
3. Projective and affine planes 

This chapter and the following two are in a relationship similar to 
the three parts of Chapter 2: the combinatorial part will be covered 
here, automorphisms (collineations) follow in Chapter 4, and construc­
tions in Chapter 5. 

Section 3.1, however, does not quite fit into this scheme. In that 
section we collect results from the general theory of projective planes, 
not depending on finiteness assumptions but relevant for later appli­
cations in the finite case. Section 3.1 also contains a few selected results 
on collineations and constructions of (not necessarily finite) projective 
and affine planes. 

Section 3.2 is concerned with different systems of axioms for finite 
planes, with the connections between finite planes, certain sets of per­
mutations, nets, and Latin squares, and with special substructures of 
finite planes, primarily subplanes, arcs, and ovals. 

In Section 3.3, the rather few known results on dualities and polarities 
of finite planes are collected. 

Section 3.4, finally, presents results on projectivities in projective 
planes. We include again some theorems for infinite planes, but the 
main part of 3.4 is concerned with results characterizing the finite 
desarguesian plane P (q) = P l (2, q) by properties of its group of pro­
j ecti vi ties. 

3.1 General results 

Projecti ve and affine planes were defined in Section 1.4; we give 
equivalent definitions now. A projective plane is an incidence structure 
of points and lines satisfying the following conditions: 

(1) To any two distinct points, there exists a unique line incident with 
both of them. 
If p =1= q, then the unique line joining p and q is denoted bypq or qp.l) 
(2) To any two distinct lines, there exists a unique point incident with 
both of them. 

1) This is a more convenient notation than p + q, which was used in Sec­
tion 1.4 because of the connection with vector space addition. 
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116 3. Projective and affine planes 

If L =l= M, then the unique common point of Land M is denoted by 
LM or ML. 
(3) There exist four points of which no three are incident with the same 
line. 

Such a set of four points is called a quadrangle. A set of points is 
collinear if there exists a line incident with every point of the set, and 
dually a set of lines is concurrent if there is a common point of all lines 
in the set. Hence a quadrangle may be defined as a set of four points 
no three of which are collinear, and dually a quadrilateral is a set of four 
lines no three of which are concurrent. 

Conditions (1) and (2) are dual to each other, and together with (3) 
they imply the dual of (3): there exist quadrilaterals. Thus the theory 
of projective planes is self-dual in the sense that the dual structure 

P (defined in Section 1.1) of an arbitrary projective plane P is again 
a projective plane. We shall see later that P and P need not be isomorphic. 

An affine plane is an incidence structure of points and lines satisfying 
(1) and the following conditions: 

(4) To any non-incident point-line pair p, L, there exists a unique 
line through p which has no point in common with L. 
(5) There exist three non-collinear points. 

Such a set of three points is a triangle, and dually a set of three non­
concurrent lines is a trilateral. 

The dual of (5) is easily proved in any affine plane, but the dual 
of (4) is clearly false. Hence the dual of an affine plane is never an affine 
plane. l ) 

In an arbitrary affine plane A, define a relation II of parallelism 
among the lines as follows: 

(6) L II M it and only it L = M or [L, M] = O. 

The notation is that of (1.1.6) again. It is easily seen that II is an equi­
valence relation; the classes of this relation are called ideal points. If 
incidence in A is retained, if the ideal points are defined to be incident 
with exactly those lines of A which are contained in them, and if an 
ideal line W is introduced which is incident with all ideal points and 
no point of A, then the extended incidence structure so defined is a 
projective plane P, and A is the external structure P W of P with respect 
to the ideal line W [see Section 1.1 for definitions]. Conversely, if L is 

1) Some authors, however, speak of the .. dual" A of an affine plane A = pw 

in the following sense: Consider the dual It of P, which is a projective plane. Then 

A = (P)L, where L is a line of It through the point W of P. The line L of P is usually 
unambiguously defined. 
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any line of a projective plane P, then pL is an affine plane A, and P 
can be interpreted as constructed from A by means of ideal elements, 
as described above. On the other hand, if L, M are two distinct lines 
of P, then the affine planes pL and pM need not be isomorphic. 

These considerations show that the theories of projective and affine 
planes are closely interrelated: an affine plane is essentially the same 
as a projective plane with a distinguished line. In some investigations, 
the projective point of view is more appropriate, and in others the 
affine point of view is. We shall encounter both situations later on. 

A subplane of a projective plane P is a subset S of points and lines 
which is itself a projective plane, relative to the incidence relation 
given in P. This means that 

(7) pES and qE S implies pqE S, 
(8) L E S and ME S implies LM E S, 
(9) S contains a quadrangle. 

Subsets S which satisfy (7) and (8) but not necessarily (9) will prove 
to be of interest later on. We call such subsets closed;l) hence subplanes 
are those closed subsets which satisfy (9). 

Intersections of closed subsets are again closed subsets. The closed 
subset generated by the arbitrary subset S of the projective plane P 
is defined as the intersection of all closed subsets containing S, and 
denoted by (S), i.e. 

(10) (S) = n c. 
s~c 

C closed 

It is easily verified that S -+ (S) is a closure operation, i.e. 

«S» = (S), S £; (S), and S £; T -+ (S) £; (T). 

Hence 2) the closed subsets of an arbitrary projective plane P form a 
complete lattice f't' (P), and the subplanes, together with the empty 
set, form a complete lattice 9" (P). Little seems to be known about 
these lattices in general. 3) 

A prime plane is a projective plane P which does not possess proper 
subplanes, i.e. one for which /9"(P) / = 2. Clearly, 

1. A projective plane is a prime plane it and only it t't is generated 
by each one 01 its quadrangles. 

') Closed subsets which are not subplanes are sometimes called" degenerate 
subplanes". For a complete classification of all possible types of these, see HALL 

1943, or PICKERT 1955, p.13. 
2) d. BIRKHOFF 1948, p. 49- 50. 
3) An example in HALL 1943 shows that 9'(P) need not be modular. Note 

that.9'(P) need not be a sublattice of'if(P) in the sense of BIRKHOFF 1948, p.19. 
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A subplane of a projective plane P is called minimal if it is a prime 
plane, i.e. an atomic element 1) of .9 (P). A maximal closed subset, or a 
maximal subplane, is an anti-atomic element =F 13 of «f (P) or .9 (P) , 
respectively. A closed subset C of P is called a Raer subset2), or a Raer 
sUbplane in case it is a subplane, if it satisfies the following conditions: 

(11) Every point 01 P is incident with a line 01 C. 
(12) Every line 01 P is incident with a point oi C. 

Clearly every Baer subset is a maximal closed subset, but there are 
examples of maximal subplanes which are not Baer subplanes. On the 
other hand: 

2. A closed subset which is not a subplane is maximal il and only il 
it is a Raer subset,. these Raer subsets are precisely the sets 

B(P, L) = {P, L} v (P) v (L) 

lor some point-line pair p, L [notation as in (1.1.5)]. 
This is easily verified; the cases p I Land pI L are both admissible. 

Baer subsets and subplanes will be encountered frequently in the finite 
case. 

A subplane 01 an afline plane A = plY is a subset S of points and 
lines which is itself an affine plane, relative to the incidence given in 
A, such that 

(13) II two lines are parallel in S, then they are also parallel in A. 

One could, of course, define affine subplanes without this condition, 3) 
but then there would be no connection between the subplanes of A = plV 
and those of P. Condition (13) guarantees such a connection: 

3. The subplanes 01 the afline plane A = plY are precisely the alline 
planes STV, where S ranges over all projective subplanes 01 P which contain 
the line W. 

It will be clear what we mean by minimal, maximal, and Baer 
subplanes of affine planes: we require that these subplanes, when 
interpreted as projective planes, contain the ideal line W. 

We turn now to collineations of projective planes. These are auto­
morphisms as defined in Section 1.2, i.e. incidence preserving per-

1) Atomic and anti-atomic elements need not exist in an arbitrary lattice 
g' (P), but clearly such elements exist if P is finite. 

2) After BAER 1946 b, who first realized the importance of these subsets as 
systems of fixed elements with respect to certain collineatiollS. This will be discussed 
in detail further below. 

3) Cf. OSTROM & SHERK 1964; RIGBY 1965. 
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mutations which map points onto points and lines onto lines. I) The group 
of all collineations of a projective plane P will be denoted by AutP, 
as in Section 1.2; a collineation group of P is any subgroup of AutP. 
The full collineation group of an affine plane A = plY is essentially 
identical with the stabilizer of W in AutP. 

Our main interest here lies in central collineations of projective 
planes, as defined in Section 1.4. A center of a collineation IX E AutP 
is a point c such that X IX = X for all lines X I c. Dually, an axis of 
IX is a line A with x IX = x for all x I A . 

4. A coUineation IX 01 a projective plane has a center il and only il 
it has an axis. II IX =1= 1, then the center and the axis O/IX are unique. 

Proof: PICKERT 1955, p. 62-65; see also 1.4.8 and 1.4.9 above. 
As in 1.4, we define elations and homclogies as central collineations 
with incident and non-incident center-axis pairs, respectively. A simple 
but useful fact about central collineations is the following: 

5. Let IX be a collineation with center c and axis A, and suppose that 
c =1= p I A lor some point p. Then every subplane containing c, A, p, PIX 
is lelt invariant by IX. 

For the proof, see LUNEBURG 1964c, p.446-447. 
The set F = F (IX) of the elements fixed by the central collineation 

IX =1= 1 , with center c and axis A, is the Baer subset B (c, A) described 
in 2. A collineation whose fixed elements form a Baer subset will be 
called quasicentral. Hence a collineation which is quasicentral but not 
central has a Baer subplane of fixed elements. Such collineations will 
be of interest in the finite case; here we note only that 

6. Involutorial collineations are quasicentral. 

For the easy proof, see BAER 1946b, p.275. 
Let r be an arbitrary collineation group of the projective plane P, 

and let c, p be points and A, L lines of P. Then each of the following 
sets is a subgroup of r: 

(14) 
f r(c, A) = {y E r : y has center c and axis A}, 

r(L, A) = U r(x, A), r(c, P) = U r(c, X) I xIL XIp 

r(A) = U r(x, A), r(c) = U r(c, X). 
x X 

Here the last two unions are to be taken over all points x and all lines 
X of P, respectively. It follows from 4 that the unions in (14) are in 

1) The requirement of section 1.2, that inverses be incidence-preserving [ct. 
footnote I) of p. 8] is easily proved for projective and affine planes. 
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fact partitions. The groups listed in (14) consist of central collineations, 
either with common axis or with common center. The product of two 
central collineations is, in fact, usually not central unless they have 
the same center or axis: 

7. Let 1 9= 0. E r (a, A) and 1 9= (3 E r (b, B), and suppose that a 9= b 
and A 9= B. Then: 

(a) A lixed point 01 0. (3 is either AB or incident with a b. 
(b) 0. (3 is a central collineation il and only il 0. and (3 are homologies 
such that 

(15) a IB, brA, and Xo. = X (3-1 lor every xlab. 

I I this is the case, then 0. fJ is a homology with center A B and axis a b. 
Proofl): That (a) holds is easily verified; in fact if AB 9=xlab, 

then x, Xo. and Xo.{3 are non-collinear points. Hence if 0.(3 is central, 
its axis must be C = ab, whence Xo. = xfJ-l for all x Ie. Putting 
x = a and using the fact that a 9= b, we get a I B, and b I A follows 
in the same fashion. As A 9= B, at least one of 0., (3, say 0., is a 
homology. If (3 were an elation, then B = ab = C, and 0. = (0. (3) {3-1 
would also have axis A = C, against the hypothesis. The remainder 
is clear. 

It follows from 7 that if a collineation group r consists of central 
collineations with neither the same center nor the same axis, then r 
is the non-cyclic group of order 4, and its non-trivial elements are three 
involutorial homologies whose centers and axes are the vertices, and 
opposite sides, of a triangle. The first part of the next result shows 
that this situation can actually occur: 

8. Let 0. and (3 be two involutorial homologies, in r(a, A) and f(b, B), 
respectively, and put y = 0. (3. 

(a) II a I B 9= A I b 9= a, then y is an involutorial homology m 
f(AB, ab). 
(b) II a 9= b and A = B, then y is an elation in r(A(ab), A). 

Proof: OSTR0ll11956, Lemmas 4 and 6. 2) Note that in case (a), both 
f(a, A) and r(b, B) contain no involution 9=0. or (3, respectively. In 
case (b), we can draw a similar conclusion: 

9. II the group f(A) contains nontrivial homologies with dillerent 
centers, then, lor any point c I A, the group r(c, A) contains at most 
one involution. 

1) This result is well known, but the author has been unable to locate a con­
venient reference. 

2) Both results are, however much older. For example, a proof of (b) was 
given by BAER 1944, p. 103. 
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For the proof, the following simple but important fact is needed: 

10. If lX is in the normalizer of r in AutP, then 

(16) lX-I qc, A) lX = qc lX, A lX) 

for any point-line pair (c, A) of P. 
The proof of 10 is straightforward. We prove 9: Let (! and (J be 

involutorial homologies in r (A) and assume that they have the same 
center p I A. Then also e (J E r (P, A). On the other hand, there exists 
lX =l= 1 in r(A) with center =l=P, and 7: =lX-1elX is, by 10, an involutorial 
homology with axis A and center p lX =1= p. But then 8 b shows that 
e 7: and 7: (J are both elations, whence (! (J = (! 7: • 7: (J is likewise an 
elation. This is compatible with e (J E r (P, A) only if (! (J = 1 or e = (J. 

If c and A are fixed by r, then qc, A) is a normal subgroup of r, 
because of 10. It follows that 

(17) qA, A) <J r(A) and qc, c) <J r(c) 

for any A, c. Also, qc, A) <J r(A) and qc, A) <J qc) whenever c I A. 
This can also be concluded from (17) and the following result: 

11. If r(A, A) contains nontrivial elations with different centers 
(on A), then r(A, A) is abelian. 

The proof is again easy, see PICKERT 1955, p. 199. Bya very similar 
argument, one may in fact prove more about commuting central colli­
neations: 

12. Let (a, A) and (b, B) be two distinct point-line pairs in P and 
1 =l= lX E qa, A). 1 =1= fJ E r(b, B). Then lX fJ = fJ lX if and only if a I B 
and b I A. 

Note the connection with 7. 
We shall now be interested in the case where lX fJ =l= fJ lX. Hence 

let (a, A) and (b, B) be distinct point-line pairs of P such that 

(18) a I B or b I A. 

For any lX =1= 1 in r(a, A) and fJ =1= 1 in qb, B) we consider the mappings 

(19) lX* : ~ ->- ~-l lX-I ~ lX and fJ*: 'Y/ ->- fJ-1 'Y/-I fJ 'Y/ 

from qb, B) or qa, A). respectively, into r. It follows from 12 and 
(18) that both lX* and fJ* are one-one. Now 10 shows that 

fJ-1lX-1 fJ lX E qa fJ, A fJ) qa, A) r'I qb, B) qb lX, B lX). 

Hence if a I B, which implies B lX = B and a fJ = a, then 

fJ-1lX-1 fJ lX = fJ"'· = lXP* E qa) r'I qB) = r(a, B). 

As lX* and fJ* are one-one, we can conclude: 
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13. Let a I Band b I A . 

(a) 1/ r(a, A) + 1, then If(a, B) 1 ~ 1 r(b, B) I. 
(b) 1/ f(b, B) + 1, then Ir(a, B) 1 ~ If(a, A) I· 

Thus if r(a, A) or r(b, B) is nontrivial, then so is r(a,B). In a 
special case, we can say more: 

14. If B+AlaIBlb+a and r(a,A)+1+r(b,B), then 
ria, B) contains subgroups (which may coincide) isomorphic to r(a, A) 
and r( b, B), respectively. 

