Reference sheet for classical roots systems

CJ Dowd

September 21, 2023

This reference sheet was made in preparation for my qualifying exam. All errors are my own; let me know if you find any. Please feel free to copy/distribute if this reference sheet is helpful to you.

Notation: $e_{i j}$ denotes the matrix unit, where the only nonzero entry is a 1 in row i, column j. We use the shorthand $e_{i}:=e_{i i}$ for the diagonal unit matrices. ϵ_{i} is the linear functional defined on the diagonal by $\epsilon_{i}\left(e_{j}\right)=\delta_{i j} . X^{R}$ denotes the transpose of a matrix along its antidiagonal.

There are always many choices involved in determining the data listed below. For example, there are other common presentations of $\mathfrak{s o}_{N}$ and $\mathfrak{s p}_{2 n}$ depending on the specific choice of symmetric/antisymmetric invariant form, and there are many choices of simple roots, differing by the action of the Weyl group.

$1 \quad \mathfrak{s l}_{n}(\mathbb{C})$

- Isomorphic to complexification of $\mathfrak{s u}(n)$
- \mathbb{C}-dimension: $n^{2}-1$
- Subalgebra of $\mathfrak{g l}_{n}(\mathbb{C})$ consisting of traceless matrices
- CSA: traceless diagonal matrices $\sum_{i=1}^{n} a_{i} e_{i}$ with $\sum a_{i}=0$
- Rank: $n-1$
- Roots: $\alpha_{i j}=\epsilon_{i}-\epsilon_{j}(i \neq j)$
- Simple roots: $\alpha_{i}=\epsilon_{i}-\epsilon_{i+1}(1 \leq i \leq n-1)$. All roots have the same length.
- Simple coroots: $e_{i}-e_{i+1, i+1}(1 \leq i \leq n-1)$
- Root spaces: $\mathfrak{g}_{\alpha_{i j}}=\left\langle e_{i j}\right\rangle(i \neq j)$
- Fundamental dominant weights: $\epsilon_{1}, \epsilon_{1}+\epsilon_{2}, \ldots, \sum_{i=1}^{n-1} \epsilon_{i}$
- Cartan matrix: $\left(\begin{array}{cccccc}2 & -1 & & & & \\ -1 & 2 & -1 & & & \\ & -1 & 2 & \ddots & & \\ & & \ddots & \ddots & -1 & \\ & & & -1 & 2 & -1 \\ & & & & -1 & 2\end{array}\right)$
- Dynkin diagram $A_{n-1}: \bullet \bullet$ Mnemonic: " $\mathfrak{s l}_{n}$ is the first semisimple Lie algebra you ever learn about, so its Dynkin diagram comes first in the alphabet."
- Weyl group: S_{n}. Acts by permuting the ϵ_{i}.
- Highest weight of standard representation: ϵ_{1}
- Highest weight of adjoint representation: $\epsilon_{1}-\epsilon_{n}=\epsilon_{1}+\sum_{i=1}^{n-1} \epsilon_{i}$
$2 \quad \mathfrak{s o}_{2 n+1}(\mathbb{C}), n \geq 2$
- Isomorphic to complexification of $\mathfrak{s o}(m, 2 n+1-m)$ for any $0 \leq m \leq 2 n+1$.
- $\mathfrak{s o}_{5}(\mathbb{C}) \simeq \mathfrak{s p}_{4}(\mathbb{C})$
- \mathbb{C}-dimension: $n(2 n+1)$
- Subalgebra of $\mathfrak{g l} l_{2 n+1}(\mathbb{C})$ of matrices that are antisymmetric along the antidiagonal: $X=-X^{R}$
- Cartan subalgebra: diagonal matrices of the form $\left(\begin{array}{ccc}D & & \\ & 0 & \\ & & -D^{R}\end{array}\right)$, where D is an $n \times n$ diagonal matrix.
