give a value ±1 (see
the picture – you may need to rotate your diagram in order to compare some of your
crossings to the picture). We ignore all the crossings that only involve one component.
Define the linking number lk(K1, K2) = lk(K2, K1) to be half of the sum of the values
over all the crossings.
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knot about C provided e maps a longitude of T to a longitude of C (see Definition 
1.6). 

A crossing in a diagram of an oriented link can be allocated a sign; the crossing is 
said to be positive or negative, or to have sign + 1 or -1. The standard convention is 
shown in Figure 1.11. The convention uses orientations of both strands appearing 
at the crossing and also the orientation of space. A positive crossing shows one 
strand (either one) passing the other in the manner of a "right-hand screw". Note 
that, for a knot, the sign of a crossing does not depend on the knot orientation 
chosen, for reversing orientations of both strands at a crossing leaves the sign 
unchanged. 

Definition 1.4. Suppose that L is a two-component oriented link with components 
LJ and L 2 . The linking number Ik(LJ, L 2 ) of LJ and L2 is half the sum of the 
signs, in a diagram for L, of the crossings at which one strand is from LJ and the 
other is from L 2 . 

Note at once that this is well defined, for any two diagrams for L are related by a 
sequence ofReidemeister moves, and it is easy to see that the above definition is not 
changed by such a move (a move of Type I causes no trouble, as it features strands 
from only one component). The linking number is thus an invariant of oriented 
two-component links. To be equivalent, two such links must certainly have the 
same linking number. The definition given of linking number is symmetric: 

This definition oflinking number is convenient for many purposes, but it should 
not obscure the fact that linking numbers embody some elementary homology 
theory. Suppose that K is a knot in 53. Then K has a regular neighbourhood N 
that is a solid torus. (This is easy to believe, but, technically, the regular neigh­
bourhood is the simplicial neighbourhood of K in the second derived subdivision 
of a triangulation of 53 in which K is a subcomplex.) The exterior X of K is the 
closure of 53 - N. Thus X is a connected 3-manifold, with boundary 3X that is a 
torus. This X has the same homotopy type as 53 - K, X n N = 3 X = 3 Nand 
XU N = 53. (Note the custom of using "3" to denote the boundary of an object.) 

Theorem 1.5. Let K be an oriented knot in (oriented) 53, and let X be its exterior. 
Then HJ (X) is canonically isomorphic to the integers Z generated by the class of 

(a) Show that lk(K1, K2) is an invariant of oriented links. That is, show that it’s
invariant under Reidemeister moves.

(b) Show that if we change the orientation of exactly one of the components, then
the linking number changes sign.

(c) Show that there are exactly three 2–component oriented links up to isotopy that
have diagrams with two or fewer crossings, and that they’re distinguished by their
linking numbers.