Proof. One verifies first that the mapping cx* from r(b, B) into r 
satisfies 

(~1])"* = ~". 11"" 
if and only if r(b, B)"'· is in the centralizer of r(b, B) in r. But under 
the hypothesis of 14, we have r(b, B)'x. ~ f(a, B) + 1, and f(B, B) 
is abelian by 11, so that this centralizer condition is satisfied. Hence 
cx* is an isomorphism into r(a, B), and r(a, B) contains an isomorphic 
copy of r (b, B). The remainder of 14 follows from a dual argument.!) 

A central collineation is uniquely determined by the image of any 
one of its non-fixed points. More precisely: 

15. Let (c, A) be a point-line pair in P and x, y two points such that 
x + c + y I A I x and ex = cy. Then there is at most one y E r(e, A) 
with x y = y. 

Proof: PICKERT 1955, p.66. 
The group r will be called (e, A)-transitive if the "at most" in 15 

can be replaced by "exactly", in other words if ric, A) is transitive on 
the non-fixed points of any line + A through c. (If this is so for one 
such line, then it can be proved for all others as well; see PICKERT 1955, 
p. 66.) Also, (e, A)-transitivity may be defined dually by transitivity 
of ric, A) on the non-fixed lines through any point +e on A. 

Next, we say that a projective plane P is (c, A)-transitive if its 
full collineation group AutP is (c, A)-transitive. This concept, due to 
BAER 1942, has proved to be a very useful classifying principle for 
projective planes; we shall discuss this now at some length. First, 
there is a close connection with a special case of Desargues' theorem. 
We say that a projective plane P is (P, L)-desarguesian if every central 
coupleZ) (PI Pz Pal. (P~, p~, p~ ,) of triangles with p; P: I p ,(i = 1 , 2,3) 
and (PI P2) (P~ P~) I L I (P2 Pa) (p~ P~) is axial. It is not difficult to 
prove that 

1) Compare here HERING 1963, p. 156. \Ve remark that the mapping e< -+ a* 
is never a homomorphism; in fact (a fJ)* =\= e<* fJ* for all 0<, fJ E r(b, B). 

2) For the definition of central and axial couples of triangles, see Section 1.4. 
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16. P is (P, L)-transitive il and only il P is (P, L)-desarguesian. 

A proof appears in PICKERT 1955, pp. 76-78; three other equivalent 
properties are also given there. 

We proceed now to a complete classification of the various possibilities 
for distinct (P, L)-transitivities in an arbitrary collineation group. The 
following preliminary results are basic for this classification. 

17. II r is (c, A)-transitive and il y is in the normalizer 01 r in AutP, 
then r is also (c y, A y)-transitive. 

This follows immediately from 10. We say that r is (L, A)-transitive 
if r is (c, A)-transitive for every elL; dually, r is (c, p)-transitive if 
r is (c, A)-transitive for every A I p. Also, (L, A)- and (c, p)-transiti­
vity for P is defined as (L, A)- resp. (c, p)-transitivity for AutP. 

18. Suppose that P has more than three points per line. II r is (c, A)­
and (c', A)-transitive lor two distinct points c, c', then r is also (ec', A)­
transitive. Dually, (c, A)- and (c, A')-transitivity lor A =!= A' implies 
(c, AA')-transitivity. 

Proof: BAER 1942; PICKERT 1955, pp. 67 -68. Note that if r = Aut P , 
then 18 holds also for the plane P(2) with only three points per line. 
This is a first instance of the situation that stronger conclusions can 
be drawn from certain (P, L)-transitivities of P than from those of r. 
A more interesting case for this situation is: 

19. A projective plane P is (P, q)-transitive ij and only ij it is (q, P)­
transitive. Dually, (L, A)- and (A, L)-transitivity lor Pare eqttivalent. 

(GINGERICH 1945; PICKERT 1955, p.103.) Clearly, 19 ceases to be 
true if "P" is replaced by 'T".I) 

Now we present the classification mentioned above. 

20. For any collineation grottp r oj a projective plane P with more 
than liveS) points per line, deline 

(20) T = T (r) = {(x, X) : r is (x, X)-transitive}. 

1) It should be mentioned that while 16-18 are quite elementary, the 
simplest proof of 19 seems to require the use of coordinates. For this, see p. 127 
and result 22e below. 

2) This hypothesis, more restrictive than that of 18, is essential. For example, 
if n is a unitary polarity of P (4). then ro (n) ~ PGUs (4) [d. p. 47] is (P, L)­
transitive if and only if p is non-absolute and L = pn. This corresponds to none 
of the types 1.1 - VII.2 below. 
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Then T is of one of the following types: 

1.1. T=0. 

1.2. T={(c,A)}, cIA. 

I.3. T={(c,A),(e',A')}, cIAIe'lA'Ie. 

IA. T = {(a, A), (b, B), (e, C)}, (vertices and opposite sides of 
a triangle). 

1.5. T = {(x, xa P) : x I L}, pI L, a a fixed point free involution 
of (L). 

1.6. T = {(x, xa) : p =F x I L}, pI L, a one-one from (L) - {P} 
onto (P) - {L}. 

1.7. T={(P,L)}v{(x,xap):xIL}, p,L,a as in 1.5. 

1.8. T = {(x, x,,)}, n a polarity of P, without absolute points. 

ILL T={(e,A)}, cIA. 

II.2. T = {(c, A), (e', A')}, A' =F A I e' =F e = A A'. 

II.3. T = {(P, L)} v {(x, xa): P =F xl L}, p, L, a as in 1.6. 

IIAa. T = {(x, A): xl L}, L =F A. 

II.Sa. T = {(P, L)} v {(x, A): x I L}, L =F A I P =F AL. 

II.4b and 11.5b are dual to IIAa and I1.5a, respectively. 

III. 1. 

II1.2. 

III.3· 

IlIA. 

T={(x,px):xIL}, } 

T = {(P, L)} v {(x, P x) : x I L}, 

T = {(x, p y) : x, y I L}, 

T = {(P, L)} v {(x, P y) : x, y I L}, 

pI L. 

IVa.1. T = {(x, A) : x I A}, 

IVa.1'. T={(x,A):xIA}v{(P,Y):YIq}, P=Fq;p,qIA. 

IVa.2. T={(x,A):xIA}v{(P,Y):YIq}v{(q,Z):ZIP}, 
P=Fq;P,qIA. 

IVa.3. T={(x,Y):xIA;YIxa}, a a fixed point free in­
volution of (A). 

IVaA. 

IVa.5. 

IVa.6. 

IVa.7. 

T = {(x, A), all x}. 

T = {(x, A), all x} v {(P, Y) : Y I q}, P =F q; P, q I A . 

T={(x,A), all x}v{(P, Y): YIq}v{(q,Z):ZIPL 
P=Fq; P,qIA. 

T = {(x, A), all x} v {(y, Y) : y I A; Y I ya}, 
a as in IVa.3. 
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IVb.1.-IVb.7. are dual to IVa.1.-IVa.7., respectively. 

V.1. T={(x,A):xIA}v{(c, Y):Ylc}, 

V.2. T={(z,Z):zIA;ZIc}, 

V.3a. T = {(x, A), all x} v {(c, Y): Y I c}, 

VA. T = {(x, A), all x} v {(c, Y), all Y}, cI A. 

V.S a. T = {(x, A), all x} v {(y, Y) : y I A; Y I c}, 

V.6. T = {(x, A), all x} v {(c, Y), all Y} 

v(z,Z):zIA;ZIc}, 

V.3b and V.Sb are dual to V.3a and V.5a, respectively. 

VIa.1. T={(x, Y):AlxIY}, 

VIa.2. T = {(x, A), all x} v {(y, Y) : A I Y I Y}, 

VIa-3. T = {(x, Y), all Y;xIA}, 

VIaA. T={(x,A), all x} v {(y, Y), all Y;yIA}, 

VIb.1-VIbA are dual to VIa.1-VIaA, respectively. 

VII. 1. T = {(x, X) :x I X}, 

VIU. T = {(x, X), all x, X}. 

I lor some 

J line A. 

This theorem is proved by multiple application of 17 and 18 above, 
in the spirit of LENZ 1954 and BAR LOTTI 1957b.1) Consequently, we 
refer to the 53 possibilities for T(r), listed in 20, as the Lenz-Barlotfi 
types tor coUineation groups of projective planes. 

With the exception of I.8, there actually exist collineation groups r 
for each of the types in 20. 2) In many cases it can be proved, however, 
that r cannot be the full collineation group AutP. This leads to the 
problem of determining the possibilities for T(AutP); these are called 
the Lenz-Barlotti types lor projective planes P. The possibilities are 
much more limited here; this follows from 19 and other considerations, 
of which many will be at least outlined further below. The following 

1) These authors were only interested in the case r = AutP; here 19 is also 
applicable and leads to the exclusion of many of the types listed in 20. Further­
more, Lenz only determined the subsets of incident point-line pairs in T (AutP) . 
There are only seven such types, referred to by the Roman numerals in 20. Barlotti's 
work consisted in refining Lenz's classification so as to include also non-incident 
center-axis pairs. (Incidentally, the reason that we have called one of the types 
IVa. I' is only that we wanted to retain Barlotti's numbering; there is no mathe­
matical reason for it.) Another refinement of the Lenz-Barlotti classification, 
taking into account also certain correlations of the plane (cf. Section 3.3), was 
given by JONSSON 1963. 

2) The reason for including 1.8 here is that the nonexistence proof for such 
collineation groups requires rather more than 17 and 18; cf. 4.3.32 below. For 
the finite case, see also 3.3.2. 
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table represents the present state of knowledge on the existence problem 
for Lenz-Barlotti types (of groups and of planes): 

Type 

1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 

ILt 
IL2 
II.3 
IIAa 
IL5a 

IIL1 
111.2 
111.3 
IlIA 

IVa.1 
IVa.1' 
IVa.2 
IVa.) 
IVaA 
IVa.5 
IVa.6 
IYa.7 

V.1 
V.2 
V.3a 
VA 
V.5a 
V.6 

VIa.1 
VIa.2 
VIa.3 
VIaA 

VIl.1 
VII.2 

Table 1 : Lenz-Barlotti types 

Infinite case 
Group exists 

Finite case I 
Plane exists Group exists Plane exists 

yes 
yes 
yes 
yes 
yes; 
yes; 
yes; 

yes 
yes 

cf. 4.3 

yes; n ~ 4 (d. 4.3) 
yes 
yes 

yes 
yes 
yes 
yes 

yes 
yes 
yes 
yes; n ~ 9 (cf.4.3) 
yes 
yes 
yes 
yes 

yes 
yes 
yes 
yes 
yes 
yes 

yes 
yes 
yes 
yes 

yes 
yes 

yes; d. 5.4 
? 

lno 
no 

Ino 
no 

yes; d. 5.4 
? 

no 

:~} by 19 

no; cf.4.3 

:~} by 19 

yes; d. 5.2 
no, by 19 
yes; d. 5.2 
yes; n=9 

nol 
no 

nol 
no 

by 19 

yes; d. 5.3 

nOl 
no 

nol by 19 
no no 
no; d.22 

no} no by 19 
no 

no; d.22 
yes 

yes 
yes 
yes 
yes 
no 
? 

no 
no 

yes 
yes 
no 
yes 
yes 

yes 
yes 
yes 
yes 

yes 
yes 
yes 
no 
yes 
yes 
yes 
yes 

yes 
yes 
yes 
yes 
yes 
yes 

yes 
yes 
yes 
yes 

yes 
yes 

yes (HILBERT 1899) 
yes (SPENCER 1960) 
yes (YAQUB 1961 b) 
yes (NAUMANN 1954) 
no 
? 

no 
no 

yes (SPENCER 1960) 
yes1) 

no (SPENCER 1960) 

:~} by 19 

yes (Y AQUB 1961 a) 
yes (MOULTON 1902) 

:~} by 19 

yes 
no, by 19 
yes 
no 

:~l nol by 19 
no 

yes 

:~l not by 19 
nOJ no 

no; d.22 

no} no by 19 no 
yes (MOUFANG 1933) 
yes 

1) No example of this seems to have been published. For the following con­
struction, the author is indebted to H. Salzmann. Call points the pairs (x, y) of 
real numbers, lines the point sets L(a, b) = {(x, (x'" a"')"'-' + b)}andL(c) = {(c,y)}. 
where IX is a non-identity order preserving permutation of the reals, and define 
incidence by set theoretical inclusion. This yields an affine plane, and the cor­
responding projective plane is of Lenz-Barlotti type II.2. 
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The main tool for the proofs of many of the results in Table 1 is 
the introduction of coordinates in a projective plane. We give a brief 
account of this now, following essentially HALL 1943. (See also HALL 

1959, Section 20.3.) 
Let 0, e, u, v be an (ordered) quadrangle in the projective plane P, 

put W = U v, and let A denote the affine plane plY. We consider a 
set :r with the same cardinality as a line of A; for example, :r may con­
sist of the lines '* W through u. Two distinct elements in :r are called 
o and 1. We set up a one-one correspondence between the points of 
A and the ordered pairs (x, y) of elements in :r as follows: The points 

V 
~~---------#~----?-------,"u-(~ 

Fig. 2. Coordinates 

=t= u of ou are assigned the pairs (x, 0) , x E :r, such that 0 = (0, 0) 
and (ou) (ev) = (1,0). The points =t=v of ov are then assigned the 
pairs (0, y), y E :r, by the following rule: 

(0, y) = (0 v) (u[(o e) {(y, 0) v}]). 

In particular, (0,1) = (0 v) (u e). Finally, we put 

(21) (x, y) = [(x, 0) v] r(O, y) u); 

note that this assigns the pairs (x, x) to the points of the line oe, and 
in particular e = (1, 1). Next, we label the points of the line W which 
are different from v: 

(22) (t) = [(0,0) (1, t)) W. 

Now we define a ternary operation in :t as follows (d. Fig. 2): 

(23) (x, X· a 0 b) = [(x, 0) v) [(a) (0, b)]. 

In other words, the line through (a) and (0, b) is represented by the 
equation y = X· a 0 b. The axioms (1)-(3) for P imply the following 
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properties of this operation: 

(a) x·Oob =o·xob =b, 

(b) x·1 0 0=1·x o O=x, 

lor aU x, b E :t. 

lor aU x Est. 

(c) Given x, y, a E st, there is a unique bEst 

such that y = x . a 0 b. 

(24) (d) Given Xi, Yi E st (i = 1,2) with Xl * x2 , 

there is a unique ordered pair (a, b) such that 

Yi = Xi • a 0 b (i = 1, 2). 

(e) Given ai, bi E st (i = 1, 2) with a1 * a2 , there tS a 

unique x such that x . a1 0 b1 = X • a2 0 b2 . 

Any set {O, 1, ... } with a ternary operation satisfying (24) will be 
called here a ternary lield. 1) Thus every ordered quadrangle 0, e, u, v 
of a projective plane P gives rise to a ternary field st = st (0, e, u, v), 
and: 

21. st (0, e, u, v) and st (0' , e' , u' ,v') are isomorphic il and only it 
there exists a collineation mapping 0 onto 0', e onto e', u onto u', and 
v onto v'. 

Proof: PICKERT 1955, p.37-38. 
Given any ternary field st, the incidence structure A = A (st) defined 

as follows is an affine plane: points of A are the ordered pairs (x, y) 
with x, y Est, lines are the point sets 

(25) 
L(a,b) ={(x,x.aob):xEst}, 

L (c) = {(c, y) : y Est} , 

and incidence is set theoretic inclusion. In the projective plane P corre­
spondingtoA, let 0=(0,0), e=(1,1), u=(O), and v = ideal point 
of L (0). Then the ternary field st (0, e, u, v) is essentially identical 
with the given st. Thus there is a canonical correspondence between 
ternary fields and projective planes with distinguished ordered quad­
rangles. 

