A Crash Course in Geometric Structures on Surfaces

Ryan Hoban

University of Maryland

Sage Days August 16th, 2008

R.Hoban (UMD) Geometric Structures 8/16/2008 1 / 29

Torus Structures

Mr. Smiley lives on a torus and we wish to study the geometry of Mr. Smiley's world

Cut the surface along 2 simple closed geodesics which intersect once (geometric intersection number 1)

Unfolding we obtain a square:

Note that all the boundaries of the square are Euclidean geodesic segments (duh!)

The original torus can be obtained by gluing opposite sides by translations

These are Euclidean Isometries

		_	_			
	••	•	•	<u>:</u>	:	
•	••	•	••	••	••	•
•	••	••	••	••	:	·
•	••	••	••	••	:	•
	••	••	•	<u>:</u>	••	
						•

	_					L
•	•	•	••	•	•	•
•	•	•	••	•	•	•
•	•	•	•	•	•	•
•	<u>:</u>	•	<u></u>	•	<u>:</u>	•
•	•	•	•	•	•	•
	•			•	•	

The Punctured Torus

Remove an open disk from a torus. Assume the boundary is a geodesic.

The Punctured Torus

Cut along those curves we obtain an octagon with piecewise geodesic boundary.

Problem!!!

- \bullet Need 180° around a vertex
- \bullet Gluing 2 vertices of a Euclidean octagon yields 270° around that vertex.

A Right angled Octagon

We can construct a right angled octagon in the Hyperbolic Plane

A Right angled Octagon

The same octagon in the Poincare Disk

The punctured torus is obtained by gluing opposite sides.

These mappings are hyperbolic isometries

A Punctured Torus with a cusp

Remove a single point, we obtain a torus with a cusp. We obtain a structure by starting with an ideal quadralateral:

Shameless plug:

Check out the **Experimental Geometry Lab** at the University of Maryland: http://egl.math.umd.edu

