Math 142

Homework 10 – Not graded

Jamie Conway

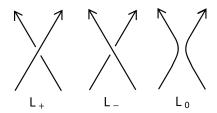
- 1. Armstrong, page 222 #1, #2 (see Figure 10.6 and the second paragraph of p222).
- 2. Show that if K is n-colourable, then K is mn-colourable for any $m \in \mathbb{N}$.
- 3. Given a knot K and a nice projection P of K with n arcs, make an $n \times n$ matrix M_P representing the n-colouring relations ($2\ell_c \ell_a \ell_b \equiv 0 \mod n$ at every crossing). For example, the trefoil with its standard picture might have the matrix

$$\begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}.$$

- (a) Show that $\det M_P = 0$.
- (b) Let $\lambda_1, \ldots, \lambda_m$ be the non-zero eigenvalues of M_P , and let $d(K) = |\lambda_1 \cdots \lambda_m|$. For a prime number p, show that K is p-colourable if and only if p divides d(K). (This value d(K) is called the *determinant* of K, and is independent of the projection.)
- 4. We want to distinguish the two trefoils. We will define an invariant $V_P(t)$ of projections P that doesn't depend on the projection P (although showing that is hard!). Given an oriented projection P of a link, look at a particular crossing. We can form three different projections P_+ , P_- , and P_0 (of potentially different links!) by replacing the crossing with one of the three local pictures below (note that P is equal to either P_+ or P_-). We can define a polynomial $V_P(t)$ by setting

$$t^{-1}V_{P_{+}}(t) - tV_{P_{-}}(t) = (t^{1/2} - t^{-1/2})V_{P_{0}}(t).$$

We also want to define $V_P(t) = 1$ for any projection P of the unknot.

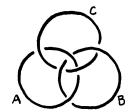


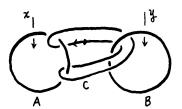
- (a) Calculate $V_P(t) = -(t^{1/2} + t^{-1/2})$, where P is the projection of two unlinked unknots with no crossings. Hint: start with a projection of the unknot with a single crossing. Use this to calculate $V_P(t)$ for the projections of the 2-component links with two crossings.
- (b) Calculate $V_P(t)$ for the usual projections of the two trefoils, and notice that they're not the same.

3. THE FUNDAMENTAL GROUP

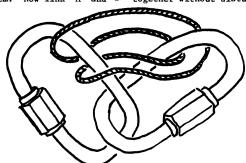
4. EXAMPLE: The Borromean rings. Note that any two components form a trivial link. Nevertheless, it is not trivial. In fact any component, say C, is a homotopically nontrivial loop in the complement of the other two. For the link is equivalent to this link:
And C represents a commutator
xyx⁻¹y⁻¹ of the two generators
of π₁(R³) - (A ∪ B)). Since this group is not abelian, C ≠ *

66





5. A MAGIC TRICK. Take two rings which can be opened up (mountaineering caribiners would be fine) and arrange them as A and B above. Link a piece of string about them in the manner of C, and ask your audience to undo them.* Now link A and B together without disturbing C.



Then C can be slipped off A and B! Explain.

* without opening the rings, of course.