Math 142 Homework 3 – Due February 13, 2018 Jamie Conway

- 1. Do the following problems from Armstrong:
 - Page 46 #1; page 47 #3
 - Page 50 #14
 - Page 60 #32
 - Page 73 #10 (use definition (a) of the projective plane (n=2) from page 71)
- 2. Let X be a set, and let \mathcal{T}_1 and \mathcal{T}_2 be two topologies on X, and suppose $\mathcal{T}_1 \subseteq \mathcal{T}_2$.
 - (a) If X is compact (respectively, connected) in \mathcal{T}_1 , is it compact (respectively, connected) in \mathcal{T}_2 ?
 - (b) If X is compact (respectively, connected) in \mathcal{T}_2 , is it compact (respectively, connected) in \mathcal{T}_1 ?
- 3. Show that in a space X with the discrete topology, the only connected components are singleton sets $\{x\}$, for $x \in X$. Show that for the set of rational numbers $\mathbb{Q} \subseteq \mathbb{R}$ with the subspace topology, the only connected components are singleton sets.

This property is called being totally disconnected.

- 4. A topological group is a Hausdorff topological space G that is also a group, and where the multiplication function $G \times G \to G$ (sending (a,b) to ab) and the inverse function $G \to G$ (sending a to a^{-1}) are continuous. (see Armstrong, page 73)
 - If $A, B \subseteq G$ are compact subsets of a topological group G (not necessarily subgroups), then show that the product

$$AB = \{ab \mid a \in A, b \in B\}$$

is also compact.