Math 142

Homework 2 – Due February 6, 2018 Jamie Conway

- 1. Do the following problems from Armstrong:
 - Page 50 #6 and #17 (see #15 for the definition of locally compact)
 - Page 55 #25 and #26
- 2. Let $f: X \to Y$ be a function between two sets. If Y is a topological space, show that

$$\{f^{-1}(A) \subseteq X \mid A \subseteq Y \text{ is open}\}$$

defines a topology on X, and show that it's the smallest topology on X such that f is continuous.

3. We can define two topologies on the set \mathbb{R}^2 : \mathcal{T}_1 is the usual topology, and \mathcal{T}_2 is the product topology (on $\mathbb{R} \times \mathbb{R}$, coming from the usual topology on each copy of \mathbb{R}). Show that $\mathcal{T}_1 = \mathcal{T}_2$.

Hint: you are trying to prove that $U \in \mathcal{T}_1$ if and only if $U \in \mathcal{T}_2$, that is, $U \subseteq \mathbb{R}^2$ is open in the topology \mathcal{T}_1 if and only if it is open in the topology \mathcal{T}_2 .

- 4. Let X be a topological space, and let A and B be two subspaces of X such that $X = A \cup B$. Let $Z = A \cap B$, and write $j : Z \to B$ for the inclusion map (that is, j(z) = z for all $z \in Z$). Denote by Y the identification space $A \cup_j B$, ie. the result of of attaching A to B along $A \cap B$ via the map j.
 - (a) Show that there is a natural bijection of sets $f: Y \to X$.
 - (b) Show that the identification topology on Y can be described as follows: $U \subseteq Y$ is open if and only if $f(U) \cap A$ is open in A and $f(U) \cap B$ is open in B.
 - (c) Show that f is continuous.
 - (d) Show that f is a homeomorphism if A and B are both open sets in X.
 - (e) If $X = \mathbb{R}$, $A = (-\infty, 0]$, and $B = (0, \infty)$, is f a homeomorphism?
- 5. In class, we identified one or two pairs of edges of a square to build a cylinder, a Möbius strip, a torus, a projective plane, and a Klein bottle. Identify all the topological spaces (up to homeomorphism) that you can build from a square in this manner, *ie.* by identifying pairs of edges.