More particularly, the geometric meaning of alternative division rings was first studied by Ruth Moufang (see the references in [2] or [6]) and characterized by the uniqueness of the projective construction of a fourth harmonic point. Later Hall [2] gave an independent characterization in terms of his Theorem L. Theorem L is a projective axiom which, in two of its Euclidean forms, becomes* respectively the vector axiom and the distributive axiom. The characterization of Veblen-Wedderburn systems is originally due to Hall.

One final remark. It is an amusing fact that Theorem 6.4 of Hall [2], although true, was not completely proved until 1953, just ten years after the publication date of Hall's paper. By a trivial slip, the theorem contains the word "two" where "three" would have been appropriate. In 1950 I had a rude awakening in this connection which led to Theorem 2. The record shows that a similar experience led Skornyakov to the study of right alternative division rings.—May there be more such slips!

Appendix I. Planar ternary rings. A planar ternary ring is a system (R, F) consisting of a set R and a ternary operation F subject to the following postulates:

- (i) 0 and 1 are two distinct elements of R.
- (ii) If a, b, c are in R, F(a, b, c) is a uniquely defined element of R.
- (iii) F(0, b, c) = F(a, 0, c) = c for all a, b, c of R.
- (iv) F(a, 1, 0) = F(1, a, 0) = a for each a in R.
- (v) If b, b', c, c' are in R, with $b \neq b'$, the equation F(x, b, c) = F(x, b', c') has a unique solution x in R.
- (vi) If a, a', b, b' are in R, with $a \neq a'$, the system of equations F(a, x, y) = b, F(a', x, y) = b' has a unique solution x, y in R.
- (vii) If a, b, c are in R, the equation F(a, b, x) = c has a unique solution x in R.

A planar ternary ring (R, F) determines a unique Euclidean plane defined as follows: The points of the plane are the ordered pairs (x, y) of elements x, y of R. Each ordered pair [m, b] of elements m, b of R is a line of the plane which passes through those points (x, y) such that y = F(x, m, b). Each symbol [a], a in R, is a line of the plane which passes through those points (x, y) such that x = a.

Addition is defined for a planar ternary ring (R, F) by a+b=F(a, b, 0). The system (R, +) is a loop. That is:

(viii) In the equation x+y=z, if any two of x, y, z are assigned as elements of R, the third is uniquely determined as an element of R.

⁽e.g., RS, XY) appear parallel. You should recognize the figure for the vector axiom (triangles ZXY, TRS). Then note that Theorem L can be interpreted as the vector axiom: ZY is parallel to TS. Now begin afresh with Hall's Figure 4 (or, equivalently, restore the deleted line AMNB and its points). This time delete line ARX and its points and apply the same process. Theorem L, as now interpreted, gives a statement about triangles NZT, MYS which is slightly different from but clearly equivalent to the distributive axiom.—As an alternative suggestion, the reader may prefer to consult a pamphlet by H. G. Forder [12] which (I am told—I have not yet seen it) covers much the same ground as the present paper with more emphasis on the projective formulation.

^{*} See footnote pp. 15-16.

- (ix) There exists an element 0 of R such that 0+a=a+0=a for every a in R. A loop (R, +) is a group provided:
- (x) (a+b)+c=a+(b+c) for all a, b, c of R, and is an abelian group if also
- (xi) a+b=b+a for all a, b of R.

Multiplication is defined for a planar ternary ring (R, F) by ab = F(a, b, 0). In particular,

(xii) 0a = a0 = 0 for all a in R.

If R^* consists of R with 0 removed, (R^*, \cdot) is a loop; that is, (viii), (ix) hold with R, +, 0 replaced by R^* , \cdot , 1 respectively.

Appendix II. Special planar ternary rings. A Veblen-Wedderburn system is a system $(R, +, \cdot)$ consisting of a set R and two binary operations $+, \cdot$, subject to the following postulates:

- (I) (R, +) is an abelian group with zero 0.
- (II.1) (a+b)c=ac+bc for all a, b, c of R.
- (III) (R^*, \cdot) is a loop with identity 1.
- (IV) a0 = 0 for each a of R.
- (V) If a, a', b are in R, with $a \neq a'$, the equation xa = xa' + b has a unique solution x in R.

A Veblen-Wedderburn system $(R, +, \cdot)$ becomes a planar ternary ring (R, F) when F is defined by F(a, b, c) = ab + c.

A division ring (with identity element 1) is a system $(R, +, \cdot)$ which satisfies (I), (II.1), (III) and

(II.2) c(a+b) = ca+cb for all a, b, c of R.

Every division ring (with identity) is a Veblen-Wedderburn system, but not conversely.

Bibliography

- 1a. David Hilbert, Foundations of Geometry, translated by H. J. Townsend, Chicago, 1902.
- 1b. David Hilbert, Grundlagen der Geometrie, 7th edition, Berlin, 1930.
- 2. Marshall Hall, Projective planes, Trans. Amer. Math. Soc., vol. 54, 1943, pp. 229-277.
- 3. R. D. Carmichael, Groups of Finite Order, Ginn and Co., 1937.
- 4. O. Veblen and J. H. M. Wedderburn, Non-Desarguesian and non-Pascalian geometries, Trans. Amer. Math. Soc., vol. 8, 1907, pp. 379–383.
- 5. L. A. Skornyakov, Alternative fields, Ukrain. Math. Zurnal, vol. 2, 1950, pp. 70-85. (Russian.)
- 6. R. H. Bruck and Erwin Kleinfeld, The structure of alternative division rings, Proc. Amer. Math. Soc., vol. 2, 1951, pp. 878-890.
- 7. E. Kleinfeld, Alternative division rings of characteristic 2, Proc. Nat. Acad. Sci. (U. S. A.), vol. 37, 1951, pp. 818-820.
 - 8. E. Kleinfeld, Simple alternative rings, Ann. of Math., vol. 58, 1953, pp. 544-547.
- 9. L. A. Skornyakov, Right-alternative fields, Izvestiya Akad. Nauk. SSSR Ser. Mat., vol. 15, 1951, pp. 177–184. (Russian.)
- 10. R. L. San Soucie, Right alternative division rings of characteristic two, Proc. Amer. Math. Soc., vol. 6, 1955, pp. 291–296.
- 11. L. E. Dickson, On quaternions and their generalizations and the history of the eight-square theorem, Ann. of Math., vol. 20, 1919, pp. 155-171.
- 12. H. G. Forder, Coordinates in Geometry, Auckland University College Math. Ser., no. 1, Auckland, New Zealand, 1954.