In any ternary field st, addition and mtdtiplication are defined as 
follows: 

(26) 
a+b=a·1 o b 

ab=a·boO. 

1) The more customary term is "planar ternary ring" (HALL 1943. 1959). The 
present terminology follows PICKERT 1955 (" Ternark6rper")' the reason being 
that there are no proper homomorphisms between ternary fields. and hence no 
ideals. This follows from (24). 
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With respect to addition, ~ is a loop with neutral element 0; this loop 
will be denoted by ~+. The set ~ - {o} is a loop with respect to multi­
plication, with neutral element 1, which will be denoted by ~x. A 
ternary field is linear if it satisfies 

(27) for aU x, a, b E ~. 

It can be verified that linearity of ~ (0, e, u, v) is equivalent to a common 
special case of (v, 'If; v)- and (u, 0 v)-Desargues, as defined in the context 
of 16 (d. PICKERT 1955, p. 98). Thus if a projective plane P is (v, uv)­
or (u, L)-transitive, for two distinct points u, v and a line L =F uv 
through v, then ~(o, e, u, v) is linear for any choice of 0 I Land e. 

More than this can be proved. In fact, each of the possible Lenz­
Barlotti types for projective planes corresponds to a system of algebraic 
laws which must be satisfied by certain well-defined ternary fields 
of any plane of that type. We treat only the more important cases 
here; other situations will occur, for the finite case, in Section 4., 
below. 

A linear ternary field is called a cartesian group 1) if its additive 
loop is associative and thus a group. Note that in a cartesian group the 
mappings 
(28) x --+ -x a + x b and x --+ a x - b x 

must be permutations whenever a =f= b. A quasi/ield l ) is a cartesian 
group ~ satisfying 

(29) (x+y)z=xz+yz forallx,y,zE~; 

it is not difficult to prove (see PICKERT 1955, P.91) that addition in 
any quasifield is commutative. A semifield l ) is a quasifield satisfying 
also 
(30) x(y+z) =xy+xz for all x,y,zE~, 

and a planar near/ield 1) is a quasifield whose multiplicative loop is 
associative and hence a group. An alternative field is a semifield satisfying 

(31) x2 Y = X (x y) and x y2 = (x y) y for all x, y E ~, 

I) The terminologies vary widely here. Cartesian groups (PICKERT 1952, 1955) 
are called "cartesian number systems" by BAER 1942. Instead of "quasifield" 
(PICKERT 1955), the terms "left Veblen-Wedderburn system" and "right Veblen­
Wedderburn system" are customary, after VEBLEN & WEDDERBURN 1907, the 
choice of "left" or "right" depending on whether (29) is called the left or the 
right distributive law. Similarly, (32) is sometimes called the "right inverse prop­
erty". Instead of "semifield" (KNUTH 1965), PICKERT 1955 uses "distributive 
quasifield ", and many other authors say "division algebra" or "division ring". 
Planar nearfields, as defined here, are of course nearfields in the sense of Section 1.4. 
but not every nearfield is planar (d. ZEMMER 1964), because (28) may not be 
satisfied. However, it can be shown that every nearfield of finite rank over its 
kernel (d. p. 132 below) is planar. 

9 Ergebn. d. Mathem. Bd. 44, Dembowski 
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where x2 is defined to be xx. Finally, we say that ;t (more precisely, 
the multiplicative loop of ;t) has the left inversive propertyl) if 

(32) xx' = 1 implies x (x'y) = y, for all x, y E ;t. 

Note that (32) implies that the right inverse x' of x is also a left inverse. 
Thus right and left inverses coincide if ;t has the left inverse property; 
without (32) this need not be so 

22. Let 0, e, ~t, v be a quadrangle in a projective plane P, and let ;t 
be the ternary field ;t (0, e, u, v). Also, let r denote the full collineation 
group AutP of P. Then: 

(a) P is (v, uv)-transitive if and only if ;t is a cartesian group. In this 
case, r (v, uv) is isomorphic to ;t+. 
(b) P is (u, ov)-transitive if and only if ;t is linear with associative 
multiplication. In this case, r(u, ov) is isomorphic to ;tx. 
(e) P is (uv, uv)-transitive if and only if ;t is a quasifield. 
(d) P is (v, v)-transitive if and only if ;t is a cartesian group satisfying 
(30). 
(e) P is (u, v)-transitive if and only if ;t is a planar nearfield. 
(f) P is (uv, uv)- and (v, v)-transitive if and only if ;t is a semifield. 
(g) P is (uv, uv)- and (ov, ov)-transitive if and only if ;t is a semifield 
with the left inversive property. 
(h) P is (L, L )-transitive for every line L if and only if ;t is an alternative 
field. 
(i) P is desarguesian if and only if ;t is a (not necessarily commutative) 
field. 

For the proofs of these results, see PICKERT 1955, Sections 3.5 
and 6.1. Some of them are easy consequences of others; for example, 
(e) and (f) follow immediately from (b), (e), (d). Result (e) provides 
a proof of 19 above. The left inverse property (32), for a semi field, 
implies the identity 

[x(y x)] z = x[y(x z)] for all x, y, z E ;t 

(MOUFANG 1935; PICKERT 1955, p.160; HALL 1959, p.370); and it 
can be shown 2) that (33) implies (31). Thus it follows that there exists 
no plane of anyone of the Lenz-Barlotti types VI of 20, as claimed in 
Table 1. Also, a theorem of E. Artin (ZORN 1931; PICKERT 1955, 

1) See footnote 1) on p. 129. 
2) That the first equation (31) follows from (33) is obvious: put y = 1. But 

the second equation is difficult to derive. If the semifield in question has character­
istic =1=2, then the second equation (31) follows from the first (SKORYNAKOV 
1951, KLEINFELD 1953). If the characteristic is 2. this is no longer true; an example 
(due to R. H. Bruck) is given by SAN SOUCIE 1955. But in the same paper it is 
shown that (33) does imply the second equation (31). also in case of characteristic 2. 
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p. 161-162; HALL 1959, p. 376-382) shows that a finite alternative 
field is associative and hence a field; this proves the claim in Table 1 
that there exist no finite planes of Lenz-Barlotti type VII.1. 

Let A be an affine plane and P the corresponding projective plane: 
A = pw for some line W of P. A collineation of A is called a dilatation 
if it has axis W when regarded as a collineation of P. A translation of 
A is a fixed point free dilatation or the identity (compare here the 
terminology of Section 2.3), i.e. an elation of P with axis W. We call A 
a translation plane if the group of all translations of A is transitive on 
the points of A, in other words if P is (W, W)-transitive. By 22c, the 
translation planes are precisely those affine planes which can be co­
ordinatized by a quasifield. Translation planes have been well investi­
gated, and almost all known finite planes are either translation planes 
or closely related to them, as will be seen in Chapter 5. For this reason 
we devote the remainder of this section to some general results on trans­
lation planes and related concepts. 

Let A be a translation plane and T its (full) translation group. Again 
we put A = pnr and consider T also as the group of all elations with 
axis W of the projective plane P. By (14), we have T = T(W, W) 
= U T (x, W), and as the x I Ware just the parallel classes of A, 

xIW 
we can write 
(34) T = U T(it}, 

I 

where I ranges over the parallel classes of A and T (I) denotes the 
subgroup of T which fixes every line of I. It follows from 4 that 

(35) T(I) r. T(Ill) = 1 it I =f: Ill, 

so that the T (I) form a partition of T, as defined in Section 1.2. Further­
more, this is even a congruence partition of T, in the sense that 

(36) it I =f: Ill, then T(I) T(Ill) = T.I) 

Conversely, if T is an abstract group possessing a nontrivial congruence 
partition, i.e. a set f(f of proper subgroups T(I) satisfying (34)-(36) 
[here I ranges over some index set of cardinality ;;;;;2], then T may 
be regarded as the full translation group of a translation plane. In 
fact, the incidence structure J = J (T, f(f) of Section 1.2, whose points 
are the elements of T and whose blocks are the cosets 2) of the T(I), 
is a translation plane and T its full translation group. Hence: 

1) This implies, of course, that T (I) and T (ID) generate T. There are ex­
amples showing that (36) cannot be replaced by this weaker property if the 
following converse is to hold. 

2) Left and right cosets are identical here, for (34)-(36) imply that T is abelian 
(ANDRE 1954a, Satz 7). 

9* 
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23. There is a canonical correspondence 1) between translation planes 
and congruence partitions. 

Proof: ANDRE 1954a, Satz 9. 

The kernel 01 the translation plane A is the set st (A) of all endomor­
phisms IX of T with 

(37) T (x)'" ~ T (x). for all parallel classes X. 

With the usual addition and multiplication of endomorphisms, st (A) 
is a ring, and it can be shown (ANDRE 1954a, Satz 10) that st(A) is 
even a field 2). The kernel 01 a quasilield 0. is the set st(D) of all kED 
with 

(38) k(xy) = (kx) y and k(x + y) = k x + k y, 

Clearly, st(D) is also a field. and in fact 

lor all x, yEn. 

24. II 0. is any3) coordinatizing quasilield 01 the translation plane A. 
then st (0.) ~ st (A). 

Proof: ANDRE 1954a, p. 174-176. This result justifies the choice 
of the same term "kernel" for two seemingly unrelated concepts. 

By (38), a quasifield 0. may be regarded as a left vector space over 
any subfield !iJ of its kernel Sf' (D). Also, the group T may be regarded 
as the additive group of a vector space over !iJ. and if [0.: m and 
[T : m denote the respective ranks of these vector spaces, then 

(39) [T: m = 2[0.: m 
(ANDRE 1954a. p. 181). Thus if one of these ranks is finite, then they 
both are, and [T: m is even. Clearly, st(D) = 0. if and only if 0. is 
a field; hence 22i shows that 

25. A is desarguesian il and only il [T: st (A)] = 2. 
The subgroups T (x) of the congruence partition associated with 

the translation plane A are, by (37), subspaces of the vector space 
T over !iJ ~ st (A). Hence in the corresponding desarguesian projective 

1) In 23 and 26, the term "canonical correspondence" is to be understood in 
the following sense: The isomorphism classes of translation planes [in 26 with 
condition (a)) can be put into a one-one correspondence with the isomorphism 
classes of groups with congruence partitions [of projective (U + i)-spaces over 
Si' with t-spreads]. 

2) As always in this book, "fields" need not be commutative. The field Si' (A) 
was first considered in a more special situation by ARTIN 1940. 

3) Two such quasifields are usually not isomorphic; d.21. In general, it is 
a difficult question to decide whether or not two quasifields with isomorphic kernels 
coordinatize the same translation plane. Complicated necessary and sufficient 
conditions for this were given by SKORNYAKOV 1949. Some of the questions involved 
will be discussed in a more special situation further below; d.32 and 34. 
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geometry qJ = qJ (T) of the vector space T [d. 1.4.2], these subgroups 
define a spread, i.e. a collection 9' of mutually disjoint subspaces 
covering all of qJ [d. 1.4.6J; and 9' has the further property that any 
two distinct subspaces of 9' span qJ. Conversely, every spread of &' 
with this property defines a congruence partition of the additive group 
of the vector space underlying qJ, and hence a translation plane, by 
23. In the finite-dimensional case, the situation is as follows (terminology 
as in Section 1.4): 

26. Let ~ be a lield and t a positive integer. Then there is a canonical 
correspondence 1) between 

(a) the translation planes A with ~ ~ ~ (A) and [0,: m = t + 1, lor 
an arbitrary coordinatizing quasilield 0. 01 A, and 
(b) the t-spreads 01 the (2t + i)-dimensional proiective geometry over ~. 

Proof: ANDRE 1954a, p. 182, where it is also pointed out that differ­
ent choices of ~ ~ ~ (A) ~ ~ (D) yield different spread representations 
of A. Result 26 was rediscovered independently by BRUCK & BOSE 
1964 and SEGRE 1964. 

The following results are concerned with representations of certain 
types of collineations in a translation plane A with coordinatizing 
quasifield D. 

27. The translations oj A are the mappings 

(40) T(S,t): (x,y)--..(x+s,y+t), s,tED; 

and the dilatations with center (0, 0) are the mappings 

(41) t5(k): (x,y)--..(kx,ky), kEst(D). 

The proof [ANDRE 1954a, (7) and (9)] is straightforward. As a 
consequence of (41), we note: 

28. For any point p oj a translation plane A, the group 01 dilatations 
with center p is isomorphic to the multiplicative group oj the kernel ~ (A) . 

We consider now axial collineations in A. Such a collineation is 
central in the corresponding projective plane P with A = plY, and 
since W must stay fixed, the center is on W. Thus: 

29. A nontrivial collineation rp oj an ajline plane A which has an axis 
in A has no center in A. Instead, rp jixes every line oj a unique parallel 
class. 

If the axis belongs to this parallel class, we call rp a shear, otherwise 
a strain. We give now representations of shears with axis ov (hence 

1) See footnote 1) on p. 132. 
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with center v) and of strains with axes ov and ou (and corresponding 
centers u, v), in the translation plane A over the quasifield o.. The 
distributor of 0. is the set 1) = 1) (0.) of all dE 0 with 

(42) x(d+y)=xd+xy for all x,yEO. 

The middle and 'fight nucleus 1) of 0. are the sets IDI(O) and fiCO) of 
those m E 0 and rEO. for which 

(43) (x m) y = x(m y) 

or, respectively, 
(44) (x y) r = x (y r) 

holds, for all x, yEO.. We then have the following results. 

30. The shears with axis ov, of the translation plane A over the quasi­
field 0, are the mappings 

(45) a(d): (x,Y)-4(x,xd+y), dEs)(o.). 

The strains with center u and axis ov are the mappings 

(46) ,u(m): (x, y) -4 (xm, y), mEIDl(o.), 

and the strains with center v and axis ou are the mappings 

(47) e (r) : (x, y) -4 (x, yr) , r E fi(o.). 

The proofs are again straightforward; see ANDRE 1955, (4), (7), 
(7'). These results generalize parts of 22: the projective plane P with 
A = pw is (uv, uv)-transitive by hypothesis, and it is (v, v)-transitive 
it and only if 1)(0) = Q, i.e. if 0 is a semifield (d. 22c, d). Also, P 
is (u,ov)-transitive if and only if IDl(D) = fiCO) = 0., in which case 
it must then also be (v, ou)-transitive (d. 19 and 22b); 0. is then clearly 
a planar nearfield. 

We give a few more details for those special cases where £I is a 
semifield or a planar nearfield. First, it is straightforward to prove 
that 

31. The nuclei 9)1 (D) and fi (D) of a semifield 0 are fields. 

Thus 30 shows that the groups of (u, ov)- and (v, ou)-strains are 
isomorphic to the multiplicative groups of these fields. If ij is the 
intersection of the fields ~ (D), IDl (0) and fi (D), then 0. may be re­
garded as a left vector space over ij. Suppose that 0. and €I are two 
semifields with the same ij. Then by an isotopism from £I to €I is meant 

1) The left nucleus £ (0) = {I EO: (I x) y = lex y) for all x, yEO.} bears 
less significance in the present context than IDl (0.) and m (0.). Note that £ (0) 
contains ~ (0), and in fact £ (0) = ~ (0) if and only if 0. is a sernifield. 
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a triple (IX, P, r) of nonsingular linear transformations from 0. onto S 
(both considered as vector spaces over ~) such that 

x" . yP = (x y)Y lor all x, yEO.. 

Here multiplication is written x y in 0. and x . y in S. If there exists 
an isotopism from 0. onto S, then 0. and S are said to be isotoPic. 

