Math 130
Homework 9 - Due November 15, 2016
Jamie Conway

1. Do the following problems from Stillwell: 8.4.2-3.
2. (Areas of spherical triangles) Do the following problems from Stillwell: 8.5.1-8.5.5.
3. (Areas of spherical and hyperbolic regions)
(a) Derive a formula for the area of a 4 -sided region on the unit-radius sphere. Your formula should give the area in terms of the angles at the vertices. Hint: divide the region into triangles.
(b) Generalise your formula above for an n-sided region on the unit-radius sphere.
(c) Using the fact that the area of a hyperbolic triangle is $\pi-(\alpha+\beta+\gamma)$, where α, β, and γ are the angles, prove the following formula for hyperbolic polygons:

If P is a polygon in \mathbb{H}^{2}, then

$$
\operatorname{area}(P)=-2 \pi+\text { (sum of external angles). }
$$

How does this compare with your formula for spherical regions in (b)?
4. Do the following problems from Stillwell: 8.6.1-2, 8.6.4-6, 8.7.1-2.

