Math 130
Homework 3 - Due September 20, 2016
Jamie Conway

1. Recall that a number is algebraic if it is the root of a polynomial in $\mathbb{Q}[x]$. It is algebraic of degree n if the lowest-degree polynomial of which it is a root has degree n.
(a) Prove that if a is algebraic of degree n, then \sqrt{a} is algebraic of degree at most $2 n$. Must it be exactly $2 n$?
(b) Prove that if a is algebraic of degree n, then a^{2} is algebraic of degree at most n. Must it be exactly n ?
(c) Prove that $\mathbb{Q}(\sqrt{2}+\sqrt{3})=\mathbb{Q}(\sqrt{2})(\sqrt{3})$, and conclude that this field has degree 4 over \mathbb{Q}.
2. Show that:
(a) if L_{1} and L_{2} are two line segments whose endpoints have coordinates in a field F, then the intersection of L_{1} and L_{2} has coordinates in F.
(b) if $(x-a)^{2}+(y-b)^{2}=r^{2}$ and $(x-c)^{2}+(y-d)^{2}=s^{2}$ are two circles, with $a, b, c, d, r, s \in F$, then a point (x, y) where the circles intersect is the root of a degree- 2 polynomial with coefficients in F. Hint: replace one equation with the difference of the two equations to reduce the problem to the intersection of a circle and a straight line.
3. Prove that the construction below gives a regular pentagon.
4. Draw any line through O. Get A, B.
5. Circle $A B$.
6. Circle $B A$, get C.
7. OC, get D.
8. Circle DO. Get E, F.
9. EF, get G.
10. Circle $G A$, get H.
11. Circle center A, radius $O H$, get I, J.
12. Circle center B, radius I, get K, L. 10-14. Draw BK, KJ, II, IL, LB.
Then $B K J I L$ is the required pentagon.

13. (a) Prove that the triangle formed by the sides of an inscribed hexagon, pentagon, and decagon is right-angled. See the illustration. You may use any high-school-level geometry in your proof.
(b) Using (a), show that the segment $A H$ in (3) has the same length as any side of the pentagon.

14. (a) Prove that the regular 9-gon is not constructible. You may use results that we proved in class.
(b) More generally, prove that an angle of d degrees, where $0<d<180$ is an integer, is constructible if and only if d is a multiple of 3 .
15. Show, without using Gauss' theorem, that if you can construct a regular m-gon and a regular n-gon, where m and n are relatively prime, then you can construct a regular $m n$-gon.