32. Two semilields coordinatize isomorphic translation planes il and 
only il they are isotopic. l ) 

Proof: ALBERT 1960, Section 9. An isotopism of 0. onto itself is 
called an autotopism. If g; is a collineation which fixes the points 
o = (0, 0), u = (0) and v of the translation plane A over the semifield 
0., then (x, O)g; = (xx, 0). (a)g; = (aP) [d. (22)], and (0, y)g; = (0, yY), 
for three well-defined permutations IX, P, r of o.. It follows easily that 
(IX,P, r) is an autotopism of 0, and in fact one may prove now: 

33. The autotopisms 01 a semilield 0 lorm a group isomorphic 
to the stabilizer 01 the points 0, u, v, in the lull collineation group 01 the 
translation plane over o.. 

This stabilizer has a complement in the group r of all collineations 
fixing v and uv. (Unless 0 is a field, r is the full collineation group, 
because the plane must then be of Lenz-Barlotti type V.1.) This comple­
ment is the subgroup ~ generated by all translations (40) and 
shears (45). For an elegant representation of the plane within this 
metabelian group L, see CRONHEIM 1965. 

Now let A be a translation plane over a planar nearfield 0 which 
is not a field. Then A may be coordinatized also by quasifields not 
isomorphic to O. No such quasifield can be also a nearfield: 

34. 110 and 0' are planar nearlields coordinatizing the same translation 
plane, then 0 and 0' are isomorphic. 

Proof: ANDRE 1955, Satz 7. A nondesarguesian translation plane 
can be coordinatized by a planar nearfield if and only if it is of Lenz­
Barlotti type IVa.2 or IVa.3; this shows that any collineation fixing 
v must also fix u, so that in particular there are no shears with axis 
ov in such a plane. In view of 30, we can conclude: 

35. The distributor ~(O) 01 any planar nearlield 0. which is not a 
lield consists 01 0 only. 

Further results on planes over planar nearfields, particularly their 
collineation groups, are found in ANDRE 1955. Some of these results 
(for the finite case) will be given in Section 5.2. 

1) Compare here footnote 3) on p. 132. There is a generalization of 34 to 
arbitrary ternary fields; see KNUTH 1965. Theorem 3.3.2; d. also SANDLER 1964. 
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We have remarked above that a translation plane is essentially 
the same as a (W, W)-transitive projective plane. We shall now make 
a few remarks about the dual concept. Let P be a projective plane 
which is (v, v)-transitive for some point v. Let W be a line through v; 
then the affine plane A = plV is a shears plane in the sense that 

(48) There is a parallel class )8 at lines (with ideal point v) such that, 
for every X E )8, the group of shears with axis X is transitive on the ideal 
points =l= v . 

It follows from 22 d that every shears plane can be coordinatized 
by a cartesian group satisfying (30). If 0. is an arbitrary quasifield, 
then the following system 0.* is clearly such a cartesian group: Addition 
is the same in 0. and 0.*, and the multiplication * in 0.* is related to 
that in 0. by 
(49) x*y=yx forallx,yED. 

Also, it is clear that every cartesian group satisfying (30) must be of 
this form D. Moreover: 

36. For any quasifield 0., the projective planes coordinatized by 0 
and 0* are dual to each other. 

For the proof of this, see PICKERT 1955, pp.41, 91. 

Finally, we discuss a class of affine planes closely related to trans­
lation planes. We say that the affine plane A is a semi-translation plane l ) 

if it contains a Baer subplane B [in the affine sense, as defined by (13)J, 
such that 
(50) B is a translation plane, 
and 
(51) Every translation of B is induced by a translation of A. 

Given a semi-translation plane A = plY with Baer sub plane B = Q IV, 
select 0, e, u, v in Q, with u, v I W, and consider the ternary field 
% = % (0, e, u, v) of P. It is clear that % will contain a ternary subfield 
0. coordinatizing Q, and 0. is a quasifield, because of (50). Also, (51) 
implies that the translations of B extend to translations 

(52) (x, y) ->- (x + s, y + t) x,yE%;s,tED 

1) OSTROM 1964a uses this term in a slightly different sense; his definition 
applies only to finite planes, but even llien ours is more special. PICKERT 1965a 
calls the planes considered here .. normal" semi-translation planes. Note lliat 
the term is somewhat unfortunate insofar as a translation plane is not necessarily 
a semi-translation plane. For example, the desarguesian affine planes A (q), 
for q = p' with odd e, do not contain Baer subplanes and are therefore not 
semi-translation planes. 
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of A; here the addition is that of :r, as defined by (26). The fact that 
(52) describes a collineation yields the following properties of :t: 

(53) 

I (x + s) + y = x + (s + y) I 
I (x+y)+s=x+(y+s) Iforx,YE:t; s,tEO; 

(x + y) t = x t + y t 
here multiplication is that defined by (26). Also, it follows that 

(54) if zE:t-O, then (s,t)-+sz+t isone-onefromOxOonto:t. 

Hence much of the structure of :t is determined by addition and multi­
plication. :r will be termed O-linearl) provided that 

(55) x,soy=xs+y forx,yE:t and sEO. 

N ow the following converse holds: 

37. Let :t be an algebraic system with two binary operations, addition 
and multiplication, and suppose that :t contains a subsystem 0 which 
is a quasifield with respect to these operations, such that (53) and (54) 
are satisfied. Define 

{
X y + z if yEO 

(56) x·yoz= (x+s)y+t if y!EO and z=sy+t; s,tEO. 

If this turns :r into a tetnary field, then :r is O-linear and coordinatizes 
a semi-translation plane A, with Baer subplane B coordinatized by O. 

For the proof see OSTROl\! 1964a; PICKERT 1965a, Satz 2. Further 
results in this direction are found in MORGAN & OSTR0:I! 1964. Result 37 
will be used in Section 5.4 for the construction of finite semi-translation 
planes which are not translation planes. 

3.2 Combinatorics of finite planes 

The definitions in Sections 2.1, 2.2, and 3.1 imply immediately 
that the finite projective [affine] planes are precisely the projective 
[affine 2)] designs with A = 1. We shall present some combinatorial 
properties of these designs in this section. The blocks will always be 
referred to as lines; this is consistent with the definition of lines in 
arbitrary designs, as given in Section 2.1. 

By definition (2.1.9), the order of a finite projective or affine plane 
is the integer n determined by the condition that the number of lines 

1) Whether or not % must be automatically D.-linear for every semi-trans­
lation plane seems to be an open question. (It appears rather likely that this 
need not be the case.) 

2) In the affine case it suffices to demand that the design have a parallelism; 
cf. (2.2.5). That we must then have an affine design, and hence an affine plane, 
follows from result 2.2.6. 
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through any point is n + 1. Note that if P is a finite projective plane 
and A = plV for some line W of P, then P and A have the same order. 
The following facts are easily verified: 

1. If P = (p, £, I) is a projective plane of order n, then 

(1) I p I = n 2 + n + 1, 

(2) I £ I = n2 + n + 1 , 

(3) [PJ = n + 1 , for every PEp, 

(4) 

(5) 

(6) 

[L] = n + 1, 

iP, q] = 1, 

[L,MJ=1, 

for every L E £ , 

for p, q E P and p =1= q; 

for L, M E £ and L =1= M. 

2. If A = (p,~, I) is an affine plane of ofder n, then (3) and (5) 
hold, and 
(7) Ipi = n2, 

(8) 

(9) 

1£1 = n(n + 1), 

[LJ = n, for every L E £ . 

The converses of 1 and 2 are likewise true; in fact (1)-(6) and 0), 
(5), (7)-(9) are then redundant sets of conditions, as will be seen in 
3 and 4 below. Before stating these results, we make the following 
convention: For 1 ~ i ~ 9, let (i') and (i") stand for condition (i), 
with "=" replaced by "~" or "~", respectively. 

3. Each of the following conditions on the integer n > 1 is necessary 
and sufficient for the nondegenerate incidence structure (p, £ , I) to be a 
projective plane of order n: 

(a) (3'), (4), (5) , or dually (3), (4'), (6); 
(b) (4), (5) , (6), or dually (3), (5) , (6) ; 
(e) (1), (4), (5) , or dually (2), (3), (6) ; 
(d) (2), (4"), (5), or dually (1), (3"), (6); 
(e) (1), (4), (5"), (6'), or dually (2), (3), (5 '), (6") ; 
(e) (1 "), (4'), (5) , (6") , or dually (2"), (3'), (5"), (6); 
(g) (1"), (4'), (5"), (6), or dually (2"), (3')' (5) , (6") ; 
(b) (2), (4"), (5"), (6'), or dually (1), (3"), (5'), (6") ; 
(i) (2"), (4), (5), ( 6"), or dually (1 "), (3), (5"), (6); 
(j) (2"), (4), (5 "), (6), or dually (1"), (3), (5) , (6") ; 
(k) (1 '), (2"), (4"), (5'), or dually (1"), (2'), (3"), (6'); 
(I) (1 "), (2'), (4'), (5") , or dually (1 '), (2"), (3'), (6") ; 
(m) (1"), (2'), (3"), (5'), or dually (1 '), (2"), (4"), (6'); 
(n) (2"), (3'), (4), (5") , or dually (1"), (3), (4'), (6"); 
(0) (2), (3"), (4"), (5'), 01' dually (1) , (3"), (4"), (6'); 
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(p) (2"), (3'), (4"), (5), 
(q) (2"), (3), (4'), (6"), 
(r) (2), (3"), (4"), (6'), 
(5) (2"), (3"), (4), (6), 
(t) (1"), (3"), (4'), (5'), (6"), 
(u) (1"), (3'), (4'), (5"), (6"), 
(v) (1"), (3'), (4"), (5"), (6'), 
(w) (1'), (2"), (3'), (4"), (5"), 

or dually 
or dually 
or dually 
or dually 
or dually 
or dually 
or dually 
or dually 

(1"), (3"), (4'), (6); 
(1"), (3'), (4), (5"); 
(1), (3"), (4"), (5'); 
(1"), (3), (4"), (5); 
(2"), (3'), (4"), (5"), (6'); 
(2"), (3'), (4'), (5 "), (6"); 
(2"), (3"), (4'), (5'), (6"); 
(1"), (2'), (3"), (4'), (6"). 

For the proof, see CORSI 1963; parts of 3 are also in HALL 1959, 
p. 392 and BARLOTTI 1962. Conditions (e)-(w) constitute a complete 
list of those systems taken from (1) - (6") which (i) axiomatize finite 
projective planes and (ii) cannot be weakened by the omission of further 
conditions (1)-(6") without losing property (i).I) 

A similarly thorough investigation for finite affine planes does not 
seem to exist. We note here the following analogue: 

4. Each of the following conditions on the integer n> 1 is necessary 
and sufficient for the nondegenerate incidence structure (l>,,£l, I) to be 
an affine plane of order n: 

(a) (3), (5), (9) ; 
(b) (5) , (7), (9) ; 
(e) (5 '), (8), (9) ; 
(d) (3'), (5"), (7"), (9'); 
(e) (3 ") , (5 '), (7') , (9") ; 
(f) (3'), (5"), (8"), (9); 
(g) (3"), (5'), (8'), (9); 
(h) (5') , (7"), (8'), (9); 
(i) (5"), (7'), (8"), (9). 

The proofs consist in simple generalizations of arguments in OSTROM 
1964, Lemma 8, and DEMBOWSKI & OSTROM 1968, Lemma 11. 

Next, we give two characterizations of finite projective planes 
by certain sets of permutations. The first of these is the special case.A = 1 
of 2.1.18: 

5. A projective plane of order n exists if and only if there exists a set 
L of permutations of a set II with III I = n2 + n + 1, satisfying 

(a) .xe = XU for some x E l> and (!, a E L implies (! = a, and 

1) In Corsi's paper, conditions (a) and (b) are not considered because they 
are also satisfied in the degenerate case p = il = 0 and hence cannot serve as 
axioms for finite projective planes. This is the reason for including the word" nonde­
generate" in the hypothesis of 3. 
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(b) If x, y E .)J and x =l= y, then there is a unique pair e, (J of permutations 
in ~ such that xe a - 1 = y. 

Note that (a) and (b) imply that ~ cannot be a group, and 
1~I=n+1. 

The second characterization involves permutations of degree n 
rather than n2 + n + 1: 

6. A profective plane 01 order n exists if and only if there exists a sharply 
2-transitive set 01 permutations 01 degree n. 

Note that this set need not be a group; it must consist of n(n - 1) 
permutations. Result 6 can be found in Section IV of WITT 1938b; see 
also HALL 1943, Theorem 5.2, and Appendix 1. For the proof, label 
the lines =l= u v through u and the lines =l= u v through v (where u, v 
are distinct points of a plane P of order on) by the integers 1, ... , n, 
and call (i, f) the intersection point of line i through v and line f 
through u. Then any line L I u, v of the affine plane puv consists of 
the points (i, i"), i = 1, ... , n, where :re = :reeL) is a permutation of 
{1, ... , n}, well defined by L. The set n of all these :re (L) is sharply 
2-transitive on {1, ... , n}, and conversely, every such sharply 2-tran­
sitive set can be interpreted in this fashion. If coordinates are introduced 
in P with u, v as in Section 3.1, then the permutations :re (L) are essen­
tially the same as the mappings 

(10) x -->- x . a 0 b, with a =l= 0, 

of the ternary field ~ (0, e, u, v) onto itself, for any admissible choice 
of 0 and e. In fact, if L has equation y = x· a 0 b, then (10) is :re(L). 

Contrary to the situation in 5, a sharply 2-transitive set n of per­
mutations of degree n may well be a group. In fact, if this is the case, 
n may be identified with the set of permutations 

(11) x -->- x a + b, with a =l= 0, 

of a finite nearfield. 1) It can be shown (HALL 1943, Theorem 5.7) that 
this nearfield is essentially identical with ~ (0, e, u, v). Thus: 

7. A sharply 2-transitive set n of permutations 01 degree n is a group 
if and only if the ternary field given by (10) is a nearfield,. in this case 
the plane determined by n is of Lenz-Barlotti type IVa.2, IVa. 3, or VI1.2. 

We shall now discuss several types of substructures of finite pro­
jective and affine planes; these will be important either for the problem 
of constructing such planes or for dualities or collineations of them. 

1) This seems to have been first proved by CARMICHAEL 1931 b; see also CAR­
MICHAEL 1937, Chapter 13; ZASSENHAUS 1935a, b; and HALL 1943. 
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A net 1) is a nondegenerate partial plane satisfying the parallel 
axiom (3.1.4); in other words, a net is an incidence structure of points 
and lines such that 

(12) There exist points and lines, and to every point (line) there exist 
two lines (points) not incident with it. 
(13) [P, q] ~ 1 for any two distinct points p, q. 
( 14) If P I L, then there exists O1ze and only one line M I P such that 
[M,L] =0. 

Condition (14) permits the introduction of a parallelism 2) in any net: 

L II M if and only if L = M or [L, M] = O. 

This is an equivalence relation among the lines of the net, with the 
following property: 

(15) Every point is on exactly one line of each parallel class. 

If A is an affine plane and U a union of complete parallel classes 
of lines in A, then the points of A and the lines of U obviously form a 
net. In particular, A is itself a net. Conversely, the question arises 
under what circumstances a given net may be interpreted in this 
fashion as a union U of parallel classes in an affine plane. A net which 
can be described in this way will be called imbeddable; we shall see that 
there exist many non-imbeddable finite nets. 

8. Every finite net is a tactical configuration whose parameters satisfy 

(16) v = k2 , b = r k, r ~ k + 1. 

Furthermore, the number of parallel classes is r, and every parallel class 
consists of k lines. A finite net is an at/ine plane if and only if r = k + 1. 