- Rank: n
- Roots: $\pm\left(\epsilon_{i} \pm \epsilon_{j}\right), 1 \leq i \neq j \leq n$, as well as $\pm \epsilon_{i}$ for $1 \leq i \leq n$
- Simple roots: $\epsilon_{1}-\epsilon_{2}, \ldots, \epsilon_{n-1}-\epsilon_{n}, \epsilon_{n}$. Last root is the unique short simple root.
- Simple coroots: $e_{i}-e_{2 n-i+2}-e_{i+1, i+1}+e_{2 n-i+1,2 n-i+1}$, and also $2 e_{n}-2 e_{n+2}$.
- Root spaces: for $i+j \leq n$, the root space $\mathfrak{g}_{\epsilon_{i}-\epsilon_{j}}$ is spanned by $e_{i j}-e_{2 n-i+2,2 n-j+2}$, and the root space $\mathfrak{g}_{\epsilon_{i}+\epsilon_{j}}$ is spanned by $e_{i+n, j}-e_{n-i+2,2 n-j+2}$. For $1 \leq i \leq n$, root space $\mathfrak{g}_{\epsilon_{i}}$ is spanned by $e_{i, n+1}-e_{2 n-i+2, n+1}$, and root space $\mathfrak{g}_{-\epsilon_{i}}$ spanned by $e_{n+1, i}-e_{n+1,2 n-i+2}$.
- Fundamental dominant weights: $\epsilon_{1}, \epsilon_{1}+\epsilon_{2}, \ldots, \sum_{i=1}^{n-1} \epsilon_{i}, \frac{1}{2} \sum_{i=1}^{n} \epsilon_{i}$
- Cartan matrix: $\left(\begin{array}{cccccc}2 & -1 & & & & \\ -1 & 2 & -1 & & & \\ & -1 & 2 & \ddots & & \\ & & \ddots & \ddots & -1 & \\ & & & -1 & 2 & -2 \\ & & & & -1 & 2\end{array}\right)$
- Dynkin diagram $B_{n}: \ldots$ Mnemonic: "B is for bizarre, which means odd, for the odd orthgonal Lie algebras." For the direction of the arrow: "All but one of the simple roots are Big."
- Weyl group $(\mathbb{Z} / 2 \mathbb{Z})^{n} \rtimes S_{n}$, where (τ, σ) acts by swapping the signs of the ϵ_{i} corresponding to the nonzero entries of τ and then permuting the results under σ.
- Highest weight of standard representation: ϵ_{1}
- Highest weight of adjoint representation: $\epsilon_{1}+\epsilon_{2}$
$3 \quad \mathfrak{s p}_{2 n}(\mathbb{C}), n \geq 2$
- Isomorphic to complexification of $\operatorname{Sp}(n)$
- $\mathfrak{s p}_{4}(\mathbb{C}) \simeq \mathfrak{s o}_{5}(\mathbb{C})$
- \mathbb{C}-dimension: $2 n^{2}+n$
- Subalgebra of $\mathfrak{g l}_{2 n}(\mathbb{C})$ consisting of matrices of the form $\left(\begin{array}{cc}A & B \\ C & -A^{R}\end{array}\right), B=B^{R}, C=C^{R}$, all blocks are $n \times n$.
- Cartan subalgebra: diagonal matrices of the form $\left(\begin{array}{ll}D & \\ & -D^{R}\end{array}\right)$
- Rank: n
- Roots: $\pm\left(\epsilon_{i} \pm \epsilon_{j}\right)$ for $1 \leq i \neq j \leq n$ (same as $\mathfrak{s o}_{2 n}$). Also $\pm 2 \epsilon_{i}$ for $1 \leq i \leq n$
- Simple roots: $\epsilon_{1}-\epsilon_{2}, \ldots, \epsilon_{n-1}-\epsilon_{n}$, and also $2 \epsilon_{n}$. Last root is the only long simple root.
- Simple coroots: for $e_{i}-e_{i+1}-e_{2 n-i+1}+e_{2 n-i}$ for $1 \leq i \leq n-1$, and $e_{n}-e_{n+1}$
- Fundamental weights: $\epsilon_{1}, \epsilon_{1}+\epsilon_{2}, \ldots, \sum_{i=1}^{n} \epsilon_{i}$.
