MATH 215A Homework 6 – Due November 6, 2018 Jamie Conway

Work on all of these problems, but carefully write up and turn in only problems 2, 5, 6, 7

Feel free (and encouraged!) to work with your classmates on this homework, but you **must** write up your own solutions. Indicate on your homework the set of people with whom you worked, if that set is non-empty, and cite any other sources you consulted besides your notes and your textbook.

- (1) Do the following problems from Hatcher:
 - page 132: # 16, 17, 28, 29
 - page 155-6: # 2, 9
- (2) We know that if $p: \widetilde{X} \to X$ is a covering space map, then the induced map p_* on π_1 is injective. Show that the induced map on H_1 need not be injective. *Hint:* consider an example with $S^1 \vee S^1$.
- (3) Let (A_*, d_A) and (B_*, d_B) be two chain complexes and let $f: A_* \to B_*$ be a chain map. Define a new complex $(M_*(f), d_f)$ called the *mapping cone* of f, where $M_n(f) = A_{n-1} \oplus B_n$ and

$$d_f(a,b) = (-d_A a, d_B b + f_{n-1}(a))$$
 for $(a,b) \in M_n(f)$.

Show that this defines a chain complex and that there is an exact sequence

$$\cdots \to H_n(A_*, d_A) \to H_n(B_*, d_B) \to H_n(M_*(f), d_f) \to H_{n-1}(A_*, d_A) \to \cdots$$

Moreover, show that the arrow $H_n(A_*, d_A) \to H_n(B_*, d_B)$ in the long exact sequence is induced by f, and hence that f induces an isomorphism on homology if and only if $H_n(M_*(f), d_f) = 0$ for all n.

Hint: there is a natural inclusion $B_n \to M_n(f)$ that is a chain map. If we let A_*^- be the complex with $A_n^- = A_{n-1}$ and $d_{A^-}a = -d_Aa$, then there is a natural projection map $M_n(f) \to A_*^-$. Note that $H_n(A_*^-) \cong H_{n-1}(A_*)$.

- (4) Consider the simplicial chain complex $S_*(\Delta^n)$ of the *n*-simplex Δ^n .
 - (a) What is the rank of the group $S_k(\Delta^n)$?
 - (b) Let X^k be the k-skeleton of Δ^n (that is, the union of all the i-dimensional faces of Δ^n for $i \leq k$). Compute $\widetilde{H}_*(X^k)$ (without using cellular homology).
- (5) Given a space X, define the suspension of X to be $SX = (X \times I)/\sim$, where $(x,0) \sim (x',0)$ and $(x,1) \sim (x',1)$ for all $x,x' \in X$ (SX is homeomorphic to $X * S^0$). Given a map $f: X \to Y$, we get an induced map $Sf: SX \to SY$ by $[(x,t)] \mapsto [(f(x),t)]$.
 - (a) Prove that $\widetilde{H}_n(X) \cong \widetilde{H}_{n+1}(SX)$ for all n. Prove this twice: once with Mayer-Vietoris and once without (but for your homework, only turn in the one that doesn't use M-V).
 - (b) If ϕ is the isomorphism from (a), and $f: X \to Y$ is a continuous function, then show that the following diagram commutes.

$$\widetilde{H}_n(X) \xrightarrow{f_*} \widetilde{H}_n(Y)$$

$$\downarrow \phi \qquad \qquad \downarrow \phi$$

$$\widetilde{H}_{n+1}(SX) \xrightarrow{(Sf)_*} \widetilde{H}_{n+1}(SY).$$

- (c) Show that for each n and each $d \in \mathbb{Z}$, there exists a map $f: S^n \to S^n$ with deg f = d.
- (6) (a) Compute $H_*(\mathbb{RP}^n/\mathbb{RP}^m)$ for m < n by cellular homology, using the standard CW complex structure on \mathbb{RP}^n with \mathbb{RP}^m as its m-skeleton.
 - (b) If X is a finite cell complex of dimension n, and m > n, then what is the homology of $X \times S^m$? You might want to look back at HW1 Q6.
- (7) Suppose $K \subset S^3$ is a tame knot, ie. K is a subspace of S^3 homeomorphic to S^1 that has a neighbourhood N homeomorphic to $S^1 \times D^2$ such that $K = S^1 \times \{0\}$. Use the Mayer–Vietoris sequence to compute $H_*(S^3 \operatorname{int} N)$.
- (8) Following on from the previous question, let M_K be the space S^3 int N. Similarly to HW4 Q4, put coordinates on ∂M_K such that $\binom{0}{1}$ corresponds to $\{\text{pt}\} \times \partial D^2$ and $\binom{1}{0}$ corresponds to some curve on the torus that is isotopic in N to K. Now, form a new space $M_K \cup_f S^1 \times D^2$ by gluing a solid torus to M_K via a homeomorphism $f: \partial \left(S^1 \times D^2\right) \to \partial M_K$, as in HW4 Q4.

Use Mayer–Vietoris to calculate the homology of the resulting space. Hence show that you can create *homology spheres* this way, *ie.* 3–manifolds with the same homology as S^3 . (You'd need to calculate π_1 — or some other invariant — to show that you're not always getting S^3 .)

(9) Let S be a closed surface. An isotopy of homeomorphisms is a homotopy h_t that is a homeomorphism at each t. Let $\operatorname{Homeo}_0(S)$ be the subgroup of homeomorphisms of S isotopic to the identity. Define the $mapping\ class\ group$ of S to be

$$Mod(S) = Homeo(S) / Homeo_0(S)$$
.

Now let S be the torus T^2 , and fix an identification of $H_1(T^2)$ with \mathbb{Z}^2 . Show that the homomorphism

$$\sigma: \operatorname{Mod}(T^2) \to GL(2, \mathbb{Z})$$

given by the action on $H_1(T^2)$ is injective and has image equal to $SL(2,\mathbb{Z})$. Hint: for injectivity, use the fact that T^2 is a $K(\mathbb{Z}^2,1)$.