When speaking of finite nets, we shall henceforth often denote 
the parameter k by n and call it the order of the net. In case of imbedd­
ability, k = n is clearly the order of any imbedding affine plane. The 
parameter r, i.e. the number of parallel classes, is of obvious importance 
for the problem of imbeddability; for this reason we shall often refer 
to a net with parameters (16) as an r-net. 

For the following results concerning the imbeddability problem, 
it is convenient to define 

(17) f(x) = ; [Xl + 3 + 2x(x + 1)]. 

1) There is an extensive literature on (not necessarily finite) nets: BLASCHKE & 
BOL 1938; BAER 1939, 1940; PICKERT 1955, Kap.2. For the topics discussed here, 
see LEVI 1942; BRUCK 1951, 1963a; OSTROM 1964c, 1965b, 1966b, 1968. 

2) Cf. (2.2.5). 
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We then have: 

9. Let N be an r-net 01 order n. 

(a) II n > I (n - r). then N is imbeddable. 
(b) II N is imbeddable and n > (n - r)2. then the imbedding alline 
plane is unique. 

Also, since I (x) > x2 for all positive x, the imbedding is unique 
in case (a). These results are due to BRUCK 1963a. Theorems 4.3 and 
3.1. (See also BOSE 1963 b.) That (b) is a best possible result was 
established by OSTROM 1964c: he showed that if n = (n - r)2. then 
there are at most two nonisomorphic imbeddings, and he gave examples 
where there are actually two. 

We shall now set up a fundamental relationship between r-nets 
and sets of r - 2 mutually orthogonal Latin squares. A Latin square 
of order n is an (n, n)-matrix L = (lij) whose entries are the integers 
1, ...• n,l) such that 

(18) Each 01 the integers 1, ... , n occurs exactly once in every row and 
every column 01 L. 

Two Latin squares L = (lij) and L' = (l;j) are called orthogonal to 
each other provided that 

(19) Each 01 the n2 ordered pairs (s. t). where 1 ~ s. t ~ n. occurs 
exactly once among the ordered pairs (lij. l;j), I ~ i. i ~ n. 

The correspondence between nets and Latin squares is the following. 
Given an r-net N of order n, select two parallel classes \R and ~ of N, 
and number their lines in an arbitrary but fixed fashion: 

m = {R l •• ••• RnL ~ = {Cl •...• Cn}· 

An arbitrary point p of N is then on exactly one line Ri and exactly 
one line Cj ; hence p may be denoted by (i, i). If x is anyone of the 
remaining r - 2 parallel classes of N, number its lines 

X = {Xl •... , Xn} 

and define L = L (x) = (lij) as follows: lij = m if the unique line 
of x through (i. i) is X", (1 ~ m ~ n), It is straightforward to check 
that each L (x) is a Latin square. and that these r - 2 Latin squares are 
mutually orthogonal. Conversely, any set of r - 2 mutually orthogonal 
Latin squares of order n gives rise to an r-net of order n (BRUCK 1951 ; 
for the case r = n + 1 see BOSE 1938), Thus: 

10. An r-net 01 order n exists il and only il a set 01 r - 2 mutually 
orthogonal Latin squares 01 order n exists, In particular. there exist (pro-

1) That l ij E{1, .. " n} is not essential but convenient. It is sufficient to have 
any n distinct symbols as entries of L. 
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fective and al/ine) planes 01 order n il and only il there exist n - 1 mutually 
orthogonal Latin squares 01 order n. 

In view of this result, the maximal number N (n) of mutually ortho­
gonal Latin squares of order n is of obvious importance for the ex­
istence problem of finite nets and planes. This function is one of the 
oldest objects of study in combinatorial mathematics. I) We list some 
of the more important properties of this function. 

11. The maximal number N (n) 01 mutually orthogonal Latin squares 
01 order n satislies: 

(a) N(n)~n-1; 

(b) N (q) = q - 1 il q is a prime power; 
(c) N(nm) ~min(N(n),N(m)). 

For proofs see, for example, RYSER 1963, p.80-84. Note that, 
in view of 10, result 11 b follows immediately from the existence of 
projective planes for every prime power order q, viz., the desarguesian 
planes P(q). Combination of 11b and 11e gives 

N (II'" pel) > . {P~I - :. - } . i = mID , 1.t-1, ... ,m ._1 (20) 

(MACNEISH 1922). MacNeish also conjectured that equality holds in 
(20); that this is false was first shown by PARKER 1959a by the follow­
ing theorem, whose proof depends on 6: 

12. II there exists a projective plane 01 order n, and il there exists a 
design with parameters v, b, r, k = n, A. = 1, then N(v) ~ n - 2. 

For example, if nand n + 1 are both prime powers (i.e. n = 8 or 
n a Mersenne prime or n + 1 a Fermat prime), then N (n2 + n + 1) 
~ n - 1, and in this particular situation PARKER (1959a, Theorem 2) 
has shown that even N (n2 + n + 1) ~ n, while (20) would yield only 
N (n2 + n + 1) ~ 2. Result 12 was the starting pointfor a more thorough 
investigation of BOSE & SHRIKHANDE 1959, 1960; PARKER 1959b; 
and BOSE, SHRIKHANDE & PARKER 1960. In the last paper it is shown 
that 
(21) N(n) > 1 lor all n 9= 1,2,6. 

1) EULER 1782 investigated the "problem of the 36 officers": Is it possible 
that 36 officers, of 6 different ranks and from 6 different regiments, stand in a square 
of 6 rows and 6 columns in such a way that every rank and every regiment is represented 
exactly once in every row and every column? This is clearly equivalent to finding 
two orthogonal Latin squares of order 6. Euler conjectured correctly that the answer 
to this problem is negative (TARRY 1900), and incorrectly [see (21) below] that the 
corresponding problem for n == 2 mod 4, instead of n = 6, is also unsolvable 
[EULER 1782, p. 183, § 144]. His conjecture was generalized by MACNEISH 1922; 
see the context of (20) below. Euler was the first to prove that N (n) > 1 if 
n =1= 2 mod 4. 
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Note that N(1) = N(2) = 1 is trivial; N(6) = 1 was proved by TARRY 
1900, 1901. In the papers of Bose, Shrikhande and Parker just mentioned, 
much more than (21) is shown, but for these and other results on Latin 
squares the reader must be referred to the literature. 1) 

The last results gave lower bounds for the function N (n). There 
are also some upper bounds, distinct from the triviallla: Result 2.1.15, 
when restricted to the case A = 1, gives the following nonexistence 
theorem for finite planes: 

13. II n "'" 1 or 2 mod 4 and il n is not the sum 01 two squares [i.e. 
il the square-free lactor 01 n has a prime divisor p "'" 3 mod 4],2) then 
there exists no (projective or alfine) plane of order n. 

This is the celebrated Theorem of BRUCK & RYSER 1949. It follows 
immediately that no finite plane has an order "'" 6 mod 8. In view of 
9, 10 and 13, we can now conclude: 

14. If n satislies the conditions of 13, then 

(22) n ~ f(n - 2 - N(n)) < t(n - 1 - N(n))4, 

where I is the polynomial defined by (17). 
(BRUCK 1963a.) Results 10, llb and 13 constitute our complete 

knowledge on the existence problem of finite projective planes with 
prescribed order. All known planes have prime power order. The smallest 
orders for which the existence problem is undecided are n = 10,12,15, 
18, 20, 24, 26, 28, 34, 35, 36. 

We shall see in Chapter 5 that for any n = p. > 8, with P a prime 
and e > 1, there exist at least two nonisomorphic projective planes of 
order n. Whether this is true for e = 1 also is an open problem. But 
for small orders there is at most one projective plane: 

15. Every projective plane of order n ~ 8 is desarguesian, M. iso­
morphic to a P (q) as defined in Section 1.4. 

For n ~ 5, this was proved by MACINNES 1907; see also PICKERT 
1955, p. 302. By 13, there is no plane of order 6. For the uniqueness of 
P(7), d. BOSE & NAIR 1941; HALL 1953, 1954b; PIERCE 1953; PICKERT 
1955, pp.319-325. The uniqueness of P(8) was determined by an 

1) We mention here the following references: LEVI 1942; MANN 1942, 1943, 
1950; CHOWLA, ERDOS & STRAUS 1960. Latin squares can be interpreted as multi­
plication tables of finite quasigroups; for results in this context see JOHNSON, 
DULMAGE & MENDELSOHN 1961, also BRUCK 1958. Complete tables of Latin squares 
are given by TARRY 1900, 1901 and PETERSEN 1902 for n = 6, and by NORTON 
1939 (with omissions) and SADE 1951 for n = 7. 

2) The equivalence of these conditions is well known; see for example HARDY & 
WRIGHT 1962, p. 299. 
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electronic computer; see HALL. SWIFT. WALKER 1956. That there exist 
nondesarguesian planes of order 9 (three such planes are known) will 
be seen in Chapter 5. 

Despite the existence of non-desarguesian planes. it can be shown 
that every finite projective plane contains many Desargues configura­
tions, i.e. SUbsystems of points and lines isomorphic to the incidence 
structure shown in Fig. 1 (p. 26). More precisely: 

16. Let (c. A) be a point-line pair in a finite projective plane P, 
let Mi (i = 1. 2. 3) be three lines =l= A through c, and let 1'1,1'2 be two 
points =l= AMi (i = 1. 2,3) on A. Then P contains a Desargues con­
liguration in which c. A. Mi. rj have the same signilicance as in Fig. 1. 

This was proved by a simple but ingenious counting argument. 
by OSTROM 1957. 

Few general results are known about the number of points necessary 
to generate a finite projective plane [d. (3.1.10)]; this is known only 
in the desarguesian case: 

17. The desarguesian projective plane P(q) is generated by anyone 
01 its quadrangles (i.e. it is a prime plane) il. and only il. q is a prime. 
II q is not a prime, then P (q) can be generated by any quadrangle q and 
a suitable point on one of the sides of q. 

This is a simple consequence of the fact that the multiplicative 
group of a finite field is cyclic. 

It is conceivable that every nondesarguesian finite projective plane 
(i) can be generated by some quadrangle and (ii) contains the seven­
point plane P (2) as a subplane. This has been found true in all planes 
which have been investigated in this respect; see WAGNER 1956, COFMAN 
1964, KILLGROVE 1964. for (i). and LENZ 1953, H. NEUMANN 1955, 
for (ii). On the other hand. the existence of too many subplanes P (2) 
implies Desargues' theorem (GLEASON 1956; d. result 3.4.23 below). 

We turn to a brief discussion of the possible orders of subplanes 
of a finite projective plane. The following is a useful lemma: 

18. Let P be a projective plane 01 order n, and Q a proper subplane 
01 order m. Then 

(a) 
and 
(b) 

if and only il Q is a Baer subplane, 

il Q is not a Baer subplane. 

The proof is again by simple counting; see BRUCK 1955, Lemma 3.1, 
and HALL 1959. p. 398. It is an unsolved problem whether (b) can hold 
with equality; clearly this would imply the existence of planes of orders 

10 Ergebn. d. Mathem. Bd. «, Dembowski 
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m(m + 1) which are not prime powers. i ) We shall see in Section 4.1 
that m2 + m =l= n at least in the case where Q is the system of fixed 
elements of some collineation group. 

A little more information on subplanes of finite planes can be ob­
tained by considering the tactical decomposition defined by a subplane 
(DEMBOWSKI 1958, Section 2.4). We shall not present this here, but for 
the convenience of the reader, and for later reference, we restate the 
basic equations for tactical decompositions, viz. (1.1.14-16) and 
(2.1.16) and its dual, for the case the incidence structure under considera­
tion is a projective plane of order n. If ! is a point class and x a line 
class, then (! x) denotes the number of points of ! on any line of x, 
and (X!) has the dual meaning. Then: 

(23) (! x) I x I = (X!) I! I jar all L x; 
(24) ~ I! I = ~ I x I = n 2 + n + 1; 

); 3Z 

(25) ~ (! (I) = ~ (x e) = n + 1 jar all e, a:; 
); £ 

(26) ~(e x) (x e') = lei + n b(e, e') jar all c, c'; 
£ 

(26') ~ (0: !) (! 0:') = 10:1 + n b (0:, 0:') jar all 0:, (I'. 
I; 

Here b(x, y) = 1 or 0 according as x = y or x =l= y. 
We mention a rather isolated application, showing that the concept 

of homomorphism is of little value for finite planes. 2) In fact: 

19. Every epimorphism f(! oj a proiective design D onto a projective 
plane P is an isomorphism. 3) 

Hence P and D are then isomorphic projective planes, and in partic­
ular there exist no proper epimorphisms of one finite projective plane 
onto another. 4) The proof of 19 appears in DEMBOWSKI 1959; it is 
shown there that the cosets of f(!, i.e. the pre-images of the elements 
in P under f(!, must form a tactical decomposition /),. of D such that the 
quotient structure D I/),., as defined in the end of Section 1.1, is iso­
morphic to P. But: 

1) An interesting but so far unsuccessful idea for the construction of such 
planes, with the help of certain systems of I-spreads of 9'(3, m) (for definitions 
see Section 1.4), has been pointed out by BRUCK 1963b, Section 9. 

2) It is true that every projective plane is a homomorphic image of a tree 
plane (d. HALL 1943, or PICKERT 1955, Section 1.3) but this fact has, so far, not 
yielded much for the theory of finite planes. 

3) The definitions for epi- and isomorphisms of incidence structures are in 
Section 1.2. Result 19 is in contrast to some theorems in Section 7.2 below: if a 
certain generalization of the concept of .. design" is admitted, then there do exist 
proper homomorphisms onto finite projective planes. 

4) This more special result was also proved by HUGHES 1960 band COR BAS 1964. 
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20. 1/ a projective design D has a tactical decomposition f:. such that 
D/f:. is a projective plane P, then f:. is the trivial decomposition each 0/ 
whose classes has only one element, and hence D ~ P. 

This is Satz 6 of DEMBOWSKI 1958, and proves 19. 

For the remainder of this section, we shall be concerned with point 
sets in projective planes which contain no three collinear points. Such 
a set will be called an are, and an arc which consists of k points will be 
called a k-arc. For example, the 3- and 4-arcs are just the triangles and 
quadrangles. An arbitrary line L meets an arc c in at most two points; 
L will be called secant, tangent, or exterior according as I (L) r\ c I = 2, 1, 
or o. Note that 

21. In a projective plane of order n, every k-arc c has (~) secants, 

k(n + 2 - k) tangents, and (;) + (n + ~ - k) exterior lines. Through 

every point 0/ c there are k - 1 secants and n + 2 - k tangents. 

An ovall) is an arc 0 of a (not necessarily finite) projective plane 
such that 

(27) Through every point of 0, there is exactly one tangent. 

Hence 21 implies: 

22. The ovals in finite planes 0/ order n are precisely the (n + i)-arcs. 

Every arc in a finite projective plane gives rise to a system of dio­
phantine equations which will now be displayed. 2) Let c be a fixed 
k-arc in a projective plane of order n. For any point x Ef c, define t (x) 
as the number of tangents of c passing through x. The number of secants 
through x is then clearly [k - t (x)]/2, whence 

(28) t (x) == k mod 2, for every point x Ef c. 

Now define ei as the number of those points x Ef c for which t(x) = i; 
simple counting then yields the following equations: 

(29) 
/, 

k 

~ej=n2+n+1-k, 
;_0 

I.-

~ i ei = k n(n + 2 - k), 
;-0 

~ i(i - 1) ej = k(k - 1) (n + 2 - k)2. 
j-O 

1) This is what we have called an "ovoid" in Section 1.4. The term" oval" 
is more customary for projective planes. The reader must be warned that our 
terminology differs somewhat from that of SEGRE 1961. 