- Cartan matrix: $\left(\begin{array}{cccccc}2 & -1 & & & & \\ -1 & 2 & -1 & & & \\ & -1 & 2 & \ddots & & \\ & & \ddots & \ddots & -1 & \\ & & & -1 & 2 & -1 \\ & & & & -2 & 2\end{array}\right)$
- Dynkin diagram C_{n} : . . Mnemonic: "C is for Cymplectic." For the direction of the arrow: "All but one of the simple roots are small, like a small Cat."
- Weyl group $(\mathbb{Z} / 2 \mathbb{Z})^{n} \rtimes S_{n}$, where (τ, σ) acts by swapping the signs of the ϵ_{i} corresponding to the nonzero entries of τ and then permuting the results under σ. (Similar to $\mathfrak{s o}_{2 n+1}$.)
- Highest weight of standard representation: ϵ_{1}
- Highest weight of adjoint representation: $\epsilon_{1}+\epsilon_{2}$
$4 \quad \mathfrak{s o}_{2 n}(\mathbb{C}), n \geq 3$
- Isomorphic to $\mathfrak{s o}(m, 2 n-m)_{\mathbb{C}}$ for any $0 \leq m \leq 2 n$
- $\mathfrak{s o}_{4}(\mathbb{C}) \simeq \mathfrak{s l}_{2} \times \mathfrak{s l}_{2}, \mathfrak{s o}_{6}(\mathbb{C}) \simeq \mathfrak{s l}_{3}(\mathbb{C})$
- \mathbb{C}-dimension: $2 n^{2}-n$
- Subalgebra of $\mathfrak{g l} l_{2 n}(\mathbb{C})$ of matrices that are antisymmetric along the antidiagonal: $X=-X^{R}$
- Cartan subalgebra: diagonal matrices of the form $\left(\begin{array}{ll}D & \\ & -D^{R}\end{array}\right)$
- Rank: n
- Roots: $\pm\left(\epsilon_{i} \pm \epsilon_{j}\right)(i \neq j)$
- Simple roots: $\epsilon_{1}-\epsilon_{2}, \epsilon_{2}-\epsilon_{3}, \ldots, \epsilon_{n-1}-\epsilon_{n}, \epsilon_{n-1}+\epsilon_{n}$. All roots have the same length.
- Simple coroots: $e_{i}-e_{i+1, i+1}-e_{n-i+1}+e_{n-i}$ for $1 \leq i \leq n-1$, and also $e_{n-1}+e_{n}-e_{n+1}-e_{n+2}$
- Root spaces: for $1 \leq i \neq j \leq n$, the root space $\mathfrak{g}_{\epsilon_{i}-\epsilon_{j}}$ is spanned by $e_{i j}-e_{2 n-i+1,2 n-j+1}$, and the root space $\mathfrak{g}_{\epsilon_{i}+\epsilon_{j}}$ is spanned by $e_{n+i, j}-e_{n-i+1,2 n-j+1}$
- Fundamental dominant weights: $\epsilon_{1}, \epsilon_{1}+\epsilon_{2}, \ldots, \sum_{i=1}^{n-1} \epsilon_{i}, \frac{1}{2} \sum_{i=1}^{n} \epsilon_{i}$
- Cartan matrix: $\left(\begin{array}{ccccccc}2 & -1 & & & & & \\ -1 & 2 & -1 & & & & \\ & -1 & 2 & \ddots & & & \\ & & \ddots & \ddots & -1 & & \\ & & & -1 & 2 & -1 & -1 \\ & & & & -1 & 2 & 0 \\ & & & & -1 & 0 & 2\end{array}\right)$
- Dynkin diagram D_{n} : ↔.......Mnemonic:"D is for Double, for the even orthogonal Lie algebras."
- Weyl group $(\mathbb{Z} / 2 \mathbb{Z})^{n-1} \rtimes A_{n}$, where we treat $(\mathbb{Z} / 2 \mathbb{Z})^{n-1}$ as the trace 0 hyperplane inside $(\mathbb{Z} / 2 \mathbb{Z})^{n}$, and then apply the same action as in the $\mathfrak{s o}_{2 n+1}$ case.
- Highest weight of standard representation: ϵ_{1}
- Highest weight of adjoint representation: $\epsilon_{1}+\epsilon_{2}$

