Math 142

Homework 7 – Due March 20, 2018 Jamie Conway

- 1. Do the following problems from Armstrong:
 - Page 111 #33, #39 (just answer #39 regarding #33)
- 2. Prove the following statements that we gave in class:
 - (a) If X is an n-manifold without boundary, and $U \subseteq X$ is open, then U (with the subspace topology) is an n-manifold.
 - (b) (optional) If X is an n-manifold without boundary, and G is a group that acts super nicely on X, then X/G is an n-manifold. (A group G acts super nicely on X if it acts on X, has no fixed points, and additionally for all compact sets $A \subseteq X$, there are only finitely many g such that $f_g(A) \cap A \neq \emptyset$. This is needed to prove that X/G is Hausdorff.)
 - (c) If X is an n-manifold with non-empty boundary, then ∂X is an (n-1)-manifold without boundary. You may assume the fact that the interior and boundary of X are disjoint sets.
- 3. (a) Let S be a surface (ie. a 2-manifold) without boundary. Show that $S\#S^2$ is homeomorphic to S. If it helps, you may assume the fact that for any embedding $f: D^2 \to S^2$, there is a homeomorphism $g: S^2 \to S^2$ such that the image of $g \circ f$ is the upper hemisphere of S^2 .
 - (b) What is $S^1 \# S^1$? What is $S^1 \# \mathbb{R}$? What is $\mathbb{R} \# \mathbb{R}$?
- 4. Consider the set \mathfrak{M}_n of closed n-manifolds with finitely many connected components. We also define the empty set to be an n-manifold. Define a relation on M_n by setting $X \sim Y$ if and only if there exists a compact (n+1)-manifold W with boundary such that $\partial W \cong X \coprod Y$. In particular, we have that $X \sim \emptyset$ if and only if there is an (n+1)-manifold W with boundary $\partial W \cong X$.
 - (a) Show that this relation on \mathfrak{M}_n is an equivalence relation. Hint: for reflexivity, consider $W = X \times [0, 1]$.
 - (b) Let \mathfrak{N}_n be the set of equivalence classes. Define an operation + on \mathfrak{N}_n by setting $[X] + [Y] = [X \coprod Y]$. Show that this is well-defined (that is, if [X] = [X'] and [Y] = [Y'], then [X] + [Y] = [X'] + [Y'].)
 - (c) Show $[X] + [X] = [\varnothing]$ for all [X].
 - (d) Show that $(\mathfrak{N}_n, +)$ is an Abelian group with identity element $[\varnothing]$. This group is called the *(unoriented) cobordism group of dimension n.*