2) These may be interpreted as consequences of (23)-(26'), for a certain tactical 
decomposition associated with a k-arc by LOMBARDO-RADICE 1962. The special 
case where k = n + 1 or It + 2 is in DEMBOWSKI 1958, Section 2.5. 

lO* 
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Furthennore, for any line L, let fi(L) denote the number of points 
x EE c on L for which t(x) = i. Then 

(30) 

and 

(31) 

I n - 1 
k 

i~/(L) = 1 111 

n+1 

if L is secant, 

if L is tangent, 

if L is exterior, 

1 
k. { (k - 2) (n + 2 - k) 

i'i}/ fi(L) = ken + 2 - k) 

k 

~ (i - 1) fi(L) = (k - 1) (n + 2 - k) 
i-O 

if L is secant, 

if L is exterior, 

il L is tangent. 

Furthermore, 

I (k - i)e;/2 1 I secants 

ft;{L) = 1 i ei Iii L ranges over aU 1 tangents 

[n + 1 - (k + i)f2] ei exterior lines, 

(3 2) 

for i = 0, ... , k. The proofs for (29)-(32) are all given by MARTIN 
1967a; some of these equations are also in SEGRE 1959a, b; 1961, Chap­
ter 17. See also BARLOTTI 1965. 

An arc c of the projective plane P is called complete if it is not prop­
erly contained in another arc of P or, equivalently, if every point of 
P is on a secant of c. In the finite case, we can say that a k-arc is complete 
if and only if eh = O. The following completeness results may all be 
proved from (28) - (32), the main tool being (29). 

23. Let 0 be an oval in a projective plane 01 order n. Then there are 

. (n+1) (n) n +: ta~gents, one through each pOtnt of 0, 2 secants, and 2 

extertar hnes. Moreover, 

(a) II n i~ odd, then 0 is complete, with e2 = (n ~ 1 ), eo = (~ ), and 
ei = 0 lor z =!= 0, 2. 
(b) II n is even, then 0 is not complete; in lact en + 1 = 1, e1 = n2 - 1, 
and ei = 0 lor i =F 1, n + 1 . 

This result is due to QVIST 1952. It shows that the concept of an 
oval is self-dual if n is odd: the tangents then form an oval in the dual 
plane. This is not so, however, if n is even: in that case there exists 
a unique point k = k (0), the knot of the ovalo, which is on all the 
n + 1 tangents of 0, and conversely every line through k (0) is a tangent. 
The set 0 v k (0) is then a (necessarily complete) (n + 2)-arc. As a 
consequence, we note: 
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24. II a plane 01 order n contains a k-arc, then 

{ 
n + 1 il n is odd, 

k~ 
- n + 2 il n is even. 

This was first proved by BOSE 1947a. 
The following results show that an ovalo and a k-arc c ~ 0 cannot 

have too many common points: 

25. Let 0 be an oval and c a k-arc in a projective plane 01 order n. 

(a) II n is odd, suppose that Ie r'I 0 I > (n + 3)/2 or that 
Icr'l 01> (n + 1)/2 and k> 3(n + 3)/4. Then c~ o. 

(b) II n is even, suppose that Ie r'I (0 v {k(o)}) I > (n + 2)/2. Then 
c~ov{k(o)}. 

For the proof, see MARTIN 1967a; a slightly weaker version IS In 

BARLOTTI 1965, Section 2.5, and the case where c is also an oval is 
contained in QVIST 1952. LOMBARDO-RADICE 1956 has exhibited a 
class of complete [(q + 3) j2]-arcs in P (q), where q is a prime power 
"" 3 mod 4; this shows that the first result of 25a is best possible. The 
second result of 25a is also best possible, but there cannot exist examples 
showing this in a desarguesian finite projective plane: SEGRE'S [1954, 
1955 a] Theorem 1.4.50 states that every oval in a desarguesian finite 
projective plane of odd order is a conic, and it is well known that, in 
any projective geometry over a commutative field, a conic is determined 
by five points. However, there exist two ovals in a nondesarguesian 
plane 1) of order 9 with five common points (MARTIN 1967a). Other 
examples of ovals in nondesarguesian planes appear in WAGNER 1959; 
RODRIGUES 1959; BARLOTTl 1965, Section 2.9. 

Several papers, mostly by Italian authors, have been devoted to 
completeness criteria for k-arcs with k < n + 1; the principal reference 
for these is Chapter 17 of SEGRE 1961. We survey some of these results 
here. It is not difficult to see that 

( k - 1 ) 26. k-arcs with 2 < n are not complete; 

and for small k this may be further improved: 5-arcs are never complete, 
4-arcs are incomplete if n > 3, 6-arcs are incomplete if n > 10, and 
7-arcs are incomplete if n > 13. As completeness is equivalent to 
e" = 0, it is desirable to have inequalities involving ek. In this context 

1) This plane, the "smaIlest Hughes plane", will be defined and discussed in 
Section 5.4. 
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we mention SeE's [1958] inequalities: 

(33) (k-1)(k-2)2 n(k-1)(k-2) 
2 ~ ek - n2 + 2 

~ (k-1)2(k-2) [k(k;3) +1] 

for any k-arc in a projective plane of order n. 
An arc is called uniform if there is at most one i > 2 for which 

ei =\= O. Ovals and (n + 2)-arcs in planes of order n are uniform. 

27. Uniform k-arcs in planes of order n are complete, except when 
k = 4 or n if k is even, or when k = 5 or n - 1 it k is odd. 

For the proof, see MARTIN 1967a; there exist counterexamples in 
the excepted cases. 

Finally, we mention briefly n-arcs in planes of order n. SEGRE 
1955 b has shown that 

28. In the desarguesian plane P (q) ot order q, there exists no complete 
q-arc. 

For the proof, see also SEGRE 1961, no. 175. The result cannot be 
extended to nondesarguesian planes: there exist complete 9-arcs in 
a nondesarguesian projective planel) of order 9 which are uniform 
with es = 6, and hence complete by 27; see BAR LOTTI 1965, Section 2.9, 
and MARTIN 1967a who also gives various conditions necessary and 
sufficient for an n-arc to be complete. 

The concept of k-arc has been generalized to that of (k, m)-arc; 
these are point sets c with I c I = k containing m, but not m + 1, collinear 

PI Ps 

Fig. 3 Pascali an hexagon 

pz 

points [hence k-arcs are (k, 2)-arcs]. We do not discuss these here, but 
mention only three references: BARLOTTI 1956; Cossu 1961; and BAR­
LOTTI 1965, Chapter 3, where there are also more references. 

In conclusion, we mention a beautiful theorem of BUEKENHOUT 
1966b on pascalian ovals which holds also in the infinite case. By a 

1) See footnote 1) on p. 149. 
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hexagon, in an arbitrary projective plane P, we mean a sextuple 
(PI, ... , P6) of distinct points such that the lines Pi Pi + I (subscripts 
mod 6) are all distinct. A hexagon is pascalian if the three points 
(Pi Pi+!) (Pi+3 PiH), i = 1, 2, 3 reduced mod 6, are collinear (see Fig. 3). 
The classical Theorem of Pascal says that in a projective plane over 
a commutative field, a hexagon is pascalian if it is contained in a conic, 
i.e. a nondegenerate quadric in the language of Section 1.4. Bueken­
hout's theorem is the following extension of this result: 

29. Suppose that the projective plane P contains an oval 0 such that 
every hexagon of points in 0 is pascalian. Then P is the desarguesian 
plane over some commutative field sr, and 0 is a conic in P. 

The main ideas of the proof are the following. First it is shown that 
the permutations (J (P) of 0, defined for every point P EE 0 by 

{
the point 9= x of 0 on px, 

(34) xa(p) = 
x 

if px is secant to 0, 

if px is tangent to 0, 

generate a sharply 3-transitive group ~ of permutations of o. The 
condition that the hexagons in 0 are pascalian also implies that ~ is 
faithfully induced by a collineation group of P which may also be 
called ~. This allows the reconstruction of P within ~; for example, the 
points EEo of P may be identified with the involutions. On the other 
hand, a result of TITS 1952 shows that ~ ~ PGL2 (sr) for some com­
mutative field sr. If Q is the desarguesian plane over sr and c any 
conic in Q, one may consider the permutations (34) with c and Q 
instead of 0 and P; the resulting group is well known to be PGL2 (sr) 
also. Thus the isomorphy of ~ and PGL2 (sr) permits us to set up an 
isomorphism from Ponto Q which maps 0 onto c. For more details, 
the reader is referred to BUEKENHOUT 1966 b. 

3.3 Correlations and polarities 

By a correlation is meant here an anti-automorphism of a projective 
plane P = (.\J, 2, I), i.e. a permutation e of .\J v 2 such that .\Je = 2, 
2e =.\J, and P IL if and only if Pe 1Le for all pE.\J, LE 2 (d. 
Section 1.2). A polarity is a correlation of order 2. Clearly, a correlation 
e which is not a polarity has the property that e2 is a nontrivial colli­
neation. 

In this section, we consider correlations, and mostly polarities, of 
finite projective planes. Let P be such a finite plane, and write its order 
as 
( 1) n = n* 52, 
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where n* is square-free. We denote by a = a (e) and ~ = III (e) the 
sets of absolute points and lines, respectively, of the correlation e, 
and by A = A (e) the substructure of P defined by a and ~; see (1.1.4) 
for definitions. Obviously I a I = I ~ I; we put 

(2) a(e) = In(e) I = I~(e) I· 
The starting point of our discussion is the following corollary (for 

A = 1) of result 2.1.17: 

1. Every correlation e 01 a finite profective plane has absolute points. 
In fact, 
(3) a(e) == 1 mod n* s. 

Moreover, if e is a polarity, then there exists a nonnegative integer r such 
that 
(4) a(e) =n + 1 + 2rV;;. 

Equations (3) and (4) are due to BALL 1948 and HOFFMAN, NEW­
MAN, STRAUS, TAUSSKY 1956. That r ~ 0 is not immediate from 2.1.17, 
but it is not difficult to prove (for example, with the help of 5 below). 
We note the following consequences of (4): 

2. Let n be a polarity 01 a profective plane of order n. Then 

(5) a (n) ~ n + 1; 

equality holds whenever n is not a square. 
This was first proved by BAER 1946a, Section 1, Theorems 5 and 6. 
Note that 2 implies the nonexistence of collineation groups of Lenz­

Barlotti type 1.8 in finite projective planes; d. 3.1.20. 1) 

A power ei of a correlation e is, of course, a collineation or a correla­
tion according as i is even or odd. The case where i is even will be dis­
cussed at the end of Section 4.1; for i odd we have the following result: 

3. Let e be a correlation of a plane 01 order n. For any odd prime p 
not dividing n, lor any odd integer f prime to p, and lor any integer i ~ 0, 

1 { ( jpi+') } . I a e 
I, then a (e1 P) "'" . 1+1 mod pi + 1 • 

2(n + 1) - a(e1P ) 

il J (;) = 1 

1 (;) = -1 

Here (;) is the Legendre symbol. For the proof of 3, see BALL 1948, 

Proposition 2.1. From this, and from the Dirichlet theorem that there 
are infinitely many primes of the form ex + d whenever e and dare 
relatively prime [see, for example, LEVEQUE 1956, vol. II, Chapter 6], 
Ball has derived the following result: 

1) On the other hand, it will be shown in Section 4.3 that in the infinite case 
such groups cannot exist either. 
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4. If n is a square and i relatively prime to the order of e (which implies 
that i is odd), then a (e) = a (e i ) . 

(BALL 1948, Theorem 3.1) Ball also gives some results for the case 
where n is not a square (Theorem 3.2 of the quoted paper). Some of 
Ball's results have been proved in another way by HOFFMAN, NEWMAN, 
STRAUS, TAUSSKY 1956; these authors have also given more conditions 
for a (e) = n + 1. We remark further that (5) is not true for arbitrary 
correlations; an example with ate) = 1 appears in BALL 1948, p.931. 

For the remainder of this section, let n be a polarity of the projective 
plane P of order n. Result 1.2.2 shows that every absolute point (line) 
of n is incident with exactly n non-absolute lines (points) of n. If L 
is a non-absolute line, then the mapping x ....... (xn)L is a well-defined 
involutorial permutation of the point set (L), and the fixed points of 
this permutation are just the absolute points of n on L. Hence: 

5. The number of non-absolute points (lines) incident with a non­
absolute line (point) is even. 

From this and a (n) > 0 it is not difficult to derive (5); d. the remark 
after 1 above. Furthermore, if (5) holds with equality, 5 yields satis­
factory information about the substructure A (n) of the n-absolute 
elements of P: 

6. Let n be a polarity with a (n) = n + 1, of a projective plane of 
order n. 

(a) If n is odd, then A (n) consists of the points and tangents of some 
oval. 
(b) If n is even, then A(n) consists of the points of a distinguished non­
absolute line L and the lines through Ln. 

(BAER 1946a, p.82, Corollary 1.) 
Next, we restate some results of Section 1.4, on polarities of finite 

desarguesian projective planes: 

7. Let n be a polarity of the desarguesian projective plane P(q) of 
order q = pe. Then either a (n) = q + 1 (if n is orthogonal) or a (n) 
= q3/2 + 1 (if n is unitary). In the second case, which cannot occur un­
less q = S2 is a square, the substructure of the absolute points and non­
absolute lines of n is a design with parameters 

(6) v = S3 + 1, b = S2 (S2 - S + 1), k = s + 1, 

r = S2 = q, A = 1 . 

This substructure is clearly what we have called a unitaP) in 
Section 2.4. 

1) Compare here (2.4.20) and context, where this unital was denoted by U (s) , 
and the remarks preceding 1.4.60. For a generalization, see 9 below. 
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We discuss now a more general situation where P = (V, 2, I) is 
finite of order n but not necessarily desarguesian. We call the polarity 
n of P regular (with BAER 1946a) if, for some integer s = s(n}, the 
number of absolute points on a non-absolute line (absolute lines through 
a non-absolute point) is either 0 or s + 1. We can then restate 7 as 
follows: every polarity of a desarguesian finite projective plane is 
regular, and s is either 1 or lin. For an arbitrary regular polarity, the 
non-absolute lines fall into two disjoint classes: the set D = D (n) of 
the outer lines which carry no absolute point, and the set ~ = ~ (n) 
of the inner lines, each carrying s + 1 absolute points. Dually, t = t (n) 
is the set of inner points, carrying no absolute line, and 0 = 0 (n) is 
the set of outer points, each carrying s + 1 absolute lines. Note that 
en = t and ~n = o. It is almost immediate that the classes D, ~, 
0, t, together with the classes 91 = ~ (n) and a = a (n) of the absolute 
elements, form a tactical decomposition of P, in the sense defined in 
Section 1.1 Using the basic equations (3.2.23)-(3.2.26') for tactical 
decompositions of finite projective planes, and putting 

Vl=a, V2=O, V3=t, ~l=lli, ~2=~' ~3=C, 

one derives the matrix C = ((Vi ~j)), defined by (1.3.1): 

(7) 

furthermore: 

s + 1 
s(n - 1) 

s + 1 

n - S2 

--s-+1 

sn: 1) 
s + 1 ; 

n +s 
s + 1 . 

As all these numbers must be integers, we can conclude the following: 

8. Let n be a regular polarity ot a projective plane ot order n, and 
put s (n) = s. Then (8) holds, and 

(9) s =:; n mod 2, 

(10) 

(11) 

n - 1 =:; 0 mod s + 1 , 

1 ~ S2 ~ n. 

Also, s = 1 it n is not a square, S2 = n it n is even, and it S2 < n, then 
S2 + s + 1 ~ n. 

These results, which bear a certain resemblance to 3.2.18, are due 
to BAER 1946 a, Section 2. In analogy with the desarguesian case, we 
may call a polarity unitary if it is regular with S2 = n. We can then 
infer from (8): 
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9. The absolute points and nonabsolute lines 01 a unitary polarity 01 
a linite proiective plane lorm a unital.1) 

It seems to be unknown whether there exist, necessarily in nondes­
arguesian finite planes, regular polarities with 1 < S2 < n. There do 
exist non-regular polarities; examples will be given in Section 5.3. 

