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1 How do we get information out of Matsushima?

This talk is based on §2 of Youcis’ notes.
Let G be a “sufficiently nice” (yields a Shimura variety, Gder is Q-anisotropic) reductive

group. Recall Matsushima’s formula:
H i

et(ShG,Fξ ⊗ Q`) ∼=
⊕

π∞ π∞ ⊗ σi(πσ) where π∞ ranges over the finite parts of auto-
morphic representations (with a suitable central character), Fξ is a local system on ShG
assocated to some algebraic representation ξ : G→ GL(V ), and σi(πσ) is some multiplicity
factor on which the Galois group ΓE acts, where E is the reflex field of the Shimura variety
(over which it is defined).

We would really like ways to analyze the Galois representations σi(π∞): what are its
properties (e.g. trace, determinant) in terms of π∞, and is it related to the Langlands
conjecture?

The trace, in particular, is of interest due to:

Theorem 1.0.1. (Brauer-Nesbitt.) A Galois representation ρ : Gal(K/K) → GLn(Q`),
unramified outside a finite set of primes, is uniquely determined by the values of the traces
of ρ(Frobp) for unramified primes p.

We let H∗(ShG,Fξ :=
∑2 dimXG

i=0 (−1)iH i(ShG,Fξ) in the Grothendieck group of G(Af )×
ΓE. For every π∞, This yields a virtual representation

σ∗(π∞) =

2 dimXG∑
i=0

(−1)iσi(π∞)

of the Galois group. This is a formal difference of Galois representations, and the trace of a
virtual representation is the different of the traces of its positive and negative components.
Ideally, all but one of the terms in this sum will vanish (in particular, the i = dim Sh(G)
term will be the only nonzero term).

Recall that G(Af )-representations are essentially equivalent to representations of the
Hecke algebra H (G(Af )), so we study the trace of an element of the form τ × f ∈ ΓE ×
H (G(Af )). For a given automorphic representation π, it turns out that we can choose
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f = f0 to be a projector onto the π∞0 component of H i(ShG,Fξ). Thus, the trace of τ × f0
on H∗(ShG,Fξ) is tr(τ |σ∗(π∞0 )), the trace of the Galois action on the virtual representation
σ∗(π∞0 ). Therefore it behooves us to give “useful” trace formulae for the action of τ × f .

1.1 Arthur-Selberg trace formula

“Useful” usually means “expressed in terms of an orbital integrals.” The reason that this is
useful is the Arthur-Selberg trace formula:

Theorem 1.1.1. (Arthur-Selberg trace formula, simply connected and anisotropic case.) Let
f ∈HC(G(Af ), χ

−1). Then ∑
π

m(π) tr(f |π) =
∑
{γ}

vγOγ(f)

where π runs over all automorphic representations for G which central character χ, {γ} runs
through all conjugacy class in G(Q), vγ is some volume term, and

Oγ :=

∫
StabG(A(f)(γ)\G(Af )

f(g−1γg) dg.

So the goal becomes to express the trace of τ×f in terms of (sums of) orbital integrals—
that way, we can use the trace formula to relate this back to traces of f .

1.2 The Langlands-Kottwitz method

This is very doable for PEL Shimura varieties, which are roughly moduli spaces of abelian
varieties with extra structure. However, we need some restrictions on the element τ × f∞:
first, τ needs to lie in some Weil group WEp for some prime p of E, and f needs to be of
the form fp1G(Zp) where fp is defined away from p and G(Zp) is a hyperspecial subgroup
of G(Qp). These restrictions mean that we can think of the τ × fp action as an action on
H∗(ShG(KpG(Zp))Ep ,Fξ), where Kp is some compact open subgroup of G(Ap

f ) underwhich
fp is bi-invariant. The reason that we want to look at this variety ShG(KpG(Zp))Ep is because
it has good reduction at p (due to the hyperspecial subgroup); that is, there is a smooth
proper canonical model SG(Kp) of this variety over Ep. We can then use standard proper
base change formulas to related the trace on the old Shimura variety to the reduction, i.e.
on H∗(SG(Kp)Fp

,Fξ). Such a trace can be realized as a trace of a correspondence and
is computed via a generalization of the Grothendieck-Lefschetz trace formula, which boils
down to counting fixed points under the correspondence.

Example 1.2.1. Even though this doesn’t meet our assumptions, consider G = GL2. Then
we are trying to count elliptic curves over finite fields with level structure. Honda-Tate
theory tells us that isogeny classes of elliptic curves are in bijection with Weil q-polynomials,
which are in bijection with certain semisimply conjugacy classes in GL2(Q). Counting elliptic
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curves up to isomorphism within an isogeny class, say of a fixed curve E0, means counting
isomorphism classes of lattices in V̂ (E0), which are given by some orbital integral. So the
sum in the trace formula should be thought of as counting isogeny classes, while the weighted
orbital integrals count isomorphism classes within isogeny classes.

Alan will discuss this example in more detail in his talk.
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