Math 142

Homework 8 – Due April 3, 2018 Jamie Conway

- 1. Let K be the Klein bottle, T^2 the 2-dimensional torus, and $\mathbb{R}P^2$ the 2-dimensional projective plane.
 - (a) Show that $K \cong \mathbb{R}P^2 \# \mathbb{R}P^2$.
 - (b) Show that $T^2 \# \mathbb{R}P^2 \cong \mathbb{R}P^2 \# \mathbb{R}P^2 \# \mathbb{R}P^2$.
- 2. Let $f: S^2 \to \mathbb{R}^2$ be a continuous map. We want to prove that there exists $x \in S^2$ such that f(x) = f(-x).
 - (a) Suppose no such x exists. Define $g: S^2 \to S^1$ by $g(x) = \frac{f(x) f(-x)}{||f(x) f(-x)||}$. Show that g(-x) = -g(x).
 - (b) Let $\alpha:[0,1]\to S^2$ be the path $\alpha(t)=(\cos(2\pi t),\sin(2\pi t),0)$ (that is, the equator), and consider the path $\sigma=g\circ\alpha$ in S^1 . Show that $\sigma(t+\frac{1}{2})=-\sigma(t)$ for all $t\in[0,\frac{1}{2}]$.
 - (c) Assume $\sigma(0) = 1 \in S^1$ (this just simplifies the notation). Let the path $\widetilde{\sigma} : [0,1] \to \mathbb{R}$ be the unique lift of σ that has $\widetilde{\sigma}(0) = 0$. Show that $\widetilde{\sigma}(t + \frac{1}{2}) = \widetilde{\sigma}(t) + \frac{n}{2}$, for some odd integer $n \in \mathbb{Z}$ and $t \in [0, \frac{1}{2}]$.

Hint: your proof will probably show that given a t, such an n exists. You also need to show that n is independent of t, by showing that it depends continuously on the value of t, and hence must be constant.

- (d) Show that $\tilde{\sigma}(1) = n$, and hence that $[\sigma]$ represents a non-trivial element of $\pi_1(S^1)$.
- (e) Show that $[\alpha]$ is a trivial element of $\pi_1(S^2)$, and hence find a contradiction.

- 3. A commutative division algebra structure on \mathbb{R}^n is a map $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ (which we write as multiplication $(a, b) \mapsto ab$, for $a, b \in \mathbb{R}^n$) that satisfies:
 - ab = ba for all $a, b \in \mathbb{R}^n$,
 - a(b+c) = ab + ac and (a+b)c = ac + bc for all $a, b, c \in \mathbb{R}^n$,
 - $\alpha(ab) = (\alpha a)b = a(\alpha b)$ for all $\alpha \in \mathbb{R}$ and $a, b \in \mathbb{R}^n$,
 - Both ax = b and ya = b have a unique solution $x, y \in \mathbb{R}^n$ whenever $a \neq 0 \in \mathbb{R}^n$.

Our goal is to show that if \mathbb{R}^n has a commutative division algebra structure, then n=1 or n=2 (note that \mathbb{R} and \mathbb{C} give examples in those dimensions).

- (a) Let X be a closed n-manifold, Y a connected n-manifold, and let $f: X \to Y$ be an embedding (that is, $f: X \to f(X)$ is a homeomorphism). Show that f is surjective (that is, f is in fact a homeomorphism).
 - Hint: show that f(X) is a closed subset of Y, and then show that f(X) is an open subset of Y. The former uses topological properties of X and Y. The latter uses the fact that X is an n-manifold, and that n is the same as the dimension of Y, and the following fact that you can assume: given any embedding $f: B^n \to \mathbb{R}^n$, the set $\mathbb{R}^n \setminus f(\partial B^n)$ has two connected components, where the closure of one is compact and of the other is non-compact.
- (b) Assume that \mathbb{R}^n has a commutative division algebra structure, and n > 2. Show that $aa \neq 0$ whenever $a \neq 0 \in \mathbb{R}^n$.
- (c) Define a map $f: S^{n-1} \to S^{n-1}$ by letting f(a) = (aa)/||aa||. This is a continuous map. Show that f induces a map $F: \mathbb{R}P^{n-1} \to S^{n-1}$ that is defined by $F(\{a, -a\}) = f(a)$.
- (d) Show that F is injective (that is, show that f(a) = f(b) if and only if $a = \pm b$).
- (e) Show that F is a homeomorphism.

Hint: show that F is an embedding by noting that $\mathbb{R}P^{n-1}$ is compact and S^{n-1} is Hausdorff (and use a theorem from class/Armstrong). Then use (a).

- (f) Show that $\mathbb{R}P^{n-1}$ is not homeomorphic to S^{n-1} for n > 2.
- (g) (optional) It turns out that \mathbb{C} is not the only commutative division algebra structure on \mathbb{R}^2 . Define $(x,y)\cdot(z,w)=(xz-yw,-xw-yz)$ (that is, $a\cdot b=\overline{ab}$, for complex numbers a,b). Show that this gives a commutative division algebra structure on \mathbb{R}^2 that has no identity element.
- (h) (optional) Show that \mathbb{C} is the unique commutative division algebra structure on \mathbb{R}^2 with an identity element.