Two lines are called perpendicular,2) with respect to the polarity 
n, if each of them is incident with the pole of the other. Perpendicularity 
is clearly a symmetric relation, and any line is perpendicular to itself 
if and only if it is absolute. Also: 

10. II L is any line and p =f= Ln, then p(Ln) is the only line through 
p which is perpendicular to L. 

In the regular case, we call a point elliptic 2) if it is the intersection 
of two inner lines which are perpendicular to each other. Consider the 
following conditions: 

(12) Every inner point is elliptic. 

(13 ) No outer point is elliptic. 

(14) II pI L, with p elliptic and L inner, then the line through p perpen­
dicular to L is also inne,.. 

The following result gives the relationships between these conditions: 

11. For any regular polarity n 01 a proiective plane 01 order n. 

(a) s(n) > 1 implies (12). 
(b) (13) implies (12), (14), s(n) = 1, and n == 3 mod 4. 
(c) (12), (14), and s(n) = 1 together imply (13). 

This is essentially Theorem 6 of BAER 1946a, p.88. Note that for 
unitary polarities (12) holds, but not (13). 

We conclude this discussion with another result of Baer, showing 
that a projective plane with a certain familiar type of polarity is necessa­
rily infinite. For every polarity n with the property that some line 
carries no absolute point, it is possible to divide the nonabsolute points 
into two disjoint sets i and e (" interior" and "exterior" points) such 
that 
(15) il pEj and LIP, then LnEe. 

For example, j may consist of a single point p carrying no absolute line, 
and e of all other nonabsolute points. Now n is called hyperbolic if 

1) Cf. footnote 1) on p. 153. 
2) 'We follow here (and further below) the terminology of BAER 1946a. See also 

LIEBMANN 1934. 
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such a division can be made in such a way that the following condition 
is also satisfied: 

( 16) IlL and M are perpendicular lines in en, then LM E i. 
The result then reads: 

12. No linite proiective plane possesses a hyperbolic polarity. 

We outline a proof. (See BAER 1948 and, for a weaker preliminary 
version of the theorem, BAER 1946a, p.91.) Assume that P is a pro­
jective plane with a hyperbolic polarity. Firstly, (15) and (16) show 
that both j and e are non-empty. Secondly, it follows easily from (15) 
and 1.2.2 that not all points on a line L E en can be absolute. Hence 
every such L carries a non-absolute point p, and either p or L (P n) 
is in L by (16). Thus every line of en carries points of i. Next: 

(17) All lines in en carry equally many points 01 i. 
For let L, ME en. If Land M are non-perpendicular, then the mapping 
x -+ x' = L [x (M n)] is one-one and sends the points x E i on M onto 
the points x' E i on L [both (1 5) and (16) are used here J. If Land M 
are perpendicular, then LM E i by (16), and any line X I LM is like­
wise in en, by (15). If I =1= L, M, then X is perpendicular to neither 
L nor M, and both Land M carry the same number of points of j as 
does X. This proves (17). 

(18) There are equally many points 01 e and i on any line 01 en. 

To see this, define XO = (x n) L, for any x I L E en. Then XOO = x, 
and XO = x if and only if x is absolute. Furthermore, (16) shows that 
if x =1= xO, exactly one of x, XO is in e, the other in i. This proves (18). 

So far, we have not used finiteness, so that (17) and (18) are true 
for any hyperbolic polarity. Now assume that P is finite of order n. 
From (17) and (18) we conclude that, for some integer m, every line 
of en carries exactly m points of e and exactly m points of i. Then (15) 
shows that 

Iii = 1 + (n + 1) (m - 1). 

On the other hand, the dual of (15) shows that the n nonabsolute lines 
through an absolute point (see 5) are in en, and all points of i are on 
these lines. Hence 

Iii =nm, 

and we conclude that m = n. But 2m;;;; n + 1 by (18); this gives 
n ;;;; 1, a contradiction proving 12. 

The polarity associated with the classical hyperbolic plane (Klein's 
model) is hyperbolic in our sense. Result 12 shows, therefore, that there 
is no finite analogue of this classical situation. In particular, a finite 
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"hyperbolic plane" in the sense of GRAVES 1962 [d. the remarks on 
p. 105J, if it can be interpreted as the system of "interior points" 
and polars of "exterior points" with respect to a polarity of a finite 
projective plane, cannot satisfy condition (16). 

The preceding results provide no information as to when a given 
finite projective plane actually admits a polarity. The following is a 
result in this direction which, incidentally, provides another proof 
that the desarguesian finite projective planes do possess polarities. 

13. A linite projective plane P which is (v, W)-transitive lor some Ilag 
(v, W) admits a polarity n with W = v n ii, and only ii, it can be co­
ordinatized by a cartesian group Q; which possesses an involutorial per­
mutation IX such that 

(19) (x + y)'" = Y'" + x'" and (x Y)'" = Y'" x"'. 

In fact, any cartesian group Q; = :r (0, e, u, v) with 

(20) uIW, vn=W, on=ou, and (ev)n=(ov)W 

will have this property, and if Q; is a cartesian group satisfying (19), 
then the mapping n defined by 

(21) (u,v)n=(y=xu"-v"') 

is a polarity satisfying (20). For the proof of these results, see DEMBOWSKI 

& OSTROM 1968, Lemma 1. The following result is also proved in this 
paper (DEMBOWSKI & OSTROM 1968, Lemma 2) ; 

14. Let Q; be a cartesian group 01 linite order n with commutative 
addition, and suppose that the plane over Q; admits a polarity n satislying 
(20), such that 91 (n) is an oval. Then n is odd, and multiplication in (£ 

is also commutative. 

In fact, it can be shown that the permutation IX of (17) is the identity 
in this case. 

3.4 Projectivities 

Let (P, L) be a nonincident point-line pair in a projective plane P. 
We define a one-one mapping n(L, P) of the set (L) of all points on L 
onto the set (P) of all lines through p by 

(1) X,,(L, p) = x p lor every x I L. 

The inverse mapping will be denoted by n(p, L); 

(2) n(L,p)-l =n(p,L). 

A profectivityl) of P is a mapping of some set (L) or (P) onto some 
other set (M) or (q) which can be written as a product of mappings (1) 

1) This term is often reserved only for mappings of lines onto lines, and 
later in this section we shall be only concerned with these. 
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and (2). Note that there are four distinct types of projectivities; here 
we shall consider mostly the type (L) -+ (M), which can be written in 
the form l 

(3) n = II n(Li_l , Pi) n(Pi, L i), 
i = 1 

where Lo = Land Ll = M. In order to avoid trivialities, we may as­
sume also that 

(4) Pi-I=l=Pi and Li-I=l=Li (i=1, ... ,l-1), 

because of (2). The integer 1 is called the length of the representation (3) 
of n, and if n cannot be represented by a product of type (3) with less 
than 2l factors, then 1 is also called the length of n. A projectivity of 
length 1 is called a perspectivity. 

We state now some well known results on projectivities. For proofs, 
the reader is referred to VEBLEN & YOUNG 1910, Sections 23-26, and 
HESSENBERG 1930. 

1. II Pi I Land qi 1M, where the Pi as well as the qi are distinct 
(i = 1 , 2, 3), then there exists a profectivity n 01 length ;;:;; 3 such that 
P7 = qi (i = 1, 2, 3). II L =l= M, such a profectivity exists with length;;:;; 2. 

2. II PI, P2, qb q2 are lour distinct points on L, then there exists a 
profectivity n 01 length ~ 3 such that P~ = P2, P~ = PI and q~ = q2, 
~ =ql' 

In an arbitrary projective plane, the projectivities of 1 and 2 need 
not be unique. We shall now formulate a condition which guarantees 
this uniqueness. 1) A projective plane is called pappian if every hexagon 
(PI, ... , P6) with Ps I PI Pa and p& I P2 p, is pascalian,2) in other words 
if the following condition is satisfied: 

(5) II L =1= M, il PI' Pa, P5 are distinct points on Land P2, p" p& 
distinct points on M, and il Pi =l= LM lor i = 1, ... , 6, then 

qi = (PI P2) (P, P5) , q2 = (P2 Pa) (P5 P6) and qa = (Ps P,) (P6 PI) 

are collinear points (Fig. 4). 

This condition is known as the "Theorem of Pappus"; it is the first 
in a sequence of incidence propositions to be considered in this section. 
The "Theorem of Desargues" [Condition (D) of Section 1.4J is another 
example. S) 

1) The word "uniqueness" refers here to the actual mapping defined by a 
projectivity, not the manner of its representation: Many different products of 
the form (3) may define the same mapping. 

2) For the definition of pascalian hexagons, see the context of 3.2.29. 
3) Instead of "incidence proposition", the terms .. configuration theorem" 

and "Schliessungssatz" are customary. 'Ve avoid the use of the word "theorem" 
in this context. 
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The basic relationship between condition (5) and projectivities is 
expressed in the following lemma. 

Fig. 4 Theorem of Pappus 

3. A projective plane is pappian if and only if it satisfies the following 
condition: 

(6) Let Lo. L I• L2 be three nonconcurrent lines and suppose that the 
projectivity :It = :It (Lo• PI) n (PI, L I) n (LI' P2) n (P2. L2) satisfies (Lo L2)" 
= Lo La. Then n is equal to a perspectivity n (Lo, Po) n (Po, L2) . 

The proof is straightforward; see, for example, HESSENBERG 1930, 
p. 68. Repeated application of 3 yields the following theorem: 

4. Every pappian projective plane is desarguesian. 

(HESSENBERG 1905) For the proof,l) see CRONHEIM 1953 or PICKERT 

1955, Sections 5.1, 5.2. Next, we translate (5) into conditions on central 
collineations: 

5. The following conditions for a pro1'ective plane P are equivalent: 

(a) P is pappian. 
(b) P is (P, L)-transitive for every point-line pair p, L, and for pI L 
the group of all (P. L)-homologies is abelian. 2) 
(c) Pis (P, L)-transitive for all p, L, and if a,. are homologies of P 
with the same axis but distinct centers, then a-I .-1 a. is an elation. 

The proof of this is straightforward. In view of 3.1.22i, it follows 
from (b) that 

1) Hessenberg's original proof is not complete; he disregarded the possibility 
that certain additional incidences may occur in a Desargues configuration. 

2) That the group of (P, L)-elations (P I L) is abelian follows from 3.1.11. 



160 3. Projective and affine planes 

6. A desarguesian projective plane is pappian if and only if its co­
ordinatizing field is commutative. 

But every finite field is commutative (WEDDERBURN 1904, WITT 
1931, ZASSENHAUS 1952, BRANDIS 1964), hence 

7. A finite projective plane is desarguesian if and only if it is pappian. 

We return to projectivities. If in (6) the word "nonconcurrent" 
is replaced by "concurrent", then (6) remains true even in every des­
arguesian plane. In view of 4, we therefore have the following improve­
ment of 3: 

8. A projective plane is pappian if and only if, for any two distinct 
lines Land M, any projectivity of length ~ 2 from (L) onto (M) which 
fixes LM is a perspectivity. 

With this result as the main tool, one can now prove the so-called 
"Fundamental Theorem of Projective Geometry", saying that in a 
pappian plane the projectivity 1t of 1 is unique, in other words that 
every projectivity in a pappian plane is determined by its action on 
three distinct points (or lines). We shall give an equivalent formulation 
here. The set of all projectivities of a line L onto itself is clearly a group, 
in any projective plane. If this group is called n(L) and if M =!= L, then 

n(M) = 1t-1 n(L) 1t, 

for any projectivity 1t from L on to M. Hence n (L) and n (M) are 
similar as permutation groups and in particular isomorphic. We can 
therefore write n (P) or simply n instead of n (L); this group will be 
called the group of projectivities of P. We can now summarize the results 
collected so far: 

9. n (P) is a triply transitive group, and it is sharply 3-transitive if 
and only if P is pappian. 

The second statement of 9 is equivalent to the "Fundamental 
Theorem" mentioned above. Little is known about n if P is not des­
arguesian. In the finite case, triply transitive permutation groups are 
comparatively rare, and it seems plausible to conjecture that, if P is 
nondesarguesian of order n, then n (P) contains the alternating group 
of degree n + 1 . In a few special cases (with n = 9, 16) this was proved 
by BARLOTTI 1959, 1964. In particular, an example with n = 16 shows 
that n need not be the full symmetric group of degree n + 1. 

We mention two recent improvements of 9. 
Let W be a fixed line of the projective plane P, and let L be any 

line distinct from W. Denote by nl1'(L) the group of all those permuta-
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tions of L -{WL} which are induced by projectivities (3) with Lo = L j = L 
and Pi I W (i = 1, ... , l). As in the case of fl (L). this permutation 
group does not depend on the choice of the line L =1= W; it will therefore 
be denoted be flW(P) or simply by fllV. 

10. Let P be a projective plane which need not be linite. 

(a) II fluvzyz = 1 lor any live distinct points u, ... , z, then flzyz = 1, 
and P is pappian. 1) 

(b) There exist three distinct points x, y, z such that m~ = fl;'~z iI, and 
only iI, pw is a translation plane with kernel =l=GF(2) [cl.3.1.24]. 
(c) If there exist four distinct points x,y,z,U such thatflxyz =flxyzu , 
then P is of Lenz-Barlotti type VII.1 or VII.2, and therelore pappian 
il linite. 

Result (a) is the main theorem of SCHLEIERMACHER 1967, and (b) 
is a relatively simple consequence of Theorem 1 of LUNEBURG 1967b. 
As flW(L) is in the stabilizer of WL in fl(L) , result (c) is a consequence 
of (b). In the finite case, we have: 

11. Let P be linite 01 order n, and suppose that flz, lor an arbitrary 
point x, has a normal subgroup 01 order n. Then P is pappian. 

This was proved by LUNEBURG 1967b, Theorem 3, for odd nand 
by YAQUB 1968 for even n. Yaqub's argument uses result 23 below. 

We discuss now some connections between projectivities and colli­
neations. Central collineations clearly induce perspectivities on non­
fixed lines; hence: 

12. Ina desarguesian proiective plane, any proiectivity 01 one line 
onto another is induced by a product 01 at most three central collineations. 

For a more detailed discussion, see PICKERT 1955, p. 114; also LENZ 
1965, p.30. 

The following considerations, due to GLEASON 1956, give connections 
between projectivities and central collineations in a more general situa­
tion. Let L, X be two distinct lines, and LX = c. Also, let u, v be two 
points, not incident with L or X. Define 

(7) AX(U, v) = n(L, u) n(u, X) n(X, v) n(v, L) 
and put 
(8) Adu, v) = {Ax(U, v): c I XI u, v}. 

Then the following is easily verified: 

13. Adu, v) is a set 01 permutations 01 (L). lixing c and (uv)L, 
and sharply transitive on the remaining points 01 L. Moreover, Adu, v) 
is a group il and only il the lollowing condition holds: 

1) The analogue of this for six points is not true; cf. BARLOTTI 1964C. 

11 Ergebn. d. Matbem. Bd. 44" Dembowski 
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(9) Let PI, P2 be two distinct points =l= c,(uv)L on L, and X, Y two 
distinct lines =l= L and I u, v, through c. Define Xi = X (Pi u), Yi = Y (Pi v), 
and Zi = (Xi v) (Yi u), for i = 1, 2. Then c, Zl and Z2 are collinear (d. 
Fig. 5). 

c 

II 

IJ 

Fig. 5 Reidemeister condition 

Condition (9) is called the Reidemeister condition, after REIDEMEISTER 

1929. It is easily proved in any desarguesian plane l ), and conversely 
KLINGENBERG 1955 has shown that 

14. If the Reidemeister condition is satisfied in a proiective plane P, 
then P is desarguesian. 

Combining results 13 and 14, we can say that a projective plane is 
desarguesian if and only if each of the permutation sets Adu, v) as 
defined in (8) is a group. The object of the following considerations is 
to give an essential improvement of this result in the finite case. We 
begin with some preparatory lemmas which are valid also in infinite 
planes. 

15. Let (c, A) be an arbitrary point-line pair in the proiective plane 
P, and let L be an arbitrary line =l= A through c. 

1) As a matter of fact, the Reidemeister condition with c I UI! is easily seen 
to be equivalent to associativity of multiplication, and that with c I UI! to asso­
ciativity of addition, in any ternary field of the plane under consideration. 
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(a) A permutation 01 the point set (L) commutes with every permutation 
in the set 

A = U Adu, v) 
Llu,vIA 

ii, and only ii, it is induced by a collineation with center c and axis A. 
(b) II the sets Adu, v) are groups lor all u, v =1= c on A, then 

(10) Adu,v) =AL(v,u), and 

(11) Adv, w) ~ Adu, v) Adu, w) = Adu, w) Adu, v). 

For the proof, see GLEASON 1956, Lemma 2.1 and p. 805; the addi­
tional assumption c I A made there is unnecessary. These proofs are 
quite straightforward [for example, (b) follows from Ax (u, v) = Ax (v, U)-1 
and AX(U, V)-lAx(U, w) = AX (v, w)]. We emphasize, however. that 
15a is of fundamental importance for the sequel. 

16. P is (c. A)-transitive il and only il Adu, v) = Adu, w), lor 
all lines L =1= A through c and all points u. v, w =1= c on A. 

This was proved by KEGEL & LtiNEBURG 1963. p. 10, again under 
the superfluous condition c I A. The equivalence of (c, A)-transitivity 
and (c, A)-Desargues is used here (d. 3.1.16). 

Fig. 6 Little hexagonality condition 

We shall now be concerned with special cases of (9). The little Reide­
meister condition is (9) with the additional assumption that u, v, care 
collinear. By 13, the little Reidemeister condition holds if and only if 
Adu. v) is a group whenever c I uv. The hexagonality condition is 
(9) with Xl = Y2, and the little hexagonality condition (Fig. 6) is the 
hexagonality condition with c I u v. It follows from theorems of MOUFANG 

1931 that 

17. The little hexagonality condition is satisfied in a projective plane 
P il and only if every quadrangle in P generates a pappian pr£me subplane. 

11· 
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For the proof, see PICKERT 1955, Chapter 11. 1) Hence we can con­
clude that, in a plane satisfying the little Reidemeister condition, every 
quadrangle generates a subplane which is isomorphic either to a finite 
desarguesian plane P (P) for some prime p, or to the plane over the 
rational numbers. 

Now we restrict ourselves to the finite case. Let P be a finite pro­
jective plane of order n, and suppose that the little Reidemeister con­
dition is satisfied for P. Then 17 implies that for every prime divisor 
p of n there exists a subplane isomorphic to P (P) in P, and that every 
permutation in the group r = Adu, v) [from now on always with 
c I uv] has prime order. It follows that the cyclic subgroups of r form 
a normal partition of r, i.e. a set rc consisting of full conjugate classes 
of subgroups, such that r = U /). and /). ,.., /).' = 1 for any two distinct 

<1E'i&' 

subgroups /)., /).' in "C (d. Section 1.2). For the following it is con­
venient to collect some results on normal partitions of finite groups: 

18. Let <c be a normal partition of the finite group G. 

(a) At most one coniugate class in <c consists of subgroups which are 
their own normalizers in G. [If there is such a conjugate class, <c is 
called a Frobenius partition. 2)] 
(b) If rc is a Frobenius partition and F = F (G) the Fitting subgroup of G 
[i.e. the product of all nilpotent normal subgroups], then X E <c implies either 
X ~ F or X,.., F = 1 and XF = G. Also, FE "C unless F is a p-group. 
(c) If G is not a p-group and <c not a Frobenius partition, then every 
normal subgroup K satisfying X ~ K or X,.., K = 1 for all X E <c is 
itself in "C and has index [G: K] a prime divisor of 1 K I. 
(d) If X E <c is not its own normalizer in G, then X is nilpotent. 
(e) If G is non-soluble and rc not a Frobenius partition, then G is iso­
morphic toPGL2 (pe) with odd p or PSL2 (pe) or Sz(22m +1), for suitable 
p,e,m. 

The proofs of (a)-(c) are in BAER 1961, Lemma 1.6, p.343-345, 
and Satz 5.1. (d) is due to KEGEL 1961, Satz2. 3) Result (e) is the main 
theorem of SUZUKI 1961 a; the symbol Sz(q) stands, as on p. 52, for 
the Suzuki group over GF(q), see SUZUKI 1960, 1962a, Section 13. 

We return to the situation discussed above, and show: 

1) In fact it is shown there that both conditions of 17 are equivalent to a special 
case of the theorem of Desargues (sometimes called condition Ds). In this context 
compare also DEMARIA 1959. 

2) The reason for this is that the Frobenius groups (having a faithful transitive 
permutation representation which is not regular but in which only 1 fixes more 
than one symbol) are precisely the groups admitting such a partition. 

3) This result will not be used here directly. We have listed it mainly because 
it is an important tool in the proof of (e). 
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19. If a finite projective plane satisfies the little Reidemeister condition, 
then its order is a power of a prime. 

Proof (LuNEBURG 1961 b; LUNEBURG& KEGEL 1963) : Let r =I\du, v) 
for some line Land uv I c I L; d. (8). Also, let rc be the normal parti­
tion of r into its cyclic subgroups of prime order. Assume first that rc 
is a Frobenius partition. If the Fitting subgroup F (f) of r were in rc, 
then IF (f) I = p and n = If I = p q, for two distinct primes p and q, 
by 18 b. Hence there would exist two prime subplanes of orders p, q in P, 
and as n cannot be a square, 3.2.18 would imply that p2 + P ~ n 
= p q ~ q2 + q, which leads to a contradiction. Hence F (f) EE rc, and 
18b gives IF r I = pm, so that n = Ifl = pm q, again with p and q dis­
tinct primes. The groups I\L (u, x), with c =1= x I uv = A, commute in 
pairs, because of (11); by a result of WIELANDT [1951, Satz 8J, the same 
is true for their Fitting subgroups <l>L (u, x) = F (I\du, x)). Hence the 
product of all the <l>du, x) is a p-group L of permutations of (L) - {c}, 
and all L-orbits have length ~pm. Aspm+l -I' n, someL-orbit c ~ (L) -{c} 
must have exact length pm, and c is then a <l> du, x)-orbit for every 
x =1= c on A = uv. Let s, t be two points in c and x =1= c,u on A. Then 
the subplane <s, t, u, x) must be of order p, and there exists J. E I\A (s, t), 
of order 0 (J.) = p, such that u}· = x. This means that a Sylow p­
group of I\A (s, t) must be transitive on the points =1= c of A, and now 
the regularity of I\A (s, t) implies n = pm, a contradiction. This shows 
that rc cannot be a Frobenius partition. 

Now assume that 19 is false, i.e. that n has two distinct prime divisors. 
Then 18c shows that r must be simple, for the existence of a proper 
normal subgroup would imply I rl = n = p2. Hence we can use 18e 
and conclude from known properties of PGL2 (q), PSL2 (q) [DICKSON 
1901, p.285) and Sz(q) [SUZUKI 1962a, Section 13J that the only re­
maining possibility is n = 60 and r ~ PSL2 (4) ~ As, the alternating 
group of degree 5. In order to exclude this also, consider besides 
r = I\du, v) the groups II = I\du, w) and <l> = I\dv, w). All these 
groups are isomorphic to As, and if L denotes the group generated by 
rand ll, then 
(12) L=rll=llr)<l> 

because of 15b and 16, so that in particular ILl> 60. Now we use 
the following fact: 

20. A group ot order> 60 which is the product AB = BA of two 
copies A, B at As is isomorphic to either A X B or Ae. 

Proof: KEGEL & LUNEBURG 1963, Satz B. In view of this, it will 
now be sufficient to prove that L cannot be either of A. or A5 X As. 

Assume first L ~ A 6 • Then there are precisely two conjugate classes 
of subgroups isomorphic to As, and two subgroups in the same class 
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have intersection of order ~ 12 [DICKSON 1901, Chapter 12]. But 
from (12) and I~I = 360 = IA512/10 it follows that If r-. 61 = 16r-. <1>1 
= 1<1>" rj = 10, so that we have the desired contradiction. 

Finally assume ~ ~ A5 X A5. Then we consider the diagonals of 
~, i.e. the subgroups isomorphic to {(x, x"') : x E As}, with IX E AutA5 • 

Any subgroup of A5 X A5 which is not a direct factor but isomorphic 
to A5 must be such a diagonal. As every automorphism of As fixes 
some element =1= 1, two distinct diagonals must have intersection =1= 1 . 
But under our present assumption we have 

If" 61 = 16 " <1> 1 = 1<1>" rl = 1, 

so that we can assume without loss in generality that ~ = r X <1> and 
6 = 6,. = {y y" : y E q, with IX an isomorphism from r onto <1>. But 
then a stabilizer ~x of any point x =t= c on L has order 60 and trivial 
intersection with rand <1>; hence it must be a diagonal 6iJ = 
{y yfJ : y E q. But the above remark implies that then 6 " ~." =1= 1 , and 
this contradicts the regularity of 6 on (L) - {c}. This completes the 
proof of 19. 

We can now give the improvement of 14 mentioned above. 

21. If the little Reidemeister condition is satisfied in a finite projective 
plane P, then P is desarguesian. 

In view of 19, it suffices to prove this under the additional assumption 
that the order n of P is a prime power pe. The following argument is 
due to GLEASON 1956, Theorem 2.5. Let n denote the permutation 
group generated by all the groups AL (u, x) of order n, with u a fixed 
point =l=c, and x ranging over all points =l=u, c of A = uc. By (11), the 
p-groups I\du, x) commute pairwise; thus n as the product of these 
groups, is also a p-group. Consequently, n has a nontrivial centre. As n 
contains the set 1\ of 15a, again by (11), it follows from 15a that 
there exist nontrivial (c, A )-elations in P. This is true for every flag 
(c, A) of P, and an appeal to 2.3.27b finally shows that P is desar­
guesian. 1) 

1) The case A = 1 was actually excluded in 2.3.27; it was only mentioned 
there that 2.3.27b holds also if ;. = 1 (see 4.3.22a below). The proof of 21 may be 
finished without 2.3.27b as follows (GLEASON 1956, Lemma 1.6): Let l: denote the 
group generated by all elations of P. As l: (c, A) 9= 1 for every flag (c, A), result 
3.1.14 shows that the subgroups L(x, A) of L(A, A) all have the same order h > 1, 
for any line A; hence L(A, A) has order 

1 + (h - 1) (11. + 1). 

Also, as l: (A , A) is regular on the 11.2 points not on A , the order of L (A , A) divides 11.2 • 

Hence 11.2 = m[1 + (h - 1) (n + 1)] for some integer m> o. But this equation 
shows (i) that m == 1 mod 11. + 1 and (ii) that m < n, because h> 1 . Hence m = 1; 
this means I L (A , A) I = n2 or (A , A )-transitivity of P. As A was an arbitrary line, 
result 3.122h (and i1ls context) show that P is desarguesian. 
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We note a fairly immediate consequence of 21. If condition (5), with 
the additional restriction that q2 I PI P., 1) holds in a projective plane P, 
then every ternary field of P has a commutative additive loop. But 
by a result of BOL 1938 and BAER 1939, these loops are then also asso­
ciative [see also PICKERT 1955, p.49], and this is equivalent to the 
little Reidemeister condition in P. Thus (5) with q2 I PI p, implies this 
condition. Combining this and the dual argument with 7, 14, 21, and 
3.1.22i, we can summarize our results as follows: 

22. The following properties of a finite projective plane P are equiv­
alent: 

(a) P is desarguesian. 
(b) P is (L, L)-transitive for all lines L. 
(c) P is (L, L)- and (M, M)-transitive for two distinct lines Land M. 
(d) P satisfies the Reidemeister condition (9). 
(e) P satisfies the little Reidemeister condition, i.e. (9) whenever c I u v. 
(f) P satisfies condition (5) whenever q2 I PI P •. 
(g) P satisfies condition (5) whenever (PI Pa) (P2 P.) I ql q2. 
(h) P is pappian, i.e. satisfies (5) without restriction. 

A more direct proof that (f) implies (a) is in LUNEBURG 1960. 

We conclude this section with some remarks on planes with char­
acteristic. Let P be a projective plane and q = (0, e, u, v) an ordered 
quadrangle in P. Consider the permutation .1.= Aev((o e) (u v). u) of 
(0 v) - {v}, as defined by (7), and let c be the A-cycle containing o. 
If c is infinite, we say that q has characteristic 0; clearly this cannot 
happen in a finite plane. Otherwise, the characteristic of q is the integer 
1 c I· Note that this definition depends on the ordering of the four points 
in q, and that in the desarguesian case the characteristic of any quad­
rangle coincides with the characteristic of the coordinatizing field of 
the plane, hence it is either 0 or a prime number. 

A projective plane P is said to be of characteristic m if every ordered 
quadrangle in P has characteristic m. It is easy to see that if a finite 
plane of order n has characteristic m, then m is a divisor of n. Some 
other simple relations between m and n were proved by LOMBARDO­
RADICE 1955a. 

The only known finite planes with characteristic are the desarguesian 
ones; here m is a prime number. It has been conjectured that there 
are no others, but so far this can be proved only in the minimal case: 

23. A finite projective plane of characteristic 2 is desarguesian. 

1) This is also known as the axial, and its dual (cf. 22g below) as the central, 
little theorem of Pappus: see PICKERT 1955, p.153. 
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Note that a projective plane is of characteristic 2 if and only if 
each of its quadrangles has collinear diagonal points;1) d. Fig. 7. For 
the proof of 23 (GLEASON 1956, Theorem 3.5), consider the set I\du, v) 
for arbitrary line L, and with c I u v. The requirement of characteristic 
2 implies that all permutations =1=1 in I\du, v) are of order 2, and the 
product of any two distinct permutations in I\du, v) is likewise an 
involution. It follows that the elements of I\L(U, v) commute pairwise, 
so that I\du, v) is an abelian group. But then 13 shows that the little 
Reidemeister condition IS satisfied, and 21 yields 23. 

ro 
~--------~~~------------~u 

Fig. 7 The plaoe P(2) 

Little beyond 23 is known about finite planes with characteristic. 
Note that 17 implies: 

24. II the little hexagonality condition holds in a linite plane 01 char­
acteristic m, then m is a prime number, and every quadrangle generates 
a subplane isomorphic to P (m). 

This was rediscovered by DEMARIA 1959. LOMBARDO-RADICE 1955 a 
has shown that 24 can be improved in the case of characteristic 3: 

25. A projective plane is 01 characteristic 3 il and only il every quad­
rangle generates a subplane isomorphic to P (3) . 

Thus the hexagonality condition is superfluous here. Further results 
on planes with characteristic may be found' in KEEDWELL 1963, 1964. 

1) GLEASON 1956 calls such a plane a "Fano plane", despite the fact that the 
condition known as the Axiom of FANO [1896J forbids the occurence of quadrangles 
with collinear diagonal points. For this reason, ZADDACH 1956, 1957, calls the 
same planes "Anti-Fano planes". He shows in these papers that certain infinite 
planes of characteristic 2 (for example those generated by a quadrangle and a 
point on one of its sides) are also desarguesian. 


